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Dedicated to Martin Kneser

Let K be a nonarchimedean locally compact field and let G be the group
of K-rational points of a connected reductive group over K. In [SS] a certain
duality functor on smooth finite length representations of G is introduced and
studied. The main tool is a construction which realizes such a G-representation
as the homology, resp. the cohomology with compact support, of an equivariant
coefficient system (or cosheaf), resp. an equivariant sheaf, on the building X of
G. Since X is a locally compact space of finite dimension we have the Verdier
duality functor on sheaves on X. It is therefore a natural question how those two
duality functors on G-representations and on sheaves on X are related to each
other. The answer which will be given in this paper is that they are intertwined
by the cohomology functor with compact support. The technical problem which
has to be solved is how to reinterprete coefficient systems on X in sheaf the-
oretic terms. Indeed, we will show that the bounded derived categories of the
coefficient systems on X and of the (weakly constructible) sheaves on X are
canonically equivalent. In other words that derived category has two different
natural hearts. We will see that Verdier duality exchanges those two hearts and
is given by the naive functor which applies linear duality to the stalks of a con-
structible sheaf. In some sense coefficient systems bear a certain resemblance
to perverse sheaves. The reader will easily realize that this part of the paper
works literally the same way for any locally finite simplicial complex. Using the
formalism developed in [Sch] we extend these results in the last section to the
equivariant setting and deduce the theorem that the cohomology with compact
support transforms Verdier duality into representation theoretic duality.

1. Constructible sheaves on the building

Let X denote the Bruhat-Tits building of G. Its main structural features
are the following (see [SS]I.1 for a brief overview):
– X carries a natural metric d( . , . ).
– X in a natural way is a locally finite d-dimensional polysimplicial complex
where d is the semisimple K-rank of G. The corresponding (open) polysim-
plices are called facets.
– X carries a natural G-action which is isometric and respects the partition into
facets.
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We first review the contents of [KS]8.1 leaving to the reader the exercise to
extend the proofs in loc. cit. from the simplicial to the polysimplicial setting.
Let Sh(CX) denote the abelian category of sheaves of C-vector spaces on X and
let Db(X) be the corresponding bounded derived category.

Definition: ([KS]8.1.3)
A sheaf S in Sh(CX) is called weakly constructible, resp. constructible, if the
restriction of S to any facet in X is constant, resp. is constant with finite di-
mensional stalks.

For any facet F in X the subset

St(F ) := union of all facets F ′ ⊆ X such that F ⊆ F ′

is called the star of F . These stars form a locally finite open covering of X. For
any point x ∈ X let F (x) be the unique facet containing x and put

St(x) := St(F (x)) .

Lemma 1:
For any weakly constructible sheaf S on X and any point x ∈ X we have

H∗(St(x), S|St(x)) = H∗(F (x), S|F (x)) =

{
Sx if ∗ = 0 ,
0 if ∗ > 0 .

Proof: [KS]8.1.4.

Let w-Cons(X), resp. Cons(X), denote the full subcategory of weakly con-
structible, resp. constructible, sheaves in Sh(CX). These are thick abelian
subcategories in the sense of [Har]p.38. Let Db

w−c(X), resp. Db
c(X), be the

full triangulated subcategory of Db(X) consisting of those complexes S· whose
cohomology sheaves h·(S·) are all weakly constructible, resp. constructible.

Proposition 2:
The natural functors

Db(w-Cons(X))
∼−→ Db

w−c(X) and Db(Cons(X))
∼−→ Db

c(X)
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are equivalences of categories.
Proof: [KS]8.1.10 and 8.1.11.

We will describe a quasi-inverse of the first functor. Note that to give a (weakly)
constructible sheaf S on X is the same as to give
– C-vector spaces SF for any facet F ⊆ X, and
– linear maps rF

′

F : SF ′ −→ SF for each pair of facets F ′ ⊆ F such that rFF = id

and rF
′

F ◦ rF ′′

F ′ = rF
′′

F whenever F ′′ ⊆ F ′ and F ′ ⊆ F .

