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The Bruhat-Tits building X of a connected reductive group G over a nonar-
chimedean local field K is a rather intriguing G-space. It displays in a geometric
way the inner structure of the locally compact group G like the classification of
maximal compact subgroups or the theory of the Iwahori subgroup. One might
consider X not quite as a full analogue of a real symmetric space but as a kind
of skeleton of such an analogue. As such it immediately turned out to be an
important technical device in the smooth representation theory of the group G.
As a reminder let us mention that the irreducible smooth representations of G
lie at the core of the local Langlands program which aims at understanding the
absolute Galois group of the local field K.

In this paper we develop a systematic and conceptional theory which allows
to pass in a functorial way from smooth representations of G to equivariant
objects on X. There actually will be two such constructions - a homological
and a cohomological one. Since the building carries a natural CW -structure the
notion of a coefficient system (or cosheaf) on X makes sense. In the homological
theory we will construct functors from smooth representations to G-equivariant
coefficient systems on X. It should be stressed that the definition of the coeffi-
cient system only involves the original G-representation as far as the action of
certain compact open subgroups of G is concerned. One therefore might con-
sider the whole construction as a kind of localization process. Our main result
will be that the cellular chain complex naturally associated with a coefficient
system provides (under mild assumptions) a functorial projective resolution of
the G-representation we started with.

In the cohomological theory we will associate, again functorially, G-
equivariant sheaves on X with smooth G-representations. The main task which
we will achieve then is the computation of the cohomology with compact sup-
port of the sheaves coming from an irreducible smooth G-representation. The
result can best be formulated in terms of a certain duality functor on the cat-
egory of finite length smooth G-representations. As a major application we
will prove Zelevinsky’s conjecture in [Zel] that his duality map on the level of
Grothendieck groups preserves irreducibility. For carrying out our computation
we have to extend the sheaves under consideration in such a way to the Borel-
Serre compactification X of X that the cohomology at the boundary becomes
computable. Since the stabilizers of boundary points are parabolic subgroups
it might not surprise that this can be achieved by using the Jacquet modules
of the representation as the stalks at the boundary points. The cohomology at
the boundary then is computed by adapting a strategy of Deligne and Lusztig
([DL]) for reductive groups over finite fields to our purposes.

Apart from the theory of buildings we will very much rely on the beautiful
results of Bernstein on the category of smooth representations in [Ber]. All
the known homological finiteness properties of this category follow already from
his work. The point of our paper is rather that we construct nice projective
resolutions in that category in a functorial as well as explicit manner. Exactly
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this explicitness enables us to apply our theory to the harmonic analysis of the
group G. It turns out that Kottwitz’ Euler-Poincaré function in [Kot] is a special
case of a general theory of Euler-Poincaré functions for finite length smooth G-
representations. Besides being pseudo-coefficients their main property is that
their elliptic orbital integrals coincide with the Harish-Chandra character of the
given representation. This leads to a Hopf-Lefschetz type trace formula for
the Harish-Chandra character at an elliptic element. Combined with powerful
results of Kazhdan in [Ka1] it also leads to a proof of the general orthogonality
formula for Harish-Chandra characters as conjectured by Kazhdan.

Let us now describe the contents of the paper in some more detail. The first
chapter contains most of the input which we need from the theory of buildings.
The cells of the natural CW -structure of X actually are polysimplices and are
called facets. For any such facet F of X let PF denote its pointwise stabilizer
in G. The technical heart of our theory is the construction of certain decreasing

filtrations PF ⊇ U
(0)
F ⊇ . . . ⊇ U

(e)
F ⊇ . . . of PF by compact open subgroups

U
(e)
F . This is done in I.2 where also the more basic properties of these filtrations

are established. Since we work with an arbitrary connected reductive group
G that construction involves more or less all of the finer aspects of the theory
developed in the volumes [BT]. This unfortunately makes numerous references
to [BT] unavoidable so that any reader without an expert knowledge of the work
[BT] might find this section hard to read. We apologize for that. In order to
make it a little easier we give in I.1 a brief overview over the theory of buildings
for reductive groups. In the section I.3 we give those properties of the groups

U
(e)
F which later on are needed for the computation of the (co)homology. Notably

we study how the groups U
(e)
F behave if the facet F is moved along a geodesic

in the building X. In case G is absolutely quasi-simple and simply connected
similar filtrations appear in [PR] and [MP].

The second chapter contains the homological theory. In II.1 we briefly recall
the formalism of cellular chains. The section II.2 contains the definition of the
functor γe from smooth G-representations to equivariant coefficient systems on
X. Here e ≥ 0 is a fixed “level”. The coefficient system γe(V ) corresponding
to a representation V is formed by associating with a facet F the subspace of

U
(e)
F -invariant vectors in V . In addition properties of finite generation and pro-

jectivity of the chain complex of γe(V ) are discussed. The main result is shown
in II.3. It says that at least for any finitely generated smooth G-representation
V we can choose the level e large enough so that the chain complex of γe(V ) is
an exact resolution of V in the category Alg(G) of all smooth G-representations.
In the case that G is the general linear group we proved this already in [SS]. The
strategy of the proof for arbitrary G is the same once the necessary properties

of the groups U
(e)
F are known.

In the third chapter we develop that part of the duality theory which uses
the chain complex of γe(V ). Since the polysimplicial structure of the building
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X is locally finite we actually can associate with the coefficient system γe(V )
also a complex of cochains with finite support. Let us fix a character χ of the
connected center of G, let Algχ(G) denote the category of all those smooth
G-representations on which the connected center acts through χ, and let Hχ de-
note the χ-Hecke algebra of G. If V is an admissible representation in Algχ(G)
then the functor HomG(. ,Hχ) transforms the chain complex of γe(V ) into the

cochain complex of γe(Ṽ ) where Ṽ is the smooth dual of V . Assume now that V
even is of finite length and choose e large enough. Then we know that the chain
complex of γe(V ) is a projective resolution of V in Algχ(G). It follows that the

cochain complex of γe(Ṽ ) computes the Ext-groups E∗(V ) := Ext∗Algχ(G)(V,Hχ).

All this is shown in III.1. Later on in IV.1 we will see that the same cochain
complex computes the cohomology with compact support of a certain sheaf on
X associated with the representation Ṽ . This fact will enable us in chapter IV
to compute the groups E∗(V ) in the case that V is a representation which is
parabolically induced from an irreducible supercuspidal representation of a Levi
subgroup. In III.2 we briefly recall the theory of parabolic induction following
[Cas]. Then in III.3 taking the computation of E∗(V ) for induced V for granted
we deduce the following result for an arbitrary irreducible smooth representation
V : The groups E∗(V ) vanish except in a single degree d(V ), E(V ) := Ed(V )(V )
again is an irreducible smooth representation, and moreover E(E(V )) = V . Stan-
dard techniques of homological algebra now allow to establish a general duality
formalism which relates the Ext- and Tor-functors on the category Algχ(G).
Loosely speaking one might say that Hχ is a “Gorenstein ring”.

Since our applications to harmonic analysis all come from the exactness of
the chain complex of γe(V ) we include them here as the section III.4 before
we turn to the sheaf theory on X. For reasons of convenience we assume that
the center of G is compact. Since in the paper [Ka1] the field K is assumed
to be of characteristic 0 we have to make the same assumption in most of our
results of this section. We obtain: A general notion of Euler-Poincaré functions,
a formula for the formal degree, the existence of explicit pseudo-coefficients,
the Harish-Chandra character on the elliptic set as an explicit orbital integral,
the general orthogonality relation for Harish-Chandra characters, and the 0-th
Chern character on the Grothendieck group of finite length representations.

In the fourth chapter we present the sheaf theory on X. In IV.1 we functo-
rially associate a sheaf V

≈
on X with any representation V in Alg(G). Of course

this construction again depends on the choice of a level e ≥ 0 which is fixed
once and for all and which, for simplicity, is dropped from the notation. The

sheaf V
≈

is constant on each facet F having the U
(e)
F -coinvariants of V as stalks.

As promised earlier we show that the cohomology with compact support of V
≈

is computable from the complex of cochains with finite support of the coeffi-
cient system γe(V ). We also rewrite our earlier formula for the Harish-Chandra
character of a finite length representation V at an elliptic element h ∈ G as a
Hopf-Lefschetz trace formula: The character value at h is equal to the trace (in
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the sense of linear algebra) of h on the cohomology of the sheaf V
≈

restricted

to the fixed point set Xh. In IV.2 we construct a “smooth” extension of V
≈

to a sheaf j∗,∞V≈
on the Borel-Serre compactification X of X. This extension

is in some sense intermediate between the extension by zero j!V≈
and the full

direct image j∗V≈
. It requires a rather detailed and technical investigation of

the geometry of X. Let X∞ := X \ X be the boundary. In IV.3 we compute
the cohomology of j∗,∞V≈

restricted to X∞ in the case where the representation

V is parabolically induced from a supercuspidal representation. Then in IV.4
we show that, for any finitely generated V and any e large enough, the sheaf
j∗,∞V≈

in fact has no higher cohomology. The combination of these two results

immediately leads to the computation of the cohomology with compact support
of the original sheaf V

≈
provided V is parabolically induced as above. This is the

fact which we had taken for granted in chapter III. So the duality theory, i.e.,
the investigation of the Ext-groups E∗(V ), now is complete. As an application
we prove in IV.5 Zelevinsky’s conjecture. At this point we want to mention that
Bernstein has a completely different proof (unpublished) of this conjecture along
with the fact that the Zelevinsky involution comes from the functor E∗(.).

The last chapter complements the discussion of coefficient systems. We
show that a rather big subcategory of Alg(G) is a localization of the category of
equivariant coefficient systems onX. As will be explained in a forthcoming paper
of the first author the latter objects constitute something which one might call
perverse sheaves on the building X. From this point of view our constructions
bear a certain resemblance to the Beilinson-Bernstein localization theory from
Lie algebra representations to perverse sheaves on the flag manifold.

During this work we have profitted from conversations with M.Harris,
G.Henniart, M.Rapoport, M.Tadic, J.Tits, and M.-F.Vigneras for which we are
grateful. We especially want to thank E.Landvogt whose expert knowledge of
the building has helped us a lot. The support which we have received at various
stages from the MSRI at Berkeley, the Newton Institute, the Tata Institute, and
the Université Paris 7 is gratefully acknowledged.

Added in proof: As the referee has pointed out, special cases of the Zelevin-
sky conjecture are treated in the papers [Kat] and [Pro]. Their methods are
completely different from ours. Also in the meantime Aubert has given in [Au2]
a proof of the Zelevinsky conjecture in the general case by studying on the
Grothendieck group a certain involution which is defined in terms of parabolic
induction (compare our IV.5.2).
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Notations:

K a nonarchimedean locally compact field,

o the ring of integers in K,

π a fixed prime element in o,

ω : K× → ZZ the discrete valuation normalized by ω(π) = 1,

K := o/πo the residue class field of o,

for any object X over o for which it makes sense to speak about its base
change to K we denote this base change by X,

G a connected reductive group over K,

G := G(K)
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I. The groups U
(e)
F

I.1. Review of the Bruhat-Tits building

The (semisimple) Bruhat-Tits building X of the group G is the central ob-
ject in this paper. Since the monumental treatise [BT] is not so easily accessible
for the nonexpert we believe it to be necessary to briefly review the construc-
tion and basic properties of X. Most of the notations to be introduced for this
purpose will be needed later on anyway.

We fix a maximal K-split torus S in G. (Strictly speaking S is the group
of K-rational points of that torus. This kind of abuse of language will usually
be made.) Let X∗(S), resp. X∗(S), denote the group of algebraic characters,
resp. cocharacters, of S. Similarly let X∗(C) denote the group of K-algebraic
cocharacters of the connected center C of G. The real vector space

A := (X∗(S)/X∗(C))⊗ IR

is called the basic apartment. Let Z, resp.N , be the centralizer, resp. normalizer,
of S in G. The Weyl group W := N/Z acts by conjugation on S; this induces a
faithful linear action of W on A. On the other hand let

⟨ , ⟩ : X∗(S)×X∗(S) −→ ZZ

be the obvious pairing; its IR-linear extension also is denoted by ⟨ , ⟩. There is
a unique homomorphism

ν : Z −→ X∗(S)⊗ IR

such that

⟨ν(g), χ|S⟩ = −ω(χ(g))

for any g ∈ Z and any K-algebraic character χ of Z. We let g ∈ Z act on A by
the translation

gx := x+ image of ν(g) in A for x ∈ A .

The first important observation in this theory is that this translation action of
Z on A can be extended to an action of N on A by affine automorphisms ([Tit]
1.2). We fix one such extension and simply denote it by x 7→ nx for n ∈ N and
x ∈ A. One has:
— All possible other such extensions are given by x 7→ n(x + x0) − x0 where
x0 ∈ A is a fixed but arbitrary point.
— If w ∈W is the image of n ∈ N then

(x 7→ wx) = linear part of (x 7→ nx) .
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In order to equip A with an additional structure we need the set Φ ⊆ X∗(S)
of roots of G with respect to S. Any root α obviously induces a linear form
α : A→ IR. Also corresponding to any α ∈ Φ we have the coroot α̌ ∈ A and the
involution sα ∈W whose action on A is given by

sαx = x− α(x) · α̌ for x ∈ A .

For us the most important object associated to an α ∈ Φ is its root subgroup
Uα ⊆ G ([Bor] 21.9 where the notation U(α) is used); in particular it is a unipo-

tent subgroup normalized by Z. Let Φred := {α ∈ Φ : α/2 ̸∈ Φ} be the subset of
reduced roots. Crucial is the following fact ([BoT] §5): For α ∈ Φred and each
u ∈ Uα\{1} the intersection

U−αuU−α ∩N = {m(u)}

consists of a single element called m(u); moreover the image of m(u) in W is sα.
A central assertion in the Bruhat-Tits theory now is the fact that the translation
part of the affine automorphism of A corresponding to m(u) is given by −ℓ(u) · α̌
for some real number ℓ(u), i.e., we have

m(u)x = sαx− ℓ(u) · α̌ = x− (α(x) + ℓ(u)) · α̌ for any x ∈ A .

We may view m(u) as the “reflection” at the affine hyperplane {x ∈ A : α(x) =
−ℓ(u)} ([Tit] 1.4). Put Γα := {ℓ(u) : u ∈ Uα\{1}} ⊆ IR; this is a in both
directions unbounded discrete subset in IR and −Γα = Γ−α ([BT] I.6.2.16). The
affine functions α(.)+ℓ on A for α ∈ Φred and ℓ ∈ Γα are called affine roots. Two
points x and y in A are called equivalent if each affine root is either positive
or zero or negative at both points; the corresponding equivalence classes are
called facets. This imposes an additional geometric structure on the apartment
A which is respected by the action of N .

Parallel to this structure the root subgroup Uα for α ∈ Φred possesses the
filtration

Uα,r := {u ∈ Uα\{1} : ℓ(u) ≥ r} ∪ {1} for r ∈ IR .

This is an exhaustive and separated discrete filtration of Uα by subgroups ([BT]
I.6.2.12b)); put Uα,∞ := {1}. For any nonempty subset Ω ⊆ A we define

fΩ : Φ −→ IR ∪ {∞}
α 7−→ − inf

x∈Ω
α(x)

and
UΩ := subgroup of G generated by

all Uα,fΩ(α) for α ∈ Φred .
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This group has various important properties ([BT] I.6.2.10, 6.4.9, and 7.1.3):
1. nUΩn

−1 = UnΩ for any n ∈ N ; in particular NΩ := {n ∈ N : nx = x for any
x ∈ Ω} normalizes UΩ.
2. UΩ ∩N ⊆ NΩ.
3. UΩ ∩ Uα = Uα,fΩ(α) for any α ∈ Φred.

4. Let Φ = Φ+ ∪Φ− be any decomposition into positive and negative roots and
put

U± := subgroup of G generated by

all Uα for α ∈ Φ± ∩ Φred ;

then

UΩ = (UΩ ∩ U−)(UΩ ∩ U+)(UΩ ∩N) ;

moreover the product map induces bijections∏
α∈Φ±∩Φred

Uα,fΩ(α)
∼−→ UΩ ∩ U±

whatever ordering of the factors on the left hand side we choose. Define

PΩ := NΩ · UΩ

which contains UΩ as a normal subgroup by 1. By 2. we have PΩ ∩ N = NΩ.
(Warning: In [BT] our groups NΩ and PΩ are denoted by N̂Ω and P̂Ω and our
symbols have a different meaning.) In case Ω = {x} we write fx, Ux, Nx, and
Px instead of f{x}, . . .

We now are ready to define the Bruhat-Tits building X. Consider the
relation ∼ on G×A defined by

(g, x) ∼ (h, y) if there is a n ∈ N such that

nx = y and g−1hn ∈ Ux ;

it is easily checked that this is an equivalence relation. We put

X := G×A/ ∼ .

It is straightforward to see that G acts on X via

g · class of (h, y) := class of (gh, y) for g ∈ G and (h, y) ∈ G×A

and that the map

A −→ X

x 7−→ class of (1, x)
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is injective and N -equivariant. Viewing the latter map as an inclusion we can
write gx for the class of (g, x). A first basic fact ([BT] I.7.4.4) is that, for Ω ⊆ A
nonempty,

PΩ = {g ∈ G : gx = x for any x ∈ Ω}

holds true. The relation between the facet structure of A and the subgroup
filtration in Uα, for α ∈ Φred, is given by the fact that for u ∈ Uα\{1} we have

{x ∈ A : ux = x} = {x ∈ A : α(x) + ℓ(u) ≥ 0}

([BT] I.7.4.5). The subsets ofX of the form gA with g ∈ G are called apartments.
A very important technical property of the G-action on X is the following:
5. For any g ∈ G there exists a n ∈ N such that gx = nx for any x ∈ A ∩ g−1A
([BT] I.7.4.8).
For example it implies that the partition into facets can be extended from A to
all of X in the following way: A subset F ′ ⊆ X is called a facet if it is of the
form F ′ = gF for some g ∈ G and some facet F ⊆ A. It also implies:
6. For any nonempty Ω ⊆ A the group UΩ acts transitively on the set of all
apartments which contain Ω.
From the Bruhat decomposition

G = UxNUy for x, y ∈ A

one concludes:
7. Any two points and even any two facets in X are contained in a common
apartment ([BT] I.7.4.18).
For any nonempty subset Ω ⊆ X we define

PΩ := {g ∈ G : gz = z for any z ∈ Ω}
and

P †
Ω := {g ∈ G : gΩ = Ω}

and we abbreviate Pz := P{z} = P †
{z} for any z ∈ X.

Finally we fix once and for all a W -invariant euclidean metric d on A. The
action of N on A then automatically is isometric. As a simple consequence of
5.-7. this metric extends in a unique G-invariant way to a metric d on all of X.

The metric space (X, d) together with its isometric G-action and its par-
tition into facets is called the Bruhat-Tits building of G. Further properties of
this very rich structure will be recalled when they are needed.
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I.2. Definition of the groups U
(e)
F

For any facet F in A let G0
F be the smooth affine o-group scheme with

general fiber G constructed in [BT] II.5.1.30. By [BT] II.5.2.4 the group G0
F (o)

is the subgroup of G generated by UF and Z0(o) where Z0 is the connected
component of the “canonical” extension Z of Z to a smooth affine o-group
scheme ([BT] II.5.2.1). Put

H := {n ∈ N : nx = x for all x ∈ A}

and

H1 := {n ∈ H : ω(χ(n)) = 0 for any K-algebraic character χ of G} .

According to [BT] II.5.2.1 we have

Z(o) = H1 .

Therefore Z0(o) is of finite index in H1. Since H ⊆ NF we see that

UF ⊆ G0
F (o) = UF · Z0(o) ⊆ PF .

It follows from [BT] II.4.6.17 that any interior automorphism g 7→ ngn−1 of G
with n ∈ N extends to an isomorphism of o-group schemes

G0
F

∼=−→ G0
nF .

