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In 1972 Mumford ([37]) exhibited a whole class of algebraic curves over a local
field K which can be uniformized by a p-adic “upper half plane”. This was taken up
by Drinfeld in his study of the moduli varieties of elliptic modules ([16]). He showed
that the spaces Q41 which arise from projective d-space over K by removing all
rational hyperplanes have a natural rigid analytic structure. Later on ([17]) he gave
a new construction of Q41 as a moduli space for formal groups. As an application
he obtained a new proof of a result of Cherednik describing explicitly the p-adic
uniformization of certain Shimura curves. Mustafin ([39]) proved that for arbitrary
d > 1 the quotients of QU4+ by cocompact discrete groups are projective algebraic
varieties. Rapoport and Zink ([41]) used the p-adic uniformization theory in their
study of certain higher dimensional Shimura varieties.

It seems quite natural to view the spaces Q41 as p-adic analogs of real sym-
metric spaces. But there is at least one essential difference. Although QU4F1 ig
analytically simply connected ([40]) it still has many etale coverings and is far from
being cohomologically trivial. Drinfeld in [16] computed explicitly the first etale
cohomology group of 22). And in [17] he constructed a natural family of equivari-
ant etale coverings of Q41 expressing the fascinating hope that their cohomology
realizes all discrete series representations of GLgy1(K).

In the first part of this paper we compute the cohomology of QU4+1) for arbitrary
d in any good cohomology theory. Our main result is that in degrees < d the coho-
mology realizes certain explicitly described admissible representations of GLgy1(K);
it vanishes in degrees > d. The specific cohomology theory only enters into the for-
mula through its coefficients A := H°(point). For example the highest cohomology of
QU4+ is the A-dual of the Steinberg representation. In case of etale cohomology the
Galois action turns out to be pure and even by powers of the cyclotomic character.

In the second part we then use this result in order to study the cohomology of
quotient varieties Xp := I'\Q@D) by cocompact discrete groups I' € PGLgy1(K).
We obtain that Xt has primitive cohomology only in middle degree. Furthermore
this middle cohomology has a filtration the subquotients of which are pure and have
dimensions which depend in a very simple way on a single invariant. This is the
multiplicity of the Steinberg representation in the representation induced from the
trivial character on I'. Of course, this filtration has to be Deligne’s monodromy
filtration but we cannot prove this.

In the last part we develop a general formalism for constructing natural resolu-
tions with good finiteness properties for smooth GL 41 ([ )-modules. This is needed
as a second essential ingredient in the computation of the cohomology of the varieties

Xr.

For the convenience of the reader we now describe the content of the individ-
ual Paragraphs in more detail. In the first Paragraph we discuss the rigid analytic
structure of Q4D We introduce certain neighbourhoods of a rational hyperplane in
projective space over K and study the geometry of intersections of those neighbour-
hoods. The reason for considering them is that by the local compactness of the field



K already finitely many of them contain all infinitely many rational hyperplanes.
One then can try to imitate classical techniques for computing the singular coho-
mology of a complex vector space with finitely many hyperplanes removed (compare
[10]). We also prove that Q(4T1) is a Stein-space in the strong sense of Kiehl.

The second Paragraph contains general considerations from homological algebra.
We introduce the notion of an abstract cohomology theory on the category of smooth
rigid analytic varieties over K which is equipped axiomatically with four basic prop-
erties. The essential ones among them are the homotopy invariance and the validity
of the usual formula for the cohomology of projective space. Those four properties
will suffice to compute the cohomology of QU1 Using results of Kiehl we show
that the de Rham cohomology in characteristic 0 has the required properties. We
then give a careful definition of the etale topology in the rigid analytic context. Here
the necessary properties beyond any doubt hold true, too, but unfortunately there
exist no published proofs for the two essential ones. At least there is unpublished
work of Gabber which seems to lead to the wanted results. In the second half of the
Paragraph we establish a general spectral sequence which allows to compute the co-
homology of a pair U C X in terms of the cohomology of the pairs U;, U...UU; C X
whenever U is the intersection of the U,’s.

In the third Paragraph we will use this spectral sequence in order to express
the cohomology of Q4+ in terms of the relative cohomology of the projective space
with respect to the complement of the intersection of finitely many hyperplane neigh-
bourhoods. It turns out that our axioms together with the simple geometry of those
hyperplane neighbourhoods lead to an explicit computation of the E;-terms in this
spectral sequence. A closer inspection of the d;-differential then shows that the lines
in the spectral sequence are closely related to the simplicial cohomology of certain
generalized topological Tits buildings 7.(%) for GL4.(K). We show that the 7.()
have cohomology only in highest degree which implies the degeneration of our spectral
sequence. From this it is easy to deduce our first main result (Theorem 1) that

A . ifs=0,
H(QUAY) = { Homg (H*~(|T.9,Z),4) if1<s<d,
0 ifs>d.

The building 7.(¥ together with a computation of its cohomology already appears
in [3].

In the fourth Paragraph we give two different explicit descriptions of the reduced
cohomology groups H*~'(|T.9)|,Z). Extending a technique in [3] we first construct
certain filtrations on these groups the subquotients of which can be identified natu-
rally with spaces of locally constant functions with compact support on cells in flag
manifolds. In the case of de Rham cohomology we obtain in this way a natural map
— a kind of p-adic Mellin transform — which associates with any closed s-form on
QU+ 5 K-valued distribution on the % -(2d+4 1 — s)-dimensional affine space over I
(Corollary 6). Secondly we identify H*(Q4+1)) with an explicitly defined subspace



of the space of s-dimensional cochains on the Bruhat-Tits building BT of SLgy:1(K)
(Corollary 17). In the case s = d the resulting subspace is the space of harmonic
cochains in the sense of [19].

The fifth Paragraph contains the computation of the cohomology of the quotient
varieties Xt. Of course we use a Hochschild-Serre type spectral sequence for the
covering Q41 — Xp. The E,-terms can be transformed into Ext-groups in the cat-
egory of smooth PG Ly (K )-representations. In order to compute these Ext-groups
we generalize ideas of Casselman ([12], [13]) which he used in his representation theo-
retic proof of the Garland vanishing theorem ([19]). There are two additional features:
One is that for the representations which appear in the Es-terms we need resolutions
with nice finiteness properties with respect to the I'-action. Their construction is
postponed to Paragraph 6 (Proposition 16). Second we establish a general cohomo-
logical duality (Duality Theorem) in the category of smooth representations in which
the role of the dualizing object is played by the Steinberg representation. This result
resembles very much the Borel/Serre duality for discrete groups ([3]) but it does not
seem to be a formal consequence of it. The final results (Theorems 4 and 5) were
already explained above. In the rest of the Paragraph we deduce from our compu-
tation of H})R(Q(z)) a proof of the p-adic Shimura isomorphism between modular
forms and group cohomology (a corrected version of the corresponding statement in
[44]). We do this by a careful analysis of certain p-adic representations of SLy(K).
In particular, we study the nonexistence of I'-invariant continuous linear forms on
Morita’s p-adic principal series of SLy(K) (Theorem 6). As another application of
this we will see the surprising fact that a cocompact discrete subgroup I' C SL,(K)
has no nonvanishing automorphic forms of weight 1 (Corollary 13). A much more
direct proof of the p-adic Shimura isomorphism was given by de Shalit ([46]); he also
pointed out that the original form of the statement in [44] does not hold.

The Bernstein-Borel-Matsumoto theory of smooth representations generated by
their Iwahori-fixed vectors (see, e.g., [2]) would provide us rather easily with (non-
canonical) resolutions of the type which we needed in Paragraph 5 if it would be
sufficient for our purposes to work with Q-coefficients. But the GL441 (K )-modules
we have to study have Z- or at least Z[%]—coefﬁcients. The theory unfortunately
breaks down in this situation. Instead we start in the last Paragraph with the ob-
servation that any smooth GL ;41 (I )-module in a completely natural way gives rise
to a coefficient system on the Bruhat-Tits building B7. The chain complex of this
coefficient system is a good candidate for the required resolution. For coefficient
systems of a certain type on an arbitrary contractible simplicial complex K we de-
velop a criterion which reduces the homological triviality of the coefficient system to
the question whether certain subcomplexes of K (defined in terms of the coefficient
system) are contractible (Proposition 1). In the concrete situation on B7 to which
we want to apply this criterion we explicitly describe the respective subcomplexes as
unions of certain apartments in B7. This makes it possible to apply the geodesic
action on BT to show their contractibility. In this way we prove the chain complexes
in question to be exact (Theorems 7 and 8).



We are especially grateful to P.Deligne. He pointed out an erroneous argument
in our proof of §3 Proposition 5 and he suggested the present version of the proof. We
also want to thank O.Gabber and M.Rapoport for several interesting conversations.



§1 The rigid analytic space Q(¢+1

Once and for all we fix a local field K, that is a field K which is locally compact
with respect to a non-trivial non-archimedean valuation | |. We always will assume
the valuation | | to be normalized. Let p > 0 be the characteristic of the finite residue

class field of K, o be the valuation ring of K, and K be the completion of a fixed
algebraic closure K of K. We also fix a natural number d and denote by |P7K, as
usual, the d-dimensional projective space viewed as a K -analytic variety.

If ‘H is the set of all K-rational hyperplanes in |P7K then our object of interest
18

QUFD = P H
/A\HLEJH

Proposition 1:

QUED s an admissible open subset and consequently an open analytic subvariety of

P

We indicate two proofs and explicitly give a third one.

A) The first proof is taken from [16]. As this will be of use later on, we give some of
the ideas behind it. Of central importance is the close relationship between Q(¢+1)
and the Bruhat-Tits building B7 of the group SLgy1(K).

Definition: ([9])

BT is the simplicial complex whose vertices are the similarity classes [L] of o-lattices
in the vector space K*' and whose g-simplices are given by families {[Lo), ..., [L,]}
of sitmilarity classes such that

where m 18 a uniformizing element in K.

Remarks:

1. BT 1is contractible.

. GLa41(K) in a natural way acts on BT.

iwi.  ([21]) The topological space of similarity classes of real norms on K9t can
be identified GLgy1(K) - equivariantly with the geometric realization |BT| of the
simplicial complex BT .



On the other hand, any point z = [z¢ : ... : z4] € Q(d'i'l)(ff) defines a similarity
class of norms || ||,y by

d
|w]| o2y 1= |Zwlzl| for w = (wo,...,wq) € Kt
1=0

In this way we obtain a GL411 (] )-equivariant map
p: QUFY — |BT| .

With the help of this map Drinfel’d constructs an explicit family (U;);er of open
affinoid subvarieties of |P7K such that

a. U U; = QU+D and
el

b. any K-morphism f : ¥ — IP? from a K-affinoid variety into |P7K with
F(Y) C QU factorizes through some U;.

This in particular shows (compare [6] 9.1.4 Prop. 2) that QU1 is an admissible
open subspace of |P7K.

B) In the second proof one constructs a formal scheme QU+ over Spf(o) of which

QU+ is the “generic fibre”. For details see [17], [37], [39], [30], [42], [32].

C) The third proof proceeds again by constructing a certain explicit family of admis-
sible open subvarieties of |P7K with the properties a. and b. above. Precisely this

covering of Q4D later on will be the main technical tool in our computations. First
we introduce the following convention: If not indicated otherwise any coordinate rep-

resentation z = [zg : ... : z4] of a point z € IPd(f&’) is assumed to be unimodular, i.e.,
such that |z;| <1 for 0 < i <d and |z;| = 1 for some ¢. Similarly, for any hyperplane
H € H, welet (g € L with Lo := 0! always be a unimodular vector (determined

up to a unit in o) such that H(K) is its zero set

H(K) = {z € PYK) : (y(z) =0} .
Definition:
If € > 0 1s a rational number the set

~

H(e) :={z € PYK) : |ty (2)| < €}

18 called the e-neighbourhood of the hyperplane H € H.

Because of our above convention this definition obviously is independent of the par-
ticular choices of £ and of the coordinate representation for z. For simplicity, we let



H(e) also denote the subset of |P7K which we get by identifying (over K) conjugate
points. Usually e will be of the form e = |x|” for some n € IN where 7 is a fixed

uniformizing element of o.

Definition:

Two hyperplanes H, H' € H are called congruent mod(w™) for some n € IN if appro-
priate representing vectors Ly and Uy satisfy the congruence

Uy =l mod " L

If H,, denotes the set of equivalence classes of hyperplanes H € ‘H mod(x") then we
have H, = IP(L§/#x"L§) and H = lim H,,.
H

Lemma 2:

For two hyperplanes H, H' € H we have H(|x|") = H'(|x|") if and only of H and H'

are congruent mod(x™).

Proof: Since { and (p are unimodular they induce surjective linear maps
(y and (g : Lo/7" Lo — o/7"0 .

If we assume that H(|x|") = H'(|x|") then ( and (g have the same kernel. This
implies that (= o - (g for some a € (o/m™0)*. The reverse implication easily
follows from the inequality |[(g(2)| < max{|lu(z) — (m (2)|, [0 (2)|}.

Proof: Clear from Lemma 2.

We now consider the subsets

= (") = P U H(Jx]")

in QU+ They are admissible open in |P7K. Each €, is a finite intersection of
subsets of the form |P7K\H(|7T|"). It therefore suffices to show that those subsets
are admissible open. But up to isomorphism IP%(\H(|7T|") is an open polydisc in
the affine d-space |P7K\H. The family {lP?K\H(|7T|")}nE|N even is an admissible
covering of |P7K\H. Therefore, if f:Y — IP? is any K-morphism from a K-affinoid



variety Y into IP? such that f(y) C IPY\ H then there exists a n(H) € IN such that
f(y) C IPd\H(|7T|"(H)). If we apply this to a morphism f such that f(Y) C QU4+

we see that

d n(H)
FYY P U H(e"0)

Because of Lemma 2 the sets {H' € H : H' C H(|x|"™))} are open in H = lim H,,.

H
Since ‘H is compact we conclude that we find finitely many hyperplanes Hy, ..., H, € H
and numbers ny,...,n, € IN such that

U HC H(|x|™)U...UH(|r
HeH

oy )
As a consequence, for n := maxn;, we get that

- Y C . nj
W2 H S Hlnl") S U H(x]™)

which, in particular, means that f(Y) C Q,. We thus have established Proposition
1 and have shown that the increasing sequence of admissible open subvarieties €2,
forms an admissible covering of Q(4+1),

Proposition 4:

QU s g Stein-space.

Proof: (See [29] §2 for the notion of Stein-space.) Similarly as before one shows that
the increasing sequence of subsets

~

Q, :={z € PYEK) : |g(z)] > |r|* forall He H}

in QU+ forms an admissible covering by open affinoid subvarieties. For any pair
H,H' in H we have the analytic function

H/

For each n we choose a set H, of representatives for the equivalence classes of hy-
perplanes in H, 41 in such a way that it contains the coordinate hyperplanes H; =
{z; =0} for 0 < < d. It is then easy to see that

Q, = {z € QY s |fy gi(2)]| < |x|™" for all H H' € H,}
:{ZEQ(d+1): \fr, w0 (2)] < |7|™" forall 0<i<d and H' € H,}
={2€ Q1 : 7" fy i (2)] <|x| forall H H € Hyy1} -



The last description shows that in order to establish our assertion it suffices to prove
that the functions =" fy p/ for H,H' € H, form a system of affinoid generators

of O(£2,). This will be done by explicitly determining O(€,,). Define the affinoid
K—algebr@ A, to be the free Tate algebra over K in the indeterminates Ty g for
H,H' € H, divided by the (closed) ideal generated by

Ty, —n" for HcH,,
TH7H/-TH/7H//—7TnTH7H// for H,HI,HIIEQTL, and

d d
TH,Hj_Z/\iTHi7Hj if KH(Z):Z/\ZZZ for HE’]:[n and Ogjgd
=0

=0

We then have the K-morphisms

_ ‘ A, — O(Qy)
On 2y —> Sp(A,) given by .
Ty g — 7" fu o

and
Ut Sp(An) — IP
x> [Thym;(x) : ... : T, g, (2)] (not necessarily unimodular)

the latter being independent of the particular choice of 0 < j < d. We leave it to the
reader to check that the image of v, is contained in 2, so that it factorizes through
a K-morphism v, : Sp(A4,) — Q, and furthermore that ¢,, and ¢, are inverse to
each other.

For later computations it is necessary to look more closely at the geometric
nature of the admissible open subvarieties in |P7K of the form

P \(Ho(|x[") Moo 0 Ho(|7|"))
where Hy, ..., H, € H are finitely many hyperplanes. We consider the o-module
M = ZoﬂHi C L;
=0
Obviously we have
Ho(|=|")N .. H(|x|") =1z € IPd(f&’) 0(z)| < |x|" for all (€ M} .

By the elementary divisor theorem we find a basis lo,...,0; in L§ such that
70y, ..., 7L, with appropriate integers 0 < m < d and 0 < ag < ... < ay 18
a basis of M. Therefore, up to a linear transformation, we can assume that

Ho(|x|")Nn.n Hye(|7|") ={]z0 : oov t 2z4] € IPd(f&’) dlEYiz < |wt ofor 0< i< m}.

Since M contains a unimodular vector we must have ag = 0. On the other hand, the
condition |7% z;| < |7|™ is automatically fulfilled if a; > n. Writing 3; := n — o; we
can state the following result.



Lemma 5:

There are integers 0 < s < d and n = By > 1 > ... > Bs > 0 such that, up to
K-linear 1somorphism,

Ho(|=|")N .0 He(|7|") ={]z0 : oot z4] € IPd(f&’) Cz| < |x|Pofor 0<i<s) o

The integer s in the above assertion can be intrinsically characterized in the following
way: Put

T

M = Z(o/ﬂ'"o)ﬂHi C Ly/=" L}

=0

The minimal number of generators of M as an o-module is called the rank of M. We
have

rank M =s+1 .

Proposition 6:
We have a (in the rigid sense) locally trivial fibration

P\ (Ho(|7|™) N .. 0 H o (|7]7)) — IP*

over K with fibers open polydiscs in A%7°.

Proof: By Lemma 5 it suffices to consider the case

X = |P7K\{Z Sz < |w|P for 0<i < s} .

The projection

pr: X — IP?
[20:...:24] = [z0:...:2s] (not necessarily unimodular)
is well-defined because at least for one i with 0 <7 < s we have |z;| > |7|%. The
subsets » i
. zZj z; ,
Uj:=A{[z0:...:24] € IP?(K): |ﬂ-|]ﬁj > |ﬂ-lﬁz for 0 < <s}

for 0 < j < s form an admissible K-affinoid covering of IP};. We now consider, for
a fixed j, the K-morphism

pr(Uy)  Uy x Ae
where ¢ is defined by

Slz0 ot za]) o= (2,2




The above argument for pr being well-defined also shows that on pr~!(U;) we have

1251

Bk > 1. Therefore the image of ¢ is contained in the open polydisc

D = {(Wep1,.ywa) € AT (K 1 Jwe| < |7|7% for s <t <d}

We claim that
(pry ) s pr =1 (U;) — U; x D;

is a K-analytic isomorphism. But an inverse morphism is given by

([20 oot Zs)y (Wog1y ooy W) > [20 1 oo Zg 0 ZjWet1 & oo @ Z5W04]

where we may assume that the projective coordinates on the right hand side (but
not necessarily the ones on the left hand side) are unimodular. If |z;| = 1 for some
0 <1 < s we trivially have |z;| > |7|% and if |zjw;| = 1 for some s < t < d we get
|z;] = |we| ™! > |7|%. In any case we see that the right hand side lies in X. q.e.d.