Namely, given any sheaf S put SF := S(St(F )) and let rF
′

F be the restriction
maps. Vice versa define a weakly constructible sheaf S by setting, for any open
subset Ω ⊆ X,

S(Ω) := C-vector space of all maps s : Ω −→
·∪

x∈Ω
SF (x)

such that

– s(x) ∈ SF (x) for any x ∈ Ω, and

– there is an open covering Ω =
∪

i∈I Ωi with

r
F (x)
F (y)(s(x)) = s(y) for any x ∈ Ωi, y ∈ St(x) ∩ Ωi, and i ∈ I .

Composing these two constructions we obtain a functor

β : Sh(CX) −→ w-Cons(X)

which has the following properties ([KS]8.1.7 and 8.1.8):

– β is right adjoint to the inclusion functor w-Cons(X)
⊆−→ Sh(CX) and is,

through adjunction, a left quasi-inverse for the latter;
– β is left exact;
– R∗β(S)(St(F )) = H∗(St(F ), S) for any facet F and any S in Sh(CX); in
particular, weakly constructible sheaves are β-acyclic.
It is a formal consequence of these properties that the restriction of the derived
functor

Rβ : Db(X) −→ Db(w-Cons(X))

to Db
w−c(X) is the quasi-inverse we were looking for.

2. Coefficient systems

We recall from [SS] that a coefficient system V = (VF )F of complex vector
spaces on X consists of
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– C-vector spaces VF for each facet F ⊆ X, and
– linear maps rFF ′ : VF −→ VF ′ for each pair of facets F ′ ⊆ F such that rFF = id

and rFF ′′ = rF
′

F ′′ ◦ rFF ′ whenever F ′′ ⊆ F ′ and F ′ ⊆ F .
Let Coeff(X) denote the abelian category of those coefficient systems and let
Db(Coeff(X)) be the corresponding bounded derived category. With any coef-
ficient system V we may associate the complex of oriented chains

Cor
c (X(d),V)

∂−→ . . .
∂−→ Cor

c (X(0),V) .

Here X(q) denotes the set of all q-dimensional oriented facets (F, c) and

Cor
c (X(q),V) := C-vector space of all maps ω : X(q) −→

·∪
F∈Xq

VF

such that

– ω has finite support,

– ω((F, c)) ∈ VF , and, if q ≥ 1,

– ω((F,−c)) = −ω((F, c)) for any (F, c) ∈ X(q) .

The boundary map ∂ is defined by

∂ : Cor
c (X(q+1),V) −→ Cor

c (X(q),V)
ω 7−→

(F ′, c′) 7−→
∑

(F,c)∈X(q+1)

F ′⊆F, ∂F
F ′ (c)=c′

rFF ′(ω((F, c)))
.

We call

H∗(X,V) := h∗(C
or
c (X(·),V))

the homology of the coefficient system V.
Next we will construct a natural functor

σ : Db(Coeff(X)) −→ Db(w-Cons(X)) .

Fo any facet F let jF : F
⊆−→ X be the corresponding locally closed immersion.

Consider a fixed coefficient system V = (VF )F on X. We will use the same
symbol VF to also denote the constant sheaf with value VF on F .

Remark 1:

i. If j : F
⊆−→ F denotes the open immersion of a facet F into its closure then

we have

j∗VF = constant sheaf with value VF on F ;
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ii. for any pair of facets F ′ ⊆ F we have

(jF ′)∗jF∗VF = constant sheaf with value VF on F ′ .

Proof: i. Obvious. ii. This follows from the first assertion.