The closed fiber G
0

F is a connected smooth algebraic group over K; let RF

denote its unipotent radical. Put

RF := {g ∈ G0
F (o) : (gmodπ) ∈ RF (K)} ;

this is a compact open subgroup of G. Because of nRFn
−1 = RnF for n ∈ N it

is normalized by

N†
F := {n ∈ N : nF = F} .

The property 1.5 implies that

P †
F = N†

FPF = N†
FUF .

Hence RF is a normal subgroup of P †
F . In the following we will construct a

specific decreasing filtration

G0
F (o) ⊇ RF =: U

(0)
F ⊇ U

(1)
F ⊇ . . .
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by subgroups U
(e)
F which are normal in P †

F and compact open in G. For doing
this we need the concept of a concave function in [BT] I.6.4.1-5.

First we have to introduce the totally ordered commutative monoid

ĨR := IR ∪ {r+ : r ∈ IR} ∪ {∞} .

Its total order is given by the usual total order on IR and by

r ≤ r+ ≤ s ≤ ∞ if r < s ;

its monoid structure extends the addition on IR and is given by

r + (s+) = (r+) + (s+) = (r + s) + and

r +∞ = (r+) +∞ = ∞+∞ = ∞ .

We put 1
2 · (r+) := ( 12r)+ and 1

2 · ∞ := ∞. A function f : Φ → ĨR is called
concave if

f(α) + f(β) ≥ f(α+ β) for any α, β, α+ β ∈ Φ , and
f(α) + f(−α) ≥ 0 for any α ∈ Φ

hold. For α ∈ Φred and r ∈ IR we define

Uα,r+ :=
∪

s∈IR,s>r

Uα,s .

Then, for any concave function f , the group

Uf := subgroup of G generated by

all Uα,f(α) for α ∈ Φred and

all U2α ∩ Uα, 12 f(2α)
for α, 2α ∈ Φ

has properties completely analogous to 1.1-1.4 ([BT] I.6.4.9). Observe that UΩ =
UfΩ .

Starting from the concave function fF , for a facet F in A, we define a new
function f∗F : Φ → ĨR by

f∗F (α) :=

{
fF (α)+ if α|F is constant ,
fF (α) otherwise ;

it is concave, too, by [BT] I.6.4.23. In case α, 2α ∈ Φ we have f∗F (2α) = 2f∗F (α)
so that Uf∗

F
is the subgroup generated by all Uα,f∗

F
(α) for α ∈ Φred.
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Lemma I.2.1:

RF ∩ Uα,fF (α) = Uα,f∗
F
(α) for any α ∈ Φred.

Proof: We have to introduce further notations. In case 2α ∈ Φ put

Γ′
2α := {2ℓ(u) : u ∈ U2α\{1}}

(recall that U2α ⊆ Uα) and

Γ′
α := {ℓ(u) ∈ Γα : u ∈ Uα\U2α and ℓ(u) = sup ℓ(uU2α)} ;

one has Γα = Γ′
α ∪ 1

2Γ
′
2α ([BT] I.6.2.2) and Γ′

α ̸= ∅ ([BT] II.4.2.21). In case
2α ̸∈ Φ put Γ′

α := Γα. The “optimization” gF : Φ → IR of the function fF is
defined by

gF (β) := inf{ℓ ∈ Γ′
β : ℓ ≥ fF (β)} .

Moreover we put

g∗F (β) :=

{
gF (β)+ if gF (β) + gF (−β) = 0 ,
gF (β) otherwise .

(The functions gF and g∗F in general are no longer concave but only quasi-
concave in the sense of [BT].) In [BT] II.4.6.10 (compare in particular the third
paragraph on p. 321) and 5.1.31 it is proved that

RF ∩ Uα,fF (α) =

{
Uα,g∗

F
(α) if 2α ̸∈ Φ ,

Uα,g∗
F
(α) · (U2α ∩ Uα, 12 g

∗
F
(2α)) if 2α ∈ Φ

holds true. Let us first consider the case 2α ̸∈ Φ. If gF (α) + gF (−α) = 0 then
clearly also fF (α) + fF (−α) = 0, i.e., α|F is constant and gF (α) = fF (α); we
obtain

Uα,g∗
F
(α) = Uα,gF (α)+ = Uα,f∗

F
(α) .

Assume now that gF (α) + gF (−α) ̸= 0. If α|F is not constant then by the
definitions we have

Uα,g∗
F
(α) = Uα,gF (α) = Uα,fF (α) = Uα,f∗

F
(α) ;

the same holds if α|F is constant since then fF (α) ̸∈ Γα which implies the last
identity.
We turn to the case 2α ∈ Φ. There are the following four possibilities:

1)
2)
3)
4)

g∗F (α) = gF (α)+ and g∗F (2α) = gF (2α)+ ,
g∗F (α) = gF (α)+ and g∗F (2α) = gF (2α) ,
g∗F (α) = gF (α) and g∗F (2α) = gF (2α) ,
g∗F (α) = gF (α) and g∗F (2α) = gF (2α)+ .
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In case 1) we have

α|F is constant , fF (α) = gF (α) ∈ Γ′
α ∩ 1

2
Γ′
2α′ and gF (2α) = 2fF (α)

and hence

Uα,g∗
F
(α) · (U2α ∩ Uα, 12 g

∗
F
(2α)) = Uα,f∗

F
(α) · (U2α ∩ Uα,f∗

F
(α)) = Uα,f∗

F
(α) .

In case 2) we have

α|F is constant , fF (α) = gF (α) ∈ Γ′
α , and

1

2
gF (2α) > fF (α)

and hence

Uα,g∗
F
(α) · (U2α ∩ Uα, 12 g

∗
F
(2α)) = Uα,f∗

F
(α) · (U2α ∩ Uα, 12 gF (2α)) = Uα,f∗

F
(α) .

In case 3) we have

g∗F (α) = inf{ℓ ∈ Γ′
α : ℓ ≥ fF (α)} and

1

2
g∗F (2α) = inf{ℓ ∈ 1

2
Γ′
2α : ℓ ≥ fF (α)} .

Let us first assume that 1
2g

∗
F (2α) ≥ g∗F (α); then

g∗F (α) = inf{ℓ ∈ Γα : ℓ ≥ fF (α)} .

This implies

Uα,g∗
F
(α) · (U2α ∩ Uα, 12 g

∗
F
(2α)) = Uα,g∗

F
(α) = Uα,fF (α) .

Now assume that 1
2g

∗
F (2α) < g∗F (α); then

1

2
g∗F (2α) = inf{ℓ ∈ Γα : ℓ ≥ fF (α)} .

We are going to use the following general fact which is a straightforward conse-
quence of the definition of the set Γ′

α: If r < s are values in Γα such that

r ̸∈ Γ′
α and s = inf{ℓ ∈ Γ′

α : ℓ ≥ r}

then

(∗) Uα,r ⊆ Uα,s · (U2α ∩ Uα,r) .
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Applied to our situation this leads to

Uα,g∗
F
(α) · (U2α ∩ Uα, 12 g

∗
F
(2α)) = Uα, 12 g

∗
F
(2α) = Uα,fF (α) .

Moreover in case 3) we always have Uα,fF (α) = Uα,f∗
F
(α) since if α|F is constant

then both g∗F (α) and
1
2g

∗
F (2α) are strictly bigger than fF (α).

Finally in case 4) we have

α|F is constant , fF (α) =
1

2
gF (2α) ∈

1

2
Γ′
2α , and gF (α) > fF (α)

and hence

Uα,g∗
F
(α) · (U2α ∩ Uα, 12 g

∗
F
(2α)) = Uα,gF (α) · (U2α ∩ Uα,fF (α)+) = Uα,f∗

F
(α)

where the second identity again is a consequence of (∗) since fF (α) ̸∈ Γ′
α.

There is a scheme theoretic version of 1.4 ([BT] II.5.2.2-4): G0
F possesses

smooth closed o-subgroup schemes Uα,F for α ∈ Φred and U±
F for any fixed

decomposition Φ = Φ+ ∪ Φ− into positive and negative roots such that

Uα,F (o) = Uα,fF (α) and U±
F (o) = UF ∩ U± .

(We have simplified the notation a little by writing Uα,F for Uα,(fF (α),fF (2α)) in
loc. cit.) Moreover the product map induces an isomorphism of o-schemes

∏
α∈Φ±∩Φred

Uα,F

∼=−→ U±
F

(whatever ordering of the factors on the left hand side we choose) as well as an
open immersion of o-group schemes

U−
F ×Z0 × U+

F ↪→ G0
F .

We put

Z(0) := {g ∈ Z0(o) : (gmodπ) ∈ Ru(Z
0
)(K)}

where Ru(Z
0
) denotes the unipotent radical of Z0

.
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Proposition I.2.2:

The product map induces a bijection ∏
α∈Φ−∩Φred

Uα,f∗
F
(α)

× Z(0) ×

 ∏
α∈Φ+∩Φred

Uα,f∗
F
(α)

 ≃−→ RF .

Proof: We recall from [BT] II.4.6.4 and 5.1.31: If S0 denotes the connected

component of the Néron model over o of S then S0
is a maximal K-split torus

in G
0

F and Z0
is its centralizer. Also the Uα,F are the root subgroups in G

0

F .
By [BT] II.1.1.11 the above open immersion therefore induces an isomorphism ∏

α∈Φ−∩Φred

Uα,F ∩RF

×Ru(Z
0
)×

 ∏
α∈Φ+∩Φred

Uα,F ∩RF

 ≃−→ RF

and hence also an isomorphism between formal completions

(
∏

UR
α,F )×Z0R × (

∏
UR
α,F )

≃−→ G0
F
R

where ?R denotes the formal completion of ? along ?∩RF . It remains to observe

that UR
α,F (o) = RF ∩ Uα,fF (α) = Uα,f∗

F
(α),Z0R(o) = Z(0), and G0

F
R
(o) = RF .

Corollary I.2.3:

RF = Uf∗
F
· Z(0).

With f∗F also the functions f∗F + e, for any integer e ≥ 0, are concave. Hence we
have the descending sequence of subgroups

Uf∗
F
⊇ Uf∗

F
+1 ⊇ Uf∗

F
+2 ⊇ . . .

We also need a corresponding filtration

Z(0) ⊇ Z(1) ⊇ . . . ⊇ Z(e) ⊇ . . .

The subgroups we are looking for then will be defined to be

U
(e)
F := Uf∗

F
+e · Z(e) ;

note that H normalizes Uf for any concave function f ([BT] I.6.2.10(iii)). The

properties which we want the subgroups U
(e)
F to have impose certain conditions

on the possible shape of the filtration Z(·). These conditions are axiomatized in
[BT] I.6.4 in the following way.
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First of all it is notationally convenient to define

U2α := {1} in case α ∈ Φ but 2α ̸∈ Φ

and

U2α,k := U2α ∩ Uα, 12k
for any α ∈ Φ and any k ∈ ĨR .

For any k ∈ ĨR put

H(k) := set of all h ∈ H such that

(h,Uα,r) := {(h, u) : u ∈ Uα,r} ⊆ Uα,r+k · U2α,2r+k

for any α ∈ Φ and any r ∈ IR .

The H(k) form a decreasing family of subgroups in H which are normal in N ;
obviously H(k) = H for k ≤ 0. Another such family denoted by H[k] is given as
follows: For k ≤ 0 put

H[k] := subgroup generated by all

H ∩ ⟨Uα,r ∪ U−α,−r⟩ for α ∈ Φ and r ∈ IR .

In case 0 < k <∞ the commutator (u, u′) for u ∈ Uα,r, u
′ ∈ U−α,s with r+s = k

or u′ ∈ U−2α,s with 2r + s = k, r, s ∈ ĨR, and any α ∈ Φ lies in a double coset
Uαhu,u′U−α with a uniquely determined element hu,u′ ∈ H ([BT] I.6.3.9); we
put

H[k] := subgroup generated by all those hu,u′ .

Finally we set

H[∞] :=
∩

k<∞

H[k] .

The H[k] again form a decreasing family of subgroups of H which are normal
in N . One has H[r+] = ∪

s>r
H[s] for any r ∈ IR. The key property of this latter

family is the following. Let us call a function f : Φ∪ {0} → ĨR concave if f |Φ is
concave and if

f(α) + f(−α) ≥ f(0) ≥ 0 for any α ∈ Φ

holds. In this situation we have

H ∩ Uf |Φ ⊆ H[f(0)]

([BT] I.6.4.17).
A good filtration of H now by definition is a family of subgroups Hr ⊆ H for
r ∈ IR such that

— Hr = H for r ≤ 0,
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— Hr ⊆ Hs if r ≥ s,

— H[r] ⊆ Hr ⊆ H(r) for any r ∈ IR, and

— (Hr,Hs) ⊆ Hr+s for any r, s ∈ IR.

These properties together with [BT] I.6.4.33 imply that the Hr are normal in
N . A necessary and sufficient condition for the existence of a good filtration is,
according to [BT] I.6.4.39, that

H[k] ⊆ H(k) for any k ∈ ĨR

holds true. In [BT] I.6.4.15 it is stated that this condition actually is fulfilled
— see Proposition 6 below. For the moment we assume that a good filtration is
given. We pose

Hr+ :=
∪
s>r

Hs for r ∈ IR and H∞ :=
∩
r∈IR

Hr .

Also for any concave function f : Φ ∪ {0} → ĨR we define the subgroup

Uf := Uf |Φ ·Hf(0) .

Lemma I.2.4:

Let f, g : Φ∪{0} → ĨR be two concave functions such that g(pα+ qβ) ≤ pg(α)+
qf(β) for any α, β ∈ Φ ∪ {0} and p, q ∈ IIN such that pα + qβ ∈ Φ ∪ {0}; then
Uf normalizes Ug.

Proof: [BT] I.6.4.43.

Lemma I.2.5:

i. H[0+] ⊆ Z(0) ⊆ H(0+);

ii. Z(0) is normal in N .

Proof: i. H[0+] is the subgroup generated by the hu,u′ for u ∈ Uα,r+ and

u′ ∈ U−α,−r with α ∈ Φred and r ∈ IR. Fix such u and u′ and choose a vertex
x in A (i.e., {x} is a facet in A) such that Uα,r = Uα,−α(x). Then u ∈ R{x} by
Lemma 1 and u′ ∈ Ux ⊆ Px. Since R{x} is normal in Px the commutator (u, u′)

lies in R{x}. It follows now from Proposition 2 that hu,u′ ∈ Z(0).

On the other hand we have to show that (Z(0), Uα,r) ⊆ Uα,r+ for any α ∈ Φred

and r ∈ IR. But choosing the vertex x as before we have

(Z(0), Uα,r) = (Z(0), Uα,fx(α)) ⊆ RF ∩ Uα,fx(α) = Uα,fx(α)+ ⊆ Uα,r+ .

ii. By the very construction of the o-group scheme Z0 any automorphism g →
ngn−1 of Z with n ∈ N extends to an automorphism of the o-group scheme
Z0.
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Proposition I.2.6:

There exists a good filtration (Hr)r∈IR of H such that:

i. H0+ = Z(0),

ii. H∞ = {1}, and

iii. Hr+ is open in H for any r ∈ IR.

Proof: As mentioned already this is a slightly sharpened version of [BT] I.6.4.15.
We are indebted to J. Tits for explaining to us the proof which is missing in
[BT] and which we briefly sketch in the following.
First of all we note that it suffices to find a good filtration H ′

r which fulfills ii.,
iii., and the weaker condition

i’. Z(0) ⊆ H ′
0+.

Because then

Hr :=

{
H for r ≤ 0 ,
Z(0) ∩H ′

r for r > 0

is a good filtration satisfying i. — iii. This follows from Lemma 5.i and the fact
that Z(0) is open in Z.

Step 1: The split case. If G is split then we have S = Z ∼= (K×)n and Z0 ∼=
Gn

m/o. We define

Hr := ker(Z0(o) −→ Z0(o/πm+1o))

if m < r ≤ m+1 with m ∈ IIN∪ {0}. The only thing which has to be checked is

H[r] ⊆ Hr ⊆ H(r) for r > 0 .

The left inclusion, by [BT] II.3.2.1, can be checked in SL2(K) where it is straight-
forward. For the right inclusion we use the following two identities. Let α ∈ Φ
be a root.

— ([BT] II.3.2.1)
(h, u) = (α(h)− 1)u for h ∈ Z and u ∈ Uα.

— ([BT] I.6.1.3 b) and 6.2.3 b))
ℓ(au) = ω(a) + ℓ(u) for a ∈ K and u ∈ Uα (here ℓ(1) := ∞).

By definition any h ∈ Hr satisfies ω(α(h)−1) ≥ m+1. For u ∈ Uα,s we therefore
obtain

ℓ((h, u)) = ω(α(h)− 1) + ℓ(u) ≥ m+ 1 + s ≥ r + s , i.e., (h, u) ∈ Uα,r+s .

This shows that h ∈ H(r).
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To deduce the general case we observe that Bruhat and Tits proceed by applying
the descent theory in [BT] I.9 in two steps: First from the split to the quasi-split
case ([BT] II.4.2.3) and then from the latter to the general case ([BT] II.5.1.20).
Hence we may use [BT] I.9.1.15 in order to see that our assertion descends as
well. In each of the two steps we have to check that the assumption (DP) in
loc.cit. is fulfilled and that the descent preserves the properties i’., ii., and iii.
Step 2: From the split to the quasi-split case. If G is quasi-split then Z is a
maximal torus in G and Z is that part of the Néron model of Z over o which
in the closed fibre consists of the connected components of finite order. The
condition (DP) follows from the explicit computations in [BT] II.4.3.5. The
filtration of H by construction is the intersection of H with a corresponding
filtration over a splitting field of Z. From this it is obvious that the properties
i’., ii., and iii. are preserved.
Step 3: From the quasi-split to the general case. Note that the descent is along
an unramified extension L/K. The condition (DP) (with t = 0) holds by [BT]
II.5.2.2. The descent of the properties i.-iii. is deduced from the following fact:
Applying the argument in the proof of Proposition 2 to the group scheme Z0

(compare [BT] II.5.2.1) we obtain the decomposition

Z(0) = Z ∩

 ∏
α̃∈Φ̃−

0

Uα̃,0+ × Z
(0)
L ×

∏
α̃∈Φ̃+

0

Uα̃,0+

 ;

here Z
(0)
L denotes the analog of Z(0) for G(L), Φ̃ is the root system of G(L) with

respect to some maximal L-split torus which contains S, and Φ̃0 is the subset
of those reduced roots which restrict to 0 on S.

We fix once and for all a good filtration of H as in Proposition 6. Define

Z(e) := He+ and U
(e)
F := Uf∗

F
+e · Z(e) for e ≥ 0 .

In other words we have

U
(e)
F = UhF+e

where the concave function hF : Φ ∪ {0} → ĨR is defined by

hF |Φ := f∗F and hF (0) := 0 + .

The functions hF and fF extended by fF (0) := 0 fulfill the assumption of Lemma
4: This is straightforward if one of the α, β, pα + qβ is equal to 0; otherwise it

is shown in the proof of [BT] I.6.4.23. Therefore UF normalizes U
(e)
F for any

e ≥ 0. Since N normalizes Z(e) and N†
F normalizes Uf∗

F
+e ([BT] I.6.2.10 (iii))

we obtain that

U
(e)
F , for any e ≥ 0 , is normal in P †

F .
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The same argument shows that

nU
(e)
F n−1 = U

(e)
nF for n ∈ N and e ≥ 0 .

Proposition I.2.7:

For any e ≥ 0 the product map induces a bijection ∏
α∈Φ−∩Φred

Uf∗
F
+e ∩ Uα

× Z(e) ×

 ∏
α∈Φ+∩Φred

Uf∗
F
+e ∩ Uα

 ≃−→ U
(e)
F ;

moreover we have

Uf∗
F
+e ∩ Uα = Uα,f∗

F
(α)+e · U2α,2f∗

F
(α)+e for any α ∈ Φred .

Proof: Proposition 2 and [BT] I.6.9(i).

Corollary I.2.8:

U
(e)
F = (U

(e)
F ∩ U−)(U

(e)
F ∩ Z)(U (e)

F ∩ U+) for any e ≥ 0.