We like to consider such fibrations as in Proposition 6 as “homotopy equivalences”.
At least they should induce isomorphisms in any reasonable cohomology theory.

62 Abstract cohomology theory

Since our later computations will be valid in at least two different interesting
cohomology theories we proceed in an axiomatic way. Let V be the category of
smooth separated (rigid) analytic varieties over I{ equipped with a fixed Grothendieck
topology which we assume to be finer than the analytic topology. Let F be an object
in the derived category DZ%(V) of complexes of sheaves on V in nonnegative degrees.
For any variety X in V we put

H*(X):=H"(X,F) ;
it U C X is an (admissible) open subvariety we also will use the relative cohomology
H*(X,U):=H"(X,U;F)

We recall that relative cohomology of the pair (X,U) is the derived functor of the
functor “sections on X which vanish on U”.

Remark:

In algebraic geometry relative cohomology usually is denoted by H%(X,.) with Z :=
X\U. Since in our context Z rarely is a closed subvariety of X the above notation
seems to be more appropriate.



These groups constitute our “abstract” cohomology theory. In order to make this
theory interesting we require the following properties to be fulfilled:

I) (Homotopy invariance)

If D denotes the 1-dimensional open unit disc then, for any affinoid variety X in V,
the projection X x D — X induces an isomorphism

H*(X) = H*(X x D)

in cohomology.
IT) (Product structure)

There are homomorphisms
L
U: FQF — F and e: Z — F
A

in Dt (V) such that U is associative and (graded) commutative with unit e.
IIT) (Cohomology of the point)
We have H*(Sp(K)) = 0 for s > 1. Furthermore, the ring

A= H°(Sp(K))

1s artinian.
IV) (Cohomology of projective space)
We have HS(|P7K) = 0 for odd s or s > 2n. Furthermore, there is a homomorphism

c: Gpl-1] — F
in DZ%(V) such that, for 0 < s < n, the map
T )UE T A= HO(Sp(K)) — H*(IP}y)

is an isomorphism where 7 : |P7K — Sp(K) is the structure morphism and ¢ is the
image of the canonical line bundle, i.e.,

H1(|P7K, 0x) N H2(|P7K)
O(l) — £

Our abstract cohomology theory consequently takes values in the category of A-
modules. For future reference let us state two further simple consequences of these
properties.



Lemma 1:

Any locally trivial fibration Y — X wn V with fibers open polydiscs in affine space
induces an isomorphism H*(X) — H*(Y') in cohomology.

Proof: This is a well-known formal consequence of the property I) above.

Lemma 2:

Let m < n be natural numbers and let o be a K-linear automorphism of IP". For the
morphism f i IP™ — IP™ given by [z0 : ...t zm] — a([z0 oo 2 2 2 02 02 0]) and
any 0 < s < m we have the commutative diagram

A = H™(P}y)

[ L

A = HE(PR)

IR

where the horizontal arrows represent the isomorphisms in property IV) above.
Proof: f* respects the canonical line bundles.

There are two basic examples for such a cohomology theory. The first one is the
de Rham cohomology. We assume that our base field K has characteristic 0 and we
equip V with the analytic topology. Let F be the complex

O.0-4%o Lo 1,

of sheaves of holomorphic differential forms. The de Rham cohomology of a variety
X in V is defined to be the hypercohomology

Hip(X) = H*(X,Q)

It has the four properties which we have required above:

The product structure is given by the usual exterior multiplication of differential
forms. The cohomology of the point is obvious. The cohomology of projective space
can be computed as in [23] (last paragraph of §7.1) using in addition the GAGA-
principle ([28]) that analytic and algebraic coherent sheaf cohomology of IP" are
equal.

For the homotopy invariance we imitate the argument in [23] (Prop. 7.1). If X is
affinoid then X and X x D have trivial coherent sheaf cohomology so that in each
case the de Rham cohomology is computed by the complex of global sections of €.
We therefore have to show that

O'(X) — Q(X x D)



is a quasi-isomorphism. The injectivity on cohomology groups as well as on the level
of complexes is obvious since the projection X x D — X has a section. It remains to
establish the surjectivity on cohomology groups. Each w € Q*(X x D) is of the form

w=Y wT'+ Y nTdT with w; € Q*(X),n; € Q"' (X)
i>0 i>0

such that limsup v/||w;]| < 1, limsup +/||m]| <1
Observing that
lim sup { Lﬁ,— | <1 and
i
M1 i dni—1 :
d (3 — ? . 4
e
1>1 1>1 >0

we see that modulo exact forms any w has the form

W= ZwiTi with w; € Q"(X),limsup y
i>0

jwil| <1

We then have
dw = Zdwi LT —I—Zwi - TNT
i>0 i>1

If w is closed it follows that w = wy € Q*(X).

Proposition 3:

We have

Hpp(QUH)) = {w € Q(QUHY) ¢ dw = 0}/d ! (QUH)

Proof: QU4+ is a Stein-space according to §1 Proposition 4. But Theorem B ([29]
Satz 2.4) says that Stein-spaces have trivial coherent sheaf cohomology.

The second example is the etale cohomology over K with coefficients in a finite ring
whose order is prime to the characteristic of the residue class field of K.

Definition:

A morphism f: X — Y of K-analytic varieties 1s called etale if, for any x € X, the
induced homomorphism of local rings Oy gy — Ox ¢ 15 flat and unramified.

Over an algebraically closed base field this definition is equivalent to the one given
in [18] V.3. Due to the fact that the image of an etale morphism need not to be an
admissible open subvariety the notion of an etale covering of analytic varieties is not
as straightforward as the corresponding notion in algebraic geometry.



Remark:

If f: X =Y is a flat morphism between K -affinoid varieties then f(X) is a finite
unton of K-affinoid open subvarieties of Y and, wn particular, 1s an admaissible open
subvariety of Y.

Proof: [32] 3.4.8.

A family of etale morphisms f; : X; — YV between K-affinoid varieties is called an
etale covering if the f;(X;) form an admissible covering of Y. Because of the above
Remark it is clear that in this way the category of K-affinoid varieties is equipped

with a Grothendieck topology. If Y is an arbitrary K-analytic variety, Y Sy
is an admissible covering by K-affinoid open subvarieties, and X;; — Y; for each
J 1s an etale covering of K-affinoid varieties then we call the family X;; — Y a
special etale covering. An arbitrary family of etale morphisms f; : X; — Y in the
category of K-analytic varieties is called an etale covering if it can be refined to a
special etale covering. This defines a Grothendieck topology on the category of K-
analytic varieties (compare SGA 3 exp. IV §6.2) which restricts to the previously
defined topology on the subcategory of K-affinoid varieties. We call it as well as its
restriction to V the etale topology and denote by V. the corresponding site.

Let V be the category of smooth separated analytic varieties over K, and let A be
a fixed finite ring of order m prime to the characteristic of K viewed as a constant
sheaf on V.. The extension of ground field functor X +— X ([6] 9.3.6) induces a
morphism of sites € : Ve — Ver. The complex F on V. then is defined to be the
total direct image

F = Re, A

under e of the sheaf A; the corresponding cohomology of a variety X in V is
H*(X) = H}(X,F) = H,(X, A)

Among our four properties the cohomology of the point is obvious and the product
structure is induced by the ring multiplication on A. The other two properties are
consequences of general results of O.Gabber (unpublished). In the formula for the
cohomology of projective space one has

Hff(lP’;ﬁ,,A) = A(s) for 0<s<n

where A(s) is the s-th Tate twist of A. For simplicity we use a once and for all fixed

primitive m-th root of unity in K in order to identify A(s) and A. The homotopy
invariance only holds under the assumption that the order of A is prime to the residue
class field characteristic of K.



Apart from the axiomatically given properties and their consequences we will
need two results from general cohomology theory. The first result concerns the be-
haviour of cohomology with respect to certain direct limits of varieties. Let X be
a variety in V and let U C X be an open subvariety which possesses an admissible
covering by an increasing family

gUnQUTH_l g for n c IN

of open subvarieties.

Proposition 4:

There 1s a natural exact sequence

0= lmWHYX,U,) = H(X,U) = lim H*(X,U,) = 0 .
—

«—

Proof: (See [27] §1-2 for the basic properties of the derived functors of lim.) We first
H

show that, for an arbitrary injective sheaf I on V, we have
H(X,U;1) = lim H*(X, Uy; I) and lim HO(X, U, 1) =0 for r>1.
The sequence of projective systems (with respect to n)
0 — HY(X,Up; I) — HY(X,I) — H°(U,,I) — 0

is exact since the right arrows are surjective by the injectivity of I (SGA 4 V 4.7).
Furthermore, the sheaf property of I implies H*(U, I) = lim H°(U,, I). Therefore in
H

the projective limit we get the sequence
0 — HY(X,U;I) — H*(X,I) — H°(U,I) — 0

which is exact for the same reason as before. From that follows the first part of
our claim and also the second part once we observe that the projective systems

{H°(X,1)},, and {H®(U,,I)}, are acyclic, the first one trivially and the second one

because of the surjectivity of the transition maps.

Now let F =+ I' be an injective resolution. We consider the two hypercohomology
spectral sequences

E =lmWHY(X,U,; I") = R™*lim(H°(X,U,;I')) and
— —
rs _ q: () 78 0 LT r+s51: 0 . T
E, —1<£n H(H(X,Up;I')) = R {EH(H (X, Un; I'))
The first one, by the above established facts, degenerates and gives
s 0 T _ S(1: 0 T _ S 1: 0 T
HY(HY(X,U: ') = H'(lim HY(X, U, T)) = R* lin(HO(X, Ui I)

Because of lim (" = 0 for » > 2 the second one then splits into the short exact
H

sequences in our assertion.



Corollary 5:

If the A-modules in the projective system {H*~1(X,Up)}, are finitely generated then
we have H*(X,U) =lim H*(X,U,).
H

Proof: Use [27] Cor. 7.2.

For the second result let Uy, ...,U,;, C X be a finite family of open subvarieties of the
variety X in V and put U := U; N ...NU,,. We then want to construct a strongly
convergent spectral sequence

(%) E'= P H(XU,U..UuU

1<io, i r<m

)= H""(X,U)

iy

This is based on the following observation about simplicial abelian groups. Let
Gy, ..., Gy, be a finite family of subgroups of some abelian group GG. We then consider
the simplicial abelian group

8G £ @ G,NG, &= & G,NG, NG, g

with the obvious face and degeneracy maps. Let C(Gy,...,G,y,) denote the associ-
ated (homological) complex of abelian groups (where the differential is given by the
alternating sum of the face maps).

Proposition 6:

Suppose that

G ﬂ(jQWGj) =Y (G:n(.N G))

ew
i€V eV I

holds true for all subsets VW C {1,....,m}. Then C(G,...,Gn) is an acyclic reso-
lution of > G;.

Proof: We first establish that the subcomplex

CH(G1,....,Gm) : 8Gis— @& GiuNGy «— @& G, NGy, NGy, +— ...
f 10<11 o<t <to



is an acyclic resolution of »  G;. For that we consider the short exact sequence of

(3
augmented strict-simplicial abelian groups

0— > G — Y G - GG/GiN>Y. G =0
i#1 i i#1
T T T
| | |
| | |
0— ¢ G; — &G, — G1 — 0
i#1 :
11 7 ol T
0— . Gio N Gi1 — . Gio N Gi1 — o G N Gi1 — 0
1<ig<iy 10<?1 1<

I 1 o1

0— . GiOﬂGilﬂGi2—> . GiOﬂGilﬂGi2—> . GlﬂGilﬂGi2—>0
1<t <y <22 101y <12 1<y <o

117 11 oI 11T

Since the left vertical arrows in the last column represent, as indicated, the zero maps
this can be rewritten as a short exact sequence of augmented complexes

0 0 0
0 — > G — > G — Gi1/GinN > G; — 0
i#1 5 i#1
T T T
| | |
| | |
Gy
0 = CY(Ga,....Grn) = CT(Gyq,....,Gpn) — 0 — 0.

CHG I NG, ... G1 N Gy)

We now argue by induction with respect to m. There is nothing to prove for m = 1.
Obviously, with G, ..., Gy, also the families G, ...,G,, and Gy N Go,...,G1 N Gy,
fulfill the assumption of our assertion. Therefore, by induction, we can assume that
CH(Ga,....Gp), resp. CT(G1 N Ga,...,G1 N Gy,), is an acyclic resolution of > G,
i1
resp. >, G1 NG; = Gy N Y, G;. The above short exact sequence then shows that
1#1 171
also CT(Gq,...,Gp) is an acyclic resolution of Y G;.
13

It remains to prove that the inclusion Ct(Gy, ..., Gn) C C(Gq, ..., G1) is a homotopy
equivalence. In case G = Gy = ... = G, = Z we view ZN. = C(Z,...,Z) as the

complex associated with the free abelian group on the simplicial set

N £ NxN & NxNxN g e . N:={1,..,m}



It is well-known (compare, for example, [6] p. 322/323) that the homomorphisms

ZN, — ZN,
(sgn T)(ix(0)s - in(q)) if there is a permutation
(105 .o ig) +— 7 such that i,y < ... <ixg »
0 otherwise

form an endomorphism of the complex ZN. which is homotopic to the identity;
furthermore the homotopy ZN. — ZN.41 can be chosen in such a way that

. . i0iq . .
(Zo,...,lq) — E cjoqu '(107]07"'7](1)
Josesdg€{t0,. i}

with appropriate integers ¢- € Z. Coming back to our general situation we define

an endomorphism ¢ of C(Gy,...,Gy,) by

(sgn 7) - g € Gipoy N NG if there is a permutation

ir(q)
h that
g€ G N..NGi, — Toenen e
tr(0) < oo <ln(q) s
0 otherwise
and a homotopy h on C(Gy,...,Gy) by
geGiyN..NGi, — a g€ Gy NGy N NGy,

Josesdg€{t0,. i}

It is clear that h is a homotopy between ¢ and id; furthermore we have

6|CT(Gy, ..., Gp) = id and im(¢) = CT(Gq, ..., Gm). q.e.d.
We are going to use this general result in the following particular situation.

Lemma 7:

For any injective sheaf I on'V we have (where all groups are considered as subgroups

of I(X)):

L. EHO(XquI) = HO(XvU;I);'

. (E HO(X,U“I))Q(Q HO(XvUbI)) = E(HO(X,U“I)Q(Q HO(XvUbI)))
i€V JEW iEV JEW

for any two subsets V.W C {1,...,m}.

Proof: i. Assume first that m = 2 and let s € I(X) be a section with s|U; N Uz = 0.
By the sheaf property we find a section s} € I(U; U Usy) such that s{|U; = 0 and
s1|Uy = s|Uz, and by the injectivity of I the section s| extends to a section s; € I(X).
If we put sy := s — sy then we obviously have s5|U; = 0. The general case follows by
induction.



ii. Because of N H°(X,U;;I) = H°(X, U U;;I) we can assume that, say, W =
JEW JEW
{1}. But, using i., we compute

(ZHO(XvUHI)) mHO(Xle;I) = HO(Xv QVU“I) mHO(XvUi;I)
1€V !

_ o . . _ o0 . .

=H (X,(igv U)uUy;I)=H (X’iQV(U’ UU); 1)

=Y HUX,U;uU;1) =) (HY(X,Ui; 1) N H(X,Uh; 1))
eV eV

q.e.d.

Now, let F =5 I" be an injective resolution. We then have the augmented double
complex

H(X,U;T")

CHYX, Ui T), e, HY(X, Un; I'))

in which the columns are acyclic according to Proposition 6 and Lemma 7. Con-
sequently, the homology of the total complex of this double complex is equal to
the homology of the augmenting complex which is H*(X,U). On the other hand,
the homology of the r-th row in the double complex, for trivial reasons, is equal to

P H*(X,U;,U..UJU,). Therefore (*) simply is the second spectral sequence of

io,...,lT
this double complex. It is strongly convergent since, as we have seen in the proof of

Proposition 6, the above double complex is homotopy equivalent to the subcomplex

CHH(X,Uy;T),..., H(X,Uy; I')) whose r-th row is zero for r > m.

63 The cohomology of Q(/*1) - Connection to the Tits building

In this Paragraph we want to compute the abstract cohomology of QU4+ in
terms of the cohomology of certain p-adically topologized simplicial complexes which
naturally arise in the theory of the Tits building for GL441. Because of the relative
cohomology sequence

o= HA(IPY — B (QUAD) 5 getipt Uty 5 getipdy -

and our axiomatic knowledge of the cohomology of IP? we equivalently have to de-
termine the relative cohomology H*(lPd, Q(d'H)). In §1 we have seen that the open
subvarieties
Q, =P\ U H(|x|"
\,Y, H)

form an increasing admissible covering of Q(¢+1). Later on we will see that we can
apply §2 Corollary 5 and calculate H*(lPd,Q(d+1)) as the projective limit of the



groups H*(lPd, ). But ©,, can be written as an intersection

Q,= N U(H;n)

of finitely many open subvarieties in IP? of the form
U(H;n) := PN\H(|x|") .
Therefore the spectral sequence () which we have constructed in §2 is at our disposal:

E;™ = @ H (P U(Hon)U..uU(H;n)) = H"(P,Q,)

We see that the central problem is to understand this spectral sequence. For that it
is useful to introduce the notation

rk(Ho,...,H,) := rank M

where
r

M= (o/x"0)lu, C Lj/7" L}

=0

We observe that rk(Ho, ..., H,) > 1 since the (g, are unimodular.

Lemma 1:
A if s is even with rk(Ho, ..., H,) <

0 otherwise.

3 <d,

HS(IPdaU(Ho;n) U..UU(Hr;n)) = {

Proof: According to §1 Lemma 5 and Proposition 6 we have, after a suitable K-linear
automorphism of IP%, the diagram

P! 2 U(Ho;n)U..UU(H,n) = IPY 0 Hi(lx|")
T
|
IP™
with m := rk(Ho, ..., H-) — 1 where pr is the projection [zo : ... : zg] = [20 ¢ oot 2]
and the dotted arrow represents the section [z0 : ...t zp] = [20 1 oot 2 1 0. 2 0]

we furthermore know that pr is a locally trivial fibration with polydiscs as fibers.
By §2 Lemma 1 pr induces an isomorphism in cohomology. If then follows from §2
Lemma 2 that the restriction map

H*(IPYy — H*(U(Ho;n)U...UU(H,;n))

is an isomorphism for s < 2rk(Ho, ..., H,) and is surjective and the zero map oth-
erwise. Using the relative cohomology sequence this is easily translated into our
assertion. q.e.d.



Inserting this into our spectral sequence we get

. A if s1is even and 2 < s < 2d,

0 otherwise .

In order to keep track of the dy-differential in this spectral sequence we introduce the
simplicial sets Y.("%) for 1 < k < d, given by

Y,,("’k) .= set of all (Hy, ..., H,) € H™! such that rk(Ho, ..., H,) < k

with face, resp. degeneracy, maps given by omitting, resp. doubling, one hyperplane
in a tuple. If C’(Y.("’k), A) denotes the chain complex on V.("k) with coefficients in
the abelian group A (viewed as a cohomological complex in negative degrees) we have

0 otherwise ;

e {C’(Yr(n’%),A) if sis even and 2 < s < 2d ,
=

furthermore, the d;-differential is induced from the chain differentials in the com-
plexes C’(Y.("’k), A). The corresponding Es-spectral sequence therefore reads

H,(Y.(m3) A) if s is even and
E;" = 2<s<2d — H*7"(IPY, Q)

0 otherwise

Remarks:

1) Because of Yr(n’k) = H"! for r < k we have
H(Y.("B Z)=0 for 0<r<k—1
2) Since the C’(Y.("’k), A) are complezes of finitely generated modules over the artinian

ring A the spectral sequence shows that the relative cohomology groups Hs(lpd,Qn)
are finitely generated A-modules.