For any 0 ≤ q ≤ d we define a sheaf Vq on X by setting, for any open subset
Ω ⊆ X,

Vq(Ω) := C-vector space of all maps ω : X(q) −→
·∪

F∈Xq

(jF∗VF )(Ω)

such that

– ω((F, c)) ∈ (jF∗VF )(Ω) and, if q ≥ 1 ,

– ω((F,−c)) = −ω((F, c)) for any (F, c) ∈ X(q) .

Since X is locally finite we have noncanonically

Vq
∼=

∏
F∈Xq

jF∗VF = ⊕
F∈Xq

jF∗VF

where Xq denotes the set of all q-dimensional facets. From this we easily see
that

(jF ′)∗Vq
∼= ⊕

F⊆St(F ′)
dim(F )=q

(jF ′)∗jF∗VF

for any facet F ′. It follows that Vq is weakly constructible. Clearly the boundary
map ∂ extends to the sheaf level so that we obtain a complex of sheaves on X

σ(V) := [Vd
∂−→ · · · ∂−→ V0]

put in degrees −d through 0. This construction is obviously functorial and by
Remark 1 also exact in V. Hence it gives rise to a functor σ between the respec-
tive derived categories.

Proposition 2:
The functor σ : Db(Coeff(X))

∼−→ Db(w-Cons(X)) is an equivalence of cate-
gories.
Proof: In order to simplify the notations we fix an orientation of X. For any
weakly constructible sheaf S = (SF )F on X we construct a complex

τ(S) = [S0 −→ · · · −→ Sd]
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of coefficient systems on X put in degrees 0 through d in the following way. The
coefficient system Sq, for 0 ≤ q ≤ d, is defined by

Sq := ( ⊕
F ′⊆St(F )

dimF ′=q

SF ′)F

with the obvious inclusions as the transition maps. The differential in the
complex on the level F is the relative cohomological differential for the pair
(X,X \ St(F )). This construction clearly is functorial and exact and hence
induces a functor

τ : Db(w-Cons(X)) −→ Db(Coeff(X)) .

We claim that τ is a quasi-inverse for σ. Recall that, for a complex V · = (V ·F )F
of coefficient systems, we have

σ(V ·) = [V ·d −→ · · · −→ V ·0]

with

V ·q = ( ⊕
F⊆St(F ′)
dimF=q

V ·F )F ′ .

We see that τσ(V ·) is given by the triple complex

(V ·d)d −→ . . . −→ (V ·0)d

↑ ↑
...

...
↑ ↑

(V ·d)0 −→ . . . −→ (V ·0)0 .

We compute

(V ·i)j = ( ⊕
F ′⊆St(F )

dimF ′=j

⊕
F ′′⊆St(F ′)
dimF ′′=i

V ·F ′′)F .

This shows in particular that (V ·i)j = 0 for i < j and that

(V ·i)i = ( ⊕
F ′⊆St(F )

dimF ′=i

V ·F ′)F .

We claim that the natural map

⊕
i
(V ·i)i = ( ⊕

F ′⊆St(F )
V ·F ′)F

(
∑

rF
′

F )F
−→ V · = (V ·F )F
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induces a quasi-isomorphism (V ·∗)∗ −→ V ·. By a filtration argument we may
assume that V · is a single coefficient system V = (VF )F which is supported on
a single facet F0 of dimension m, i.e., VF = 0 for F ̸= F0. Put V := VF0 . We
then have

Vi = 0 for i ̸= m, Vm =

({
V if F ′ ⊆ F0

0 otherwise

})
F ′

and

(Vm)j = ( ⊕
F⊆F ′,F ′⊆F0

dimF ′=j

V )F .

What we have to check therefore is the exactness, for each F , of the complex

0 −→ ⊕
F⊆F ′,F ′⊆F0
dimF ′=dimF

V −→ . . . −→ ⊕
F⊆F ′,F ′⊆F0
dimF ′=dimF0

−→
{
V if F = F0

0 otherwise

}
−→ 0 .

This is clear. In this way we have shown that τσ ∼= id. The argument for the
other identity στ ∼= id is entirely analogous.