Corollary I.2.9:

The U
(e)
F for e ≥ 0 (and F fixed) form a fundamental system of compact open

neighbourhoods of 1 in G.

Proof: Since

U−
F ×Z0 × U+

F ↪→ G0
F

is an open immersion the subset ∏
α∈Φ−∩Φred

Uα,fF (α)

×Z0(o)×

 ∏
α∈Φ+∩Φred

Uα,fF (α)


is compact open in G. Clearly the Uf∗

F
+e ∩ Uα form a fundamental system of

compact open neighbourhoods of 1 in Uα for any α ∈ Φred. Similarly Proposition
6 implies that the Z(e) form a fundamental system of compact open neighbour-
hoods of 1 in Z0(o).
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Using 1.5 we may define, for any facet F ′ in X and any e ≥ 0, a compact open
subgroup

U
(e)
F ′ := gU

(e)
F g−1 if F ′ = gF with g ∈ G and F a facet in A

in G. By construction we have

gU
(e)
F ′ g

−1 = U
(e)
gF ′ for any g ∈ G .

If x is a vertex of X, i.e., {x} is a facet then we replace similarly as before {x}
by x in all our notations; e.g., we write U

(e)
x instead of U

(e)
{x}.

Lemma I.2.10:

There is a point y0 ∈ A such that we have

Γα = α(y0) +
1

nα
ZZ for any α ∈ Φred

where nα ∈ IIN is a natural number which moreover is even in case 2α ∈ Φ.

Proof: Step 1: According to [BT] I.6.2.23 the statement at least holds with some
real number εα > 0 instead of 1

nα
. (The point −y0 has to be a special point; in

loc. cit. it is assumed to be the origin and therefore does not appear. Also note
that Φ′ = Φ by [BT] II.4.2.21 and 5.1.19.) Step 2: It suffices to show that Γα

contains a subset of the form cα+ 1
n′
α
ZZ with some n′α ∈ IIN which is even in case

2α ∈ Φ and some cα ∈ IR. Because then there has to be a map ν : ZZ → ZZ such
that

cα +
1

n′α
m = α(y0) + εαν(m) for any m ∈ ZZ .

If m = 0 this means that cα = α(y0) + εαν(0) which inserted back implies

εαν(0) +
1

n′α
m = εαν(m) for any m ∈ ZZ .

We obtain

ε−1
α = n′α · (ν(1)− ν(0))

so that our assertion holds with nα := n′α · (ν(1)− ν(0)).
Step 3: Let Ksh be the strict Henselization of K. The quasi-split group G/Ksh

possesses a maximal Ksh-split torus T which is defined over K and contains
S ([BT] II.5.1.12); let Φsh be the set of roots of G/Ksh with respect to T .

Restricting characters defines a surjective map Φsh ∪ {0} → Φ ∪ {0}. By [BT]
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II.5.1.19 we have Γ′
α̃ ⊆ Γ′

α ⊆ Γα whenever α̃ ∈ Φsh restricts to α ∈ Φ. The sets
Γ′
α̃ are explicitly computed in [BT] II.4.2.21 and 4.3.4: For any α̃ ∈ Φsh one has

Γ′
α̃ = cα̃ +

1

nα̃
ZZ

with appropriate constants cα̃ ∈ IR and nα̃ ∈ IIN. Let now an α ∈ Φred be given.
If 2α ̸∈ Φ then we choose an α̃ ∈ Φsh restricting to α and we obtain

Γα ⊇ Γ′
α̃ = cα̃ +

1

nα̃
ZZ .

If 2α ∈ Φ then we choose a β̃ ∈ Φsh restricting to 2α and we obtain

Γα ⊇ 1

2
Γ′
2α ⊇ 1

2
Γ′
β̃
=

1

2
cβ̃ +

1

2nβ̃
ZZ .

Proposition I.2.11:

i. U
(e)
F ′ ⊆ U

(e)
F for any two facets F, F ′ in X such that F ′ ⊆ F ;

ii. U
(e)
F =

∏
x vertex

inF

U
(e)
x for any facet F in X and any ordering of the factors on

the right hand side.

Proof: We may assume that F ⊆ A. First we consider the case that F ′ = {x}
is a vertex. Then

U (e)
x ∩ Uα = Uα,(−α(x)+e)+ · U2α,(−2α(x)+e)+ for α ∈ Φred .

If α(x) = inf
y∈F

α(y) then clearly (−α(x))+ ≥ f∗F (α) and hence U
(e)
x ∩ Uα ⊆

U
(e)
F ∩ Uα. If α(x) > inf

y∈F
α(y) then α|F is not constant so that

−α(x) < fF (α) = f∗F (α) .

Furthermore, by the definition of facets, we then have

−α(y) ̸∈ Γα for any y ∈ F .

Hence

inf{ℓ ∈ Γα : ℓ > −α(x)} ≥ fF (α)

and because of Lemma 10 also

inf{ℓ ∈ Γα : ℓ > −α(x) + e} ≥ fF (α) + e
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and

inf{ℓ ∈ Γα : ℓ > −α(x) + e

2
} ≥ fF (α) +

e

2
in case 2α ∈ Φ .

This implies that again U
(e)
x ∩ Uα ⊆ U

(e)
F ∩ Uα. Using Proposition 7 we obtain

U
(e)
F ⊇ subgroup generated by all

U (e)
x for x ∈ F a vertex .

To get the reverse inclusion we fix an α ∈ Φred and consider U
(e)
F ∩ Uα. Let

x ∈ F be a vertex such that α(x) = sup
y∈F

α(y). Then

(−α(x)) +

≤ − inf
y∈F

α(y)

= (− inf
y∈F

α(y))+

 = f∗F (α)

if α|F is not constant,

if α|F is constant;

hence U
(e)
F ∩ Uα ⊆ U

(e)
x ∩ Uα. Again using Proposition 7 we see that

U
(e)
F = subgroup generated by all

U (e)
x for x ∈ F a vertex .

This implies in particular the assertion i. for an arbitrary facet F ′ ⊆ F . For ii. it

remains to show that for any two vertices x, y ∈ F the subgroup U
(e)
x normalizes

the subgroup U
(e)
y . But by i. we have

U (e)
x ⊆ U

(e)
F ⊆ PF ⊆ Py

and U
(e)
y is normal in Py.

Finally we define, for any z ∈ X,

U (e)
z := U

(e)
F if z lies in the facet F of X .

Note that Uz = UF in this situation if F ⊆ A ([BT] I.7.1.2).

I.3. Properties of the groups U
(e)
F

Here we will establish those properties of the groups U
(e)
F which are respon-

sible for our later results about the cohomology of the Bruhat-Tits building. We
recommend the reader to skip this section at first reading and only come back
to it when the results are needed. Fix an e ≥ 0.

A first technical clue is the observation that the following representation
theoretic fact is at our disposal. The notion of a smooth G-representation will
be recalled in II.2. A vertex x in A is called special if α(x) ∈ −Γα for any
α ∈ Φred. There always exists a special vertex ([BT] I.6.2.15).
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Theorem: (Bernstein)

Let x be a special vertex in A. The category of smooth G-representations V

which are generated (as a G-representation) by their U
(e)
x -fixed vectors V U(e)

x is
stable with respect to the formation of G-equivariant subquotients.

Proof: This is [Ber] 3.9 (i). We only have to check that our group U
(e)
x fulfills the

assumptions made there. Since the vertex x is special the Iwasawa decomposition

G = UxP = G0
x(o) · P for any parabolic subgroup P ⊆ G

holds true ([BT] I.7.3.2 (ii)). Moreover the decomposition property (3.5.1) in
[Ber] is a consequence of 2.7.

Next we need some control over how U
(e)
z changes if z varies along a geodesic

line in X. We fix two different points x and x′ in A. The geodesic [xx′] joining
x and x′ is

[xx′] = {(1− r)x+ rx′ : 0 ≤ r ≤ 1} .

Proposition I.3.1:

Assume x to be a special vertex; for any point z ∈ [xx′] we have

U (e)
z ⊆ U (e)

x · U (e)
x′ .

Proof: We may assume z to be different from x and x′. Let F , resp. F ′, denote
the facet in A which contains z, resp. x′. Define

Ψ := {α ∈ Φred : α(x) < α(x′)} .

There certainly exists a decomposition Φ = Φ+ ∪Φ− into positive and negative
roots such that Ψ ⊆ Φ+. As a consequence of 2.7 it suffices to check that

Uα,f∗
F
(α)+e · U2α,2f∗

F
(α)+e ⊆

{
Uα,(−α(x)+e)+ · U2α,(−2α(x)+e)+ if α ∈ Φred\Ψ ,
Uα,f∗

F ′ (α)+e · U2α,2f∗
F ′ (α)+e if α ∈ Ψ .

Assume first that α ∈ Φred\Ψ. Since x is special we have ℓ := −α(x) ∈ Γα. If
α(x) = α(x′) then −α(y) = ℓ for any y ∈ {x}∪F ∪F ′ and hence f∗F (α) = ℓ+. If
α(x) > α(z) > α(x′) then −α(y) > ℓ for any y ∈ F and hence f∗F (α) ≥ fF (α) ≥
ℓ+.
Now assume that α ∈ Ψ, i.e., that α(x) < α(z) < α(x′). If there exists a ℓ′ ∈ Γα

such that −α(x′) < ℓ′ ≤ −α(z) then

f∗F (α) ≥ fF (α) ≥ ℓ′ ≥ f∗F ′(α) .
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Otherwise there are two successive values ℓ′ < ℓ′′ in Γα such that

ℓ′ ≤ −α(x′) < −α(z) < ℓ′′ ;

hence

ℓ′ < f∗F (α) ≤ ℓ′′ and ℓ′ ≤ f∗F ′(α) ≤ ℓ′′ .

Using 2.10 we see that in this case

Uα,f∗
F
(α)+e · U2α,2f∗

F
(α)+e = Uα,ℓ′′+e · U2α,2ℓ′′+e

⊆ Uα,f∗
F ′ (α)+e · U2α,2f∗

F ′ (α)+e .

Because of 1.7 the assumption that x and x′ are contained in the basic apartment
A is unnecessary. Also the statement remains true even if x is not a special
vertex. Since it is not needed we do not go into this. But see the proof of
III.4.14.
Consider the half-line

s := {(1− r)x+ rx′ : r ≥ 0}

in A and put
Us := subgroup generated by all Uα

for α ∈ Φ such that α(x′) > α(x) .

As will be explained in IV.2 this group is the unipotent radical of some parabolic
subgroup of G.

Proposition I.3.2:

Assume x to be a special vertex; for any point z ∈ s we have

U (e)
z ⊆ Us · U (e)

x .

Proof: This is a straighforward (actually simpler) variant of the previous proof.
The only additional fact to use is that the product map induces a bijection∏

α∈Ψ

Uα
∼−→ Us

whatever ordering of the factors on the left hand side we choose ([Bor] 21.9).
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II. The homological theory

II.1. Cellular chains

Through its partition into facets the Bruhat-Tits building X acquires the
structure of a d-dimensional locally finite polysimplicial complex ([BT] I.2.1.12
and II.5.1.32) where d := dimA is the semisimple K-rank of G. For 0 ≤ q ≤ d
put

Xq := set of all q-dimensional facets of X .

In particular we may view X as a d-dimensional CW -complex the q-cells of
which are the facets in Xq. The G-action on X is cellular. Let

Xq :=
∪

F∈Xq

F

denote the q-skeleton of X; also put X−1 := ∅. With the composed maps

∂q : Hq+1(X
q+1, Xq; ZZ)

∂−→ Hq(X
q,ZZ) −→ Hq(X

q, Xq−1; ZZ)

as boundary maps the augmented complex

Hd(X
d, Xd−1; ZZ)

∂d−1−→ . . .
∂0−→ H0(X

0,ZZ) = ⊕
F∈X0

ZZ
Σ−→ ZZ

computes the (singular) homology of X ([Dol] V.1.3). It is G-equivariant and it
is exact since G is contractible ([BT] I.2.5.16).

In order to motivate later constructions we want to give a more combina-
torial description of that complex. By [Dol] V.4.4 and V.6.2 we have the direct
sum decomposition

Hq(X
q, Xq−1; ZZ) = ⊕

F∈Xq

Hq(X
q, Xq\F ; ZZ) .

Consider, for any F ∈ Xq+1 and F ′ ∈ Xq, the composed map

∂FF ′ : Hq+1(X
q+1, Xq+1\F ; ZZ) ↪→ Hq+1(X

q+1, Xq; ZZ)
∂q−→ Hq(X

q, Xq−1; ZZ)

↓
y

Hq(X
q, Xq\F ′; ZZ) .

One has:
— Hq(X

q, Xq\F ; ZZ) ∼= ZZ for F ∈ Xq (but for q > 0 no canonical such isomor-
phism exists).
— ∂FF ′ is an isomorphism if F ′ ⊆ F and is the zero map otherwise. (Using [Dol]
V.6.11 this follows from the fact that in our case the characteristic map ΦF of
F can be chosen to be injective and hence to be a homeomorphism onto F .)
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Define now an oriented q-facet to be, in case q > 0, a pair (F, c) where F ∈ Xq

and c is a generator of Hq(X
q, Xq\F,ZZ); then (F,−c) is another oriented q-

facet. In case q = 0 an oriented 0-facet simply is a 0-facet F which we some-
times also think of as the pair (F, 1) where 1 is the canonical generator of
H0(X

0, X0\F ; ZZ) = ZZ. Let X(q) denote the set of all oriented q-facets. Ob-

serve that for any (F, c) ∈ X(q+1) with q ≥ 1 and any F ′ ∈ Xq such that F ′ ⊆ F
we have

(F ′, ∂FF ′(c)) ∈ X(q) .

The group of oriented cellular q-chains of X by definition is

Cor
c (X(q),ZZ) := group of all maps ω : X(q) → ZZ

such that

— ω has finite support, and, if q ≥ 1,

— ω((F,−c)) = −ω((F, c)) for any (F, c) ∈ X(q) .

Clearly

Cor
c (X(q),ZZ)

∼=−→ Hq(X
q, Xq−1; ZZ)

ω 7−→ 2ε ·
∑

(F,c)∈X(q)

ω((F, c)) · c

with ε = −1, resp. 0, in case q > 0, resp. = 0, is an isomorphism which is
G-equivariant if G acts on the left hand side by

(gω)((F, c)) := ω((g−1F, g−1c)) .

The boundary map ∂q becomes

∂q : Cor
c (X(q+1),ZZ) −→ Cor

c (X(q),ZZ)

ω 7−→ ((F ′, c′) 7→
∑

(F,c)∈X(q+1)

F ′⊆F
∂F
F ′ (c)=c′

ω((F, c))) .

The augmentation map becomes

ε : Cor
c (X(0),ZZ) −→ ZZ

ω 7−→
∑

F∈X(0)

ω(F ) .
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II.2. Representations as coefficient systems

A smooth (or algebraic) representation V of G is a complex vector space V
together with a linear action of G such that the stabilizer of each vector is open
in G. Let Alg(G) denote the category of those smooth representations.

On the other hand a coefficient system (of complex vector spaces) V on the
Bruhat-Tits building X consists of

— complex vector spaces VF for each facet F ⊆ X, and

— linear maps rFF ′ : VF → VF ′ for each pair of facets F ′ ⊆ F such that

rFF = id and rFF ′′ = rF
′

F ′′ ◦ rFF ′ whenever F ′′ ⊆ F ′ and F ′ ⊆ F .

In an obvious way the coefficient systems form a category which we denote by
Coeff(X).

We fix now an integer e ≥ 0. For any representation V in Alg(G) we then

have the coefficient system V := (V U
(e)

F ) of subspaces of fixed vectors

VF := V U
(e)

F := {v ∈ V : gv = v for all g ∈ U
(e)
F } ;

because of U
(e)
F ′ ⊆ U

(e)
F for F ′ ⊆ F the transition maps rFF ′ are the obvious

inclusions. Since the U
(e)
F are profinite groups the functor

γe : Alg(G) −→ Coeff(X)

V 7−→ (V U
(e)

F )F

is exact. For any 0 ≤ q ≤ d the space of oriented (cellular) q-chains of γe(V ) by
definition is

Cor
c (X(q), γe(V )) := C-vector space of all maps ω : X(q) → V

such that

— ω has finite support,

— ω((F, c)) ∈ V U
(e)

F , and, if q ≥ 1,

— ω((F,−c)) = −ω((F, c)) for any (F, c) ∈ X(q).

The group G acts smoothly on these spaces via

(gω)((F, c)) := g(ω((g−1F, g−1c))) .

A straightforward computation shows that the boundary map

∂ : Cor
c (X(q+1), γe(V )) −→ Cor

c (X(q), γe(V ))

ω 7−→ ((F ′, c′) 7→
∑

(F,c)∈X(q+1)

F ′⊆F
∂F
F ′ (c)=c′

ω((F, c)))
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fulfills ∂ ◦ ∂ = 0. In this way we obtain the augmented chain complex

Cor
c (X(d), γe(V ))

∂−→ . . .
∂−→ Cor

c (X(0), γe(V ))
ε−→ V

where the augmentation map is given by

ε : Cor
c (X(0), γe(V )) −→ V

ω 7−→
∑

F∈X(0)

ω(F ) .

The homology of this chain complex could be called the (cellular) homology of
the coefficient system γe(V ) on the space X. We will not use this terminology
since in the next section it will be shown that these complexes under a rather
weak assumption are exact. That assumption has to do with the surjectivity
of the augmentation map. For any open subgroup U ⊆ G we have the full
subcategory

AlgU (G) := category of those smooth G-representations V

which (as G-representation) are generated by

their U -fixed vectors V U

of Alg(G). If the representation V lies in AlgU
(e)
x (G) for some vertex x in X then

the augmentation map ε clearly is surjective. The subsequent two statements
are immediate generalizations of the Propositions 1 and 2 in [SS] §3. Recall that
a representation V in Alg(G) is called admissible if the subspace V U , for any
open subgroup U ⊆ G, is finite-dimensional.

Proposition II.2.1:

If V in Alg(G) is admissible then the complex Cor
c (X(.), γe(V )) consists of finitely

generated G-representations.

Proof: By the admissibility assumption the subspace in Cor
c (X(q), γe(V )) of q-

chains supported on {(F,±c)}, for a given facet F ∈ Xq, is finite dimensional.
If F runs over a set of representatives for the finitely many G-orbits in Xq

then the corresponding subspaces together generate Cor
c (X(q), γe(V )) as a G-

representation.

For any continuous character χ : C → C× of the connected center C of G we
define the full subcategory

Algχ(G) := category of those smooth G-representations V

such that gv = χ(g) · v for all g ∈ C and v ∈ V

of Alg(G). Since C acts trivially on X the complex Cor
c (X(.), γe(V )) lies in

Algχ(G) if V does.
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Proposition II.2.2:

For any representation V in Algχ(G) the complex Cor
c (X(.), γe(V )) consists of

projective objects in Algχ(G).

Proof: This relies on the fact that the group P †
F /CU

(e)
F is finite for any facet

F ⊆ X. As a consequence of I.2.9 the group G0
F (o)/U

(e)
F is finite. On the other

hand P †
F /CG

0
F (o) is finite according to [BT] II.4.6.28.

II.3. Homological resolutions

In order to formulate the main result of this chapter let e ≥ 0 be an integer
and let x be a special vertex in A.

Theorem II.3.1:

For any representation V in AlgU
(e)
x (G) the augmented complex

Cor
c (X(.), γe(V )) → V

is an exact resolution of V in Alg(G).

Proof: In the case G = GLd+1(K) this result was established in [SS]. The proof
in the general case in its most parts is a direct generalization of the arguments
in [SS]. Insofar we will only indicate the main steps.
Step 1: Let Cc(T ) denote the space of complex valued functions with finite

support on the G-set T := G/U
(e)
x . This is a smooth representation of G which

acts by left translations. It lies in AlgU
(e)
x (G) and one has the surjective G-

homomorphism

Cc(T )⊗ V U(e)
x →→ V

ψ ⊗ v 7−→
∑

g∈G/U
(e)
x

ψ(g) · g(v) .