Instead of trying to compute the Es-terms further we will pass at this point to the
projective limit with respect to n. It is easy to check that there is a homomorphism
of spectral sequences

H, (Y.("t1.3) 4) (resp. 0) — HS_”(lpd,Qn+1)

H.(Y.("3) A) (resp. 0) = HS_T(”DdaQn)



where the left arrow is induced from the obvious map of simplicial sets ¥.(*+1.6)
Y.("*%) and the right arrow is induced from the inclusion Q, — Q,4;. According
to the above Remark we therefore have a projective system of spectral sequences of
finitely generated modules over the artinian ring A so that passing to the projective
limit still gives a spectral sequence ([27] Cor. 7.2). The same Remark together with
§2 Corollary 5 implies that in the abutment we get

lim H*(IP?, Q,,) = H*(IP?, QUd+D)
H
The limit spectral sequence consequently reads

Ey" =lim H,(Y.("2), A) (resp. 0) = H*~"(IP*,Q"*1)
—

In the next step we will express the Fs-terms above in terms of the simplicial profinite
sets

V.5 = lim Y. k)
(_

For any tuple (Hg, ..., H.) € H""! we have

T

ran o/ o)) < or all n &
k "o)ly, k f 11 IN

=0
if and only if
dimp (Y Klp,) <k .
=0

We therefore can interprete Y.(¥) as the simplicial profinite set given by
YT,(k) = set of all (Hy, ..., H,) € H"™ such that

dimp (Y Ktp,) <k

=0

with face, resp. degeneracy, maps given by omitting, resp. doubling, one hyperplane
in a tuple; the topology on Yr(k) is induced from the obvious topology on ‘H =
IP(( x’d"'l)*) = IPd(K) so that Yr(k) is a closed subset of H" 1.

Let |Y.(¥)| be the topological realization of Y.(¥), We recall that |V.(¥)| is defined
to be the quotient of L>J0 Yr(k) x A, with respect to the equivalence relation given

by the face and degeneracy maps; here the topology on Yr(k) X A, is the product of

the profinite topology on Yr(k) and the usual topology on the topological standard
r-simplex A, (compare [45] §1).



Lemma 2:

There are natural exact sequences
0 — Exth(H*T(|v.(V|,Z),4A) — hilﬂ*(ymmA)
—  Homgz(H*(]Y.®|,Z),4) — 0.

Proof: (Cohomology of a topological space always is (constant) sheaf cohomology!)
By the universal coefficient theorem ([47] Th. 5.5.12) we have natural exact sequences

0 — Exty,(H* T (V.("" Z), 4) — H (Y.("F, 4) - Homz (H*(Y.("P.Z), A) — 0.

Since all groups involved are finitely generated modules over the artinian ring A
passing to the projective limit gives the exact sequences

0 — Extl(li_r>n H (. 7)), 4) — h(inH*(Y.wk),A)
—  Homg(lim H*(Y.0vR) Z), A)  — 0
([27] Th. 4.2 and Cor. 7.2). It remains to show that we have
H([Yv.W|,Z2) = 1_ir_r>1H*(Y.("’k),Z) :
Using the standard spectral sequence
H (YD, Z) = H*T(|[y. ¥, Z)

([45] Prop. 5.1 together with [47] Th. 6.6.5) and analogous spectral sequences for the
Y.("k) this follows from the continuity property of cohomology ([47] p. 319) which
implies that

B (V9. Z) =l B (Y9, Z)

holds true for each r > 0.

Remark:

Let S. be an arbitrary simplicial profinite set. If C*°(S,,Z) denotes the group of
Z -valued locally constant functions on S, then we have the (cohomological) complex

i = C®(8,, Z) — C(Spp1, Z) —> ...

where the differential 1s given as the alternating sum of the maps induced from the
face maps in S.. Since

, _(C=(S.Z) i s=0
H(S’“’Z)_{o if s>0



by the continuity property of cohomology the same spectral sequence as in the above
proof shows that the complex C*(S.,Z) computes the cohomology of |S.|, i.e., that

H*(|S.|,Z) = H*(C™(5.,2))

We now define simplicial profinite sets 7. for 1 < k < d, by

T,fk) := set of all flags Wy C Wy C ... C W, of K — subspaces
in (Kd"H)* such that 1 < dimgW,; < k

with face, resp. degeneracy, maps given by omitting, resp. doubling, one subspace
in a flag; furthermore, the topology on %(k) is given in the following way: The group
) and the stabilizer of a flag 7 € %(k) is a

parabolic subgroup Pr(I{). We take the finest topology on %(k) whose restriction on
each orbit

GL441(K) in a natural way acts on T

GLd_|_1(IX’) T = GLd+1(IX’)/PT(IX’)

is the obvious topology on the right hand side (induced from the valuation on K).
(Remember that 7.(% considered only as a simplicial set is the Tits building of GL 444
over I{. This has to be well distinguished from the Bruhat-Tits building B7 which
we introduced earlier. In case d = 1, for example, BT is the familiar tree whereas
the Tits building is just a set of points which by the way can be viewed as the set
of ends of the tree. An excellent introductory text to the theory of buildings is [8].)
We will show that |Y.(¥)] and |7.(®)| have naturally isomorphic cohomology.

Lemma 3:

For any subspace W C (KTY)* such that 1 < dimpx W < k let Y.(k)(W) CY.(h),
resp. T.(k)(W) C T.%0) be the simplicial profinite subset defined by

YO (W) = {(Ho, ..., H;) € YH 0 Y Kty CW}, resp.
=0

TEW) = {(Wo C...CW,) e T,V : W C Wy} .
Then the augmented complexes
Z — C(Y.WW),Z) and Z — C=(T.HD(W),Z)

are acyclic.

Proof: This is a standard fact in the context of simplicial sets. We only have to
observe in addition that the maps

vyOory — v
(Ho,...,Hr_l) — (H,Ho,...,Hr_l)



where H € H is some fixed hyperplane such that {7 € W and

TS5 (W) o )
(Wo cC ... C Wr—l) — (W - W() cC ... C Wr—l)

are continuous so that they also induce contracting homotopies in our profinite set-
ting.

In order to relate Y.(¥) and 7.0%) we introduce the bisimplicial profinite set Z..(F)
defined by

ZE = {(Wy C . CWys Hoyooo Hy) € TP 5 YO 2N Ky, € Wo)

=0

together with the obvious face and degeneracy maps. It will follow from Lemma 3
and a simplified version of the base change formalism (compare [20] I1.4.17) that the
projection maps

vy (k)

TR 7.

induce cohomology isomorphisms between the corresponding topological realizations.

Remark:

Let T C S be a closed subset in a profinite set S. We have:

i. The restriction map C>®(S,Z) — C=(T,Z) s surjective;

w. of f:8 — S us a continuous map between profinite sets and iof U runs through
the compact open neighbourhoods of T in S then

Coo(f_l(T)v Z) = li_r>ncoo(f_1(U)7 Z)

Proof: 1. Since the compact open subsets in .S form a base of the topology it is easy
to see that for any compact open subset V in T there is a compact open subset U in
S such that U NT = V. 1. From 1. we see that

C*(F7HT). Z) = lm C=(U". Z)

where U’ runs through the compact open neighbourhoods of f~'(T) in S’. But any
U’ contains a f~1(U) (compare [20] p.202).



Lemma 4:

Let f.: S. — T be a map from a simplicial profinite set S. into a (constant simplicial)
profinite set T'. If the augmented complezes

Z 5 C=(f. 7 (4),Z) for tET

are acyclic then the augmented complex

c>(T,z) L5 c>=(5.,7)

18 acyclie, too.

Proof: We consider the complex of sheaves on T
Z— foul — ... — [l — ...

From the above Remark together with [20] I1.3.3 Cor. 1 we conclude that the sheaves
frsZ are soft. Part ii. of the above Remark also shows that

Z — C>=(f. (), Z)

is the associated complex of stalks in . Our complex therefore is an acyclic complex
of soft sheaves. According to [20] IT Th.3.5.4 the associated complex of global sections

Ce(T,Z) — C>(5.,Z)
then is acyclic, too.
Proposition 5:

For any 1 < k < d we have a natural 1somorphism

7 (7. W, Z)= B*(|Y. V] Z)

Proof: Consider the biaugmented double complex
C>(Y.\R, Z)
Cx(T. W Z) — C*(2.0 7)

Because of Lemma 3 we can apply Lemma 4 to each row and each column of this
double complex and we get that all rows and columns are acyclic. Therefore both
augmentation maps are quasi-isomorphisms.



Remark:

Define a third simplicial profinite set X.(F) by

Xr(,k) :=set of all flags Mo C M, C ... C M, of o-submodules in L

such that My contains an uwmimodular vector and rank M, < k.

The cohomology of | X.\¥)| also is naturally isomorphic to the cohomology of |Y.(F)].

Proposition 6:
0. lim H,(Y.("®) | 4) = Homy (H"(|T.(%)|,Z), A);
H

i, H'(|[T.M|,Z) =0 for r # 0,k —1;

_[CRp(Rm2) i k=1
ii. HO(|T.W|,Z2) = {Z if k>1

Proof: Let Nﬁ(k) denote the open and closed subset of “nondegenerate” flags
WoC...CW, in Tr(k). By the cosimplicial version of the normalization theorem
ZZ

(compare [31] VIIIL. 6) the inclusion of complexes
Co(NT. W zZ)Cc=(T. . Z)

is a homotopy equivalence. But we have Nﬁ(k) = ¢ for r > k which implies
H™(C>(T.%) Z)) = 0 and consequently H"(|7.(¥)|,Z) = 0 for r > k. On the other
hand we already know from the Remark after Lemma 1 that HT(Y.("”“), Z) =0 for
0 <r < k—1andn € IN. By the universal coefficient theorem ([47] Th. 5.5.3) we then
also have H"(Y.("*) Z) =0 for 0 <r < k—1 and n € IN. Using Proposition 5 and
the argument in the proof of Lemma 2 we see that H"(|T.(F|,Z) = H"(|Y.(F|,Z) =
h_r)nH”(Y.("’k), Z) =0for 0 <r < k—1. This establishes our second assertion. In

order to prove the first assertion we consider the exact sequence
0 — Exty(H*Y(|T.W].Z2),4) — h(inHT(Y.<nvk>,A)
— Homgz(H"(|T.W|,Z),4) — 0
which arises from Lemma 2 and Proposition 5. By what we have just seen, for

r # k — 2, the first term vanishes and, for r = k — 2, even the middle term vanishes.
Finally, our third assertion is clear since |7.(¥)| obviously is connected for k > 1 and

since, on the other hand, we have N%(l) = 76(1) = IP((K41)*). q.e.d.

In the next Paragraph we will compute the groups Hk_1(|T.(k) |,Z). Here we go back
to our spectral sequence

lim H,(Y.("%) A) (resp. 0) = H*~"(IP4, QU+1)
H



Because of Proposition 6 we can rewrite it in the form

Homz (H"(|T.(3)],Z),A) if s is even,

_ < s <
E2 T _ 2<s< 2d, . — HS_T(|Pd7Q(d+1)).
and r =0 or 5=
0 otherwise
S
° ® 24
° '
o ¢4
' )
—r ¢ : —t
—(d—1) —2 -1

Lemma 7:

The composed map
EY® — He (P!, QUHYy — B (IP?) |

where the first arrow s the edge homomorphism in the above spectral sequence, is an
1somorphism for s > 2 and 1s surjective for s = 2.

Proof: We can assume that s is even with 2 < s < 2d since otherwise both terms are
zero. The edge homomorphism

E)* = @ H(PYUH;n) — H(P'Q,)

in our original spectral sequence is, of course, the natural homomorphism induced by
the inclusions 2, C U(H;n). In the proof of Lemma 1 we have seen that the natural



map

H* (P!, U(H; —  H*(IP?
o, H(PTUH;n)) (IP%)
I I

S | = A
HeH,

can be identified with the sum homomorphism. If 7 denotes the set of connected
components of |Y.("3)| we therefore get the following commutative diagram

EY E)* — H(IP',Q,) — H*(IPY
|

I Ho(Y-(’T’%),A) I

5 A — G A - A
HeH, ) Z Cen E
Cmec
It remains to observe that |Y.("3)| is connected for s > 2. q.e.d.
This Lemma implies that Eg’s = FE%% is canonically a direct summand of

HS(IPd,Q(‘H’l)). Since, on the other hand, there can be no differentials between
terms on the line s =2 — 2. (—r) we see that our spectral sequence degenerates and
gives canonical isomorphisms

E2—(8—2),2(s—1) & Eg’s if s > 2 is even,

—(s5—2),2(s—1) . .
HS('Pd7Q(d+1)) _ ) B if s > 1 is odd,
Ey? if s =2,
0 ifs=0,1.

In order to pass to the cohomology of Q41 we use the relative cohomology sequence
which, in the light of our axiom about the cohomology of IP, breaks up into exact
sequences

0 — HXYQUADY — P QU)o H2(IPY) = A (resp. 0 for t > d)
— HRQUFD) o gRELPY QU)o

Inserting the above table into these sequences and applying Lemma 7 once more we

derive
py et ifs>2,
HA(QU) = { ker(ES? - H2(IPY) ifs=1,
HO(IP%) ifs=0.

We finally have established our first main result.



Theorem 1:

A if s =0,
HS(Q(‘HI)) _ ker(Homyz (C°(IP((KH1)*), Z), A) — A) ifs=1,
Homg (H*~(|T.*)|,Z), A) if2<s<d,
0 if s >d .
Remarks:

1) As we have seen in the proof of Lemma 7 the map Homz (C(IP((K41)*), Z), A)
— A in the above statement is given by evaluation on the constant function on

|P((Kd+1)*) with value 1.

2) The isomorphism in Theorem 1 is equivariant with respect to the natural actions
of GLi11(K) on both sides. This is not entirely obvious since in its construction
we have used unimodular coordinates in order to define the §,. But if we fiz a
g € GLi11(K) and choose an a > 0 such that #®Ly C gLy C 7~ %Lg then it is
easy to see that g induces a homomorphism from the spectral sequence for (2,42, 1nto
the corresponding spectral sequence for Q,. Therefore GLqy1(K) acts on the limit
spectral sequence (after Prop. 6).

) If the cohomology theory is etale cohomology then the isomorphism in Theo-
rem 1 is Aut(K|K)-equivariant if the left hand side is replaced by the Tate twist
H(QUHD,A(s)).




84 The cohomology of Q¢+ - Distributions and harmonic cochains

In this Paragraph we will discuss two ways of computing the cohomology groups
Hk_1(|T.(k)|, Z). As a consequence we will obtain two explicit expressions for the
cohomology of Q41 one in terms of distributions on flag manifolds and another one
in terms of generalized harmonic cochains on the Bruhat-Tits building.

We have seen in the proof of §3 Proposition 6 that there is a canonical exact
sequence

c>(NTH z) L cx(NT  Z) — B (TR Z) — 0

where d is the alternating sum of the maps induced from the face maps

—
NTE 0 NTY
—

In order to reinterprete this map in purely group theoretic terms we have to recall very
briefly the theory of parabolic subgroups. Set G := GLgy1(K) and let e, ..., e} 4
be the standard basis of (K4t1)*. For every subset I C A := {1,...,d} we have the
standard flag

d+1 c c 41 c 41
T = Z Kel #+ ...+ Z Ke) Z Ke}
t=2,+1 t=121+1 t=10+1
*
10 C il 1y
= ZA@Z#ZKQ# #ZA@Z
=1 =1 =1

where A\I = {ip < i1 < ... < i, } and its stabilizer Pr in G. Then the map

subsets of A — parabolic subgroups of G
which contain Py
I — P[

is an inclusion preserving bijection. Furthermore, for 0 < r < k& < d, we have the

homeomorphism
U G/pr = NTW
[A\I|=r41
A\IC{d+1—k,...,d}
gPr — g(71)

Of particular interest for us are the homeomorphisms

G/Pgi..a—k)y — NTk(f)l



and, if & > 1,

LJ G/Pq.,....d—ki) —3+-pJ72f;
d—k<i<d

The face maps NTk(f)l — NTk(f)z obviously correspond under those identifications to
the projections

G/Pq,...a-ry — G/Pp,.. a—k,jy C LJ G/Pq.,....d—ki)
d—k<i<d

Lemma 1:

. d
HYY(|T.WLZ) = C=(G/ Py, aky, Z)] > C¥G/Pu, _akiyZ).
i=d—k+1

Proof: (H'( ) denotes reduced cohomology.) Obvious.

In order to further analyze the quotient group on the right hand side in the above
Lemma we use the theory of the Bruhat decomposition. Let W C G be the subgroup
of permutation matrices which we identify with the symmetric group on the d 4 1
letters 1,...,d + 1. The injection

A — W
i s;i=(1 e+ 1)

defines a set of generators for W; if we speak about the length of an element in W
this is always meant with respect to this set of generators. For I C A we set

Wi := subgroup of W generated by {s; : 71 € I} .

We then have
Pr = PyWiPy

and the Bruhat decomposition
G/Pr= |J Cilw)
wEW/WI
of G/Pr as a disjoint union of the subsets
Cr(w) := PywPr/Pr .

Lemma 2:

In each coset wWy there 1s a unique element w of minimal length; it 1s also the unique
element in wWy such that the projection map Cy(w) — Cr(w) us injective (and then
even a homeomorphism).

Proof: [4] Prop. (3.9) and (3.16).



Let W1 C W denote the subset of those elements w which are of minimal length in
their coset wWy. The Bruhat decomposition then reads

G/Pr = U Cr(w) .

weW!

In terms of permutations we can explicitly describe W/ as being the set of permuta-
tions w such that w(i) < w(i + 1) for all « € I ([7] Chap. IV§1 Exerc. 3 and 4). We
put

vi=wh ) wivt
iCANT

Using Lemma 2 we see that

V1 is the set of all w € W such that none of the projection maps Cr(w) —
Crugiy(w) for . € A\I is a homeomorphism.

The topological properties of the Bruhat decomposition are described by the Bruhat
order on W. We write w — tw for w € W and any transposition ¢t € W such that
length(tw) = length(w) + 1. The Bruhat order < is defined to be the transitive
closure of — (compare [24] I §6).

Proposition 3:

For any w € W1 the closure of Ci(w) in G/ Py is

Cr(w)= J Ci(v)

'UGWI
v<w

Proof: In case I = ¢ the assertion is shown in [4] Cor. 3.15. The general case can
easily be derived from that using that the projection maps G/Py — G/Pr are closed
and that w < ww’ holds true for all w € W' and w’ € W.

We now fix an enumeration W1 = {wy, w,,...,wn} of the elements in W in such a
way that

a<b if w, <wy .

On the group C*°(G/Pr, Z) we then have the descending filtration
C>(G/Pr,Z)=F} 2 F} 2.2 F) ={0}
defined by

Fi:={feC>®G/P1,Z): fICr(wy) =0foral l <a<a}.



From Proposition 3 we easily deduce that, for any 0 < a < b < N, the restriction of
functions induces an isomorphism

FiJFf =C2( | Cilwp),Z) .
a<p<b

Here C°(S,Z) denotes the group of Z-valued locally constant functions with com-
pact support on the topological space S. In the following we want to examine more
closely the filtration F; on the quotient group

C=(G/P,Z)] Y, C¥(G/Prpy, Z)
iEANT

which is induced by F7}.