Lemma 3:
For any coefficient system V = (VF )F on X we have

H∗c (X,Vq) =

{
Cor

c (X(q),V) if ∗ = 0,
0 otherwise .

Proof: Straightforward.

Corollary 4:
For any coefficient system V on X we have

H∗(X,V) = H−∗c (X,σ(V)) .

In the following the complex

σX := σ((C)F )

in Db(Cons(X)) belonging to the constant coefficient system (C)F with value C
will play a distinguished role. There is an obvious exact functor

∗ : w-Cons(X) −→ Coeff(X)
S 7−→ S∗ = (S∗F )F
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defined by S∗F := HomC(S(St(F )),C). It follows from Lemma 1.1 that

jF∗S∗F = jF∗HomCF
(S|F,CF ) = HomCX

(S, jF∗CF )

and hence that

σ(S∗)· = HomCX
(S, σ·X) .

Remark 5:
For any constant sheaf V on a facet F we have RijF∗V = 0 for i ≥ 1.
Proof: Obvious.

Using this and [Bor]V.7.9 it follows that

ExtiCX
(S, jF∗CF ) = ExtiCX

(S,RjF∗CF ) = RijF∗RHomCF
(S|F,CF )

= RijF∗S∗F = 0

for i ≥ 1. As a consequence we obtain the equality

σ(S∗) = RHomCX
(S, σX)

in Db(w-Cons(X)). In other words we have the commutative diagram

Db(w-Cons(X))
RHomCX

( . ,σX)

−−−−→ Db(w-Cons(X))
∗ ↘ ↗ σ

Db(Coeff(X)) .

We see in particular that the functorRHomCX
( . , σX) respects the subcategories

Db
w−c(X) and Db

c(X) of Db(X).
For any point x ∈ X the stalk in x of the complex σX is

(σq
X)x ∼= ⊕

F⊆St(F (x))
dim(F )=−q

C .

This means that the stalks of the homology sheaves are the relative homology
groups

hq(σX)x = H−q(X,X \ {x}; C) .

But according to [BT]II.5.1.32 and [Tit]3.5.4 the link of a facet inX is isomorphic
to the spherical building of a reductive group over a finite field. By the theorem
of Solomon-Tits the latter is a bouquet of spheres. It follows that

H∗(X,X \ {x}; C) = 0 for ∗ ≠ d .
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In this way we have proved the following result.

Lemma 6:
σX coincides in Db(Cons(X)) with a single sheaf placed in degree −d.

3. Verdier duality

The formalism of Verdier duality applies since X is locally compact of co-
homological dimension d. It ensures the existence of the dualizing complex ωX

in Db(X) (actually hj(ωX) ̸= 0 at most for −d ≤ j ≤ 0) together with a natural
isomorphism

Ext∗CX
(S, ωX) = HomC(H

−∗
c (X,S),C)

for any S in Db(X) (compare [KS]3.1.10). The duality functor by definition is

DX : Db(X) −→ Db(X)
S 7−→ RHomCX

(S, ωX) ;

it comes equipped with the natural transformation of biduality

S −→ DXDXS .

According to [Bor]V.7.1 we have

h∗(ωX)x = HomC(H
−∗(X,X \ {x}; C),C) = H−∗(X,X \ {x}; C)

for any x ∈ X. (The constant sheaf CX is cohomologically constructible.) By
the same argument as before it follows that h∗(ωX) = 0 for ∗ ̸= −d. Since, by
the construction of ωX , we have

h−d(ωX)(Ω) = HomC(H
d
c (Ω,C),C) for Ω ⊆ X open

this proves the following.

Lemma 1:
ωX coincides in Db(X) with the sheaf

Ω 7−→ HomC(H
d
c (Ω,C),C)
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placed in degree −d.