Bernstein’s theorem (I.3) now ensures the existence of an exact resolution in

AlgU
(e)
x (G) of the form

. . . −→ ⊕
I1
Cc(T ) −→ ⊕

I0
Cc(T ) −→ V −→ 0

with appropriate index sets I0, I1, . . . Since the functor γe is exact a standard
double complex argument reduces therefore our assertion in case V to the “uni-
versal” case Cc(T ).
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Step 2: A slightly more sophisticated double complex argument for Cc(T ) ([SS]
§1) further reduces our assertion to a geometric property of the Bruhat-Tits
building X. For any facet F we put

TF := U
(e)
F \T .

It follows from I.2.11.ii that

TF = Tx0

⨿
T

. . .
⨿
T

Txr

if {x0, . . . , xr} are the vertices in F . The natural projection T → TF is finite
and induces an isomorphism

Cc(TF )
∼=−→ Cc(T )

U
(e)

F

which we will view as an identification. More generally we have the simplicial
set

T.F : . . .
−→−→−→−→ T ×

TF

T ×
TF

T −→−→−→ T ×
TF

T −→−→ T

all face maps of which are finite. There are obvious commutative diagrams

T.F

↗ ↘
T −→ TF

and

T.F
′ −→ TF ′y y

T.F −→ TF for F ′ ⊆ F .

By passing to functions we obtain the double complex
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(A)

0 0 0y y y
0 → ⊕

F∈Xd

Cc(TF )
∂→ . . .

∂→ ⊕
F∈X0

Cc(TF ) → Cc(T ) → 0y y ∥
0 → ⊕

F∈Xd

Cc(T ) → . . . → ⊕
F∈X0

Cc(T ) → Cc(T ) → 0y y y0

0 → ⊕
F∈Xd

Cc(T ×
TF

T ) → . . . → ⊕
F∈X0

Cc(T ×
TF

T ) → Cc(T ) → 0y y ∥
0 → ⊕

F∈Xd

Cc(T ×
TF

T ×
TF

T ) → . . . → ⊕
F∈X0

Cc(T ×
TF

T ×
TF

T ) → Cc(T ) → 0y y y0

...
...

...

All its columns are exact. This follows from the fact that each T.F is the disjoint
union

T.F =

·∪
t∈TF

T.(t)

of the simplicial finite sets

T.(t) : . . .
−→−→−→−→ Tt × Tt × Tt

−→−→−→ Tt × Tt −→−→ Tt

where Tt denotes the fiber of the map T → TF in t. Simplicial sets of the form
T.(t) are well-known to be contractible. The top row in (A) is the complex whose
exactness we want to establish. Here we have fixed for simplicity an orientation
of the building X. Next we have to study, for a fixed m ≥ 0, the row

(Am) 0 → ⊕
F∈Xd

Cc(T
F
m) → . . .→ ⊕

F∈X0

Cc(T
F
m) → Cc(T ) → 0

from (A). If we view each TF
m , resp. T , as a subset of Tm+1 := T × . . .×T (m+1

factors) in the obvious way, resp. diagonally, then the differentials in the above
complex are induced by the inclusions

T ⊆ TF ′

m ⊆ TF
m for F ′ ⊆ F .
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In order to rewrite this row in a more suitable form we introduce certain sub-
complexes of the Bruhat-Tits building. For a fixed (t0, . . . , tm) ∈ Tm+1 we
put

X(t0,...,tm) := union of all facets F ⊆ X such that t0, . . . , tm

are not mapped to the same element in U
(e)
F \T .

It is easy to see that ∩
F∈X0

TF
m = T ,

i.e., that X(t0,...,tm) is empty if and only if t0 = . . . = tm. If {t0, . . . , tm} has
cardinality at least 2 than X(t0,...,tm) is a nonempty closed CW-subspace of X
(I.2.11.i and [Dol] V.2.7). We now have

⊕
F∈X.

Cc(T
F
m) = ⊕

(t0,...,tm)∈Tm+1
Cc(X.\X.(t0,...,tm))

and the decomposition on the right hand side is compatible with the differentials.
As a result of this discussion we obtain that

(Am) = ⊕
(t0,...,tm)∈Tm+1

(augmented complex of relative
chains of the pair (X,X(t0,...,tm)) .

SinceX is contractible this means that we are reduced to show the contractibility
of the subspaces X(t0,...,tm) for any {t0, . . . , tm} of cardinality at least 2.
Step 3: The special vertex

x0 := g0x where t0 = g0U
(e)
x

is contained in X(t0,...,tm) ([SS] §2 Remark 1). We show that with any point
y ∈ X(t0,...,tm) the whole geodesic [x0y] lies in X

(t0,...,tm). This of course implies
the wanted contractibility. Fix a point z ∈ [x0y] and let F , resp. F ′, denote
the facet in X which contains z, resp. y. Clearly F ′ ⊆ X(t0,...,tm) so that there
exists a 1 ≤ j ≤ m such that

gtj ̸= t0 for all g ∈ U
(e)
F ′ .

If F is not contained in X(t0,...,tm) then we find a g1 ∈ U
(e)
F with g1tj = t0.

According to I.3.1 we have

U
(e)
F ⊆ U (e)

x0
· U (e)

F ′

so that

g1 ∈ hU
(e)
F ′ for some h ∈ U (e)

x0
.

Put g := h−1g1 ∈ U
(e)
F ′ . Then gtj = h−1t0 = t0 which is a contradiction.
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Corollary II.3.2:

For any representation V in AlgU
(e)
x (G) ∩Algχ(G) the augmented complex

Cor
c (X(.), γe(V )) −→ V

is a projective exact resolution of V in Algχ(G).

Proof: Combine Theorem 1 and 2.2.

Corollary II.3.3:

Let V , resp. V ′, be an admissible representation in AlgU
(e)
x (G)∩Algχ(G), resp.

Algχ(G); then the vector spaces Ext∗Algχ(G)(V, V
′) are finite-dimensional and

vanish for ∗ > d.

Proof: Combine Corollary 2 and 2.1 (compare [SS] §3 Cor. 3).

Note that because of I.2.9 any finitely generated smooth G-representation lies

in AlgU
(e)
x (G) if only e is chosen large enough.
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III. Duality theory

III.1. Cellular cochains

An element of the space Cor
c (X(q), γe(V )) also can be viewed as an oriented

cellular cochain with finite support on X. This suggests that there is a cohomo-
logical differential, too. Indeed we have, for any pair of facets F, F ′ ⊆ X such
that F ′ ⊆ F , the projection map

prF
′

F : V U
(e)

F ′ −→ V U
(e)

F

v 7−→ 1

[U
(e)
F : U

(e)
F ′ ]

·
∑

g∈U
(e)

F
/U

(e)

F ′

gv .

Since the partition of X into facets is locally finite the coboundary map

d : Cor
c (X(q), γe(V )) −→ Cor

c (X(q+1), γe(V ))

ω 7−→ ((F, c) 7→
∑

F ′∈Xq

F ′⊆F

prF
′

F (ω((F ′, ∂FF ′(c)))))

is well defined; in case q = 0 the summands on the right hand side have to be
interpreted as ∂FF ′(c)·ω(F ′). A standard computation ([Dol] VI.7.11) shows that

Cor
c (X(0), γe(V ))

d−→ . . .
d−→ Cor

c (X(d), γe(V ))

is a complex in Alg(G) — the cochain complex (with finite support) of γe(V ).
We will see in Chapter IV that this complex computes the cohomology with
compact support of a certain sheaf on X. Here we are interested in the relation
between the chain and the cochain complex.

Again let χ : C → C× be a continuous character. In Algχ(G) there is the
“universal” representation

Hχ := space of all locally constant functions

ψ : G→ C such that

— ψ(g−1h) = χ(g) · ψ(h) for all g ∈ C, h ∈ G,

— there is a compact subset Σ ⊆ G such that

ψ vanishes outside Σ · C

where G acts by left translations. This is the χ-Hecke algebra of G; its algebra
structure will be recalled later on. Note that G also acts smoothly on Hχ by
right translations. Both actions commute with each other. In the second action
the connected center C acts through the character χ−1.
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Fix now a representation V in Algχ(G). Its smooth dual Ṽ lies in
Algχ−1(G). For any 0 ≤ q ≤ d we have the pairing

Cor
c (X(q), γe(Ṽ ))× Cor

c (X(q), γe(V )) −→ Hχ

(η, ω) 7−→ Ψη,ω

defined by

Ψη,ω(g) :=
∑

(F,c)∈X(q)

η((F, c))[(g−1ω)((F, c))] .

One easily verifies that

Ψη,hω = hΨη,ω and Ψhη,ω = Ψη,ω(.h) for any h ∈ G .

This means that the above pairing induces a homomorphism

Ψ : Cor
c (X(q), γe(Ṽ )) −→ HomG(C

or
c (X(q), γe(V )),Hχ)

η 7−→ (ω 7→ Ψη,ω)

which moreover is G-equivariant if the action on the right hand side is the one
induced by the right translation action on Hχ. Next one checks that

Ψ∂η,ω = Ψη,dω and Ψdη,ω = Ψη,∂ω .

In other words Ψ is a homomorphism of complexes from the chain, resp. cochain,
complex of γe(Ṽ ) into the HomG(.,Hχ)-dual of the cochain, resp. chain, complex
of γe(V ). We claim that Ψ is injective. Define, for any (F, c) ∈ X(q) and any
v ∈ V , an oriented q-chain ω(F,c),v of γe(V ) by

ω(F,c),v((F
′, c′)) :=

 prF (v) if (F ′, c′) = (F, c),
−prF (v) if q ≥ 1 and (F ′, c′) = (F,−c),
0 otherwise;

here prF denotes the projection map

prF : V −→ V U
(e)

F

v 7−→ 1

[U
(e)
F : U ]

·
∑

g∈U
(e)

F
/U

gv
if v ∈ V U for some open

subgroup U ⊆ U
(e)
F .

We then have

Ψη,ω(F,c),v
(1) = 2ε · η((F, c))[prF (v)] = 2ε · η((F, c))[v]

with ε = 1, resp. 0, in case q ≥ 1, resp. = 0. The second identity comes from the

observation that any linear form in Ṽ U
(e)

F factorizes through prF . This clearly
implies the injectivity of Ψ.
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Lemma III.1.1:

Let V be an admissible representation in Algχ(G); then the G-equivariant linear
map

Ψ : Cor
c (X(.), γe(Ṽ ))

∼=−→ HomG(C
or
c (X(.), γe(V )),Hχ)

is an isomorphism; under this identification we have

HomG(∂,Hχ) = d and HomG(d,Hχ) = ∂ .

Proof: Only the surjectivity of Ψ remains to be established. Let Ψo be an
element of the right hand side. Define a map η : X(q) → Ṽ by

η((F, c))[v] := Ψo(ω(F,c),v)(1) .

For a fixed (F, c) the function Ψo(ω(F,c),v) in Hχ only depends on prF (v). There-
fore the admissibility assumption guarantees the existence of a compact subset
Σ ⊆ G such that all functions Ψo(ω(F,c),v) for v ∈ V vanish outside Σ · C.
Because of

η(g−1(F, c))[v] = Ψo(ω(F,c),gv)(g)

it follows that

η(g−1(F, c)) = 0 for g−1 ̸∈ Σ · C .

Since G has only finitely many orbits in X(q) we obtain that the map η has finite

support. It is now straightforward to see that η ∈ Cor
c (X(q), γe(Ṽ )) is a q-chain

such that Ψ(η) = 2ε ·Ψo with the same ε as above.

This duality between chain and cochain complexes is perfectly suited to analyze
the Ext-groups

E∗(V ) := Ext∗Algχ
(V,Hχ)

in the category Algχ(G). Through the right translation action of G upon Hχ

the space E∗(V ) in a natural way is a G-representation which in general might
not be smooth. As before we fix a special vertex x in A.

Lemma III.1.2:

For any representation V in AlgU
(e)
x (G) ∩Algχ(G) we have

E∗(V ) = h∗(HomG(C
or
c (X(.), γe(V )),Hχ),HomG(∂,Hχ)) .

Proof: II.3.2.
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Proposition III.1.3:

For any admissible representation V in AlgU
(e)
x (G) ∩Algχ(G) we have

E∗(V ) = h∗(Cor
c (X(.), γe(Ṽ )), d) .

Proof: Lemmata 1 and 2.

Remark III.1.4:

i. The category of finitely generated smooth G-representations is stable with re-
spect to the formation of G-equivariant subquotients;
ii. a smooth G-representation is finitely generated and admissible if and only if
it is of finite length;

iii. let V be an admissible representation in AlgU
(e)
x (G)∩Algχ(G); then Ṽ is an

admissible representation in AlgU
(e)
x (G) ∩Algχ−1(G) and we have ˜̃V = V .

Proof: i. and ii. [Ber] 3.12. iii. [Cas] 2.1.10 and 2.2.3 together with Bernstein’s
theorem (I.3).

In particular it follows from these considerations together with II.2.1 that the
spaces E∗(.) form functors

finitely generated and
E∗ : admissible representations

in Algχ(G)
−→

finitely generated
representations
in Algχ−1(G) .

If ∗ > d then E∗ = 0. For later use we need the following technical consequence
of the above results.

Lemma III.1.5:

Let V be a representation of finite length in Algχ(G) and assume that there is
an integer 0 ≤ d(V ) ≤ d such that E∗(V ) = 0 for ∗ ̸= d(V ); we then have:
i. For e big enough the complex

Cor
c (X(0), γe(Ṽ ))

d−→ . . .
d−→ Cor

c (X(d(V )−1), γe(Ṽ ))
d−→ ker dd(V )

↓
y

Ed(V )(V )

is an exact projective resolution of Ed(V )(V ) in Algχ−1(G);

ii. E∗(Ed(V )(V )) =

{
V if ∗ = d(V ) ,
0 otherwise .
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III.2. Parabolic induction

The computation of the spaces E∗(V ) in an essential way makes use of the
theory of parabolic induction. We fix a decomposition Φ = Φ+ ∪ Φ− of the set
of roots Φ into positive and negative roots. Let ∆ ⊆ Φ+ be the corresponding
subset of simple roots. The subsets Θ ⊆ ∆ parametrize the conjugacy classes of
parabolic subgroups of G in the following way. First we have the torus

SΘ := connected component of
∩
α∈Θ

kerα

of dimension dimS −#Θ and the Levi subgroup

MΘ := centralizer of SΘ in G .

Second there is the unipotent subgroup

UΘ := subgroup of G generated by all

root subgroups Uα for α ∈ Φ+\⟨Θ⟩

where ⟨Θ⟩ := {α ∈ Φ : α is a linear combination of roots in Θ}. The product

PΘ :=MΘUΘ

is a parabolic subgroup of G; its unipotent radical is UΘ.

Let
δΘ : PΘ

pr→→MΘ −→ IR×
+

h 7−→ | det(Ad(h);LieUΘ)|−1

denote the modulus character of PΘ. Because of C ⊆MΘ the category
Algχ(MΘ) of all smooth MΘ-representations on which C acts through the char-
acter χ is defined. We have the “normalized” induction functor

Algχ(MΘ) −→ Algχ(G)

E 7−→ Ind(E)

where
Ind(E) := space of all locally constant functions

φ : G→ E such that

φ(ghu) = δ
1/2
Θ (h) · h−1(φ(g))

for all g ∈ G,h ∈MΘ, and u ∈ UΘ

with G acting by left translations. The reason for introducing the character δΘ
is the formula

Ind(E)∼ = Ind(Ẽ)
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([Cas] 3.1.2) for the smooth dual Ẽ. An irreducible representation V in Algχ(G)
is called of type Θ if there is an irreducible supercuspidal representation E in
Algχ(MΘ) such that V is isomorphic to a subquotient of Ind(E). We put

Algflχ,Θ(G) := category of all smooth G-representations

of finite length all of whose irreducible

subquotients are of type Θ.

Any irreducible representation in Algχ(G) has a type, i.e., lies in some category

Algflχ,Θ(G) ([Cas] 5.1.2). Also Ind(E) lies in Algflχ,Θ(G) if E is irreducible su-
percuspidal in Algχ(MΘ) ([Cas] 6.3.7). Technically very important is the fact
that

Algflχ,Θ(G) = Algflχ,Θ′(G) if Θ and Θ′ are associated

([Cas] 6.3.11). We recall that two subsets Θ and Θ′ of ∆ are called associated
if SΘ and SΘ′ are conjugate in G; in this case MΘ and MΘ′ are conjugate in G,
too, and #Θ = #Θ′. We actually need a more precise version of that fact. Fix
a g ∈ G such that MΘ = gMΘ′g−1 and let E be an irreducible supercuspidal
representation in Algχ(MΘ). Via the map

MΘ′ −→MΘ

h 7−→ ghg−1

E can be considered as an irreducible supercuspidal representation in Algχ(MΘ′)
which we denote by gE. Obviously the isomorphism class of gE does not depend
on the choice of g.

Proposition III.2.1:

Ind(E) and Ind(gE) have (up to isomorphism) the same irreducible subquo-
tients; moreover given an irreducible subquotient V of Ind(E) there is a subset
Θ′ ⊆ ∆ associated to Θ such that V is a homomorphic image of Ind(gE).

Proof: [Cas] 6.3.7 and 6.3.11.

A key result of this paper which will be established in the Chapter IV (IV.4.18)
is the following.

Theorem III.2.2:

Let E be an irreducible supercuspidal representation in Algχ(MΘ); there is a
subset Θ′ ⊆ ∆ associated to Θ such that

E∗(Ind(E)) ∼=
{
Ind(gẼ) if ∗ = d−#Θ ,
0 otherwise .
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III.3. The involution

Theorem III.3.1:

For any representation V in Algflχ,Θ(G) we have:

i. E∗(V ) = 0 for ∗ ̸= d−#Θ;

ii. Ed−#Θ(V ) lies in Algflχ−1,Θ(G).

Proof: We prove the vanishing of E∗(V ) for 0 ≤ ∗ < d − #Θ and all V in

Algflχ,Θ(G) by induction with respect to ∗. Fix an integer q such that 0 ≤ q <

d −#Θ and assume that E∗(V ) = 0 for all ∗ < q and all V . We have to show
that Eq(V ) = 0 for all V . By induction with respect to a Jordan-Hölder series
we obviously may assume that V is irreducible. Then 2.1 says that there is an
exact sequence of G-representations

0 −→ V ′ −→ Ind(E) −→ V −→ 0

where E is an irreducible supercuspidal representation in Algχ(MΘ′) for some
subset Θ′ ⊆ ∆ associated to Θ. We obtain an exact sequence

Eq−1(V ′) −→ Eq(V ) −→ Eq(Ind(E)) .

Because of Algflχ,Θ′(G) = Algflχ,Θ(G) (and #Θ′ = #Θ) the left term vanishes by
the induction hypothesis and the right term by 2.2.
For proving ii. we again may assume that V is irreducible. Similarly as above
we then obtain an injection

Ed−#Θ(V ) ↪→ Ed−#Θ(Ind(E)) = Ind(gẼ)

where the right hand equality comes from 2.2. This shows that Ed−#Θ(V ) lies

in Algflχ−1,Θ′(G) = Algflχ−1,Θ(G).

The remaining vanishing assertion in i. also follows by induction. We already
know that E∗(V ) = 0 for ∗ > d. Since, quite generally, Ind(E)∼ = Ind(Ẽ)
holds 2.1 can be dualized to the statement that in case V is irreducible we
find a monomorphism of G-representations V ↪→ Ind(E′) where again E′ is an
irreducible supercuspidal representation in Algχ(MΘ′) for some subset Θ′ ⊆ ∆
associated to Θ. Therefore an induction argument similar to the above one but
downwards from ∗ = d+ 1 to ∗ = d+ 1−#Θ is possible.

This result together with 1.5.ii implies that

E : Algflχ,Θ(G) −→ Algflχ−1,Θ(G)

V 7−→ Ed−#Θ(V )

is an exact (contravariant) functor such that E ◦ E = id.
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Corollary III.3.2:

If V is an irreducible representation in Algχ(G) then E(V ) is irreducible, too.