Proposition 4:

i. Ifw, € WI\V! then F¢ = Fja_l;

. ifwg € VI for alla < B <bthen Ff/F) =C>( U Cr(wg),Z).
a<p<b

Proof: i. Let f be any function in FIa_1 and put
fo = flC1(wa) € CZ(Cr(wa), Z) -

Since w, is not in V! there exists an ¢ € A\I such that the projection map induces
a homeomorphism Cr(w,) = Crugiy(we). Define go € C2°(Crugiy(wa), Z) to be the
function which corresponds to fo under the induced isomorphism

C&(Croin(wa), Z) — CX(Cr(wa), Z) .

According to Proposition 3 the set C'r_;y(wq) is open in the closed subset

U Crugy(wea) of G/Prygy - We therefore find a function g € C°°(G/Prugiy, Z)
1<a<a
such that

gl U Crugiy(we) = extension by zero of go .
1<a<a

By construction we have f — ¢ € F}. ii. We have to show that

Ffn Y C™(G/Proyy,Z) C F}
i€A\T



Let f be any function in F{ which can be written as a sum

f=> f

iEANT

of functions f; € C°°(G/Pruyiy, Z). In a first step we show that then f also can be

written as a sum
f=> a
iEANT

of functions g; € Fff N C*(G/Prugiy, Z). By induction we may assume that the f;
already lie in F*~'. For any i € A\I such that w, ¢ W "1} we find an a; < a — 1
such that

Crogiy(wae) = Crygiy(wa;)
Therefore for those i the function g; := f; must be contained in F}. If there is at
most one i € A\I with w, € WY1} the sum relation implies that the corresponding
fi also is contained in F} so that we again define ¢g; := f;. Otherwise there are
i,j € A\I,i # j, such that w, € WY AWV} = Wwivlii} | The projection map
then induces a homeomorphism

Crogy(wa) — Crug,ji(wa)
and similarly as in the proof of part i. we find a function
heF}~'nC®(G/Prugpn.Z)

such that f; —h € F}. Replacing f; by g; := fi —h and f; by f; +h we get a new sum
representation for f. It is clear that in this manner we can construct inductively a
sum representation for f of the wanted form. In the second step it remains to observe
that Ff 0 C*(G/Prugy, Z) C F? for any i € A\I. By assumption we namely have
that, for any a < 3 < b,

Crugiy(wg) = Cropiy(wa)

with an appropriate a < a depending on ¢ and (3.

Corollary 5:
H1(T. B Z) is Z-free.

Proof: According to the above Proposition the group in question has a finite filtration
the quotients of which are of the form C2°(S,Z) with some locally compact totally
disconnected and metrizable space S. Such groups are Z-free as is shown in [3] 2.2.



Corollary 6:

For 0 < s <d define {(s) := (2d+127_8)'8. There 1s a natural surjective homomorphism

H(QUH)) — Dist(A(K), A)

where the right hand side denotes the group of A-valued distributions on Aé(s)(K);
for s =0 or d this even is an isomorphism.

Proof: (We recall that a distribution is a finitely additive function on the family
of compact open subsets.) Let w; denote the unique element of maximal length in
Wr. For any enumeration of W' we then have wy = wawr. Therefore the subspace
FIN_l in COO(G/PI,Z)/EZEA\I C*(G/Prugy, Z) is defined independently of the
particular choice of the enumeration. Since furthermore waw; € V! the above
Proposition implies that FIN_l = CX(Cr(wn),Z) is a direct summand. On the
other hand it is well-known (compare [4]) that if U; denotes the unipotent radical of
Pr and U, its transpose then the map

Uy — Cr(wawr)
u  — wauPr/Pr

is a homeomorphism and that
Ur = A"D(K)
with ((I) := length(wawy) = @ — length(wy). Combining these facts and

dualizing we obtain a natural epimorphism

Homz (C*(G/Pr,Z)] Y C*(G/Pi,gy,Z), A) — Dist(A"D(K), A) .
iEANT

In case I = ¢ we have V! = {wa} so that, by the above Proposition again, this
map even is an isomorphism. For I = {1,...,d — s} the left hand side is canonically

isomorphic to H*(Q*1) and length(w;) = (d_s)(zﬂ.

In particular, if our cohomology theory is the de Rham cohomology we have con-
structed in this way surjections

closed s-forms K-valued distributions

on QUd+1) — on Aé(S)(K)

for 0 < s < d which can be viewed as some kind of p-adic Mellin transforms. An
explicit version of this map in case d = s = 1 was given in [44].



Remarks:

1) In case k = d our Lemma 1 and Proposition 4 already are contained in [3] §1-3. In
fact, the topological realization of our simplicial profinite set 7.(9) appears as space
Y, in loc. cit. Our proof of Proposition 4 is a slight extension of the method proposed
in 3.6 of loc. cit.

2) The filtration on H*~'(|T.1¥)|, Z) which corresponds to F{l,...,d—k} depends on an

enumeration of W4~} There seems to be no distinguished choice of such an
enumeration which leads to a filtration of minimal length. Consider, for example, the
case d = 3 and k = 2. The set W} then has 12 elements. In any enumeration of

W} which is compatible with the Bruhat order the first 8 elements lie in W\ V{1,
The remaining 4 elements are

of which the three upper ones form the set V1. We see that either wyo ¢ V{13
or wi ¢ V11}. This means that our construction gives two different filtrations of

minimal length 2 on H'(|7.)],Z).

We now turn to our second computation in terms of generalized harmonic co-
chains. Let B C GL441(0) denote the standard Iwahori subgroup, i.e., the subgroup
of all matrices which are upper triangular modulo 7, and, for simplicity, put P := Py.
Let x be the characteristic function of the compact open subset BP/P C G/P. We

will study the homomorphism of G-modules

H:C>(G/B,Z) — C=(G/P,Z)

@ — kY= 6%3/399(9) g9(x)

The theory of Bernstein, Borel, and Casselman of representations generated by its
Iwahori fixed vectors cannot be applied since we are working with integral coefficients.
Instead we observe that the properties of H obviously reflect properties of the family
{¢gBP/P : g € G} of compact open subsets in GG/P so that we are going to explore
this family. Define the semigroup T by

t 0
= €G12|t1|22|td+1|
0 tat1



In particular, we put

t.= ) and y; =

for 0 <5 <d.

Proposition 7:

If the sets byBP and byBP with b,b € GL4t1(0) and y € Tt are not disjoint then
they are equal and we have byB = byB (and, in particular, bB = bB).

Proof: Obviously it suffices to treat the case that by BP and yBP are not disjoint.
From the Iwahori decomposition

B=(BNU)(BNP) with U™ :=waUgwa

we deduce that
byBP =by(BNU )y 'P and
yBP =y(BNU )y~ 'P
Because of

y(BNU )y 't CBNU~

we then have bBBP N BP # ¢ so that there exist by, by € B and p € P with bby = by p.
This implies p € GLgy1(0) N P = BN P and hence b € B. Again by the Iwahori
decomposition we find a b’ € BN U~ such that =10 € BN P and we see using

y '(BNP)yCBNP

that
byBP = b'yBP .

Our assumption becomes
Vy(BNU )y 'Pny(BNU )y 'P#¢ .

Since b' and y(BN U™ )y~! are contained in BN U~ already the intersection b'y(B N
Uy ' ny(BNU7 )y~ must be nonempty which means that b € y(BNU )y,
resp. that b € y(BN U™ )y~ (B N P). Our assertions are easily derived from this.



Proposition 8:

Any compact open subset in G/P can be written, for any n > 0 big enough, as a

finite disjoint union of subsets of the form bt" BP/P with b € GL441(0).

Proof: We have
t"BP =t"(BNU " )t™"P

=Jat"t (BAU P

= U 2"t BP

where x runs through the left cosets of t"*/(BNU ™ )t~""1in ¢t"(BNU™ )¢t~ ™. In the
light of the above Proposition we therefore only have to show that the sets bt" BP/P
for b € GLg+1(0) and n > 0 form a basis of the topology of G/P. Because of the
Iwasawa decomposition G = GLg41(0) - P it furthermore suffices to show that the
sets t"BP/P for n > 0 form a fundamental system of neighbourhoods of the trivial
coset. But we have

t"BP =t"(BNU~)t~"PC B™P

where the compact open subgroups
B .={be B:b=1modr"}

in G form a fundamental system of neighbourhoods of the unit element.

Corollary 9:

C>®(G/P,Z) as a G-module is generated by the characteristic function x; in partic-
ular, the homomorphism H s surjective.

In order to determine the kernel of H we recall that C2°(B\G/B,Z) is an associative
ring with unit (the Hecke ring of B) via the convolution product

pri= > wlg)ge) .

geEG/B

It acts via convolution from the right on C°(G/B,Z). We denote by A the subring
which is generated by the characteristic functions y, of the double cosets ByB for
y € TTT. More generally let yy; denote the characteristic function of a subset
M C G. The following result is well-known but we have not found an appropriate
reference.



Lemma 10:

A is a polynomial ring over Z n the variables Xyo, ..., Xya; We have Xy * X5 = Xyij
fory,y e TH+.

Proof: By definition we have

Xyxxg= >, 9xg)= >, XyBjB -

gEByB/B geByYB/B
Using once more the formulae

B=(BNnU7)(BNP) and
y '(BNP)yyCBNP , yBNU )y 'CBNU"
we get

ByB =(BNU )yB=|JyB

x

where z runs through the left cosets of y(BNU ™ )y~! in BNU ™~ (the union is disjoint).
We also get

ryByB = 2y(BNU")(BNP)yB =xy(BNU" )yB
=a(y(BNU" )y ' )yyB C ByyB .

Combining these computations we obtain

Xy * Xg = ZXxyBgB and

x

ByjB = | JxyByB
xr
Next we have to show that the above union is disjoint. Assume therefore that

ryByBNyByB # ¢ .

We then find bg,b; € y(BN U™ )y~ ! such that 2byyyB = biyyB. Since xby and by
are contained in BN U™ it follows that

wbo(yg(BN U ) y™) = bo(yg(BN U )5~ y™)

and hence that @ € y(BNU ™ )y~!. Therefore the above union is disjoint and we have
established that

Xy * X§ = Xyj



But then
Z[Xo,...,Xd] — A

X; " Xy;
defines a surjective ring homomorphism. It is also injective since, by the Cartan
decomposition of G, for any y € T+ there are unique integers ng, ..., ng > 0 such
that

ByB = By,° -...-y;‘B .

q.e.d.

In the following we always view Z as an A-module through the ring homomorphism

A—7Z
ij|—>1

Proposition 11:
H induces a G-isomorphism C>(G/B,Z) (E% 7=, C>*(G/P,Z).

Proof: CX(G/B,Z) as a G-module is generated by xi1. In order to see that H
factorizes through C*(G/B,Z) (E% Z it therefore suffices to show that

H(x1+(xy —x1)) =H(xy —x1) =0 forany y € T+t

According to Proposition 7 the union in

ByBP= |J ¢BP
geByB/B

is disjoint. We get

H(xy—x1)=( Y XgBP)—XBP = XByBP — XBP -
4EByB/B

It remains to notice that
ByBP = By(BNU )y 'P=BP .
The induced map

(%) CCOO(G/B,Z)%ZHCOO(G/P,Z)

clearly is surjective. For the proof of its injectivity we need the following fact.



Lemma 12:

For any g € G there is a y € Tt such that gByB C GLg41(0)TTT B.

Proof: Let T be the subgroup of diagonal matrices in G and let N(T') denote its
normalizer. Because of the Cartan decomposition G = GL44+1(0)T B we can assume

g € T. As in any generalized Tits system (compare [26]) we then find finitely many
Jo € N(T') such that

gBhB C UBgahB for any h € N(T)

Since N(T') = WT we can write g4, = wWaYo with w, € W and y, € T. Choosing a
y € TTT such that y,y € T for all o we then have

9ByB C | JBwayayB C GLiy1(0)TTHB .

q.e.d.

Because of

XgB + Xg¢B * (Xy - Xl) = Xy¢gB * Xy = Xg¢ByB

the above Lemma says that the composed map
C(GLasr(0)TTTB/B,Z) 55 C=(G/B,Z) — C>(G/B.Z) oz

is surjective. Given y € T*T and n > 0 big enough we find a § € TT* such that
yy = t". In the proof of Lemma 10 we have seen that yByB C Bt" B so that

XyB + XyB * (X5 — X1) = xyBjB € C°(Bt"B/B,Z)

Therefore even the composed map

|J €2(GLas1(0)t" B/B.Z) =+ C(G/B.Z) — CX(G/B.Z) oz

n>0

is surjective. But as an immediate consequence of Proposition 7 we have the following
result which then implies the injectivity of ().



Lemma 13:

For any y € Tt the restriction of H to the subspace C°(GLgt1(0)yB/B,Z) is
injective.

In the next step we want to identify the preimages under the map H of the
G-submodules C*(G/P;,Z) in C*(G/P,Z). In C*(G/B,Z) we have the G-
submodules C°(G/By,Z) where the subgroups By in G are given by the inclu-
sion preserving bijection

subsets of A —  subgroups of GL441(0)
which contain B

I — B[ = BW]B

Any parahoric subgroup of G is conjugate to some (possibly several) By.

Lemma 14:

i. By =(BNU; )(BrNPr) with U; = transpose of Uy;
1. ByPr = BPy = B;P.

Proof: i. In case I = ¢ this is the Iwahori decomposition of B which also holds in
the form

B=(BnU;)(BNPr) forany I CA .

In the general case we first notice that, for any w € W, the Iwahori decomposition
together with the fact that
w(BNU™)C Bw

implies that
BwB = Bw(BNP) .

We then compute

B;= ) BuB= | (BNU[)(BNP)wBNP)
:(BQIUI_)(BIQP[)I .

ii. The first equality immediately follows from the assertion i. For the second equality
we use the fact that

wPs; C BwP U Bws; P

holds true for any w € W and ¢ € A. This can be shown by adapting the proof in
[7] Chap. IV §2.2. We then see that

Pr=PW;PC BW;P C B;P

and therefore that By Pr = BrP.



Proposition 15:

H induces a surjective G-homomorphism C2(G/Br,Z) — C>*(G/Pr,Z); its kernel
as a G-module 1s generated by the functions xpy;B;, — xB; for 0 <7 <d.

Proof: By Lemma 14 ii and Proposition 7 we have
B,P;=B;P= | ] ¢BP

gEBr /B

where the union is disjoint. We therefore obtain

H(XBI) = Z XgBP — XBrPy
gEBr /B

which implies H(C*(G /By, Z)) C C*(G/P;,Z) since C*(G/Br,Z) as a G-module

is generated by yp,. In order to establish the surjectivity we introduce the semigroup

t 0
T .= T |t;| = [tig1]| for i€
0 tat1
and ty:= H ijTI"H'
JEANT

Exactly the same arguments as in the proof of the Propositions 7 and 8 based now
on Lemma 14 i1 and on the obvious inclusions

y(BNU; )y CBNU; and y " (B;NP)yCBNP for ye Tt

then lead to the following generalization of those Propositions.

Proposition 8’:

1. If the sets byB;Pr and ZyBIPI with b,Z € GLg41(0) and y € T} are not disjoint
then they are equal and we have byBr = byBr and bBy = bBy;

. any compact open subset in G/Pr can be written, for any n > 0 big enough, as a
finite disjoint union of subsets of the form bt} BrPr/Pr with b € GLq41(0).

Corollary 9’:
C>®(G/Pr,Z) as a G-module is generated by H(xB,) = XB, P, -

Since C*(G/ By, Z) is not a right A-submodule of C*(G/B,Z) the computation of
the kernel becomes slightly more complicated. Let M C C>(G/By,Z) denote the



G-submodule generated by xpy; B, — xB; for 0 < j < d. Using Lemma 14 i we see
that with  running through the left cosets of y;(B N UI_)yj_1 in BNU; we have

H(xB;) = XB; Py = X(Bnuy) )P = Zxryj(BﬁUf)yj_lPI
X

= ZXl’ijIPI = H(Z Xl’ijI)
x x

Lemma 16:

y; (BN Pr)y; C BrN Py for 0<j <d.

Proof: Exercise.

From Lemma 14 1 and Lemma 16 we now deduce that

BNy;Bry;' = (BNU) BN PNy (BNUL )y; ly;(Br 0 Pr)y; ]
=y;(BNUL )y; (BN Pr)

and consequently that
B/BNy;Bry; ' = (BOU;)/y;(BNUL )y; "

Since By; By is the disjoint union of the cosets «'y; By where 2’ runs through the left
cosets of B N ijij_l in B we obtain

XBI - ZXl’yJBI - ZXI’ yJBI = (XBijI) .

Therefore M is contained in the kernel of H. On the other hand we get

XyBr = XyBy; Br — y(XBijI - XBI)
€ C*(Byy;B;/B1,Z)+ M for any ye Tt+

since yBy;Br C Byy; Br. It follows inductively that
xB, € C*(ByB;/B;,Z)+ M forany yc T
which by Lemma 12 implies that the projection map

C(GLg1(0) T B /B, Z) — C°(G/Br,Z)/M



is surjective. Let us fix a y € TTF for the moment. For any z = wy;jw~! with
w € Wi we have

X(BnUT)zBr — XBr = Xw(BnU;)y; By — XBr
= w(XBijI - XBI) eM ;

it suffices to observe that w™'(BNU; )w = BNU; and that By;B; = (BNU; )y; By
by Lemma 16. This shows that

XyBr = Xy(BnU;):B; — y(X(BmUI_)zBI — XB:)
eCx((BNU; )yzBr/Br,Z)+ M .

But for any n > 0 big enough we find a sequence z1,...,z, of elements in the set
{wy;w™:0<j <d,we Wi} such that

Y21, Y2122 s Y21 e 2a €TTT and  yzy - zq = 7 .
We therefore obtain inductively that
XyB; €ECZ((BNU !B /B, Z)+ M .
This means that even the projection map

| C*(GLasa (o)t} B1/B1, Z) — C°(G/B;, Z)/M

n>0

is surjective. But by Proposition 8’i the restriction of H to C2°(GLa41(0)t}Br/Br,Z)
is injective. Therefore the kernel of H restricted to C2°(G/By,Z) is contained in M.
This finishes the proof of Proposition 15.

Corollary 17:

For 0 < s <d there is a GLgy1(K)-equivariant isomorphism
HH () = Homg(C(G/ By, Z)/ Ry, A)
where I ={1,...,d — s} and where Ry is the GLqy1(K)-submodule generated by

XBy;B; — XB; for 0<j5<d and xB;s;B; + xB; ford—s<i<d.

Proof: The only necessary additional observation is that for subsets of A of the form
I'={1,...,d— s} we have Wi gy = Wy UW;s;Wy. Quite generally Bryy;y is the
disjoint union of the double cosets BywB; with w running through WI\Wju{i}/WI-
It then follows that for I = {1,...,d — s} and d — s < < d the relation xp,,,, =
XB;s;B; + X B, holds true.



Remarks:

1) In case I = ¢ Proposition 15 gives a natural isomorphism
CX(G/B.Z)/Rs = H'(|IT. V). Z) .

A straightforward computation shows that the left hand side is nothing else than the
highest cohomology with compact support HZ(|BT|,Z) of the Bruhat-Tits building
BT. In this way we obtain a new proof of (part of) a result of Borel/Serre ([3] Th.
5.6) which avoids the use of their compactification theory for BT.