Proposition 2:
ωX = σX in Db

c(X).
Proof: The filtration of X by its skeletons gives rise to the spectral sequence

Ei,j
1 =

∏
dimF=d−i

HomC(H
−(i+j)
c (Ω ∩ F,C),C) ⇒ HomC(H

−(i+j)
c (Ω,C),C)

of presheaves on X. By [KS]3.3.6 we have

sheafification of Ei,j
1 =

{ ∏
dimF=d−i

jF∗orF if j = −d ,

0 otherwise

where orF denotes the orientation sheaf of F . It follows that

HomC(H
d
c ( . ,C),C) = h−d(σX) .

Because of the above result it follows from section 2 that DX respects the sub-
categories Db

w−c(X) and Db
c(X) and that

DX = σ ◦ (∗) ◦Rβ on Db
w−c(X) .

Proposition 3:
Assume that S is in Db

c(X); we then have:

i. The natural transformation of biduality S
∼−→ DXDXS is an isomorphism;

ii. (DXS)x = HomC(RΓ{x}(X,S),C) for any x ∈ X.
Proof: By an induction argument (compare [Bor] p.140) we may assume that S
is a single constructible sheaf on X.
i. Consider the exact functor

∗ : Coeff(X) −→ w-Cons(X)

V = (VF )F 7−→ V∗ = (V ∗F )F

defined by V ∗F := HomC(VF ,C). We claim that

V∗ = HomCX
(σ(V)·, σ·X) in Db(w-Cons(X)) .
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Our assertion then follows immediately from the obvious identity

S∗∗ = S for any constructible sheaf S .

The computation before the Remark 2.5 shows that the total complex HomCX

(σ(V)·, σ·X) is a complex in degrees 0 up to d with the term in degree q equal to∏
F ′⊆F

dimF ′+q=dimF

jF ′∗(V
∗
F |F ′) .

We more precisely claim that the obvious natural map

V∗ −→
∏
F

jF∗V
∗
F

induces the wanted quasi-isomorphism. By an induction as well as a direct
product argument we may assume that V is supported on a single facet F of
dimension m, i.e., V∗ = jF !V

∗
F . In this case our claim amounts to the exactness

of the complex

0 −→ jF !V
∗
F −→ jF∗V

∗
F −→ ⊕

F ′⊆F

dimF ′=m−1

jF ′∗(V
∗
F |F ′) −→

. . . −→ ⊕
F ′⊆F

dimF ′=0

jF ′∗(V
∗
F |F ′) −→ 0 .

That exactness is a consequence of the fact that the corresponding complex of
stalks in a point x ∈ X computes the relative homology groups

H∗(F , F \ {x};V ∗F ) ∼=
{
V ∗F if x ∈ F and ∗ = dimF,
0 otherwise .

ii. Because of i. it suffices to show that

H∗{x}(X,DXS) =

{
HomC(Sx,C) if ∗ = 0,
0 otherwise .

Applying the first hypercohomology spectral sequence to the complex σ(S∗)·

which represents DXS this follows from

H∗{x}(X, jF∗S
∗
F ) =

{
H∗{x}(F, S

∗
F )

∼= S∗F if x ∈ F and ∗ = dimF,

0 otherwise

(the isomorphism depends on the choice of an orientation of F = F (x)).
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Let us put

ΩX := h−d(ωX) = h−d(σX)

so that up to quasi-isomorphism ΩX [d] is the dualizing complex of sheaves on
X. Moreover let π : X −→ pt denote the natural map to the point.

Proposition 4:
π! = ΩX [d] ⊗

CX

π∗.

Proof: Let V be a vector space. The same argument as for the proof of Lemma 1
shows that π!V [−d] is quasi-isomorphic to the sheaf Ω 7−→ HomC(H

d
c (Ω,C), V ).

Since Hd
c (Ω,C) is finite dimensional for any relatively compact Ω the latter sheaf

is isomorphic to ΩX ⊗
CX

VX where VX = π∗V is the constant sheaf with value V

on X.