Corollary III.3.3:

For any representation V in Algflχ,Θ(G) we have:

i. V has an exact projective resolution in Algχ(G) of length d−#Θ;
ii. Ext∗Algχ(G)(V, V

′) = 0 for ∗ > d−#Θ and any representation V ′ in Algχ(G).

Proof: Theorem 1 and 1.5.i.

Remark III.3.4:

For any representation V in Algflχ,∆(G) we have E(V ) = HomG(V,Hχ) = Ṽ .

Proof: We may V assume to be irreducible. Then HomG(V,Hχ) is irreducible,
too, by Corollary 2. On the other hand the matrix coefficients of V provide an
embedding Ṽ ↪→ HomG(V,Hχ) ([Cas] 5.2.1).

Fix an invariant measure dg on G/C. Then Hχ becomes an associative
C-algebra (without unit) via the convolution product

(ψ ∗ ϕ)(h) :=
∫
G/C

ψ(g)ϕ(g−1h)dg for ψ, ϕ ∈ Hχ .

Also this algebra Hχ acts from the left on each representation V ′ in Algχ(G)
through

ψ ∗ v :=

∫
G/C

ψ(g) · gvdg for ψ ∈ Hχ, v ∈ V ′ .

The antiautomorphism g 7→ g−1 of G induces an algebra antiisomorphism

Hχ

∼=−→ Hχ−1 .

Hence any representation in Algχ−1(G) can be viewed as a right Hχ-module. In

this way the tensor product V ′′ ⊗
Hχ

V ′ and its left derived functors TorHχ
∗ (V ′′, V ′)

are defined for any V ′′ ∈ Algχ−1(G) and V ′ ∈ Algχ(G).
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Duality theorem:

Let V be a representation in Algflχ,Θ(G); we then have a natural isomorphism of
functors

Ext∗Algχ(G)(V, .) = Tor
Hχ

d−#Θ−∗(E(V ), .)

on Algχ(G).

Proof: For any V ′ in Algχ(G) consider the smooth representationHχ ⊗
C
V ′ where

G acts only on the first factor. The map

Hχ ⊗
C
V ′ →→ V ′

ψ ⊗ v 7−→ ψ ∗ v

is aG-equivariant epimorphism. According to (a slight generalization of) a result
in [Bla] (compare also [Ca2] A.4) the representation Hχ and hence Hχ ⊗

C
V ′

is a projective object in Algχ(G). We see that the objects in Algχ(G) have
a functorial projective resolution by representations of the form Hχ ⊗

C
V ′. It

follows from Theorem 1 that

Ext∗Algχ(G)(V,Hχ ⊗
C
V ′) = Ext∗Algχ(G)(V,Hχ)⊗

C
V ′ = 0

for ∗ ̸= d − #Θ; here the first equality is an immediate consequence of the
fact that V has a projective resolution by finitely generated G-representations
(II.2.1 and II.3.2). These two properties imply by a standard homological al-
gebra argument ([Har] I.7.4) that Ext∗Algχ(G)(V, .) is the left derived functor

of Extd−#Θ
Algχ(G)(V, .). In order to establish our assertion it therefore remains to

exhibit a natural isomorphism

Extd−#Θ
Algχ(G)(V, V

′) ∼= E(V ) ⊗
Hχ

V ′ = Extd−#Θ
Algχ(G)(V,Hχ) ⊗

Hχ

V ′ .

Using the projective resolution in II.3.2 (for an e large enough) to compute the
Ext’s on both sides we see that a natural homomorphism

Ext∗Algχ(G)(V,Hχ) ⊗
Hχ

V ′ −→ Ext∗Algχ(G)(V, V
′)

is induced by the homomorphism of complexes

HomG(C
or
c (X(·), γe(V )),Hχ) ⊗

Hχ

V ′ −→ HomG(C
or
c (X(·), γe(V )), V ′)

Ψ⊗ v′ 7−→ (ω 7→ Ψ(ω) ∗ v′) .
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In order to establish that the induced homomorphism in degree d−#Θ in fact is
an isomorphism it suffices, again by applying the above constructed resolution
of V ′, to consider the case V ′ = Hχ. But then the map in question simply is

E(V ) ⊗
Hχ

Hχ −→ E(V )

w ⊗ ϕ 7−→ w ∗ ϕ

which, although the ring Hχ has no unit element, is bijective ([BW] XII.0.3(i)).

In a more elegant but less precise way these results can be formulated on the level
of derived categories. Let Db

fl(Algχ(G)) denote the bounded derived category of

complexes in Algχ(G) whose cohomology objects all are of finite length. Then
the functor

IDχ : Db
fl(Algχ(G)) −→ Db

fl(Algχ−1(G))

V · 7−→ RHomAlgχ(G)(V
·,Hχ)

is well-defined and is an anti-equivalence such that IDχ−1 ◦IDχ = id. The Duality
theorem becomes the statement that

RHomAlgχ(G)(V
·, V ′·) = IDχ(V

·)
IL
⊗
Hχ

V ′· for V ·, V ′· in Db
fl(Algχ(G)) .

These facts constitute a kind of “Gorenstein property” ([Har] V.9.1) for the
noncommutative ring Hχ.

III.4. Euler-Poincaré functions

In this section we assume that the connected center C of G is anisotropic
and hence compact. Then all our previous results hold true without fixing a
specific central character χ in advance. Dropping χ from a notation has the
obvious meaning; e.g., H is the Hecke algebra of all locally constant functions
with compact support on G. We fix a representation V in Alg(G) of finite
length. By II.3.3 we have, for any other admissible representation V ′ in Alg(G),
the Euler-Poincaré characteristic

EP (V, V ′) :=
∑
q≥0

(−1)q · dimExtqAlg(G)(V, V
′) .

It will be a consequence of our theory that this Euler-Poincaré characteristic is
a character value of V ′. The character of V ′ is the linear form

trV ′ : H −→ C

ψ 7−→ trace(ψ ∗ .;V ′)
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which exists since the operator ψ ∗ . on V ′ has finite rank. In order to see this
consequence we fix, for any 0 ≤ q ≤ d, a set Fq of representatives for the G-orbits

in Xq. By our assumption on G the stabilizer P †
F of a facet F is a compact open

subgroup in G. Let εF : P †
F → {±1} be the unique character such that

g((F, c)) = (F, εF (g) · c) for (F, c) ∈ X(q) and any g ∈ P †
F .

We also fix a special vertex x in A and an integer e ≥ 0 such that V lies in

AlgU
(e)
x (G). Since U

(e)
F is normal in P †

F the finite group P †
F /U

(e)
F acts on the

finite-dimensional space V U
(e)

F . The character of this latter representation will

be denoted by τVF,e : P †
F → C. We extend the functions εF and τVF,e by zero to

functions on G. With these notations we define

fVEP :=
d∑

q=0

∑
F∈Fq

(−1)q · vol(P †
F )

−1 · τVF,e · εF .

The volume vol(P †
F ) is formed with respect to a fixed Haar measure dg on G. In

order to be consistent with our earlier conventions we always let the invariant
measure dg on G/C be the quotient measure of dg by the unique Haar measure
of total volume one on C. Then the operator ψ ∗ . on V ′, for ψ ∈ H, can be
written

ψ ∗ v =

∫
G

ψ(g) · gvdg for v ∈ V ′ .

The function fVEP obviously lies in H. It depends on our choices which, for
simplicity, we do not indicate in the notation. We call fVEP an Euler-Poincaré
function for the representation V . If V = C is the trivial representation then
fCEP is the Euler-Poincaré function of Kottwitz ([Kot]). Our subsequent results
generalize corresponding results in [Kot] §2.

Proposition III.4.1:

For any admissible representation V ′ in Alg(G) we have:

trV ′(fVEP ) = EP (V, V ′) .

Proof: According to II.3.2 we have

Ext∗Alg(G)(V, V
′) = h∗(HomG(C

or
c (X(.), γe(V )), V ′)) .

But each Cor
c (X(q), γe(V )) decomposes as a G-representation into

Cor
c (X(q), γe(V )) = ⊕

F∈Fq

Cor
c (F, γe(V ))
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where

Cor
c (F, γe(V )) := subspace of all those chains with support in the

union of the G-orbits of the oriented facets with

underlying facet F .

We therefore obtain

EP (V, V ′) =
d∑

q=0

∑
F∈Fq

(−1)q · dimHomG(C
or
c (F, γe(V )), V ′) .

Consider now a single facet F ∈ Fq and fix an oriented facet (F, c). Using the
oriented q-chains ω(F,c),v introduced in III.1 we have the isomorphism

HomG(C
or
c (F, γe(V )), V ′)

∼=−→ HomC(V
U

(e)

F , V ′U(e)

F )εF

Ψ 7−→ (v 7→ Ψ(ω(F,c),v))

where the exponent εF on the right hand side stands for the εF -eigenspace of
P †
F . It is a standard fact from the representation theory of finite groups ([CR]

(32.8)) that

dimHomC(V
U

(e)

F , V ′U(e)

F )εF = vol(P †
F )

−1 ·
∫
P †

F

τVF,e · τ
V ′

F,e · εF dg .

Therefore our assertion finally comes down to the following general observation:
For any function ψ ∈ H which is supported on P †

F and is constant on the cosets

modulo U
(e)
F one has

trV ′(ψ) =

∫
P †

F

ψ · τV
′

F,edg

([Car] p. 120).

The real number

fVEP (1) =
d∑

q=0

∑
F∈Fq

(−1)q · vol(P †
F )

−1 · dimV U
(e)

F

is independent of the choice of the sets Fq. Moreover the invariant measure

dV g := fVEP (1) · dg

on G does not depend on the choice of the Haar measure dg. We call it an
Euler-Poincaré measure for V . The corresponding volume function is denoted
by volV . In case of the trivial representation V = C the measure dCg is the
canonical measure of G in the sense of Serre ([Ser] 3.3). We recall that dCg is
nonzero with sign (−1)d ([Ser] Prop. 28). Serre’s “Euler-Poincaré property” of
dCg has a counterpart for any V .
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Proposition III.4.2:

For any cocompact and torsionfree discrete subgroup Γ in G we have

volV (Γ\G) =
∑
q≥0

(−1)q · dimHq(Γ, V ) =
∑
q≥0

(−1)q · dimExtqC[Γ](V,C) .

Proof: Since V is admissible the spaces V U
(e)

F are finite-dimensional. More-
over Γ being torsionfree and cocompact acts freely on Xq with finitely many
orbits. Hence Cor

c (X(q), γe(V )) is a finitely generated free C[Γ]-module. We
therefore can use the resolution in II.3.2 in order to compute the homology
groups H∗(Γ, V ) and we see that those groups are finite-dimensional and vanish
in degrees > d. The second identity is also clear from that. We obtain (compare
[Ser] p. 140)∑

q≥0

(−1)q · dimHq(Γ, V ) =
∑
q≥0

(−1)q ·
∑

F∈Γ\Xq

dimV U
(e)

F

=
∑
q≥0

(−1)q ·
∑
F∈Fq

dimV U
(e)

F ·#Γ\G/P †
F

= vol(Γ\G) ·
∑
q≥0

(−1)q ·
∑
F∈Fq

vol(P †
F )

−1 · dimV U
(e)

F

= fVEP (1) · vol(Γ\G) = volV (Γ\G) .

If K has characteristic 0 then a discrete subgroup Γ as in Proposition 2 always
exists ([BH]Thm.A and Remark 2.3). Hence in this case the measure dV g is
uniquely determined by the representation V (and does not depend on the choice

of U
(e)
x ).

We also introduce the rational number

dEP (V ) :=
fVEP (1)

fCEP (1)
;

it fulfills

dV g = dEP (V ) · dCg .

The denominator of dEP (V ) is bounded independently of V . If K has character-
istic 0 then as a consequence of Proposition 2 the number dEP (V ) only depends
on V ; in the rare case that V is finite-dimensional we have dEP (V ) = dimV
([Ser] p. 85). We therefore call dEP (V ) the formal dimension of V . In a moment
it will be seen that this is compatible with the notion of the formal dimension
(or degree) of a square-integrable representation.
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Remark III.4.3:

If V lies in AlgflΘ (G) then we have:

i. EP (E(Ṽ ), V ′) = (−1)d−#Θ ·EP (V, V ′) for any admissible representation V ′;

ii.
∑
q≥0

(−1)q · dimHq(Γ, E(Ṽ )) = (−1)d−#Θ ·
∑
q≥0

(−1)q · dimHq(Γ, V ) for any

cocompact and torsionfree discrete subgroup Γ in G;
iii. dEP (E(Ṽ )) = (−1)d−#Θ · dEP (V ) if K has characteristic 0.

Proof: In the proofs of the above two Propositions we used the chain complex
(Cor

c (X(.), γe(V )), ∂) whose only nonvanishing homology is V in degree 0. On
the other hand we know from 1.5.i and 3.1 that the only nonvanishing homology
of the cochain complex (Cor

c (X(.), γe(V )), d) is E(Ṽ ) in degree d−#Θ.

Associated with any irreducible square-integrable representation V is a unique
Haar measure dV g on G which makes the Schur orthogonality relations hold
(compare [Car] p. 122 and p. 131); dV g is called the formal degree of V .

Proposition III.4.4:

If either V is irreducible supercuspidal or V is irreducible square-integrable and
K has characteristic 0 then we have dV g = dV g.

Let us draw immediately the following consequence which reproves results of
Harish-Chandra, Howe, and Vigneras.

Corollary III.4.5:

If either V is supercuspidal or V is square-integrable and K has characteristic
0 then the rational number dEP (V ) only depends on V and has sign (−1)d; its
denominator is bounded independently of V .

Proof: The only additional observation which we have to make is that dEP (·) is
additive in short exact sequences.

The proof of Proposition 4 requires the abstract Plancherel formula. Let Ĝ
denote the unitary dual of G, i.e. ([Car] p. 133), the set (of isomorphism classes)
of preunitary irreducible representations in Alg(G). For any ψ ∈ H the Fourier

transform ψ̂ is the function on Ĝ defined by

ψ̂(V ′) := trV ′(ψ) .

Since the group G is of type I ([Car] p. 133) the abstract Plancherel formula
([Dix] 18.8) is available; it says:
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— ψ(1) =
∫
Ĝ
ψ̂(ĝ)dĝ for any ψ ∈ H where dĝ denotes the Plancherel measure

(corresponding to dg) on Ĝ;

— a V ′ in Ĝ is square-integrable if and only if voldĝ({V ′}) > 0 in which case we
have dV ′g = voldĝ({V ′}) · dg.

Let us now first consider the case of an irreducible supercuspidal representation
V . Since V is a projective object in Alg(G) ([Cas] 5.4.1) Proposition 1 implies
that

(fVEP )̂ (V
′) =

{
1 if V ′ ∼= V ,
0 otherwise .

Inserting the function fVEP into the abstract Plancherel formula therefore gives

dV g = fVEP (1) · dg = voldĝ({V }) · dg = dV g

which proves Proposition 4 in the special case under consideration. The argu-
ment in the other case is the same once we use the following two additional facts.
Firstly the support of the Plancherel measure is contained in the tempered irre-
ducible representations ([Be2] Example 4.3.1). Secondly we have the following
result.

Theorem III.4.6:

Assume that K has characteristic 0. If V is irreducible square-integrable and V ′

is irreducible tempered then

EP (V, V ′) =

{
1 if V ′ ∼= V,
0 otherwise .

Proof: The vanishing assertion is a consequence of the subsequent Theorem 21
and [Ka1] Cor. on p. 29. In the case V ′ = V we have to show, again by Theorem
21, that

∫
Cell θV (c

−1) · θV (c)dc = 1; here Cell denotes the set of regular elliptic
conjugacy classes in G and dc the natural measure on it ([Ka1] §3 Lemma 1).
But this can easily be deduced from [Ka1] Thm. F and [Ka1] §5 Prop. 3.

There are two more consequences of this type of arguments.

Corollary III.4.7:

Assume that K has characteristic 0. If V is irreducible tempered but not square-
integrable then dEP (V ) = 0.

Proof: More generally Theorem 21 and [Ka1] Cor. on p. 29 imply that, for V
and V ′ irreducible tempered, we have

EP (V, V ′) = 0
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unless V and V ′ are relatives in the sense of [Ka1] p. 10; the latter means that
there is a representation which is parabolically induced from a square-integrable
representation of a Levi subgroup and of which V and V ′ both are constituents.
None of these finitely many relatives is square-integrable ([Ka1] Lemma 1.4).
Using Proposition 1 we see that the Fourier transform (fVEP )̂ has support in a
set of Plancherel measure 0. Hence the abstract Plancherel formula says that
fVEP (1) = 0.

Recall that if V is irreducible square-integrable then a function ψ ∈ H is called
a pseudo-coefficient for V if

trV ′(ψ) =

{
0 for V ′ irreducible tempered but V ′ ̸∼= V ,
1 for V ′ ∼= V .

Corollary III.4.8:

Assume that K has characteristic 0. If V is irreducible square-integrable and

lies in AlgflΘ (G) then fVEP and (−1)d−#Θ · fE(Ṽ )
EP are pseudo-coefficients for V .

Proof: Proposition 1, Remark 3.i, and Theorem 6.

It is very likely that the restriction to characteristic 0 is unnecessary in all of
the above statements. Actually we strongly believe that

Ext∗Alg(G)(V, V
′) = 0 for any ∗ ≥ 0

holds true whenever V and V ′ are two irreducible tempered representations
which are not relatives in the sense of [Ka1] p. 10. A possible strategy to prove
this would be the following. Define an appropriate category Temp(G) of tem-
pered representations and show that the Ext-groups in Alg(G) and in Temp(G)
of any two admissible tempered representations (which naturally belong to both
categories) coincide.

Next we will discuss the orbital integrals of the Euler-Poincaré functions
fVEP and their relation to the character trV as a locally constant function on the
regular elliptic set. Recall that an element of G is regular elliptic if its connected
centralizer in G is a compact torus. For the sake of completeness let us include
the following well-known fact.

Lemma III.4.9:

If h ∈ G is regular elliptic then the map

G −→ G

g 7−→ g−1hg

is proper.
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Proof: It suffices to show that the preimage of a compact subset of the form
Ug0U where U ⊆ G is a compact open subgroup is compact. This preimage
equals ∪

g∈Gh\G/U

g−1hg∈Ug0U

GhgU

where Gh denotes the centralizer of h in G. The element h being regular elliptic
its centralizer is compact. Hence the double cosets GhgU are compact. On the
other hand it is a particular case of Lemma 19 in [HCD] that the set over which
the above union is taken is finite.

We denote by Gell the open subset of all regular elliptic elements in G. The
above Lemma says that for each h ∈ Gell and each ψ ∈ H the integral

∨
ψ(h) =

∫
G

ψ(g−1hg)dg

exists. As another consequence of that Lemma the set Xh of fixed points of a
given element h ∈ Gell in the Bruhat-Tits building X is compact (compare also
[Rog] Lemma 1). To see this fix a facet F ∈ Fq. The Lemma says that the set

{g ∈ G : g−1hg ∈ P †
F }/P

†
F = {g ∈ G : h ∈ P †

gF }/P
†
F

= {g ∈ G : Xh ∩ gF ̸= ∅}/P †
F

is finite. It follows that Xh is covered by finitely many facets and hence is
compact. We have hF = F for a facet F ∈ Xq if and only if F (h) := F ∩Xh ̸= ∅;
moreover, as explained in [Kot], F (h) then is a polysimplex whose dimension
fulfills

εF (h) = (−1)q−dimF (h) .

In this way Xh is a finite polysimplicial complex; we denote its set of q-dimen-
sional facets by (Xh)q.

Lemma III.4.10:

For any h ∈ Gell we have

(fVEP )
∨(h) =

d∑
q=0

∑
F (h)∈(Xh)q

(−1)q · τVF,e(h) .