2) It is clear that the space on the right hand side of the statement of Corollary 17
can be viewed as a space of certain cochains on the Bruhat-Tits building B7 . In case
I = ¢ it is precisely the space of harmonic cochains in the sense of [19].

3) In the case s = d = 1 with etale cohomology as the underlying cohomology theory
Corollary 17 was proved by Drinfeld ([16]) in an entirely different manner. If K has
characteristic 0 his proof even works for arbitrary coefficients.



65 The cohomology of quotient varieties

Let I' C PGLg4+1(K) be a cocompact discrete subgroup which we always assume
to act without fixed points on Q4+t We want to apply our results to the study of
the cohomology of the quotient

Xp .= T\QU+D

Theorem 2:

Xr in a natural way is a proper and smooth (rigid) analytic variety over . The
projection map pr: QU = X1 is an etale covering.

The proof which we will sketch in the following is extracted from [16]. For torsionfree
I' a corresponding result in the context of formal schemes is shown in [39]. Xr
becomes a G-ringed space (in the terminology of [6]) over KA in the following way:
The topology is the quotient topology, i.e., a subset U C Xr is called admissible open
if pr=1(U) is admissible open in QU+ and similarly for admissible coverings; the
structure sheaf on Xt is given by

Oxp(U) = Ogiarn (pr ' (U))"

Obviously, pr: Q@+ — Xp then is a morphism of G-ringed spaces over K. In
order to analyze the situation more closely we use the open affinoid subvarieties
Us C QUAD for any simplex ¢ in BT and any rational number 0 < a < 1, which
were constructed in [16] Prop. 6.1 and which have the following properties:

1) The UZ, for fixed @ and varying o, form an admissible covering of QUFD whose
nerve is the barycentric subdivision of BT;

2) g(Ug) = Uy, for any g € PGLgy1(K);

3) U2 cC Ul for 0 < a < b < 1 (for the notation see [6] 9.6.2).

Drinfeld first constructs subsets V¢ C |B7| with corresponding properties and then
defines U2 := p~ (V%) where p: QU1 — |BT] is the map which we described in the

(24

first Paragraph.

Let us fix 0 and a for a moment. The subgroup I'y, := {g€l:go=c} is finite; further-
more o and go for g € I'\ ', never are neighbouring vertices in the barycentric sub-
division of BT. By 1) and 2) this implies that the open affinoid subsets Uy, = g(Uy)
for g € I'/T, are pairwise disjoint. Put

Ut = J Ujo= U aU;)

g€l /T, g€l /T,



and

Xt , = pr(Ut,)

Using 1) and the fact that BT is locally finite we find for any simplex 7 in BT finitely
many gi, ..., ¢, € [' such that

vinut, = Jwrnug,)

=1

This shows that U, is admissible open in QU+ and consequently that X{, is
admissible open in X1. Moreover we see that pr induces an isomorphism of G-ringed
spaces

T,\US =+ XF,
But by [16] Prop. 6.3 (or [6] 6.3.3) the left hand side is an affinoid variety over K.

Since I' is cocompact there are simplices o1, ..., o, such that any simplex in BT is a
I'-translate of one of them. The X{ ..., X{t  then form an admissible covering
of Xp by affinoid varieties over I; the intersections Xt ;. N Xl‘{aj are easily checked
to be affinoid, too. Therefore it follows that Xt is a separated analytic variety over

K. By 3) and [16] Prop. 6.4 we have X' CIC Xfi’U for 0 < a < b < 1 which implies

that X7 is proper. Finally our assumption that I’ acts without fixed points on Q(4+1)
guarantees that pr is an etale covering and that Xt is smooth.

We also obtain that

HQ(d‘H) = U o Qld+1)
Xr
gel’
z in component g (9z,2)

is an isomorphism (compare [38] Prop. 2 on p. 70). If ' is torsionfree so that the
subgroups ', are trivial we see that pr even is an analytic covering in the sense that
the natural sequence

G(Xr) — G =G(QUTY) x Ql+D)

is exact for any sheaf G in the analytic topology.

Lemma 1:

i. For any injective sheaf G on V the T-module G(QUTD) is injective;
1. 1f either the given topology is finer than the etale topology or T' is torsionfree then
we have G(X1) = G(QUINT for any sheaf G on V.

Proof: 1. The functor

sheaves on V — I'-modules

g — gl



respects injective objects since it has an exact left adjoint functor M — M which is
given in the following way: For any variety Y in V put

M(Y) :=( & M) modulo the subgroup generated
2EQUF1) ()

by all elements of the form
(m in component x) - (gm in component gx)

with g e I' .

This is a presheaf on V; M is defined to be the associated sheaf.

ii. This follows easily from the two observations preceding this Lemma (compare [33]

11.1.4).

Proposition 2:

We have the spectral sequence
H' (0, H Q) = H™(Xr)

in each of the following cases:
1) T is torsionfree;
2) the given topology on V is finer than the etale topology;
3) the given cohomology theory is de Rham cohomology.

Proof: In the cases 1) and 2) this is an immediate consequence of Lemma 1. But
then also the assertion in the case 3) follows since de Rham cohomology can be
computed on the small etale site on Xp. This can be seen in much the same way as
the corresponding statement in algebraic geometry: [33] II1.3.7 and I1.1.6 based on
[32] 4.1.8 and on the following fact.

Lemma 3:

For any etale morphism f: X — Y of K-analytic varieties we have

f_lg%//K f—(lg(') Ox = Q%(/K
Y

Proof: Obviously there is a natural map f_lﬁ%//K ® O0x — Q&/K. Since both
sides are coherent Ox-modules it can be checked to be an isomorphism locally in
the neighbourhood of each point of X. Furthermore we may assume that K is
algebraically closed. The fibers of any etale morphism between K -affinoid varieties
are finite. As the analytic topology is Hausdorfl it follows that f is locally injective
at each point. But then SGA 1 exp. I Cor. 4.4 and [6] 7.3.3 Prop. 5 imply that f
even is locally an isomorphism.



Let us now assume that our cohomology theory has the properties I)-IV) in
Paragraph 2 and is such that the spectral sequence in Proposition 2 is at our disposal.
Preserving the notations introduced in Paragraph 4 we put, for any subset I C A
and any abelian group M,

Vi(M) :=C>(G/Pr, M)/ Y  C™(G/Pr,y, M)
i€ANT
:V](Z)®M .

It is known ([5] X.4.6 and 4.11) that in case M is a field of characteristic 0 the V(M)
are the irreducible constituents of the PGLg41 (K )-module C*°(G/P, M). Our main
result says that H*(Q(4+D) =0 for s > d and that
H* Q) = Homg (Vi1 a—sy(Z), A)
= Homa (V1. 4—s}(A4),4) for 0<s<d .

Since Viq, .. a—s}(A) is a free A-module by §4 Corollary 5 we get

H(D,H(QU)) = H'(T, Homa (Vi a—s)(A), 4))
= Extg[r](v{17...7d_s}(A),A) for 0 <s<d

so that the spectral sequence in Proposition 2 becomes

s __ EXt;[F](V{l,...,d—s}(A)vA) if0<s<d r+s
By = {O otherwise = H™(Xr) .

We therefore have the task of studying the groups Ext’y(Vi(A4), A).

Proposition 4:

i. VI(Z) has a projective resolution by finitely generated free Z[I'|-modules;
. Ext%[r](VI(Z), Z) is finitely generated for any r > 0;
11. there 1s a natural exact sequence

0 — Extz(Vi(Z), Z)%A — Ext’yr(Vi(4), 4) = Torz (ExtZ i (Vi(Z), Z), A) — 0

for any r > 0.

Proof: i. The proof of this result is quite complicated and will be given in the
last Paragraph (Proposition 16). ii. This is an immediate consequence of the first
assertion. iii. Let F. — Vi(Z) be a projective resolution by finitely generated free
Z[T']-modules. Then F. (% A — Vi(A) is a projective resolution by finitely generated

free A[l']-modules since Vi (Z) is Z-free by the argument in the proof of §4 Corollary



5. Therefore Ext%[r](VI(Z), Z), resp. Extz[r](VI(A), A), can be computed from the
complex Homgpr (F., Z), resp. Hom 41 (F. @ A, A). The assertion follows now from
Zz

the universal coefficient theorem applied to the complex
Hom 4r(F. (% A, A) = Homgqn(F., Z) (% A .
This Proposition in particular implies that we may pass in the corresponding spectral

sequences for H*,(Xr,Z/("Z) with ¢ # p to the projective limit with respect to v
and obtain the Galois equivariant spectral sequence

EthQZ[I‘](V{l,...,d—s}(Qé)a Q)(—s)

Ey* = f0<s<d o= H[(Xr,Q)
0 otherwise
for @Q-adic cohomology. In the following we will compute the groups

Ext’r(Vi(4), A) under the assumptions that
— T' is a discrete cocompact subgroup in PGL411(K), and
— A is a field of characteristic 0.

Because of the above Proposition this amounts to the computation of
dimg Extepp (Vi(C),C) .
Since I' is cocompact the PGL 441 (I )-representation
Indp := C*°(PGL441(K)/T,C)
is admissible. By Shapiro’s lemma ([13] A.8) we have
Ext&[r](vj(([), C) = Ext"(V7(C), Indr)

where Ext* (without a subscript) always denotes the Ext-functor on the category
of smooth PG Lgy1(K)-representations. In order to understand these Ext-groups on
the right hand side we use the ideas in the proof of the Garland-Casselman theorem
in [12], [13], and [5]. The representation Indr is unitary and therefore completely
reducible (compare [12] and [11] 2.1.14). In addition the admissibility implies that
only finitely many of its irreducible constituents can have a nonzero vector fixed
under the Iwahori subgroup B. We therefore obtain a decomposition

IIldF = Vo@‘/i @@Vm



into admissible unitary representations V; such that Vi® = 0 and V; is irreducible
with VjB # 0 for 1 < j < m. In particular we get

Ext*(V;(C),Indr) = & BExt*(Vi(C),V;)

0

Ips

J

Proposition 5:

Let V and V' be smooth PGLqi(K)-representations such that VP = 0 but V' is
generated as a PGLgy1(K)-module by (V')B. Then we have

Ext*(V',V) =0
Proof: Consider any Yoneda extension of smooth PG Lgy1 (K )-representations
E:0-V=Ey—+E —..+E. =V —=0.

In any E; we have the subrepresentation Ej generated by E}B. In this way we obtain
the commutative diagram

0O -V = E —- E — .. —- E41 =V —= 0
Te  Je i
0 - 0 = E - Ef — ... - E41 =V —= 0

If the lower row would be exact, too, then obviously the extension class of E would
be trivial. That this indeed holds true is a consequence of the following fact: If a
smooth PGLgy1(K)- representation is generated by its Iwahori fixed vectors then all
of its subrepresentations have the same property. This is proved in [2] 4.4 with B
replaced by a principal congruence subgroup. But the same proof works for B if one
takes into account the following additional observation: Let J C A be any subset
and let L be the standard Levi component of Py, i.e., the intersection of Py with
its transpose; for any w € (W7)~! we then have

wa_lﬂLJ:BﬂLJ .

Proposition 6:

If V is an irreducible (admissible) PGLgy1(K)-representation such that VB £ 0 and
V2 V;(C) for all J C A then Ext*(V;(C),V) = 0.

Proof: Let L denote the subgroup of diagonal matrices in PGLgy1(K), and let
§: P — € be the modulus character. Our assumptions guarantee that there is an
unramified character y : L — € with

Y # (wé V)52 =5, forall we W



such that V' is a constituent of the unramified principal series representation
Ind(x) :={f € C=(G,C) : f(hg) = x(h)f(g) for all h € P,g € G}

where we view x as a character of P in the obvious way ([5] X.3.2). By an easy
induction argument (compare the proof of X.4.3 in [5]) it suffices to prove that

Ext*(V7(€),Ind(x)) =0 .
From [13] A.12 and 1.3 we get

Ext*(V7(C),Ind(x)) = Ext7 (Vi(C)v, x)

weV!

here U denotes the unipotent radical of P and Ext} is the Ext-functor on the category
of smooth L-representations. Because of d,, # x the same argument as in [5] IX.1.9
shows that those last groups vanish.

The following is the main result of Casselman ([13] 2.1 or [5] XI1.4.5).

Proposition 7:

If V;(€) s a constituent of Indr for some J C A then J = ¢ or A.

If we apply these three Propositions to our above decomposition of Indp then we
obtain

Ext*(V7(C),Indr)
= Ext*(V;(C),C) & [Home(Vy(C),Indr) @ Ext™(Vi(C), Vs(C))]

Observe that Homeg(Va(C), Indr) = C.

Proposition 8:

12

Ext"(V1(C), ) {‘[ ifr=4#ANT,

0 otherwise .

Proof: Put I :={d+1—i:i € I}. The considerations on p. 915 in [13] imply that
V7(C€) is isomorphic to the smooth contragredient of V7(C). By [12] A.11 we then
have

Ext*(Vi(C),C) = Ext™(C,V#(C)) .
But those last groups were computed by Casselman ([13] A.13 or [5] X.4.7).



In order to determine the remaining terms we need the following general duality
statement. Let H.(.) = H,(PGL441(K),.) denote the homology functor on the
category of smooth PGL 441 (I )-representations (see [13] p. 925).

Duality Theorem:

There 1s a natural 1somorphism

Ext?™* (V,(C),.) = H.(.)

Proof: We put

H := space of all €-valued locally constant functions

with compact support on PGL411(K) .

Via convolution (fixing once and for all a Haar measure on PGLg41(K)) H is an as-
sociative ring which acts in a natural way on any smooth PGL 41 ([ )-representation
V. The space H itself is a smooth representation via left translations. More generally
we have the smooth representation H % V with PGLg4+1(K) acting only on the first

factor. The map
pv i H % V —V

P&V QU

then is a PGL441 (K )-equivariant epimorphism. By a result of Blanc (see [13] A.4)
H®V is a projective object in the category of smooth representations. The maps
C

PV, Pker(py ), --- therefore constitute a functorial projective resolution of V' which we
will use later on. We also observe that the map p¢ @ idy induces a natural C-linear
isomorphism

Ho(H(%V) =y .

In order to understand the groups Ext™(V,(C), V) we use the following explicit res-
olution of V4 (C). Let BT, be the set of oriented g-simplices of BT; for o € BT,
with ¢ > 1 we denote by @ that oriented simplex with the same underlying simplex
as o but with the opposite orientation. Let C2"(B7,),T) denote the space of C-
valued oriented g-cochains with finite support on B7. On the one hand we can view
C2"(BTy),T) also as the space of oriented g-chains so that we have the boundary
map

0y : CU (BT 1), €) — C(BT(p). C) .

Because of the contractibility of BT the complex (C2"(B7(,€),d.) is a resolution of
€. On the other hand since BT is locally finite the coboundary map restricts to a
map

d': C2 (BT, €) — C2" (BT 1), C)



By [3] 3.3 and 5.6 we have the exact sequence of smooth representations

0 = Co(BTi0). €) 55 . 25 CO(BT(0).C) = Vi(T) > 0 .

We want to show that C2"(B7(,),T) is a projective representation. Fix a o € BT,
and define w, € C"(B7,),C) by

+1 if 7 =o,
we(r):i=1 =1 ifr=7,
0  otherwise;

let C(ws) € C2"(BT4),C) be the subrepresentation generated by w,. Obviously
C2" (BT, C) is a finite direct sum of subrepresentations of the form C(w,) so that it
suffices to show that C'(w,) is projective. Let B, C G denote the stabilizer of o; the
image of B, in PGLgy1(K) is a compact open subgroup. In case there is no g € G
such that go = @ we have

Clws) =2 CX(G/B,,0) .

Since Homg(C°(G/By,C),V) = VB is an exact functor on smooth PGL 41 (K)-
representations V' ([13]App.) we see that C(w,) is projective. Let us now assume
that there is a A € G such that ho = . Then h normalizes B, with h? € B,; we
have

Clws) = {x € CX(G/B,s,C) : x(gh) = —x(g) for all g € G}

and consequently

Homg(C(wy), V) = (VB )h=-1

which again is an exact functor. Therefore C'(w,) is projective in this case, too. Using
this explicit projective resolution of V4 (C) we see that the groups Ext™(V,(C), V) can
be computed as the homology groups of the complex

Homa((C2"(BT(), €),d"), V) .
As an immediate consequence we obtain that
(1) Ext"(V4(C),V)=0 for r>d .
For V. ="H a straightforward computation shows that

Homa((C27(BT(),€),d"),H) — (C"(BT),C),0.)
f — (o flwo)(1))



is an isomorphism of complexes. This implies, more generally, that
Homea ((C2"(BT(,,C),d ), H % V) =2 Homg((C2" (BT, C),d ), H) (%[Q V
= (O (BT, €),0) 0V

Since BT is contractible the last complex is a resolution of V which in particular
means that

(2) Extr(ng(([),H%QV) =0 for r<d .

From the facts (1) and (2) we deduce (compare [22] 1.7.4) that Ext*(V4(C),.) is the
left derived functor of Extd(V¢(¢), .). It remains to exhibit a natural isomorphism

Ext!(V,(C), V) = Ho(V) .

For that we consider the natural transformation

HomG(Cg”(Bﬁo),([),V) — HO(V) = V/ e
f —  f(we)mod...

where o is some fixed vertex of B7. Since G acts transitively on B7(g this map
actually is independent of the choice of o. It is surjective since it identifies with the
projection map

Homg(C" (BT (0, C), V) = VB I Ho(V)
and since the functor V — VB¢ is exact.
Next we claim that
imd° C ker(C2"(BT), €) 2 Ho(C2" (BT, C)))

holds true. We have d°(w,) = Y w<r o> where the sum ranges over all vertices

~
7 which are neighbours of o; < 7,0 > then denotes the corresponding oriented 1-

simplex. For any 7 thereis a ¢ € G such that 7 = go; then also ¢~ 10 is a neighbouring

vertex of 0. We get
pr(w<7'70>) = pr(w<9070>) = pr(w<a,g—1a>) = _pr(w<g—1a,a>)
and consequently
privcre> T Weyg-15405) =0 .
If g7'o = 7 then already pr(w<rs>) = 0 must hold. We see that pr(d°(w,)) = 0.

Therefore our above natural transformation vanishes on the image of Homg(d°, V)
and factorizes through a surjective natural transformation

Ext?(Vy(C), V) — Ho(V) .

In order to establish injectivity it suffices to consider the case V = H where both
sides are easily checked to be 1-dimensional over C.



Remark:
Simalar considerations as in the above proof show that

Ve(€) ifr=d,

0 otherwise .

Ext"(C,H) {

Proposition 9:

Ext”(Vi(C), Vi(C)) = { C ifr=3#I,

0 otherwise .

Proof: By [13] A.11 and the above duality we have

Ext*(V7(€), Va(€)) = Bxt* (Vi (), V(C))
~ Hy_(V4(0)) .

By [13] A.10 the C€-dual of this last group is isomorphic to Extd_*(([, Vi(€)) so that

we again are reduced to Casselman’s computation.

Definition:

p(T) := multiplicity of the Steinberg representation V4 (C) in Indy.
Altogether we have proved now the following result.

Theorem 3:

IfT' C PGLgy1(K) is a cocompact discrete subgroup and A is a field of characteristic
0 then we have

A f#I=d—r#1,

: LA o
Extim Vil ) = 0w jrp )

0 otherwise .