4. The equivariant duality functor

In [Sch] we discuss the homological algebra of the category ShG(Y ) of G-
equivariant sheaves on a locally compact G-space Y . In particular we introduce
the G-equivariant dualizing complex of sheaves ωY,G ∈ Db(ShG(Y )). The build-
ing X is a special G-space in the terminology of loc. cit. A weakly constructible
sheaf S = (SF )F on X is G-equivariant if, for any facet F ⊆ X, there is given
a linear map

(0) gF : SF −→ SgF

in such a way that

(1) ghF ◦ hF = (gh)F for any g, h ∈ G and any F ,

(2) 1F = idSF for any F ,

(3) the diagram

SF ′
gF ′−→ SgF ′

rF
′

F ↓ ↓ rgF
′

gF

SF
gF−→ SgF

is commutative for any g ∈ G and any pair of facets F ′ ⊆ F , and
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(4) the induced action of the pointwise stabilizer PF of F on SF is smooth for
any F .

Without the “continuity” condition (4), i.e., if only (0)-(3) are required S is
calledGdis-equivariant. AnyGdis-equivariant sheaf S has a largestG-equivariant
subsheaf Ssmooth which in the weakly constructible case is given by Ssmooth =
(Ssmooth

F )F with

Ssmooth
F := {s ∈ SF : s is fixed by some open subgroup of PF } .

It is clear that ΩX in a natural way is Gdis-equivariant. For a facet F let
PSt(F ) ⊆ G be the pointwise stabilizer of St(F ); it is an open subgroup of G.
Since ΩX as a weakly constructible sheaf is given by

ΩX = (HomC(H
d
c (St(F ),C),C))F

and since PSt(F ) acts trivially on Hd
c (St(F ),C) we see that ΩX actually is G-

equivariant.

Proposition 1:
ωX,G is naturally quasi-isomorphic to ΩX [d] with its canonical G-equivariant
structure.
Proof: [Sch] 3.10 and 3.12.

In the following we freely use the various functors introduced in [Sch]. In par-
ticular let

DX,G := RHomX,∞( . , ωX,G)

be the equivariant duality functor on Db(ShG(X)). On Db(Alg(G)) with
Alg(G) := ShG(pt) the equivariant duality functor simply is

Dpt,G := Hom∞C ( . ,C) .

As before let π : X −→ pt be the natural map to the point. The smooth Verdier
duality then says ([Sch]) that

Dpt,G ◦Rπ! = Rπ∗,∞ ◦DX,G

holds true on Db(ShG(X)). The remarkable fact which we are now going to
explain is that there is a second formula of this type.
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Let ConsG(X) denote the full subcategory of constructible sheaves in ShG(X).
Also letDb

c(X,G) be the full triangulated subcategory ofDb(ShG(X)) consisting
of those complexes all of whose cohomology sheaves are constructible. Similarly
as before the functors

Db(ConsG(X))

inclusion−→
←−
Rβ

Db
c(X,G)

are quasi-inverse equivalences of categories. It should be noted that Rβ is com-
patible with the forgetful functor ([Sch]1.3 together with the fact that c-soft
sheaves on X are H0(St(F ), . )-acyclic).

Proposition 2:
The diagram of functors

Db
c(X,G)

DX,G−→ Db
c(X,G)

For ↓ ↓ For

Db
c(X)

DX−→ Db
c(X)

is commutative.
Proof: Since constructible G-equivariant sheaves are special this follows from
[Sch] 3.13.

Analogous to the above description of G-equivariant weakly constructible
sheaves we have the notion of G-equivariant coefficient systems on X. They
form an abelian category which we denote by CoeffG(X). A coefficient sys-
tem V = (VF )F is called constructible if each VF is finite dimensional. Let
Db

c(CoeffG(X)) denote the full triangulated subcategory in Db(CoeffG(X)) of
those complexes whose cohomology coefficient systems are constructible. It is
now straightforward to check that our earlier identity DX = σ ◦ ∗ lifts to a
commutative diagram of functors

(+)
Db

c(X,G)
DX,G−→ Db

c(X,G)
∗ ↘ ↗ σ

Db
c(CoeffG(X)) .