Proof: We first quite generally consider a function ψ ∈ H whose restriction to

P †
F , for some facet F ∈ Xq, is a class function and which is zero outside of P †

F .
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Let (Xq)
h denote the set of fixed points of h in Xq and let (G · F )h be the

intersection of (Xq)
h with the G-orbit G · F of F in Xq. We compute∫

G

ψ(g−1hg)dg =
∑

g∈Gh\G/P †
F

g−1hg∈P †
F

ψ(g−1hg) · vol(GhgP
†
F )

=
∑

gF∈Gh\(G·F )h

ψ(g−1hg) · vol(P †
F ) · [Gh : Gh ∩ P †

gF ]

= vol(P †
F ) ·

∑
gF∈(G·F )h

ψ(g−1hg) .

Applying this to each summand of our function fVEP we obtain

(fVEP )
∨(h) =

d∑
q=0

∑
F∈Fq

(−1)q ·
∑

gF∈(G·F )h

(τVF,e · εF )(g
−1hg)

=
d∑

q=0

∑
F∈Fq

∑
gF∈(G·F )h

(−1)q · εgF (h) · τVgF,e(h)

=
d∑

q=0

∑
F∈(Xq)h

(−1)q · εF (h) · τVF,e(h)

=
d∑

q=0

∑
F (h)∈(Xh)q

(−1)q · τVF,e(h) .

An element in G is called noncompact if it is not contained in any compact
subgroup.

Remark III.4.11: (The Selberg principle for Euler-Poincaré functions)

For any noncompact semisimple element h ∈ G we have∫
Gh\G

fVEP (g
−1hg)

dg

dg′
= 0

where dg′ is any Haar measure on the centralizer Gh of h in G.

Proof: Note that since semisimple orbits are closed their orbital integrals exist
in any characteristic. The Euler-Poincaré function fVEP vanishes on noncompact
elements.
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Lemma III.4.12:

The function (fVEP )
∨ on Gell is locally constant.

Proof: This is a consequence of Lemma 10 once we know that for any given
h ∈ Gell there is an open subgroup U ⊆ G such that

Xh′
= Xh for any h′ ∈ hU ∩Gell .

First note that Xh never is empty ([Tit] 2.3.1). We choose a point y ∈ Xh.
Since Xh is compact we find a constant r > 0 such that

Xh ⊆ {z ∈ X : d(y, z) < r} .

Consider now the open subgroup

U := {g ∈ G : gz = z for any z ∈ X with d(y, z) ≤ r} .

Clearly, for any h′ ∈ hU , we have

Xh ⊆ Xh′

and

Xh′
\Xh ⊆ {z ∈ X : d(y, z) > r} .

Since with any z ∈ Xh′
the whole geodesic [yz] is contained in Xh′

the latter
inclusion forces Xh′\Xh to be empty.

We define an equivalence relation on Gell by

h ∼ h′ if Xh = Xh′
.

In the preceding proof we have seen that the corresponding equivalence classes
are open. Hence any function ψ ∈ H with support in Gell can in a unique way
be written as

ψ =
∑

h∈Gell/∼

ψh

where ψh ∈ H has support in the equivalence class of h. Also the function

εh :=
d∑

q=0

∑
F (h)∈(Xh)q

(−1)q · ε
U

(e)

F

inH only depends on the equivalence class of h; here εU denotes, for any compact
open subgroup U ⊆ G, the idempotent

εU (g) :=

{
vol(U)−1 if g ∈ U ,
0 otherwise

in H.
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Lemma III.4.13:

For any ψ ∈ H with support in Gell we have∫
G

ψ(g)(fVEP )
∨(g−1)dg = trV (

∑
h∈Gell/∼

ψh ∗ εh) .

Proof: It is clear ([Car] p. 120) that

τVF,e(h) = trV (h(εU(e)

F

))

holds true for any facet F in X such that F ∩Xh ̸= ∅. Using this together with
Lemma 10 we obtain

(fVEP )
∨(h−1) = trV (h(εh))

= trace(v 7−→
∫
G

εh(h
−1g)gvdg)

= trace(v 7−→
∫
G

εh(g)hgvdg)

= trace(v 7−→ h(εh ∗ v)) .

Therefore the left hand side in our assertion becomes∫
G

ψ(g) · trace(v 7→ g(εg ∗ v))dg = trace(v 7→
∫
G

ψ(g) · g(εg ∗ v)dg) .

If ψ has support in the equivalence class of some h ∈ Gell the last expression
obviously is equal to

trace(v 7→
∫
G

ψ(g) · g(εh ∗ v)dg) = trace(v 7→ ψ ∗ (εh ∗ v)) = trV (ψ ∗ εh) .

Lemma III.4.14:

For any h ∈ Gell and any F0(h) ∈ (Xh)0 we have

ε
U

(e)

F0

∗ εh = ε
U

(e)

F0

.

Proof: Let F0(h) = {y} be the given vertex of Xh. We introduce a relation

between facets F and F ′ in X as follows: We write F
y−→ F ′ if

— F (h) ̸= ∅, F ′(h) ̸= ∅,

— F ′ ⊆ F (equivalently F ′(h) ⊆ F (h) ), F ′ ̸= F , and

56



— there are points z ∈ F (h) and z′ ∈ F ′(h) such that z ∈ [yz′];

moreover in this situation F , resp. F ′, is called y-large, resp. y-small. These
notions have the following elementary geometric properties:

1. Any facet F ̸= F0 with F (h) ̸= ∅ is either y-large or y-small.
2. A y-large facet is not y-small and vice versa.

3. For any y-small facet F ′ there is a unique y-large facet F such that F
y−→ F ′.

4. If F is y-large we have

(−1)dimF (h) +
∑

F
y→F ′

(−1)dimF ′(h) = 0 .

In order to see these properties consider an arbitrary point y′ ∈ Xh different
from y. The whole geodesic [yy′] then belongs to Xh. In addition one has:
5. There are only finitely many facets F0, . . . , Fm in X such that Fi ∩ [yy′] ̸= ∅.

X is locally finite.

6. Each intersection Fi ∩ [yy′] either consists of one point or is an open convex
subset of [yy′].

Choose an apartment A′ ⊆ X which contains [yy′] and therefore each Fi.
Let ⟨Fi⟩ denote the affine subspace of A′ generated by Fi; note that Fi is
open in ⟨Fi⟩. If the intersection Fi ∩ [yy′] consists of more than one point
then [yy′] ⊆ ⟨Fi⟩.

The enumeration F0, . . . , Fm obviously can be made in such a way that

d(y, zi) < d(y, zi+1) whenever zi ∈ Fi ∩ [yy′] and zi+1 ∈ Fi+1 ∩ [yy′] .

Then the intersections consisting of one point precisely are the

F2i ∩ [yy′] for 0 ≤ i ≤ m

2

and we have

F0 ⊆ F 1 ⊇ F2 ⊆ F 3 ⊇ F4 ⊆ . . .

It is clear that Fm−1
y−→ Fm if Fm ∩ [yy′] = {y′}. The converse holds in the

following stronger form.

7. If F
y−→ Fm then F = Fm−1 and hence Fm ∩ [yy′] = {y′}.

Let z ∈ F (h) and z′ ∈ Fm(h) be points such that z ∈ [yz′]. Choose A′ as
above so that Fm ⊆ A′ and hence [yz′] ∪ F ⊆ A′. Applying the preceding
discussion to z′ we obtain that ⟨F ⟩ contains [yz′] ∪ Fm and hence [yy′]
and Fm−1. We also obtain that Fm ∩ [yz′] = {z′} so that [yy′] cannot
belong to ⟨Fm⟩; this means that Fm ∩ [yy′] = {y′} or in other words that
Fm−1 ⊇ Fm. As a consequence ⟨Fm−1⟩ contains [yy′] ∪ Fm and hence
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[yz′] and F . Therefore F and Fm−1 must be facets of the same dimension
both having Fm in their boundary. Assuming F and Fm−1 to be different
there would exist an affine root for A′ which is 0 on Fm but has different
signs on F and Fm−1. On the other hand because of F ∩ [yz′] ̸= ∅, resp.
Fm−1 ∩ [yy′] ̸= ∅, this affine root has the same sign on y and on F , resp.
Fm−1, which is a contradiction.

This implies 3. together with the following characterization.
8. A facet F ′ ̸= F0 in X such that F ′(h) ̸= ∅ is y-small if and only if F ′∩ [yz′] =
{z′} for some (or any) z′ ∈ F ′(h).
It also implies the direct implication in the following analogous characterization
of y-large facets.
9. A facet F ̸= F0 in X such that F (h) ̸= ∅ is y-large if and only if F ∩ [yz] is
open in [yz] for some (or any) z ∈ F (h).

For the reverse implication let A′ ⊆ X be an apartment which contains [yz]
and let L ⊆ A′ denote the affine line generated by [yz]. It follows from I.1.5
that F ∩L ⊆ Xh. The intersection (F\F )∩L consists of exactly two points
and those belong to Xh. Taking as y′ that one of bigger distance to y we

obtain, with the previous notations, that F
y−→ Fm.

Clearly 6., 8., and 9. imply 1. and 2. It remains to discuss the property 4.
Fix a y-large facet F . In particular F ̸= F0.
10. Let F ′′ and F ′ ̸= F be facets such that F ′′ ⊆ F ′, F ′ ⊆ F , and F ′(h) ̸= ∅; if
F

y−→ F ′′ then F
y−→ F ′.

We choose points z ∈ F (h) and z′′ ∈ F ′′(h) such that z ∈ [yz′′]. We also
choose an apartment A′ ⊆ X containing y and F and therefore also F ′ and
F ′′. Fix a point z̃′ ∈ F ′(h) and consider the euclidean triangle in A′ with
vertices y, z′′, and z̃′. It follows that (zz̃′) := [zz̃′]\{z, z̃′} is nonempty and is
contained in F (h). Fix a point z̃ ∈ (zz̃′). The two affine lines in A′ through
y and z̃ and through z′′ and z̃′ intersect in a point z′ ∈ F ′(h). Then z̃ ∈ [yz′]

and hence F
y−→ F ′.

The last statement means that

Y := union of all F ′(h) where F ′ ⊆ F, F ′ ̸= F , and not F
y−→ F ′

is a subcomplex of F ∩Xh. Since the latter is contractible we have∑
F ′⊆F

F ′(h) ̸=∅

(−1)dimF ′(h) = 1 .

The property 4. therefore is equivalent to∑
∅≠F ′(h)⊆Y

(−1)dimF ′(h) = 1 .
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The latter certainly holds if we show Y to be contractible. We may assume that
y and F are contained in the standard apartment A. Let ⟨F ⟩ denote the affine
subspace of A generated by F . Since F is y-large we necessarily have y ∈ ⟨F ⟩.
Let H1, . . . , Hs ⊆ A be affine root hyperplanes such that the F1, . . . , Fs defined
by

Fi = Hi ∩ F

precisely are the codimension 1 facets of F . For each Hi fix a defining affine
root αi(.) + ℓi in such a way that

F = {x ∈ ⟨F ⟩ : αi(x) + ℓi > 0 for any 1 ≤ i ≤ s} .

Since F ̸= F0 the set

I := {1 ≤ i ≤ s : αi(y) + ℓi ≤ 0}

is nonempty. Using [Bou] V.3.9.8 (ii) one sees that the αi for i ∈ I restricted
to the linear subspace parallel to ⟨F ⟩ are linearly independent. Hence there is a
facet F ′ ⊆ F such that

F ′ =
∩
i∈I

Fi .

Since h fixes y and F it permutes the Fi with i ∈ I and fixes F ′. This means
that F ′(h) ̸= ∅. Once we show that

Y =
∪
i∈I

Fi ∩Xh

it is then clear that Y can be contracted to any point in F ′(h). Consider first a
point x ∈ Fi ∩Xh for some i ∈ I. Then

αi(x) + ℓi = 0 and αi(y) + ℓi ≤ 0 .

This implies (αi(.) + ℓi)|[yx] ≤ 0 and hence [yx] ∩ F = ∅. If F̃ ⊆ F is the facet

containing x then it follows that not F
y−→ F̃ . We conclude that x ∈ F̃ (h) ⊆ Y .

Now let x be a point in Y . Then [yx] ∩ F = ∅. Moreover we have

(αi(.) + ℓi)|[yx]\{x} > 0 for any i ̸∈ I .

The case x = y is clear since then x ∈ Fi for all i ∈ I. Assume therefore that
x ̸= y and that x is not contained in the right hand side of our claimed equality.
Then αi(x)+ ℓi > 0 for any i ∈ I. Hence we would find a x′ ∈ [yx], x′ ̸= x, such
that αi(x

′) + ℓi > 0 for any 1 ≤ i ≤ s. The latter means that x′ ∈ F which is a

59



contradiction.
This finishes the proof of the properties 1.-4. It follows from 1.-3. that

εh = ε
U

(e)

F0

+
∑

F y−large

((−1)dimF (h)ε
U

(e)

F

+
∑

F
y−→F ′

(−1)dimF ′(h)ε
U

(e)

F ′
) .

Because of 4. it is therefore sufficient to show that

ε
U

(e)

F0

∗ ε
U

(e)

F

= ε
U

(e)

F0

∗ ε
U

(e)

F ′
whenever F

y−→ F ′ .

Fixing a pair F
y−→ F ′ we have to check that

U
(e)
F0

· U (e)
F = U

(e)
F0

· U (e)
F ′

holds true. The inclusion U
(e)
F ′ ⊆ U

(e)
F is clear from I.2.11. Hence it remains to

establish the other inclusion

U
(e)
F ⊆ U

(e)
F0

· U (e)
F ′ .

This is a variant of I.3.1. We may and will assume that the facets F0, F , and
F ′ lie in the basic apartment A. Let z ∈ F (h) and z′ ∈ F ′(h) be points such
that z ∈ [yz′]. It is trivial to see that, for α ∈ Φred, we have

f∗F (α) ≥ f∗F ′(α) and hence U
(e)
F ∩ Uα ⊆ U

(e)
F ′

except possibly in the case

fF (α) = fF ′(α) , α|F not constant, but α|F ′ constant .

In that case we have

−α(y) < −α(z) < −α(z′) = f∗F (α) .

If fF0
(α) ≤ −α(z′) then f∗F (α) ≥ f∗F0

(α) and hence U
(e)
F ∩Uα ⊆ U

(e)
F0

. Otherwise
there are two consecutive values ℓ < ℓ′ in Γα such that

ℓ < −α(y) < −α(z′) < ℓ′ .

Using I.2.10 we obtain

U
(e)
F0

∩ Uα = Uα,ℓ′ · U2α,2ℓ′+e = U
(e)
F ∩ Uα .

To get further we need the subsequent result which doubtlessly holds true in gen-
eral but which we can establish, at present, only under some additional assump-
tion. Let [H,H] be the additive subgroup of H generated by all commutators
ψ ∗ ϕ− ϕ ∗ ψ for ϕ, ψ ∈ H and put Hab := H/[H,H].
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Proposition III.4.15:

If G is split or if K has characteristic 0 then the class of fVEP in Hab and hence
the function (fVEP )

∨ is uniquely determined by the representation V (and the

Haar measure dg and does not depend on the choice of U
(e)
x ).

Proof: Proposition 1, [Ka1] Thm. 0, and [Ka2] Thm. B.

Theorem III.4.16:

If G is split or if K has characteristic 0 then we have

trV (ψ) =

∫
G

ψ(g)(fVEP )
∨(g−1)dg

for any ψ ∈ H with support in Gell.

Proof: By Proposition 15 we may choose the number e as large as we want. Let
h1, . . . , hm ∈ Gell be representatives of those equivalence classes which meet the
support of ψ and, for each 1 ≤ i ≤ m, fix a Fi(hi) ∈ (Xhi)0. We now choose e

large enough so that ψhi is U
(e)
Fi

-right invariant for any 1 ≤ i ≤ m. This means
that ψhi

∗ ε
U

(e)

Fi

= ψhi
and hence, by Lemma 14, that ψhi

∗ εhi
= ψhi

. The

statement follows then from Lemma 13.

Of course we know from Harish-Chandra that the distribution trV is given by
a locally constant function on the regular semisimple subset Greg in G; let θV
denote the restriction of that function to Gell. The last Theorem then can be
rephrased by saying that under the assumption made there we have

θV (h) = (fVEP )
∨(h−1) .

This might be viewed as a kind of explicit formula for the character values on
the regular elliptic set; compare also the Hopf-Lefschetz type formula in IV.1.5.

Corollary III.4.17:

If G is split or K has characteristic 0 then we have:

i. θV (h
−1) = θV (h) for h ∈ Gell;

ii. θE(Ṽ ) = (−1)d−#Θ · θV if V lies in AlgflΘ (G).
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Proof: i. We obviously have fVEP (g
−1) = fVEP (g) for any g ∈ G. ii. It follows

from Proposition 1 and Remark 3.i that

trV ′(f
E(Ṽ )
EP − (−1)d−#Θ · fVEP ) = 0 for any admissible V ′ .

Hence that function is contained in [H,H] by [Ka1] Thm. 0 and [Ka2] Thm. B,
respectively.

Lemma III.4.18:

i. EP (V, V ′) = EP (V ′, V ) for V and V ′ of finite length in Alg(G);

ii. let Θ⊂
̸=
∆ be a proper subset and let E be a representation of finite length in

Alg(MΘ); then EP (V, Ind(E)) = 0.

Proof: i. The symmetry is obvious from the expression

EP (V, V ′) =
d∑

q=0

∑
F∈Fq

(−1)q · vol(P †
F )

−1 ·
∫
P †

F

τVF,e · τ
V ′

F,e · εF dg

which was given in the proof of Proposition 1. Of course e ≥ 0 here should be

chosen in such a way that both V and V ′ lie in AlgU
(e)
x (G).

ii. The subsequent argument is due to Kazhdan. The set of unramified characters
of MΘ is a complex algebraic torus of dimension d − #Θ (compare [Car]3.2).
The function

ξ 7−→ trInd(E⊗ξ)(f
V
EP )

on this torus is regular according to [BDK] §1.2. Using Proposition 1 we see
that the function

ξ 7−→ EP (V, Ind(E ⊗ ξ))

is regular and integral valued; it therefore is constant. On the other hand it is
shown in [Ca2] A.12 that

Ext∗Alg(G)(V, Ind(E ⊗ ξ)) = Ext∗Alg(MΘ)(VUΘ , E ⊗ ξ)

holds true. But for any character ξ0 such that the central torus SΘ in MΘ acts
on the Jacquet module VUΘ and on E ⊗ ξ0 by different characters we have

Ext∗Alg(MΘ)(VUΘ , E ⊗ ξ0) = 0

([BW] IX.1.9).
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Lemma III.4.19:

If K has characteristic 0 then we have

∫
Gh\G

fVEP (g
−1hg)

dg

dg′
= 0 for any h ∈ Greg\Gell .

Proof: Proposition 1, Lemma 18, and [Ka1] Thm. A.

Following [Ka1] we put

A(G) := {ψ ∈ H :

∫
Gh\G

ψ(g−1hg)
dg

dg′
= 0 for any h ∈ Greg\Gell}

and

A(G) := A(G)/[H,H] .

Let

R(G) := Grothendieck group of representations of finite

length in Alg(G) (w.r.t. exact sequences)

tensorized by C .

The induction functor Ind(.) induces a homomorphism

R(MΘ) −→ R(G)

for any subset Θ ⊆ ∆. We put

RI(G) :=
∑

Θ⊂
̸=

∆

image of R(MΘ) and R(G) := R(G)/RI(G) .

If K has characteristic 0 then it follows from Proposition 15 and Lemma 19 that

R(G) −→ A(G)

class of V 7−→ class of fVEP

is a well-defined homomorphism; as a consequence of Proposition 1, Lemma 18,
and [Ka1] Thm. 0 this map is trivial on RI(G).
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Proposition III.4.20:

If K has characteristic 0 then the map

R(G)
∼=−→ A(G)

class of V 7−→ class of fVEP

is an isomorphism.

Proof: It follows from Theorem 16 that the map in question is up to the substi-
tution h 7→ h−1 the inverse of the isomorphism in [Ka1] Thm. E.