Y

N RN |

Y

In particular we obtain that in our spectral sequence nonvanishing E;*-terms only
occur on the lines r = s and r+s = d. If d is even then all differentials in the spectral
sequence automatically must be zero. The only interesting cohomology group of Xr

is HY(XT1). Let

HYXr)=F°HYXr) D> F'HYXp) D .. D F""' HYXr) =0



be the filtration such that

FrHEY(Xr)/F HY(Xr) = BR .

Corollary 10:
Assume that A = H°(Sp(K)) is a field of characteristic 0. If d is even we have

A if 0<s<2d, s#d, s even,
H*(Xp) = { AUFDRD+L G s —
0

otherwise

and

Ard) f0<r<d, r#4

rrrd r+1 r7d ~
P = { Q)

If d 1s odd we have

(d+ 1)p(T) = 2 < dimy HY(Xr) < (d + 1)yu(T)

In @ s-adic cohomology the spectral sequence always degenerates for reasons of weight.
In case d = 1 the next result was proved in [48] by a different method.

Theorem 4:

For U # p we have

s (VW o JQo(=2) f0<s<2d, s+#d, s even,
Het(XF’QZ)_{O if s £ d odd or s > 2d

and

Qg(r—d)“(r) if 0 <r <d, r#%,

Fngt(yrvQf)/Fr—i—ngt(vaQé)g Qg( d>u(F)+1

. d
5 ifr=2%

5 -

In de Rham cohomology the spectral sequence degenerates as well, and we can use
it in order to strengthen a result of Mustafin ([39] 4.1.1I).

Theorem 5:

If K s of characteristic 0 we have

. [ KU+Du) if d 1s odd,
Hpp(Xr) = {K(dJrl)u(F)Jrl if d 1s even



and ;
; K iofs=j5#7%
s J ~ 20

H(XF’QXF)—{O ifs#j, s+j#d.

Proof: By [39] 4.1.1 the analytic variety Xt is algebraizable to a projective variety
over . The GAGA-principle ([28]) then implies that the coherent and the de Rham
cohomology of X1 are equal to the corresponding algebraic cohomology groups. But
since K has characteristic 0 we know in the algebraic context that the de Rham spec-
tral sequence for X1 degenerates and furthermore that the strong Lefschetz theorem
holds. From the first fact we deduce that

dimp Hpp(Xr) =Y dimg H*™/(Xp, Q)
=0

and from the second that
dimy HER(Xr) > dimyg H*(Xp, Q%) > 1 .

Because of this last inequality our above spectral sequence has to degenerate so that

dimg H} p(Xr) =0 for s # d odd, = 1 for s # d even, and is as asserted for s = d.

For both, Q ;-adic and de Rham cohomology we have a natural nilpotent monodromy
operator on H(Xt) ([15] 1.7.2 and [25]). We expect that our filtration F"H%(Xt)
in both cases is the associated monodromy filtration ([15] 1.6) and that F"H% ,(Xr)
is opposite to the Hodge-de Rham filtration.

In the last part of this Paragraph we will deduce from Theorem 1 a proof of (a
slightly weakened version of) the p-adic Shimura isomorphism stated in [44] p. 226.
We assume from now on that A is of characteristic 0 and, for simplicity, we put

0 :=0(Q?) and Q:=0'(Q?) .
In [44] p. 225 there was constructed a S Ly ([ )-equivariant homomorphism
I:Q/dO — Cpor(BT,K)

where on the right hand side we have the space of K-valued harmonic 1-cochains on
the Bruhat-Tits tree BT. It is an exercise to check that under the natural isomor-
phism

Char(BT, K) = ker(Homz (C*(IP'(K),Z),K) — K)

p— (1)

(compare [44] Lemma on p. 226) the map I corresponds to the isomorphism

HL2(9P)) = ker(Homz (C*(IPY(K), Z), K) — K)



given in Theorem 1. We therefore have the exact sequence of SLy( K )-modules

0K -=0-%01 Chur(BT.K) — 0 .
More generally, tensoring with the natural S L, ([ )-representation
Sym™ := n-th symmetric power of K?
we obtain the exact sequence of SL,(K )-modules

0 — Sym" — O (? Sym" — Q(?@Sym" — Char(BT,Sym") — 0

for any n > 0.

Let x € O denote the coordinate function

T Q(z)(f&’) — IQ(

[z0 : z1] — il
21

The O-module Q is free with generator dx. Also let e; = (1,0), ez = (0,1) be the
standard basis of K?. We consider the filtration

O@RSym" =F'D>F!'D> ... DF" =9
K

which is defined by

F?:= the O-submodule generated by

(ver +e2)le] 177e) for 0<j<n—gq ;
it induces a corresponding filtration

QaSym"=QeF°2QeF' > ... DQF" =0 .
K 0o 0o 0o
(This is inspired by [1].) Because of
glrer +e2) = (—yx +a) ' - (xe; + ) for g= (3 g) € SLy(K)

both filtrations are S Ly (K )-invariant. O @ Sym" is a free O-module with basis e] ™ ‘el
K

for 0 < ¢ < n. On the other hand from eieg = (ze; + ez)ei — :L'ei"H we deduce

inductively that

(re; + eg)qe?_q_je% € Ozer +e2)le] 1 + Fitl for 1<j<n—gq .



Therefore the elements (ze; + e3)%e] ¢ for 0 < ¢ < n also generate O @ Sym" as an
K

O-module and then have to be an O-basis, too. This shows that

O — F1/Fit!

fr— f(xe; +ez)le]l ™Y mod FIT!
is an O-module isomorphism for 0 < ¢ < n. Using the formula
aey + vey = (—yx + a)er + y(xey + €2)

we compute

glf(zer +e2)ley ™
=g(f) (—yx+a) " (ve1 +e2) - (aer +7e2)" 7!
=g(f) (=yx+a) " (zer + e2)? - [(—yx + a)er +y(xer + e2)]" 7
=g(f) (—yx + )" 7?0 (ze1 + €)% Y mod FIH

B

for g = ’O; 5 € SLy(K). This means that the above isomorphism becomes an

O-module and a S Ly (K )-module isomorphism

O, : O[n —2q] — F1/F1H!

fr— f(zer + e2)%e] ™ “mod FIH?

if, for any m € Z, O[m] denotes O with the twisted S Ly (I )-action

Tm(9)f = g(f) - (=ye +a)™ for g= (»O; g)

Similarly we have an O-S5 Ly (K )-isomorphism
0, :0n —2¢—2] — Qo F1/Q @ Frtt
O O
fr—dx @ f(zer + e2)?e] ‘mod. ..

The identity

(*) (d@id)(f(zer +e2)lel™ )
=dr @ qf(xe; + eg)q_le?_q—i_l +df @ (wer + e2)le] !

for 1 < ¢ < n implies

(d@id)(f(zer + e2)e] ™) =dv @ qf(ver + eg)q_le?_q—i_l mod Q& F? .
O



This is the commutativity of the diagram

On—2¢ O[n — 2q]
o] Loy
ro/pirt 8 Qg Fi1 Qe F

O O

for 1 < ¢ < n. As a consequence we obtain that d @ ¢d induces an isomorphism
F' = Q@ Sym" /Q@ F"
K O

so that we have in particular the SLy (K )-invariant decomposition

Q%Sym" = (d@id)(F') @ (Q@O@F") :

We see that our original exact sequence can be simplified to

0 — Sym" —>O(?§Sym"/F1 —>Q(§O©F" — Char(BT,Sym") -0 .

In order to compute the map in the middle we observe that the above identity (*)
also implies

de @ f(xe; + eg)qe?_q = _q-l-%df @ (rer + 62)q+1€111—(q+1) mod(d @ id)(Fl)

for 0 < g < n. Inductively we get
1
dz @ fe] = (—1)"—’d:1; ® f(")(:zjel + e2)" mod(d @ id)(Fl) )
n!

Here, as usual, we put f(" := (f("=1) where df = f'dz. In particular, the diagram

O®Sym" /F! —  QoF"
K 0

©o] Ter
O[n] — O[-n —2]
i (=1) & O

is commutative. In O[n] we have the S Ly (K )-invariant subspace P, of all polynomials
in 2 of degree < n; obviously it is the kernel of the map f — F(*t1Y. Thus we finally
arrive at the exact sequence of SLy(K )-modules

0 - P, = On] = O-n—2 — Cheo(BT,Sym") — 0
firs flntD) f—=I®id)(de @ f(re; +e2)")



We now fix a cocompact discrete subgroup I' C SLy(K). Let M, 12(I") denote the
space of all K-rational automorphic forms of weight n + 2 for I', i.e., the space of all

f € O such that

fog=Ff (yx+8"? for all g:<’o; §>6P .

Theorem: (p-adic Shimura isomorphism)

The map
In : Mn-l—?(r) — HO(F7 Char(BTv Symn))
f — (I ®@id)(dx @ f(ze; + eg)™)

18 an 1somorphism.

Proof: Because of

Mn—l—?(r) = O[—n - Q]F

the above exact sequence shows that the injectivity of the map I,, is equivalent to the
vanishing of (O[n]/P,)". This vanishing will be established later on as a consequence
of more general considerations (see Corollary 12). For the moment we will take it as
granted. It then remains to prove that the two K-vector spaces in the assertion have
the same finite dimension. By passing to an appropriate normal subgroup of finite
index we may assume that I' is a free group of rank r. According to [44] we then
have

r fn=0,

dimg Mpyo(T) = { n+1)(r—1) ifn>1.

On the other hand the space of harmonic 1-cochains on B7 is the linear dual of the
Steinberg representation:

Char(BT,K) = Hompg (V4 (K), K)
Since Sym™ carries a natural S Ly (K )-invariant nondegenerate bilinear form we obtain
H®(T, Cpar(BT,Sym™)) = H*(T, Hom (V4 (K ), Sym™))
= H°(T,Homg (V4(K) 2 Sym", K))
= Hom g (Ho(T', Vo (K )® Sym"), K)
), K)

Here the last identity is a special case of the Borel-Serre duality for discrete groups
([3] 6.2). Since I' is free a standard Euler-Poincaré characteristic computation gives

= Homy (H'(T, Sym”

dimy H'(T, Sym") — dimg H*(T,Sym"™) = (n+1) - (r — 1) .

But we have H°(T, Sym") = 0 for n > 1.



In order to deal with the remaining problem of the vanishing of (O[n]/P,)"
we will analyze the p-adic principal series representations which were introduced by
Morita. We fix a locally analytic character y : K — K* and put

L, = K-vector space of all locally analytic
functions ® : K x K'\(0,0) — K such that
D(z.,2.) = x(2)®(.,.) for all z € K™ .

The group SLy(K) acts on £, by

. _ (o B
g(q))(l',y) T (I)((Sx _ﬁyv_’yx —I—Oéy) for g = (7 5)

Furthermore £, in a natural way is a topological vector space. For the definition
which is a little bit technical we refer to [35]. The above S Lo (K )-action is continuous.
This is the p-adic principal series studied by Morita ([35]). In order to analyze the
continuous linear forms on £, we “cover” it in the following way by K-Banach spaces.
Let m > 1 be minimal such that

X is analyticon {z € K™ : |z — 1| < |=|™} .

The congruence subgroup

a m m—
Boi={ (¢ ) €5Lao)sla= 1115 - 1) < sl 18] < ™| < Inl
acts on the disk
A={zeK:|z| < |r|™ 1}

by fractional linear transformations. It also acts isometrically on the Banach space
A, of K-analytic functions on A by

s =) £ () drg= (0]

—vzZ 4+«

(In case K = @, the B,,-representation A, is studied in [43].) We then have the
injective continuous B,,-equivariant map

A, — Ly

\W)f (5) i o] < 7y

0 otherwise

fr—=@p(z,y) =



(compare [35] p. 198) which for simplicity we will view as an inclusion. It is not too
difficult to see (loc. cit.) that

(1) Z gA, =L,

geESL2(K)

holds true. Now let || || denote the norm on the K-Banach space A,. For any
continuous linear form L : £, — K we can define a kind of generalized operator
norm

1Zll(g) = sup{w e AX\{O}}

Since B, acts isometrically on A, we obtain in this way a norm function

L] : SL2(K)/ B — Rxo
9Bm — [ILl[(9) -

The property (1) implies that
(2) L =0 ifand only if ||[L]| =0 .

It is also clear that the map L +— ||L|| is SL2(K)-equivariant in the obvious sense.

Lemma 11:

If L: L, — K 1s a I-invariant continuous linear form then the norm function ||L||
18 bounded.

Proof: We only have to note that by the cocompactness of I" the set ['\SLy(K)/B,,
is finite.

In order to describe the growth of ||L|| we let R C o be a fixed set of representatives
for the cosets in 7™ Lo/7™T 1o, Put

r ! ™
hg:z(o W‘lﬁ>:<é f) (0 ;L)ESLQ(K)

Ag:={z€K:|z—p|<|r|™*'} for B€ R .

and

We have

A= []As and Ag=hy(A)
BER



(viewing hg as a fractional linear transformation). For any f € A, we define

foa=(f1Ag)ohge Ay .

It is clear that
sl < IIfIl -

On the other hand a straightforward computation shows that

X(m) @y = hy(dy,) .

BeER

For any given continuous linear form L on £, we therefore obtain

QL@ ()
=T S

Since f was arbitrary this implies

X(]-IZIL) < max||Lll(Rs) -
Replacing L by L(g.) we even see that
(3) X(m)I -1 L1(9) < max | L] (ghs)
holds true for any g € SLy ().

Theorem 6:

If [x(7)| > 1 then there is no nonzero I'-invariant continuous linear form on L.

Proof: By Lemma 11 any [-invariant continuous linear form L on £, has a bounded
norm function ||L||. But the assumption |y(7)| > 1 together with (3) then implies
that ||L|| = 0. Because of (2) the linear form L itself has to be zero.

Corollary 12:
For n > 0 we have (O[n]/P,)' = 0.

Proof: The character z + z~ "% fulfills the assumption of Theorem 6. On the
other hand it is shown in [34] p. 292 and [36] p. 394 that O[n]/P, can be identified
S Ly (K )-equivariantly with the topological dual of £.—n--z.



Corollary 13:

There are no nonzero automorphic forms of weight 1 for T.

Proof: In loc. cit. Morita also shows that O[—1] is S Ly (I )-equivariantly isomorphic
to the topological dual of £.-1.

By working with the tree of I' instead of BT the p-adic Shimura isomorphism can be
obtained in an analogous way for any finitely generated discrete subgroup in S L, (K)
with an infinite limit set. A much more direct proof'is given in [46]. It was pointed out
by de Shalit that contrary to what is claimed in [44] in general not every cohomology
class in H'(T',Sym") contains a harmonic cochain; nevertheless this holds true if
n = 0 and as is shown in [46] for any n > 0 if ' is arithmetic. Still another proof is
to be found in [49].

Remark:

Assume that T' acts without fixed points on Q(2). It follows from (O/K)' = (dO)" =0
that the filtration F"H},,(Xr) which we introduced earlier is opposite to the de
Rham filtration. This confirms in the case of Q(?) our general expectation which we
explained after Theorem 5. In particular we have the natural decomposition

Hpp(Xr)=H'(T,K) ® H(Xr, Q")

Using the isomorphism Io:H?(Xp,Q') = My(T) = HO(T,Chrar(BT,K)) =

HY(T', K) we can rewrite this as a natural isomorphism

Hhp(Xr)=H'YT,K)@ I;'(H'(T, K))



66 Resolutions of GL;41(K)-modules

In a rather general context we study in the following the homology of certain
coefficient systems on a simplicial complex. This is then applied to construct the
resolutions of our GLg41 (K )-modules Vi (Z) which we needed in the last Paragraph.

Let K be a finite-dimensional simplicial complex, say, of dimension d. In order to
make notations simpler we equip K with a fixed orientation and we let denote [r : o]
the corresponding incidence numbers; nothing will really depend on this choice. A
coefficient system A on K consists of

— abelian groups A, for each simplex o of K, and
— homomorphisms rg/ : Ay — A, for each pair ¢ C ¢’ of simplices of K such that

!
[
[

[~ —

T

. " "
idand ry =r7 or? whenever o C o' Co”.

Any such coefficient system gives rise to a homological complex: Let K, denote the
set of all ¢-simplices of K. We have the boundary map

ad: @& A, — @ A,

TEKG 1 cEK,
(ar)y = (Y _[r: 0] r(ar))s
TO0o

A standard computation then shows that

14} 14}
b A — ...— D A,
TEK &Ko

is a complex. For example, if A is the constant coefficient system given by Z we
obtain in this way the usual chain complex of K.

We are interested in coefficient systems of the following form: Let T be a fixed
profinite set and suppose that for each 0-simplex o € Ky there is given a continuous
surjection T' — T, onto a finite set Tj,. For an arbitrary simplex 7 = {oq,...,0,} €
K, we put

T, =T,,1I.. . 1IT,,
T T

For any pair o C 7 of simplices of K we then have a commutative diagram of contin-
uous surjections
T — T,

\ v
T,

It is clear that the groups

C(Ty,Z):= all functions T, — Z



form a coefficient system on K. In fact all the groups C(7,,Z) can be viewed as
subgroups of C*°(T, Z) so that the transition maps of this coefficient system become
inclusion maps. Furthermore the corresponding complex is augmented in a natural
way

e OT.2)-% ... % @ O, Z)— C>(T,Z)

TEK &Ko
(990)0 — Z‘PU .

We want to establish a sufficient condition under which this complex is an acyclic

resolution of C*(T,Z).

First we observe that for any simplex ¢ we have the simplicial profinite set
T.(9) . §T x T x T—T x T—3T
Ts
together with a continuous map

7.9 T,

to the constant simplicial (pro)finite set T,,. We immediately note that the induced
cohomological complex

0— C(T,, Z) — C(T\7. Z) — C™(T',Z) —> . ..

is exact. This follows from §3 Lemma 4 since the fiber of 7.9 5 T inafixedt e T,
is the simplicial profinite set

R %Tt X Tt X TtSTt X Tt:;Tt

where T} is the fiber of T'— T, in t. A simplicial profinite set of this form namely is
cohomologically trivial as we have recalled already in the proof of §3 Lemma 3.

Each surjection T, — T for ¢ C 7 extends in an obvious way to a map of augmented
simplicial profinite sets

790 — T,
l l
T — T,

similarly each surjection T — T, extends to a map T. — T.(9) of the constant
simplicial profinite set T. into T.(?) such that

T.(o)
a ¢

T. — T,



is commutative. By passing to functions we have corresponding commutative dia-
grams between coefficient systems on K. All this can be expressed by saying that we
have the biaugmented double complex

0 0 0
0— &C(T;, Z) — .. &C(T,,Z) ———  C>x(T,Z) —0
TEK a€ko
! !
| | |
+ +
0— @C>T1,2Z) —...—» eC=T14Z) —-——— C*T,Z) —0
TEK a€ko
l l Lo
0— @C®TxT,Z) —...—» &CITxT,Z) ——— C®TxT.Z) —0
TEK T, cEKy Ty T

0= GC(ITXTXT,Z) — ... » ®C®(TXTXT,Z) ——— C®(TxTxT,Z) — 0
reky T, T, s€Ko T, T, T T

l l Lo

resp.