In [SS] we have studied another duality functor for the category Alg(G). Let
Algfg(G) be the full subcategory in Alg(G) of finitely generated smooth G-
modules. This is a thick abelian subcategory ([Ber]3.12) so that we can con-
sider the full triangulated subcategory Db

fg(Alg(G)) in Db(Alg(G)) of complexes
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whose cohomology G-modules are finitely generated. Put

H := space of all C-valued locally constant

functions with compact support on G.

It carries two commuting smooth G-actions by left and right translations, re-
spectively. In forming HomG(V,H) for a V ∈ Alg(G) we always use the left
translations action on H so that this still is a G-module through the right trans-
lation action on H.

Lemma 3:
For any V ∈ Algfg(G) we have:

i. The G-module HomG(V,H) is smooth and finitely generated;

ii. V has a projective resolution in Alg(G) of finite length which lies in Algfg(G).

Proof: Since these are well known facts we only sketch the proofs.
i. All we have to do is to embed HomG(V,H) into a finitely generated smooth
G-module. Let v1, . . . , vm be generators for V and let H ⊆ G be a compact
open subgroup which fixes each vi. Then

HomG(V,H) ↪→ HH⊕ . . .⊕ HH
f 7−→ (f(v1), . . . , f(vm))

where HH denotes the subspace of H-left invariant functions in H is such an
embedding.
ii. Using [Ber]3.9 and 3.12 one can see that V has a projective resolution of
possibly infinite length lying in Algfg(G). But on the other hand the theory of
the extended Bruhat-Tits building implies that the projective dimension of the
category Alg(G) is bounded by the K-rank of G.

It follows that the functor

DH := RHomG( . ,H) : Db
fg(Alg(G)) −→ Db

fg(Alg(G))

is well defined. Although the assertions in [SS] II.2.1, II.2.2, III.1.1, and IV.1.3
apparently are more special the arguments in the proofs show that the diagram
of functors

(++)

Db
c(X,G)

Rπ!−→ Db
fg(Alg(G))

∗ ↓ ↓ DH

Db
c(CoeffG(X))

LH0(X, . )−→ Db
fg(Alg(G))
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is commutative. In order to simplify the situation a little bit we assume here
and in the following that the centre of G is compact. The general case works
the same way but one has to fix a central character in everything.

Proposition 4:
The diagram of functors

Db
c(X,G)

Rπ!−→ Db
fg(Alg(G))

DX,G ↓ ↓ DH

Db
c(X,G)

Rπ!−→ Db
fg(Alg(G))

commutes.
Proof: Combine the diagrams (+) and (++) and Lemma 2.3.
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groupes. Existence d’une donnée radicielle valuée. Publ. Math. IHES
60 (1984)

[Har] Hartshorne, R.: Residues and duality. Lect. Notes Math., vol. 20.
Berlin-Heidelberg-New York: Springer 1966

[KS] Kashiwara, M., Schapira, P.: Sheaves on Manifolds. Berlin-Heidelberg-
New York: Springer 1990

[Sch] Schneider, P.: Equivariant homology for totally disconnected groups.
Preprint

[SS] Schneider, P., Stuhler, U.: Representation theory and sheaves on the
Bruhat-Tits building. Preprint 1993

[Tit] Tits, J.: Reductive groups over local fields. In Automorphis Forms,
Representations and L-Functions. Proc. Symp. Pure Math. 33 (1),
pp. 29-69. AMS 1979

Peter Schneider
Mathematisches Institut
Westfälische Wilhelms-Universität Münster
Einsteinstr. 62
D-48149 Münster
pschnei@math.uni-muenster.de

18