Our approach allows to establish a kind of orthogonality formula for characters
which was conjectured by Kazhdan and which generalizes [Ka1] Cor. on p. 29.

Let Cell denote the set of all regular elliptic conjugacy classes in G; then
∨
ψ, for

any ψ ∈ H, as well as θV can be viewed as functions on Cell. According to [Ka1]
§3 Lemma 1 there is a unique measure dc on Cell such that∫

G

ψdg =

∫
Cell

∨
ψ(c)dc for any ψ ∈ H with support in Gell .

Theorem III.4.21: (Orthogonality)

If K has characteristic 0 then, for any two representations V and V ′ of finite
length in Alg(G), we have∫

Cell

θV (c
−1) · θV ′(c)dc = EP (V, V ′) .

Proof: According to [Ka1] Thm. F we have the identity

trV ′(ψ) =

∫
Cell

θV ′(c) ·
∨
ψ(c)dc

for any function ψ ∈ A(G). The Lemma 19 allows to apply this identity to the
function ψ = fVEP . Using Theorem 16 we obtain

trV ′(fVEP ) =

∫
Cell

θV (c
−1) · θV ′(c)dc .

It remains to apply Proposition 1 to the left hand side.
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By Lemma 18 the Euler-Poincaré characteristic induces a symmetric bilinear
form

EP (., .) : R(G)×R(G) −→ C .

Because of Theorem 21 this form coincides with the form [., .] considered on p. 5
in [Ka1] provided K has characteristic 0; hence it is nondegenerate in this case.
As is pointed out in [Clo] §5 a better understanding of this form is tied up with
the study of the L-packets.

Finally we want to relate our concepts to the notion of the rank of V intro-
duced by Vigneras ([Vig]). She extends the formalism of the Hattori-Stallings
trace to the context of smooth representations. The technical difficulty which
arises is that the Hecke algebra H has no unit element in general. For us it is
most natural to work with the subalgebras

H(e) := ε
U

(e)
x

∗ H ∗ ε
U

(e)
x

for e ≥ 0

in which ε
U

(e)
x

is the unit element (recall that x is a fixed special vertex); by

I.2.9 we have

H =
∪
e≥0

H(e) .

The point is that U
(e)
x fulfills the assumptions of [Ber] 3.9 as we noted already

in I.3 so that the functor

AlgU
(e)
x (G)

∼−→ category of unital
left H(e)-modules

V ′ 7−→ V ′(e) := (V ′)U
(e)
x

is an equivalence of categories which in addition ([Ber] 3.3) respects the prop-
erty of being finitely generated. First let V ′ be a finitely generated projective

representation in AlgU
(e)
x (G); then V ′(e) is a finitely generated projective H(e)-

module and we have the obvious isomorphism

HomH(e)(V
′(e),H(e)) ⊗

H(e)
V ′(e)

∼=−→ EndH(e)(V
′(e)) .

If
∑
i

v∗i ⊗vi is the element in the left hand side which corresponds to the identity

endomorphism in the right hand side then the rank of V ′ is defined as

rV ′ := class of
∑
i

v∗i (vi) in Hab .

Now consider an arbitrary finitely generated representation V ′ in Alg(G). Bern-
stein has shown ([Vig] Prop. 37; alternatively we can use II.3.2) that V ′ has a
resolution

0 −→ V ′
d −→ . . . −→ V ′

0 −→ V ′ −→ 0
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by finitely generated projective representations V ′
i in Alg(G). Choosing e large

enough so that the whole resolution lies in AlgU
(e)
x (G) the rank of V ′ then is

defined to be

rV ′ :=

d∑
i=0

(−1)i · rV ′
i
.

It is shown in [Vig] Prop. 39 that if G is split or K has characteristic 0 then the
class rV ′ ∈ Hab only depends on V ′ and is characterized by the property that

trV ′′(rV ′) = EP (V ′, V ′′)

holds true for any irreducible representation V ′′ in Alg(G). Combining this
with our Proposition 1 we see that the Euler-Poincaré functions fVEP of our
representation of finite length V are representatives of its rank rV .

Proposition III.4.22:

If G is split or if K has characteristic 0 then we have

rV = class of fVEP in Hab .

Actually a more precise result holds true. Each individual summand of fVEP

is the rank of a corresponding direct summand of our projective resolution in
II.3.2: As already used in the proof of Proposition 1 there is the decomposition

Cor
c (X(q), γe(V )) = ⊕

F∈Fq

Cor
c (F, γe(V )) .

Fix a facet F ∈ Fq and put V ′ := Cor
c (F, γe(V )). Since V ′ is projective its rank

is characterized by the property that

trV ′′(rV ′) = dimHomG(V
′, V ′′)

for any irreducible representation V ′′. But in the proof of Proposition 1 it was
shown that the latter dimension is equal to

trV ′′(vol(P †
F )

−1 · τVF,e · εF ) .

Hence we obtain that

rank of Cor
c (F, γe(V )) = class of vol(P †

F )
−1 · τVF,e · εF in Hab .

Propositions 2 and 22 together give a different proof, for a representation of
finite length, of the dimension formula in the Main Theorem 36 in [Vig]; the
positivity statement in loc. cit. is, by the above discussion, trivial for the pro-
jective representations appearing in our resolution II.3.2. More importantly we
obtain a relation between the rank rV and the trace θV which is entirely similar

to the case of a finite group ([Hat]). Note that the function
∨
ψ on Gell only

depends on the class of ψ in Hab.
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Theorem III.4.23:

If G is split or if K has characteristic 0 then we have

θV (h) = (rV )
∨(h−1) for h ∈ Gell .

Proof: Theorem 16 and Proposition 22.
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IV. Representations as sheaves on the Borel-Serre compactification

IV.1. Representations as sheaves on the Bruhat-Tits building

Let V be a smooth representation of G. For any open subgroup U ⊆ G we
have the space

VU := maximal quotient of V on which

the U -action is trivial

of U -coinvariants of V . We write vmodU for the image in VU of a vector v ∈ V .
Fix an integer e ≥ 0. In order to simplify the notation we sometimes will
suppress indicating the dependence on e in the notions to be introduced. Let F

be a facet of X. Since U
(e)
F is profinite the projection map prF : V →→ V U

(e)

F in
III.1 induces an isomorphism

V
U

(e)

F

∼=−→ V U
(e)

F .

Whenever F ′ is another facet such that F ′ ⊆ F then we have the commutative
square

V U
(e)

F ′
prF

F ′−→ V U
(e)

F

prF ′

x∼= ∼=
xprF

V
U

(e)

F ′

pr−→ V
U

(e)

F

where prFF ′ is the other projection map from III.1 and pr is the obvious quotient

map (coming from the fact that U
(e)
F ′ ⊆ U

(e)
F ).

The representation V gives rise to a sheaf V
≈

on the Bruhat-Tits building

X in the following way: For any open subset Ω ⊆ X put

V
≈
(Ω) := C-vector space of all maps s : Ω →

·∪
z∈Ω

V
U

(e)
z

such that

— s(z) ∈ V
U

(e)
z

for any z ∈ Ω,

— there is an open covering Ω = ∪
i∈I

Ωi and

vectors vi ∈ V with

s(z) = vi modU
(e)
z for any z ∈ Ωi and i ∈ I.

The stalks of the sheaf V
≈

are the expected ones as we will see in a moment. The

star of a facet F ′ in X is the subset of X defined by

St(F ′) := union of all facets F ⊆ X such that F ′ ⊆ F .

These stars form a locally finite open covering of X.
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Lemma IV.1.1:

i. (V
≈
)z = V

U
(e)
z

for any z ∈ X;

ii. the restriction of V
≈

to any facet F of X is the constant sheaf with value V
U

(e)

F

.

Proof: There is the obvious map

(V
≈
)z −→ V

U
(e)
z

germ of s 7−→ s(z) .

It is an isomorphism since if z lies in the facet F then St(F ) is an open neighbour-

hood of z with the property that U
(e)
z ⊆ U

(e)
z′ for any z′ ∈ St(F ) (by I.2.11.i).

The same argument shows more generally that, for any nonempty subset Σ open
in F , we have

lim−→
Ω⊆St(F )
open,

Ω∩F=Σ

V
≈
(Ω) = locally constant V

U
(e)

F

-valued functions on Σ .

Lemma IV.1.2:

Let F be any facet in X; then

H∗(St(F ), V
≈
|St(F )) = H∗(F, V

≈
|F ) =

{
V
U

(e)

F

if ∗ = 0 ,

0 if ∗ > 0 .

Proof: This is (a polysimplicial version of) [KS] 8.1.4.

It follows from Lemma 1 that the functor

Alg(G) −→ sheaves on X

V 7−→ V
≈

is exact. Our aim in this Chapter is to compute the cohomology with compact
support H∗

c (X,V≈
) of the sheaf V

≈
. The interest in this comes from the fact that

this cohomology can be calculated from the cochain complex of γe(V ) considered
in III.1.
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Proposition IV.1.3:

H∗
c (X,V≈

) = h∗(Cor
c (X(.), γe(V )), d).

Proof: The filtration X = Ω0 ⊇ Ω1 ⊇ . . . ⊇ Ωd of X by the open subsets
Ωn := X\Xn−1 induces the filtration

Γc(X, .) ⊇ Γc(Ω
1, .) ⊇ . . . ⊇ Γc(Ω

d, .) .

Because of [God] II.4.10.1 the spectral sequence of this filtration reads

En,m
1 := ⊕

F∈Xn

Hn+m
c (F, V

≈
|F ) =⇒ Hn+m

c (X,V
≈
) .

According to Lemma 1.ii we have

H∗
c (F, V≈

|F ) =

{
Hn

c (F,ZZ)⊗ V
U

(e)

F

if F ∈ Xn and ∗ = n ,

0 otherwise .

Inserting this into the spectral sequence we obtain

H∗
c (X,V≈

) = h∗

[
⊕

F∈X0

H0
c (F,ZZ)⊗ V

U
(e)

F

d0,0
1−→ . . .

dd−1,0
1−→ ⊕

F∈Xd

Hd
c (F,ZZ)⊗ V

U
(e)

F

]
.

The description of the cellular coboundary in [Dol] V.6 and VI.7.11 shows that
the complex on the right hand side coincides with (Cor

c (X(·), γe(V )), d).

Corollary IV.1.4:

Let V be a representation of finite length in Algχ(G); if e is chosen big enough
then we have

E∗(V ) = H∗
c (X, Ṽ≈

) .

Proof: Proposition 3 and III.1.3.

The sheaf V
≈

at hand we can reformulate III.4.16 as a trace formula.
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Proposition IV.1.5: (Hopf-Lefschetz trace formula)

We assume that the connected center C of G is anisotropic and that either G
is split or K has characteristic 0. Let V be a representation of finite length in
Alg(G) and choose e big enough. For any h ∈ Gell we have

θV (h) =
d∑

q=0

(−1)q · trace(h;Hq(Xh, V
≈
)) .

Proof: First of all note that since Xh is compact and V is admissible the co-
homology H∗(Xh, V

≈
) has finite dimension. By III.4.16 (as explained in the

paragraph after that Theorem) we have

θV (h) = (fVEP )
∨(h−1) .

Moreover III.4.10 says that

(fVEP )
∨(h−1) =

d∑
q=0

∑
F (h)∈(Xh)q

(−1)q · trace(h;V U
(e)

F ) .

Proposition 3 of course is completely formal and applies to the finite polysim-
plicial complex Xh as well. The right hand side in the last identity therefore is
equal to

d∑
q=0

(−1)q · trace(h;Cor((Xh)(q), γe(V ))) =
d∑

q=0

(−1)q · trace(h;Hq(Xh, V
≈
)) .

IV.2. Extension to the boundary

In [BS] Borel and Serre have constructed a compactification X of the
Bruhat-Tits building X with the help of which they could determine the co-
homology with compact support of a constant sheaf on X. Our strategy for
computing the cohomology with compact support of our sheaves V

≈
will be simi-

lar. In this section we will define an appropriate “smooth” extension j∗,∞V≈
of V

≈
to a sheaf on X. The boundary cohomology of that extension will be discussed
in the next section. Finally in the section after the next one it will be shown,
for V of finite length at least, that j∗,∞V≈

is cohomologically trivial on X. The

result about the cohomology with compact support of V
≈

then will be obtained

from the long exact cohomology sequence.
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We first give a description of the Borel-Serre compactification X which
is adapted to our purposes. Let A denote the compactification of the basic
apartment A by “the directions of half-lines” ([BS] 5.1). As an explicit model
one can take

A := {x ∈ A : d(0, x) ≤ 1}

together with the embedding

j : A −→ A

x 7−→

{
1−e−d(0,x)

d(0,x) · x if x ̸= 0 ,

0 if x = 0 .

A boundary point x ∈ A∞ := A\j(A) then corresponds to the half-line [0x) :=
{rx : r ≥ 0} in A. The N -action on A extends uniquely to a continuous action
of N on A. Note that Z acts trivially on the boundary A∞. For any boundary
point x ∈ A∞ we have the parabolic subgroup

Px := subgroup generated by Z and all

Uα for α ∈ Φ such that α(x) ≥ 0

in G; its unipotent radical is

Ux := subgroup generated by all

Uα for α ∈ Φ such that α(x) > 0 ;

clearly

nPxn
−1 = Pnx for n ∈ N

holds. Moreover [BoT] 5.17 and 5.20 imply that

Px ∩N = Nx := {n ∈ N : nx = x} for any x ∈ A∞ .

These two properties allow to formally imitate the definition of X by setting

X := G×A/ ∼

with the equivalence relation ∼ on G×A defined by

(g, x) ∼ (h, y) if there is a n ∈ N such that

nx = y and g−1hn ∈ Px .

The group G acts on X through left multiplication on the first factor. The map

A −→ X

x 7−→ class of (1, x)
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is injective and N -equivariant. There is an obvious G-equivariant map

j : X −→ X

which is injective. The latter fact follows from the observation that, because of
Px = Ux ·Nx for x ∈ A, we could have used the groups Px instead of Ux in the
definition of X. On the other hand the boundary X∞ := X\X is

X∞ = G×A∞/ ∼ .

Hence X∞ as a G-set coincides with the Tits building of parabolic subgroups
in G (compare [CLT] 6.1). We see that at least as a G-set X is the Borel-Serre
compactification of X. We equip X with the quotient topology of the product
topology on A given by the natural topology on A and the π-adic topology on
G.

Lemma IV.2.1:

X is the Borel-Serre compactification of X.

Proof: Without loss of generality we may assume that the origin 0 in A is a
special vertex. Also fix a decomposition Φ = Φ+∪Φ− into positive and negative
roots; this corresponds to fixing a fundamental Weyl chamber

D := {x ∈ A : α(x) ≥ 0 for any α ∈ Φ+}

in A. Let D denote the closure of D in A. Then the obvious map

P0 ×D −→ X

is surjective. The Borel-Serre topology on X is the quotient topology with
respect to this map if the left hand term is equipped with the product topology
of the π-adic topology on P0 and the natural topology on D (see [BS] 5.4.1).
Therefore the Borel-Serre topology is finer than our topology. But it is also
shown in loc. cit. that the former one induces on D its natural topology and
that the G-action on X is continuous in the Borel-Serre topology. This implies
that the two topologies under consideration actually coincide.

We have ([BS] 5.4):

— X is compact and contractible;

— X is open in X and the topology induced by X on X is the metric topology
of X;
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— X∞ with the topology induced by X is the π-adic Tits building of G ([BS]
§1);

— the topology induced by X on A is the natural topology of A;

— the G-action on X is continuous.

In the following we keep the assumptions and notations introduced in the proof
of Lemma 1. One advantage of viewing X as the quotient of P0×D is that since
D is a fundamental domain for P0 in X ([BS] 4.9 (iii)) the equivalence relation
∼ for (g, x) and (h, y) ∈ P0 ×D simplifies to

(g, x) ∼ (h, y) if and only if x = y and g−1h ∈ P0 ∩ Px .

For later purposes it is necessary to explicitly construct appropriate neighbour-
hoods in X of any point in the boundary X∞. Since D∞ := D\D is a funda-
mental domain for P0 in X∞ it suffices to consider a point x ∈ D∞ which is
fixed throughout the following. The set

StD(x) := {x′ ∈ D∞ : Px′ ⊆ Px}

is an open neighbourhood of x in D∞. Put

Φ(x) := {α ∈ Φ : α(x) > 0} ⊆ Φ+ .

We also fix an open normal subgroup U in P0 and a real number r ≥ 0 such
that

U ∩ Uα ⊇ Uα,r for any α ∈ Φ(x) .

Lemma IV.2.2:

Let Ω ⊆ StD(x) ∪ {y ∈ D : α(y) > r for any α ∈ Φ(x)} be any subset; then the
subset U(P0 ∩ Px)× Ω is ∼-saturated in P0 ×D.

Proof: Consider a point y ∈ Ω and elements g ∈ P0 and h ∈ U(P0 ∩ Px) such
that g−1h ∈ P0 ∩ Py. We have to prove that then necessarily g ∈ U(P0 ∩ Px).
Since by assumption

g ∈ h(P0 ∩ Py) ⊆ U(P0 ∩ Px)(P0 ∩ Py)

it suffices to show that

P0 ∩ Py ⊆ U(P0 ∩ Px)

holds true. In case y ∈ StD(x) we even have Py ⊆ Px. We therefore may assume
that y ∈ D with α(y) > r for any α ∈ Φ(x). According to I.1.2 and I.1.4 we
have

P0 ∩ Py = P[0y] =
∏

α∈Φred

Uα,f[0y](α) ·N[0y]
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for an appropriate ordering of the factors on the right hand side. Since N acts
on A by affine automorphisms N[0y] is contained in N[0x′] where x

′ ∈ D∞ is such
that y lies on the half-line [0x′). But x′ ∈ StD(x); this follows from α(x′) > 0
for any α ∈ Φ(x) which amounts to Ux ⊆ Ux′ . We obtain

N[0y] ⊆ N[0x′) ⊆ P0 ∩ Px′ ⊆ P0 ∩ Px .

For a root α ∈ Φred we distinguish two cases: α ∈ Φ\(−Φ(x)) or α ∈ −Φ(x). In
the first case we have α(x) ≥ 0 which means Uα ⊆ Px and hence

Uα,f[0y](α) ⊆ Uα,0 ⊆ P0 ∩ Px .

In the second case we have −α(y) > r and hence

Uα,f[0y](α) ⊆ Uα,−α(y) ⊆ Uα,r ⊆ U .

We now define, for any subset Ω∞ ⊆ StD(x), the subset

Cr(Ω∞) := Ω∞ ∪ {y ∈ D :y ∈ [0x′) for some x′ ∈ Ω∞ and

α(y) > r for any α ∈ Φ(x)}

in D. For any x′ ∈ Ω∞ there is a unique point y′ ∈ [0x′) such that

[0x′) ∩ Cr(Ω∞) = [0x′)\[0y′] .

Lemma IV.2.3:

Let Ω∞ ⊆ StD(x) be an open neighbourhood of x in D∞; then U(P0 ∩ Px) ·
Cr(Ω∞) is an open neighbourhood of x in X.

Proof: It is easy to see that Cr(Ω∞) is open in D. Hence U(P0 ∩Px)×Cr(Ω∞)
is open and ∼-saturated in P0 ×D.

These neighbourhoods have the disadvantage not to reflect the cellular structure
of X. We therefore define

C ′
r(Ω∞) := Ω∞ ∪

∪
{St(y) ∩D :y ∈ Cr(Ω∞) ∩D a vertex such

that St(y) ∩D ⊆ Cr(Ω∞)} .
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Lemma IV.2.4:

Let Ω∞ ⊆ StD(x) be an open neighbourhood of x in D∞ and put
Ω := U(P0 ∩ Px) · C ′

r(Ω∞); we then have:

i. C ′
r(Ω∞) is an open neighbourhood of x in D;

ii. Ω is an open neighbourhood of x in X;

iii. Ω ∩X =
∪

y∈Ω∩X
vertex

St(y).