@K C(T,,Z) — C™(T,Z)
ock.
l

o C™(T\.Z) — C>T.,Z)
ceK.
As already noted the columns are exact, resp. the perpendicular arrows in the second
diagram are quasi-isomorphisms. Therefore let us fix some m > 0 and consider the
line

0= @& CT,Z)—...—» @& C™T,Z)—CT,Z)—=0 .
TEK &Ko

In order to sheafify this sequence we put 7™+ := T x ... x T and let denote ;{7 :

T,Sf) — T the inclusion map and § : T — T™*! the diagonal map. We then have
the obvious complex of sheaves

() 0 ¢ "7 —~... 5 & 972670
TEKy o€Ko

on T™*! of which our line is the complex of global sections (the global section functor
on a compact space commutes with arbitrary direct sums of sheaves!). Since the
sheaves in () are soft it is sufficient for the exactness of our line that () is an exact



complex of sheaves (compare the argument in the proof of §3 Lemma 4); the latter
can be checked stalkwise. For t = (tg,...,t,) € T™! we have

(Z), = { z ifieT.

0 otherwise.

This suggests the following definition:

K (tortm) .= the subcomplex of K consisting of all simplices o
such that tq,...,t,;, are not all identified under the
map T' — T},.

Equivalently, o is a simplex of K(otm) if and only if t & T,Sf) if and only if
(jia)l)z = 0. We make now the additional assumption that the natural map

T — [ T, is injective. Then K(fortm) is empty if and only if to = ... = t,
O'EICO
if and only if (0,Z); # 0. We obtain that the complex of stalks of (*) in t is the

relative augmented chain complex of the pair K{for+tm) C K. Therefore if K and all
its non-empty subcomplexes K(fo:m) are contractible the complexes (%) are exact.
Going back to our biaugmented double complex we then see that all its lines apart
possibly from the first one are exact. But since the columns are exact anyway the
first line has to be exact, too. We sum up this discussion in the following criterion.

Proposition 1:

Assume that the map T — [] T» is injective and that K and all its non-empty
O'EICO

subcomplezes Ktortm) for t; € T are contractible. Then the complex

0— & CIH2Z)—...—~ & CT,,Z)—C™T,Z)—0
TEK a€ko

18 ezact.

We want to apply this result in the concrete situation where the underlying
simplicial complex is the Bruhat-Tits building B7 and where the given profinite set
is T := G/ Pr for some fixed subset ] C A ={1,...,d}. Let o be a simplex in B7.
Then

B, :={9€G:g0 =0 and detge€ o™}

is a compact open subgroup in G; it has a unique maximal normal pro-p-subgroup
U, which itself is compact open. The set

Ty :=U,\T
is finite. We have the continuous projection T' — T, and
C(Tdv Z) = COO(G/va Z)UU

It is also obvious that U, C U, if ¢ C 7.



Lemma 2:

If 09,...,04 are the vertices of the simplex o in BT then U, is generated by Uy, U

L UT,,.

Proof: Let 7 be that maximal simplex in BT for which B, = B is the standard
Iwahori subgroup considered in §4. If 7g,..., 74 are the vertices of 7 appropriately

enumerated we have

Br; = yjGLa+1(0)y; "

Using the notations introduced in §4 we observe that

(1) B, N B,-j = BA\{]‘} and
(2) BN Usy Colny; " = Us,

By conjugation we may assume that o C 7 and 09 = 79,01 =7, ...

(1) we then deduce that
B, =By with J:=A\{j1,...,74} -
Furthermore one easily checks that
Usp=Usy - (BNUy)
By (2) we therefore are reduced to prove that

BNU; CUs - (BOUaA\(1}) -+ (BN Ua\(,y)

y0q

= 7;,. From
q

Reducing mod 7 this amounts to the statement that the unipotent radical of a fixed
parabolic subgroup is equal to the product of the unipotent radicals of the max-
imal proper parabolic subgroups containing the given one. This is a well-known
fact (compare [4] 3.2) which for GL;41 can be seen easily using elementary matrix

transformations.

The Lemma says that

q

T, =T, ... 1T,
T T

so that we are in the situation which was discussed above.



Lemma 3:

The map T — [] T, is injective.
oc€BTg

Proof: Since points in the same fiber of the map in question cannot be separated by
functions in the image of the homomorphism
& C(T,Z)— C™(T,Z)
oc€BTg
it suffices to show that the latter is surjective. According to §4 Corollary 9’ the
G-module C>®(T,Z) is generated by the characteristic function yp,p,. If 0o € BT
is a vertex such that U,, C By then yp,p, € C(T,Z)%0 = C(T,,,Z). Therefore

00>
the above G-module homomorphism contains a generator of the right hand side in

its image and consequently has to be surjective.

The Bruhat-Tits building is contractible. Therefore it remains to deal with the last
assumption in Proposition 1 that all the non-empty subcomplexes BT (tor-tm) of BT
are contractible. This requires a more elaborate argument. We will first describe
BT (tortm) a5 the union of an explicitly given family of apartments in B7. As a
convenient technical tool we interprete the sets T, in terms of lattices. Recall that a

simplex o in BT is a family o = {[Lo],...,[L4]} of similarity classes of o-lattices in
K41 such that

LoCLiC...CL,Cr 'Ly =: Ly
£ #F T 1Z

It is clear that U, is the subgroup of all elements in G which fix each L; and induce
the identity on each L;;1/L;. We now introduce

T(Lo,...,Ly) := set of all sequences (Xo,...,X,) of o-lattices
such that L; C X; C L4, forall 0 <5 < g;
it is partially ordered by
(Xo,...,Xy) < (Yo,...,Y,) if X;CY; forall 0<5<¢q .
Furthermore we call
dim(Xo,...,X,) := zq: dim, /o X;/L;
j=0

the dimension of the element (Xo,...,X,) € T(Lo,...,L,). Assume that A\I =
{iop < i1 < ... <t} Aflag & < ... <& in T(Lo,...,Ly) is called of type I if
dimé&, =1, for all 0 < v < r. It is rather obvious that the map
T(Lo) — T(Lo, ce ,Lq)
X — (L0—|—XQL1,L1 —|—XQL2,...,Lq—|—XQLq+1)



is order and dimension preserving. Also the group U, acts on T (Lg) in an order and
dimension preserving way.

Proposition 4:

The above map induces a bijection
Us\{flags of type I in T(Lo)} — {flags of type I in T (Lo,...,Ly)} .

Proof: To check surjectivity is an easy exercise. The injectivity amounts to the

following statement in linear algebra: Let V be a finite dimensional vector space

over some field equipped with a flag 0 =V, C Vi C...CV, CV,41 =V of subspaces;
Z Z Tz 14

furthermore let Uy C ... C U, C V and Uj C ... C U/ C V be two other flags of
subspaces such that V; + U, NV41 =V, + U, NV forall 0 <j <gand 0 <v <r.
Then there exists a ¢ € GL(V') which fixes each Vj, induces the identity on each
Vit1/Vj and fulfills (U, ) = U}, for all 0 < v < r. By induction with respect to ¢ this
is immediately reduced to another slightly more general statement: Let V3 CV be a
subspaceandlet Uy C ... CU, CVand Uj C ... C U/ CV be two flags of subspaces
such that U, NVy = U, NVy and g(Vi1 + U, /V1) = Vi + U, /V; for all 0 < v < r and
some fixed element g € GL(V/V1). Then there exists a ¢ € GL(V) which induces the
identity on V; and g on V/V; and fulfills ¢(U,) = U], for all 0 < v < r. The proof of
this is left to the reader.

Similarly as before a flag Wy C ... C W, of K-subspaces in K1 is called of type I
if dimy W, =1, for all 0 < v <r. We have the bijection

T = G/Pr = set of all flags of type I in Kt!
gPr— g(77)

where

10 71 i
Tr = g Ke; C g Ke; C...C g Ke;

Corollary 5:
The map

U \T —  set of all flags of type I in T(Lo,...,Ly)
MWoC...CW,)modU, +— (& <...<¢&)

with &, := (Lo + W, N Ly,...,Ly+ W, N Lyy1) is a bijection.

Proof: We have

Li+(Lo+W,N7 'Lo)NLjy1 =L; + W, N Ljt



Therefore by Proposition 4 we are reduced to treat the case ¢ = 0. Surjectivity is easy
to check again. For the injectivity let t = (W C ... C W, )andt/' = (Wj C ... CW))
be two flags in T such that Lo+W,Nr 'Ly = Lo+W) N~ 'Loforall0 < v <r. Let
P, C G be that parabolic subgroup which fixes t. Since B, is a maximal compact
subgroup we find by the Iwasawa decomposition G = B,P; a g € B, such that
g(t) = t'. On the other hand let P C GL(x 'Lg/L¢) = B,/U, be that parabolic
subgroup which fixes t := (W C ... C W,) with W, := Lo + W, N7~ 1Ly/Ly. Our
assumption implies gmod U, € P;. Since any element in P; can be lifted to B, N P;
we find a h € B, N P; such that ¢gmodU, = hmodU,. We then have gh™! € U,
with gh~1(¢) = t'.

In the following we always will make the above identifications and view elements in
T, resp. T, as flags of subspaces, resp. lattices. As already mentioned our aim is to
describe the subcomplexes BT (fo:-tm) in terms of apartments in B7. We therefore
have to recall briefly this notion. Any basis vy, ...,vq11 of the vector space Kt!
determines an apartment A in B7 which is the full subcomplex generated by all
vertices of the form

[7%ovy + ...+ 7% ovgy] with ay,... 0441 € Z .

Its topological realization |A| is a d-dimensional affine space. The same basis also
determines an apartment dA in the topological Tits building 7.(9) which is the full
(and finite) subcomplex generated by all vertices of the form

Kvy, + ...+ Kv,, with qb;é{al,...,at}g{l,...,d—l—l} :

Its topological realization |0.A| is a (d—1)-sphere. In the Borel-Serre compactification
of |BT| (see [3]) |0A| is the boundary of |A|. Since we don’t need this fact in the
moment we by definition call 0.4 the boundary of A.

Lemma 6:

Let W' W" € T where #A\I = 1. Any apartment A in BT such that W' and some
1-dimensional subspace W C W'\W' are vertices in the boundary 0A is contained
in BTV

Proof: Fix W and A as in the statement and let ¢ = {[Lo], ..., [Ly]} with Ly C Ly C
..CL, C 1Ly = Ly41 be a simplex in A. We then find a basis vy,...,v441 of
K91 such that

W' =Kuv, +...+Kvp_; forsome 2<k<d+1 |,
W =Kvy, and Lo =ovy + ...+ ovgq



In order to prove the assertion it suffices to find an 0 < jg < g such that
Ljo + W N Ljop1 € Ljo + W' N Ljgya

Put
jor=min{0<j<qg:7m'vp €Ly} -1 .

Since 7 vy € Lo and 7 tvy € L,41 we have 0 < jo < ¢. By definition 7 Loy
is contained in W N Lj,41. On the other hand it is easy to check that # lv; ¢
Ljo +W'n Ljo-l-l'

Lemma 7:

Lett = (Wo C ... CW,) €T and let W' C K be a subspace with dimyx W' =
dimg W,.. Then BTWrsW') s contained in the union of all apartments i BT which
have t and some 1-dimensional subspace W C W\W, as simplices in their boundary.

Proof: Let o = {[Lo],...,[Ly]} with Lo C Ly C ... C L, C 7 'Lo = Lyy1 be a
simplex in BTMW»"W") | We then have

(Lo+W,NLy,....,Lg+W,NLyy1)# (Lo+ W' NLy,...,Le+ W' N Lygyy)
but

dim(Lo+W,NLy, ..., LAW,NL,11)=dimg W,=dimy W’
== dlm(L0+W/mL1, ce ,Lq—|—W/qu+1);

therefore there has to be a 0 < jp < ¢ such that
Lig+W'NLjot1 € Ljo + Wr N Ljppa
We now consider the flag

LoCLo+WoNLiC...CLo+W,NL; C
L.C...

Ljo ngO—|—W0ﬂLjO+1g . QLJ‘O—I—WTQLJ‘O+1 ;LjO—I—WrijO+1‘|‘W/ijO+1g

Ljo-l-lg e

LyCLAWoNLys1C ... CLyAW,NLy1C

Lyt



viewed as a flag of subspaces in 7~ 'Lo/Lg. We fix a o/ro-basis vy,...,v441 of

71 Lo/Lg such that
— any subspace in the above flag is generated by some of the v,’s, and

— thereisan 1 < ag < d-+ 1 with

Tao € (Lj, + W' N Ljoy1/Lo)\(Lj, + Wy 0 Ljo41/Lo)

Although some of the inclusions in the above flag might be equalities for any fixed
Uq precisely one of the following cases holds true:

1) Uo €L; + W, NLjy1/Loand ¢ L; +W,_1 N Lj41/Lo
forsome 0 < j<gand 1 <v <r, or

2) o €L; +WoN Ljy1/Lo and ¢ L;/Lg for some 0 < j < g, or

3) Uq €Lj41/Lo and ¢ Ly + W, N Ljy1/Lg for some 0 < 5 <gq

and a # ag, or

4) Vo =T,
In cases 1) and 2) we find
vo € W, N Ljy1 such that vy =vomodL; ;
in case 3) we find
Vo € Ljy1 such that v, =v,mod Ly ;
finally in case 4) we find
Vag € W' N Lj 41 such that vy, = V4, modLj,

The vy,...,vq41 constructed in this way form a K-basis of K9t! such that any of
the subspaces Wy, ..., W, is generated by some of the v,’s. Put W := Kwv,,; we then
have W C W/\W,.. Therefore the apartment A in BT determined by this basis has ¢
and W as simplices in its boundary. It also contains ¢ since Ly = wovy + ...+ 70ov441
and any L;/Lg is generated by some of the v, mod L.

Proposition 8:

Let to,...,t, € T such that t, = (WO(“) C ... C W,(,”)). Then BT (tortm) g

equal to the union of all apartments i BT which have, for some 0 < v < r and



some 1 < p < m, the flag (WO(O) cC...C W,EO)) and some 1-dimensional subspace
W C WV(”)\W,EO) as simplices in thewr boundary.

Proof: This is an immediate consequence of the previous two Lemmata once we
observe that

BT(tO,...,tm): U BT(tO’t“)

1<p<m

= U U BT W W)

1<p<m 0<r<r

holds true.

All apartments which occur in the statement of Proposition 8 have the common
vertex WO(O) in their boundary. This enables us to explore the geodesic action of

WO(O) on BT for our purpose. Any proper subspace 0 C V C K% defines a simplicial
7z 7

self-map

v BT — BT
[L] — [ 'LV + L]
called the geodesic action. In order to see its simplicial nature assume that Ly C
Ly C 77 1Ly are o-lattices such that [x7'Lo NV + Lo] =[x 1Ly NV + L;]. Because
of 1 LoNV + Lo Cr LNV +Ly Cr (7 LoNV + Lo) this means that
T LNV A+ L =r"LoNV 4+ Ly or =7 (7 'LoNV + L)

In the first case we obtain that

dimp V = dimg/ro 7 Lo NV + Lo/ Lo
= dimo/ﬂ.o(ﬂ'_lLl N V —|— Ll/Ll) —|— dimo/m Ll/LO
== dim[( vV + dimo/m Ll/LO

and similarly in the second case that
dimp V = dimp V + dimgro 7 Lo/ Ly
This implies [Lo] = [L1].

Remark:

.. {[L],yv[L]|} is a 1-simplex in BT;
ii. [L] is a vertez in BTV W) if and only if yw[L] # ~ywr [L].



Lemma 9:

If the subcomplex K of BT 1is a union of apartments which have V as a vertex in
their boundary then we have:

it. the map |yv| induced by vy on the topological realization |K| is homotopic to the
identity.

Proof: i. We can assume that K = A is a single apartment and it suffices to show
that with any vertex [L] in A also vy [L] lies in A. But we find a basis vy, ..., 0441
of K%' such that

V=Kvi+...+ Kvg forsomel <k<d
and L =ov; +...4 ovgq

Then [x LNV + L] = [r tovy + ...+ 7 Lovg + ovgy1 + ... + ovgyy] obviously lies
in A, too.

ii. On |BT| we have the metric d which restricted to an apartment is the Euclidean
metric on the affine space. Furthermore any two points x,y € |[B7T| are joined by
a unique geodesic [xy] which lies in every apartment containing = and y. For any
real number 0 < ¢ < 1 let tz + (1 — t)y be the unique point z € [zy] such that
d(x,z) = (1 — t)d(x,y). The argument in the proof of part i. shows that with any
point x € |[K| the whole geodesic [z |yy|(x)] is contained in |[K|. Therefore the map

K> [0,1] — [K]
(z,1) — te + (1 = t)]v[(2)

is well-defined and provides the required homotopy once it turns out to be continuous.
But it is the restriction of the composed map

|IBT| x[0,1] — |BT|x|BT|x[0,1] — |BT|
(l’,t) = (l‘, |7V|(x)7t)
(l’,y,t) = tl’—I—(l—t)y )

here the first arrow is continuous since |yy| is continuous and the second arrow is
continuous according to [9] (2.5.15).

Lemma 10:

Let K be a subcomplex of BT with the following two properties:

— K 1s a uneon of apartments which have V' as a vertex in their boundary, and
— for any simplex o in BT there is a m € IN such that v{? (o) lies in K.

Then K 1s contractible.



Proof: By a theorem of Whitehead it suffices to show that =, (|K|,z) = 0 for all
n >0 and x € [K|. Let f:(S",s0) = (|K],2) be a continuous map. Since BT is
contractible we find a base point preserving homotopy

F:58"x0,1] - |BT| with F(.,0)=2 and F(.,1)=f .

The image of F' being compact is contained in the topological realization of a finite
subcomplex of BT. Our assumptions then guarantee that there is a m € IN such
that the image of |yy|"™ o F' is contained in |K|. This means that the homotopy class
of [yv|™ o fin m,(|K],y) with y := |yy|™(x) is trivial. But according to our first
assumption and the previous Lemma the map |yv|™ : 7 (|K|,2) — 7 (|K],y) is a
bijection. Therefore already the homotopy class of f was trivial.

Lemma 11:

Let W C K be a 1-dimensional subspace such that VW = {0}. For any simplex
o BT there is a m € IN such that v{? (o) 1s contained in an apartment of BT which
has V and W as vertices in its boundary.

Proof: The simplex ¢ is of the form o = {[Lo],...,[Ly]} with Lo CL; C...C L, C
71 Lo = Lyt1. For any m € IN we put Lgm) :=n""L; NV 4 L; so that we have

V(o) = {[LM], ... (L™}

In order to prove the assertion it suffices to find a m € IN and a 0 < j < ¢ such that

w4 v oLty

Then the required apartment can be constructed by exactly the same procedure as

in the proof of Lemma 7. It is easiest to deduce a contradiction from the assumption
that

L ewnrl L +vnLl) forallmeN and0<j<gq .

Since dimg W = 1 we know from Corollary 5 that given m € IN there is precisely

one j such that Lgm) ;Lgm) +Wn ngﬁ By the pigeonhole principle there must be

then one 5 which we fix from now on and some infinite subset M C IN such that

(m) (m) (m) (m) (m)
Lj ;Lj +WﬂLj+1ng —I—VOLH_1 forallme M .

Inserting the definition of L;m) we obtain
77_ij NV 4+ L]‘ C(ﬂ'_mLJ‘ NV + LJ‘) +WnN (F_mL]‘_H NV + Lj—l—l)

=
Cr ™LipiNV+L; forallmeM .



This means that for any m € M there is an element
wm € WN (77 "Ljg1 NV + Ljtq)
which is of the form
Wy =7 "V + Ly with vy, € Ligpi NV and £, € L

and which is not contained in #=™L; NV + L;. The latter implies that v,, € L; NV
In the identity

T Wy = Uy + 7
all three terms viewed as sequences in m lie in compact subsets of K%' so that
we may assume replacing M by a smaller subset that all three sequences are even
convergent. Now the #"(,, € " L; obviously converge to 0; similarly the #™w,, €
WN(Ljz1 NV +7™Lj1q1) converge to an element in W NV = {0}, that is to 0. But

the v, lie in the closed set (L;4+1 N V)\(L; N V) so that they cannot converge to 0.
This is the wanted contradiction.

Proposition 12:

The subcomplezes BT (ortm) in BT are contractible whenever the elementsto, . .., tmli}
€ T are not all equal.

Proof: The flag t, is of the form ¢, = (WO(“) C ... C W,(,”)). Since not all the
to,...,ty, are equal we find a smallest 0 < v < r such that

WO £ W for some 1 < pu<m

We fix a 1-dimensional subspace W C W,E“)\W,EO). From Lemma 6 and Proposition
8 we then deduce that the subcomplex BT (fortm)

— is a union of apartments in BT which have V := W,EO) as vertex in their boundary,
and

— contains all apartments which have V and W as vertices in their boundary.

In this situation Lemma 11 says that B7 (for-tm) fulfills the assumptions of Lemma
10 and therefore is contractible.

We now have established all the assumptions of Proposition 1 for 57 and the profinite
set T'= G/ Py so that Proposition 1 gives the following result.



Theorem 7:

The complex

0— @& C®G/Pr,Z)Y —...— & C=G/P,Z)"
TEBT o€BTo

— C>*(G/Pr,Z) — 0

18 exact for any subset I C A.

From this Theorem we want to deduce a similar result for the G-modules V;(Z).
We start with the simple observation that any smooth G-module A (by which we
mean an abelian group A with smooth G-action) gives rise to a coefficient system A
on the Bruhat-Tits building B7 in which A, := AYs and the transition maps are the
obvious inclusions. The corresponding augmented homological complex reads

0— @ AY v o AY v A |
TEBT, oc€BTH

For A = C*>(G/Pr,Z) this is exactly the situation which we have discussed above.
Clearly the coefficient system A is functorial in the smooth G-module A. We therefore
have, for any complex ... — A9 — ... — A, — ... of smooth G-modules, the
double complex

0 - @ AY - . = @ AU 5 4, = 0
TEBT, ac€BTo

0 - @ A" = ... = @ Al =5 4, = 0
Te€BT, o€BTo

Since the U, are pro-p-groups the above functor A — A is exact on smooth

G-Z {ﬂ—modules. Some of the complications which we have to overcome in the

following are caused by our insisting in Z-coefficients. By different techniques one
can show that the above homological complex is exact for all irreducible smooth

G — Q-modules A for which AY» #£ {0} for some vertex o € B75. We hope to come
back to this in another paper.

The obvious idea to treat the G-modules V;(Z) is to resolve them by the G-
modules C*(G/P;,Z) for J O I. For some of the subsets I C A we have done



this implicitly already in §3 Proposition 6 by investigating certain topological Tits

buildings. This has to be generalized appropriately. Since Va(Z) = C>*(G/Pa,Z) =

Z we may assume in the following that I C A. Define 7.7 to be the simplicial profinite
=

set of all flags Wy C ... C W, of subspaces in K%' such that dimyx W, € A\T for

all 0 < v < r. Furthermore let NT,,I - T,,I denote the open and closed subset

of “nondegenerate” flags Wy C...CW,; NT! consists of all flags of type J D I
Z

with #A\J = r + 1. (Neglecting that in §3 we worked in the dual space we have
T.(k) — T‘{k—i—l,...,d}‘)

Proposition 13:
The reduced cohomology H"(|T 1|, Z) vanishes for r #d — 1 — #1I.

Proof: Put k := d — #I. Since NT,] = ¢ for r > k it is clear that H"(|T./|,Z) =0
for r > k (compare the proof of §3 Proposition 6). We will prove the vanishing for
r < k —1 by induction with respect to d. The case d = 1 is trivial. For general d we
use the spectral sequence of a certain double complex. Set

V.1 := simplicial profinite set of all sequences (Ho, ..., H,)
of 1-dim. subspaces H; C K% such that
dimp Y i_q Hi < j for some j € A\I
and

Z..' .= bisimplicial profinite set of all (Wo C...CW,;Hy,...,H,) € TI x Y]

such that > H; C W,.

=0
From the obvious projection maps

Y./
/I\
7L 0 z.1

we obtain the biaugmented double complex

c=(Y.1,Z)
!
cx(T1,Z) — C~(2.1,7)

The same argument as in §3 Proposition 5 shows that the horizontal augmentation
map is a quasi-isomorphism. Therefore the second spectral sequence of this double
complex reads

By = HY(C¥(2.0,2)) = H™(Tot C¥(2.1,2)) = H™H(1T.1|.Z) .



We claim the following partial exactness property of the perpendicular augmentation
map: For 0 <r <k — 1 the sequence

0— C,,Z) — C®(Z28,,Z) — ... — C®(Z}_4_, . Z)

1s exact.

According to the argument in the proof of §3 Lemma 4 (i.e., [20] Chap. II) this can
be checked on the fibers of the projection map

foozl —vyv!l .

Fix h = (Ho,...,H,) € Y,! and put W := Y H; and m := dimx W; we have
1=0

m < r+1. The fiber f.71(h) is the simplicial profinite set of all flags W C ... C W,

such that dimg W, € A\I and W C W,.

There are two cases to distinguish. First let us assume that m € A\I. Then W is
a vertex in f.7!(h) which therefore is cohomologically trivial by the argument in §3
Lemma 3. On the other hand if m € I then

FHR) — T(KSFY W)L
(WO g g Wr) '—>(WO/WQ g WT/W)

is an isomorphism of simplicial profinite sets where the right hand side is the topo-
logical Tits building of all flags in K?T!'/W whose dimensions are contained in
{1,....d—=mMN\I' with I":={i—m :¢ € [ and i > m}. By the induction hypothesis
the reduced cohomology of |T(K*1 /W).I"| vanishes in degrees < d —m — 1 — #1".
Because of m € I we have #I' < #1. We conclude that the reduced cohomology of
|f.71(R)] vanishes in degrees <k —1—r<k—-m=d—-—m—#I<d—m—1—#I"

This establishes our claim. In terms of the above spectral sequence it means that

Ef’8:0 forr+s<k—1 ands#0 ,
EP° =Y, Z) forr <k—1, and C=(Y;_,.Z) C Ef " |

Since certainly d — #I < j for some j € A\l we have

YVIi=Y!x.. . xY! forr<k—1.
S—_— ————

r+1—times
The contracting argument in the proof of §3 Lemma 3 then implies that
0 - Z — C>Yl,z) - ... - C=YlL,27Z) - C>Yl,Z)

] I N
0 - Z — EYY - .. = Ef 20 — B0

is exact. Altogether we obtain that E;’S =0for0 <r+s<k—1and Eg,o =7
which in the abutment gives the vanishing of H"(|T.7|,Z) for 0 <r < k — 1. q.e.d.



As already discussed several times we have

C(NT!,z)= B C¥(G/PZ) .
#A\J=r+1

Therefore Proposition 13 can be reformulated by saying that
0—2Z—=C®NTS,Z)—~ ... C®(NT] 4. Z) = Vi(Z) = 0

is an exact sequence of smooth G-modules. In the corresponding diagram

0 0
T T
D V[(Z)UC’ — V](Z)

cEBT.

t t
E%T COO(N%I—1—#IvZ)U“ — C®(NTa—1-41,2Z)
| 1 1

D COO(N%Ivz)UU — COO(N%Ivz)

cEBT.
T T
¢ Z — /A
cEBT.
T T
0 0

all horizontal arrows apart possibly from the first one are quasi-isomorphisms by
Theorem 7. Our aim is to prove that the first arrow is a quasi-isomorphism, too.
For this it is sufficient to check that all the left hand columns are exact. Let us fix a
simplex o = {[Lo],...,[Lq]} in BT with Lo C ... C L, C 7 'Ly = Ly41. Because of

C>(NT!,z)" =C(U,\NT,!,Z)
we deduce from Corollary 5 that
Co(NTY, Z)% — ... — C®(NT, . Z)
is the cochain complex of the flag complex associated with the poset
THo)={6e€T(Lo,...,L,) : dim& € A\I} .
We only remark that 77(o) up to canonical isomorphism does not depend on the

choice of Lg,...,L,. In the following we will not distinguish notationally between a
poset and its associated flag complex.



Proposition 14:
The reduced cohomology H" ([T (0)|, Z) vanishes for r #d — 1 — #1.

Proof: This can be proved in a completely analogous way as Proposition 13. Therefore
we only explain how to translate the notions we have used in that argument into the
present context. First of all it is convenient to work in a slightly more general setting.
Suppose we are given finitely many o/mo-vector spaces Lo, ..., L, such that

dimg jro Lo + ...+ dimy g Ly =d + 1 .
We then have the poset

T(Lo,...,L,) :=set of all sequences (Xo,...,X,)
where X ; is an o/mo-subspace of L;
partially ordered by
(Xoy.., Xy) < (Yo,...,Y,) if X; CY; forall0<j<gq .

Any element (Xo,...,X,) € T(Lo,...,L,) has the dimension
JRN— JRN— q JRN—
dim(Xo,...,X) =) dimy/r, X,
3=0

Furthermore we may define the sum of any two such elements as
(70,. .. ,yq) + (?0,. .. 7?(]) = (70 —|—?O,. .. ,yq —I_?q)
For any proper subset I C A we consider the poset
)

T (Lo,...,L,) :={6 € T(Lo,...,L,) : dim¢ € A\I} .
The assertion now is proved simultaneously for all these posets by induction with

respect to d. The argument is exactly the same as in the proof of Proposition 13;
actually it can be somewhat simplified since no profinite topology is involved.

Proposition 15:
1 #1(T1(0)).Z) = B #7120 = V(@)

Proof: We will show that the sequence

Uo'
( @\ COO(G/PIU{Z},Z)> — C®(G/P1,Z)" — Vi(Z)Y" — 0
tEANT



is exact. Since U, is a pro-p-group taking U,-invariants is exact if we deal with Z {ﬂ -

modules. Therefore our sequence certainly is exact after tensoring with Z {ﬂ By

conjugation we may assume that B, = B for some J C A is one of the standard
parahoric subgroups considered in §4. If oy denotes the vertex og = [0‘“’1] we then
have

Ua'o - Uy - B, :BJQ Ba'o = Ba :GLd—I—l(O)

Let Py, resp. Uy, be the standard parabolic subgroups (containing the upper trian-
gular matrices), resp. their unipotent radicals, in the group G := GLgy41(0)/Us, =
GLg41(0/70); they are defined in the same way as the Pr and U in §4. It is clear
that

P;=B;/U,,, P;=B,/U,, , and U ; =U,/U,,

Using the Iwasawa decomposition G = Ba P, we can rewrite our sequence in the
following way:

Uy
_ _ — Uy

<‘ eg\IC(G/PIU{i},Z)) OGP T — (VI(Z)%) .0 .

1S

A drastically simplified version of §4 Proposition 4 (no topology is involved!) tells us
that the subgroup

C(|J PowPr/Pr,2) =C( | UN\PywP(/Pr,2Z)
weV! weVvl

C(G/P.;.2)"" =C(U,\G/P1.Z)

is a complement of the image of the left hand term in the above sequence, i.e., of the
subgroup

Z C(UJ\G/?IU{i}a Z)
i€ANT

We recall that
VI — WI\ U WIU{i}
iEANT

is the set of all permutations w € W which are of minimal length in their coset wW7r
but not in any coset wWiyy;y for @ € A\I. In this way we are reduced to prove that

C(|J PowP; /P, Z) — Vi(Z)""o
weV!



is bijective. Both sides are Z-free, the left side obviously and the right side since
VI(Z) is Z-free by the argument in the proof of §4 Corollary 5. We already know

that the map is bijective after tensoring with Z {ﬂ . Therefore it is at least injective

with torsion cokernel. For its surjectivity it then suffices that the cokernel of the map
C(|J PywP;/P1,Z) — Vi(Z)
weVvl
is torsionfree. This in turn certainly is the case if the dual map
Homz (Vi (Z),Z) — Homz(C( | | PywP;/P;,Z).Z)
weVl

is surjective. We observe that this still is a map of Bg-modules. For any h € G we
have the Dirac distribution

(Sh : COO(G/P],Z) —Z
> P(h)

The action of GG on the Dirac distributions is described by the formula
(0n) = dgn
We now consider the linear form

Sre= Y (=1)"g,

weEWays

on C*(G/Pr,Z). Fix an 1 € A\I and let ¢» € C*°(G/Pryyiy, Z) be some function.

From v(.s;) = ¢ and from the decomposition

WA\] = (WA\] N W{Z}) U(WA\] N W{Z})Sl
we deduce

Srw) = Y (1) y(w)

wEWanr
= > UM+ Y (D) (s

=0 .



Therefore &7 lies in Homgz(V;(Z),Z). For any v € V! the restriction of the linear
form ?(61) to C( U ﬁqﬂl)ﬁ]/ﬁ[,l) is equal to

weVI
Z (—1)£(w)5vw = Z m(v,v') - Gy
wGWA\I UIEVI
vweVIWI

where

m(v,v") 1= Z (—1)““’)

weW A\ 1
vwev/WI

Because of Way\; N Wy = {1} the pair (w,w’) € Wa\; x Wy in the identity

1!
W =vw

is uniquely determined by the pair (v,v’) € VI x V1. This implies that m(v,v’) €
{0,+1} and that m(v,v) = 1. Since v’ is the element of minimal length in its coset
v'W; we have v/ < v'w’ (< denotes the Bruhat order). Also any v € V! is the unique
element of maximal length in its coset vWa\ s so that vw < v. Together we obtain

o' <wv if m(v,0") £0 .

We see that the matrix formed by the coefficients m(v,v’) is integrally invertible.

Therefore an appropriate integral linear combination of the “/(51) with o/ € V7

restricts to 6, on C( | ?qﬂﬂ?[/?[, Z). Since the §, for v € VI generate
weV!

Homz(C( | | PowP;/P1,Z),Z)
weVi

as a Bg-module we have established the wanted surjectivity. q.e.d.

We know now that the columns in our initial diagram are exact and as already
explained this implies the result we were aiming at.

Theorem 8:
The complex

0— @& V(Z)'" —...— @& V(Z)V" — Vi(Z)—0
TEBT, o€BTo



18 exact for all subsets I C A.

We want to complete this discussion by relating 77 (o) to that simplicial complex
which most naturally is associated with the simplex o. This is the combinatorial
Tits building 7, of the finite reductive group B, /U, which also can be interpreted
as the link of the simplex o in BT . It is convenient to put ourselves into the slightly
more general framework of those simplicial complexes which were introduced in the

proof of Proposition 14. We repeat that, given o/mo-vector spaces Lo, ..., L, such
that

dimg jro Lo + ...+ dimy /g Ly =d + 1,
we have the poset

T(Lo,...,L,) = set of all sequences (Xg,...,X,)

where X is an o/mo-subspace of L;

with the dimension function
[ [ q [
dim(Xo,...,X) =) dimy/r, X,
j=0

If we put

L:=Ly®...®L,
then we may also consider the poset

T[Lo,...,L,] := set of all o/7o-subspaces X C L
such that X = (meo)@...@(fqu)

ordered by inclusion. It is clear that

TlLo,--- Ly — T(Lo,---sLg)
X — (X NLg,...,XNLy

is a dimension preserving isomorphism of posets. On the other hand we fix a semisim-
ple element s € GL(L) such that

GL(ZO) X ... X GL(fq) = centralizer of s in GL(Z)

One then easily checks that T[Lo, ..., L,] is the subposet of fixed points of s in T[L]:

T[Lo,..., L, =T[L]® =T (L)



For any proper subset I C A we had considered the poset
=

T(Lo,...,Ly) :={€ € T(Lo,...,L,) : dim¢& € A\T} .
Obviously the T7(s) are of this form. Using the above isomorphism we obtain
T!(Lo,... L) =2{X ¢ T(L)" : dimo/ﬁoy e A\I} .

The combinatorial Tits building of the group GL(L), resp. GL(Lg) x ... x GL(L,),
by definition is T ?(L), resp. the join T%(Lo) *...* T?(L,). In [14] (7.4) it is shown
that there is a GL(Lo) X ... x GL(L,)-equivariant homeomorphism

Susp? |T(Lo)*...* T*(L,)| = |T*(L)?|

where Susp? denotes the ¢-fold suspension. We see in particular that for a ¢-simplex
o in BT the topological realizations |T!(c)| of our simplicial complexes T(o) are
B, /Us-equivariantly homeomorphic to closed subspaces in Susp? [7;|. For general T
it seems rather complicated to find a description of those subspaces which is intrinsic
in terms of T,. For I = ¢ we of course have |[T?(a)| = Susp? [T, |. This latter remark
shows for example that the term V,(Z)Y in the resolution of Theorem 8 for the
Steinberg module V4(Z) is the Steinberg module of the finite reductive group B, /U,
(this can also be seen directly from the computations in the proof of Proposition 15).

The resolutions as stated in the Theorems 7 and 8 have the defect not to be
G-equivariant. The reason is that in the above considerations we have fixed an orien-
tation of BT and this cannot be done in a G-invariant way. But this is not a serious
problem. Recall that an ordered ¢-simplex of BT is a sequence (0q, ..., 0,) of vertices
such that {og,...,0,} is a ¢g-simplex in BT. Two such ordered ¢-simplices are called
equivalent if they differ by an even permutation of the vertices; the corresponding
equivalence classes are called oriented g-simplices and are denoted by < oq,..., 04 >.
Let BT, be the set of all oriented g-simplices of BT. If now A is a smooth G-module
we put

CZ"(BTy),A) := group of all maps w : BT, — A
such that
— w has finite support,
—w(< 00,...,04 >) € AVteooal
— W(< 00y -5 Ouq) >) = sgn(t) - w(< oo,...,04 >)

for any permutation ¢.

The group G acts on C?"(B7(y,A) via

(gw)(< 0g,...,00 >) = g(w(< g_lao, . ,g_laq >))



With respect to the boundary map

0:C (BT 441y, 4) — C(BTy.A)
w — (<00, 00> > w(<0,00,...,040>))

{o,90,.., og}
€BTg41

we then have the augmented complex of smooth G-modules
Cor(BTay, A) -5 ... L Cor(BTo),A) — A

w — Y. w(o)
0'687‘(0)

It is rather clear that this complex is isomorphic to our original complex

o AY s @AY s A
TEBT, oc€BTH

Proposition 16:

Let ' C PGLgy1(K) be a cocompact discrete subgroup. Any of the G-modules
C>®(G/Pr,Z) and Vi(Z) for I C A has a projective resolution by finitely gener-
ated free Z[T']-modules; if T is torsionfree then there exists such a resolution of length
<d.

Proof: Let A denote one of these G-modules. By the argument in the proof of §4
Corollary 5 we know that A is Z-free so that the Z-modules AY= are finitely generated
and free. Let us first assume that I' is torsionfree. Then I' acts freely on BT with
a finite number of orbits in the ¢-simplices for each ¢. Therefore the C?"(B7,, A)
are finitely generated free Z[I'l-modules and the above constructed resolution has
the required properties. In general, I' contains a normal subgroup I'’ of finite index

41
which is torsionfree ([19] 2.7). Let B. := @ Z[I'/T"] denote the (unnormalized) bar
z

resolution of the trivial I'/T'-module Z. If now C'. is a resolution of the required type
for A as aI'/T'-module then B. ® C. has the required properties for A as a I'-module.
A
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