Proof: The set U(P0 ∩ Px) × C ′
r(Ω∞) is open in P0 ×D if we assume i. and is

∼-saturated by Lemma 2. Hence ii. is a consequence of i. Moreover iii. follows
from ii.: By construction Ω ∩ X is a union of facets. But any open subset of
X which is a union of facets contains with any facet F the whole star St(F ).
This in particular shows that the right hand side in iii. lies in Ω∩X. To see the
reverse inclusion first note that the right hand side is invariant under U(P0∩Px).
It therefore suffices to consider a point z ∈ C ′

r(Ω∞) ∩ D. Then by definition
there is a vertex y ∈ C ′

r(Ω∞) ∩D ⊆ Ω ∩X such that z ∈ St(y).
The crucial assertion to establish is i. Since St(y)∩D for any vertex y ∈ D is open
in D it remains to ensure that any point x′ ∈ Ω∞ has an open neighbourhood
in D which is contained in C ′

r(Ω∞). For this it is convenient to use certain
standard neighbourhoods of x′ in D∞. Thinking of A∞ as being the unit sphere
in A (as we do in our explicit model) we have, for any 0 < ε < 1, the open
neighbourhood

Ωε := {x′′ ∈ D∞ : d(x′, x′′) < ε}

of x′ in D∞. We may choose ε small enough so that Ωε ⊆ Ω∞. Then Cr(Ωε) is
an open neighbourhood of x′ in D which lies in Cr(Ω∞). Let now c > 0 be a
fixed real constant. It is an elementary computation to show that by decreasing ε
and increasing r appropriately we obtain a Cr′(Ωε′) ⊆ Cr(Ωε) with the property
that

{z′ ∈ D : d(z, z′) < c} ⊆ Cr(Ωε) for any z ∈ Cr′(Ωε′) ∩D .

We choose the constant c in such a way that d(z, z′) < c whenever z ∈ D and
z′ ∈

∪
{St(y) ∩ D: y any vertex of the facet containing z}; this is possible by

I.2.10. It follows easily that then Cr′(Ωε′) ⊆ C ′
r(Ω∞).

Lemma IV.2.5:

Let Ω ⊆ X be an open neighbourhood of x; then we can choose U and r in such
a way that U(P0∩Px) ·C ′

r(Ω∞) ⊆ Ω for some open neighbourhood Ω∞ ⊆ StD(x)
of x in D∞.
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Proof: Consider the quotient map µ : P0 ×D → X. The subset µ−1(Ω) is open
in P0 ×D and contains (P0 ∩Px)×{x}. We therefore find, for any h ∈ P0 ∩Px,
an open normal subgroup U(h) ⊆ P0 and an open neighbourhood Ω0(h) of x in
D such that

U(h)h× Ω0(h) ⊆ µ−1(Ω) .

By the compactness of (P0 ∩ Px)/C we have

U(h1)h1C ∪ . . . ∪ U(hm)hmC ⊇ P0 ∩ Px

for finitely many appropriate elements h1, . . . , hm ∈ P0 ∩ Px. Now put

Ω0 := Ω0(h1) ∩ . . . ∩ Ω0(hm) and U := U(h1) ∩ . . . ∩ U(hm) .

We then obtain

U(P0 ∩ Px)× Ω0 ⊆ µ−1(Ω) and hence U(P0 ∩ Px) · Ω0 ⊆ Ω .

It remains to observe the elementary geometric fact that for any open neigh-
bourhood Ω0 of x in D we find an open neighbourhood Ω∞ ⊆ StD(x) of x in
D∞ and a r ≥ 0 such that Cr(Ω∞) ⊆ Ω0.

Lemma IV.2.6:

Any boundary point in X∞ has a fundamental system of open neighbourhoods Ω
in X such that

Ω ∩X =
∪

y∈Ω∩X
vertex

St(y) .

Proof: Lemmata 4 and 5.

Lemma IV.2.7:

Let c ⊆ Ux be a compact subset; then there is an open neighbourhood Ω of x in
A such that

c ⊆ U
(e)
F for any facet F ⊆ Ω ∩X .

Proof: (Recall that e ≥ 0 is fixed throughout this Chapter.) Fixing an enumer-
ation of the roots in Φred ∩ Φ(x) any element g ∈ c can be written in a unique
way as

g =
∏

α∈Φred∩Φ(x)

gα where gα ∈ Uα .
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The compactness of c implies that for any such root α the set

cα := {ℓ(gα) : g ∈ c such that gα ̸= 1}

is bounded below; we put ℓα := min{ℓ : ℓ ∈ cα}. Define now

Ω0 := {y ∈ A : α(y) > e+ 1− ℓα for any α ∈ Φred ∩ Φ(x)} .

Clearly there is an open neighbourhood Ω of x in A such that Ω ∩ A = Ω0. It
therefore suffices to show that

c ⊆ U
(e)
F for any facet F ⊆ Ω0 .

Fix a root α ∈ Φred ∩ Φ(x), an element g ∈ c, and a facet F ⊆ Ω0. We actually
check that

gα ∈ Uα,f∗
F
(α)+e ⊆ U

(e)
F ∩ Uα

holds true. The case gα = 1 is trivial. Otherwise we have

fF (α) ≤ − inf
y∈Ω0

α(y) ≤ −(e+ 1− ℓα) ≤ −e− 1 + ℓ(gα)

and hence

f∗F (α) + e < ℓ(gα) .

The sheaf V
≈

has the two obvious extensions j!V≈
⊆ j∗V≈

to sheaves on X.

We will work with a third “intermediate” or “smooth” extension

j!V≈
⊆−→ j∗,∞V≈

−→ j∗V≈

which is constructed as follows. Let i : X∞ → X denote the inclusion of the
boundary. The stabilizer Pz of any boundary point z ∈ X∞ is a parabolic
subgroup of G; let Uz denote the unipotent radical of Pz. For any z ∈ X∞ we
then may form the Jacquet module VUz of Uz-coinvariants of V ; similarly as
before we write vmodUz for the image in VUz of a vector v ∈ V . Analogously to
V
≈

we can define a sheaf V on X∞ in the following way: For any open Ω ⊆ X∞

put

V (Ω) := C-vector space of all maps s : Ω →
·∪

z∈Ω

VUz

such that

— s(z) ∈ VUz for any z ∈ Ω,

— there is an open covering Ω =
∪
i∈I

Ωi and

vectors vi ∈ V with

s(z) = vi modUz for any z ∈ Ωi and i ∈ I.
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It was mentioned already that X∞ is a simplicial complex but equipped with a
topology which is coarser than the simplicial one. For any point z ∈ X∞ we put

St(z) := {z′ ∈ X∞ : Pz′ ⊆ Pz} .

Remark IV.2.8:

Let z ∈ X∞ be a boundary point; for any open subgroup U ⊆ G the subset
U · St(z) is an open neighbourhood of z in X∞.

Proof: Because of St(z′) ⊆ St(z) for any z′ ∈ St(z) it suffices to prove that there
is a subset Ω ⊆ St(z) containing z such that U ·Ω is open inX∞. We may assume
that z ∈ D∞. Choose an open neighbourhood Ω∞ ⊆ StD(z) = St(z) ∩D∞ of
z in D∞. According to Lemma 3 the subset U(P0 ∩ Pz) · Ω∞ is open in X∞.
Therefore Ω := (P0 ∩ Pz) · Ω∞ meets the requirement.

Lemma IV.2.9:

V
z
= VUz

for any z ∈ X∞.

Proof: There is the obvious map

V
z
−→ VUz

germ of s 7−→ s(z)

which clearly is surjective. In order to see the injectivity let s be a section of
V in a neighbourhood Ω ⊆ X∞ of z such that s(z) = 0. By shrinking the
neighbourhood we may assume that s is represented by a single vector v ∈ V ,
i.e., s(z′) = vmodUz′ for any z′ ∈ Ω. For z′ ∈ St(z) we have Uz ⊆ Uz′ and
hence vmodUz′ = 0. Let U be the stabilizer of v in G. It easily follows that
actually vmodUz′ = 0 for any z′ ∈ U · St(z). We obtain s|U · St(z) ∩ Ω = 0.

Since the formation of Jacquet modules is exact ([Car] p. 128) Lemma 9 implies
that the functor

Alg(G) −→ sheaves on X∞

V 7−→ V

is exact. By construction the sheaf V
≈
, resp. V , is a quotient

V →→ V
≈

, resp. V →→ V ,

of the constant sheaf with value V on X, resp. X∞. The first arrow induces by
adjunction and restriction a not necessarily surjective homomorphism

V −→ i∗j∗V≈
.
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Lemma IV.2.10:

We have the commutative triangle

V
↙ ↘

V −→ i∗j∗V≈

where the upper term is the constant sheaf with value V on X∞ and the oblique
arrows are the natural sheaf homomorphisms.

Proof: We have to show that, for any point z ∈ X∞, the natural map

V −→ (j∗V≈
)z

contains in its kernel all vectors of the form gv − v for some g ∈ Uz and some
v ∈ V . By the G-equivariance of this assertion we may assume that z ∈ D∞.
Choose an open subgroup U ⊆ G such that v, gv ∈ V U . By Lemma 7 and the
fact that (P0 ∩ Pz)/C is compact we find an open neighbourhood Ω0 of z in A
such that

{h−1gh : h ∈ P0 ∩ Pz} ⊆ U (e)
y0

for any vertex y0 ∈ Ω0 ∩X .

Consider now a vertex y ∈ U(P0 ∩ Pz) · Ω0 ∩X, say,

y = uhy0 with u ∈ U , h ∈ P0 ∩ Pz , and y0 ∈ Ω0 ∩X .

We then have

U (e)
y = uhU (e)

y0
h−1u−1 and g′ := h−1gh ∈ U (e)

y0

and hence

gv − v = u(gu−1v − u−1v) = uhg′h−1u−1v − v = 0modU (e)
y .

It is quite clear that Ω0 contains a subset of the form C ′
r(Ω∞) as considered

above. Using Lemma 4 we therefore see that z has an open neighbourhood Ω in
X such that

Ω ∩X =
∪

y∈Ω∩X
vertex

St(y) and

gv − v = 0modU (e)
y for any vertex y ∈ Ω ∩X .

If y′ ∈ Ω ∩X is an arbitrary point, say, y′ ∈ St(y) for some vertex y ∈ Ω ∩X
then U

(e)
y′ ⊇ U

(e)
y by I.2.11. We obtain that

gv − v = 0modU
(e)
y′ for any y′ ∈ Ω ∩X .

This means that the image of gv − v in (j∗V≈
)(Ω) and a fortiori its image in

(j∗V≈
)z is zero.
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We now define j∗,∞V≈
to be that sheaf on X which makes the diagram

j∗,∞V≈
−→ j∗V≈y y

i∗V −→ i∗i
∗j∗V≈

Cartesian; the right perpendicular arrow hereby is given by adjunction and
the lower horizontal arrow is the direct image of the arrow in Lemma 10. By
construction we have

j∗j∗,∞V≈
= V

≈
and i∗j∗,∞V≈

= V .

In particular the functor

Alg(G) −→ sheaves on X

V 7−→ j∗,∞V≈

is exact; of course this functor depends on the choice of the number e whereas
the sheaf V doesn’t. We also obtain the short exact sequence of sheaves

0 −→ j!V≈
−→ j∗,∞V≈

−→ i∗V −→ 0 .

Since H∗(X, j!V≈
) = H∗

c (X,V≈
) ([KS] 2.5.4 (i) and (2.6.6)) the associated long

exact cohomology sequence reads

. . . −→ Hi(X, j∗,∞V≈
) −→ Hi(X∞, V ) −→ Hi+1

c (X,V
≈
)

−→ Hi+1(X, j∗,∞V≈
) −→ . . . .

Later on it is technically important that for the representation

V := Cc(G/U
(e)
x ), x a special vertex in A, our “smooth” extension has a simpler

description.

Proposition IV.2.11:

For the representation V = Cc(G/U
(e)
x ), x a special vertex x ∈ A, we have

j∗,∞V≈
= image(V −→ j∗V≈

) .

Proof: By Lemma 10 we quite generally have natural homomorphisms

V →→ j∗,∞V≈
−→ j∗V≈
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the first one of which is surjective. We therefore have to show that in case of
our particular V the second one is injective, i.e., that for any boundary point
z ∈ X∞ the natural map between stalks

VUz −→ (j∗V≈
)z

is injective. Let us first make this map more explicit. Put

U(z) := system of all open neighbourhoods Ω

of z in X with the property that

Ω ∩X =
∪

y∈Ω∩X
vertex

St(y) .

Because of Lemma 6 we have

(j∗V≈
)z = lim−→

Ω∈U(z)

V
≈
(Ω ∩X) .

The sheaf axiom says that, for any Ω ∈ U(z), the restriction map

V
≈
(Ω ∩X) ↪→

∏
y∈Ω∩X
vertex

V
≈
(St(y))

is injective. According to 1.2 the terms on the right hand side are

V
≈
(St(y)) = V

U
(e)
y

.

Putting this together we see that what we have to show is the injectivity of the
natural map

VUz −→ lim−→
Ω∈U(z)

∏
y∈Ω∩X
vertex

V
U

(e)
y

.

In other words fix a function ψ ∈ V = Cc(G/U
(e)
x ) and a neighbourhood Ω ∈

U(z) such that

ψ = 0modU (e)
y for any vertex y ∈ Ω ∩X .

We have to check that then necessarily ψ = 0modUz. We write ψ as a sum

ψ =
∑

h∈Uz\G/U
(e)
x

ψh
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of functions ψh ∈ Cc(G/U
(e)
x ) in such a way that ψh has support in UzhU

(e)
x /U

(e)
x

and we will show that each summand fulfills ψh = 0modUz. Consider an
individual element h ∈ G. There is an apartment which contains both points x
and h−1z in its closure ([Bro] Thm. VI.8). By I.1.6 we find an element g ∈ Px

such that x, gh−1z ∈ A. Using the G-equivariance of our problem and replacing
z and ψ by gh−1z and gh−1ψ, respectively, we see that it suffices to deal with
the case z ∈ A and h ∈ Px. We choose elements u1, . . . , um ∈ Uz such that

supp(ψh) = {u1hU (e)
x , . . . , umhU

(e)
x } .

Note that uihU
(e)
x = uiU

(e)
x h since Px normalizes U

(e)
x . According to Lemma 7

we find an open neighbourhood Ω′ of z in A such that Ω′ ⊆ Ω ∩A and

u1, . . . , um ∈ U (e)
y for any vertex y ∈ Ω′ ∩A .

In particular we have

ψ = 0modU (e)
y for any vertex y ∈ Ω′ ∩A .

On the other hand it was shown in I.3.2 that

U
(e)
x′ ⊆ Uz · U (e)

x for any x′ ∈ [xz) .

Choosing x′ ∈ [xz) close enough to z in such a way that the closure of the facet
F which contains x′ still lies in Ω′ and choosing a vertex y0 ∈ F we obtain

1. u1, . . . , um ∈ U (e)
y0

,

2. ψ = 0modU (e)
y0

, and

3. U (e)
y0

⊆ U
(e)
F = U

(e)
y′ ⊆ Uz · U (e)

x .

The properties 1. and 3. imply that

4. U (e)
y0
hU (e)

x ∩ supp(ψ) = UzhU
(e)
x ∩ supp(ψ) = (U (e)

y0
∩Uz)hU

(e)
x ∩ supp(ψ) .

It follows from 2. and 4. that

ψh = 0modU (e)
y0

and even ψh = 0modU (e)
y0

∩ Uz .
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Appendix: Geodesics in X

Implicitly in our thinking about the compactification X is the existence of
a unique “half-line” in X between any given point in X and any given boundary
point. In the section after the next one we actually will have to make explicit
use of this fact. Also it is the link between [BS] and [Bro] VI.9. Since we could
not find an appropriate reference this will be justified in the following.

We fix a point x ∈ X and a boundary point z ∈ X∞. According to [BT]
I.7.4.18 (ii) or [Bro] Thm.VI.8 there is an apartment A′ ⊆ X such that

x ∈ A′ and z ∈ (A′)∞ .

Let [xz)A′ denote the half-line in A′ in direction z emanating from x and put

[xz]A′ := [xz)A′ ∪ {z} .

The subsequent result allows to simply write [xz) and to view the latter as the
geodesic between x and z in X.

Proposition:

[xz)A′ does not depend on the choice of the apartment A′.

Proof: Let A′′ ⊆ X be a second apartment such that x ∈ A′′ and z ∈ (A′′)∞.
We have to show that [xz)A′ = [xz)A′′ . We first treat in several steps special
cases where additional assumptions about A′ and A′′ are made.
Step 1: Here we assume that x is a special vertex. For notational simplicity we
may assume by G-equivariance that A′′ = A is our standard apartment and that
z ∈ D∞. By I.1.6 we find an element h ∈ Px such that A′ = hA. Write z = hz0
with z0 ∈ A∞. Since x is a special vertex we find a n ∈ Nx such that nz0 ∈ D∞.
We then must have hn−1 ∈ Pz because D∞ is a fundamental domain for Px in
X∞ ([BS] 4.9 (iii)). Therefore replacing h by hn−1 we may assume that

A′ = hA with h ∈ Px ∩ Pz .

Again since x is a special vertex we obtain from [BS] 4.10 that h fixes the half-line
[xz)A pointwise. We now conclude that

[xz)A′ = [hx, hz)hA = h[xz)A = [xz)A .

Step 2: Here we assume that the intersection A′∩A′′ contains a special vertex x0.
From the first step we know that [x0z)A′ = [x0z)A′′ . Hence [xz)A′ and [xz)A′′

are parallel rays in the sense of [Bro] VI.9A and therefore have to coincide by
the Lemma 1 in loc.cit.
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Step 3: Here we assume that the intersection A′ ∩A′′ contains a sector D′ such
that z ∈ (D′)∞. Choose any x0 ∈ D′. Then clearly [x0z)A′ = [x0z)A′′ . Hence
[xz)A′ and [xz)A′′ again are parallel and therefore equal.
In order to establish the general case we will show that there is an apartment
Ã ⊆ X such that

x ∈ Ã, z ∈ Ã∞, A′ ∩ Ã contains a special vertex, and A′′ ∩ Ã contains a
sector D̃ with z ∈ D̃∞.

Using steps 2 and 3 we then obtain

[xz)A′ = [xz)Ã = [xz)A′′ .

In order to find Ã we choose

a h ∈ G with A′ = hA′′,
a facet of maximal dimension F ⊆ A′′ with h−1x ∈ F ,
a special vertex x1 ∈ F ([BT] I.1.3.7), and
a sector D′′ ⊆ A′′ such that z ∈ (D′′)∞.

By [BT] I.7.4.18 (ii) or [Bro] Thm.VI.8 there exists an apartment Ã ⊆ X which

contains hF and an appropriate subsector D̃ ⊆ D′′. Then x ∈ hF ⊆ Ã, z ∈
D̃∞ ⊆ Ã∞, D̃ ⊆ A′′ ∩ Ã, and x0 := hx1 ∈ A′ ∩ Ã.

Corollary:

Any element in Px ∩ Pz fixes [xz] pointwise.

IV.3. Cohomology on the boundary

In this section we explicitly compute the boundary cohomology H∗(X∞, V )
in the case of an induced representation. Throughout the notations introduced
in III.2 will be in order. In particular ∆ ⊆ Φ is a fixed choice of simple roots.
Corresponding to ∆ we had defined in IV.2 the subset D∞ ⊆ X∞; it is a
(d− 1)-dimensional simplex whose simplicial structure is given by the subsets

DΘ
∞ := {x ∈ D∞ : Ux = UΘ} for any proper subset Θ ⊂ ∆ .

The closureDΘ
∞ ofDΘ

∞ inD∞ (equivalently inX∞) is a (d−1−#Θ)-dimensional
simplex. Since D∞ is a fundamental domain for the G-action on X∞ ([BS] §1)
we have an obvious projection map

τ : X∞ →→ D∞ = G\X∞ ;

it is proper and has totally disconnected fibers. The proper base change theorem
([God] II.4.17.1) therefore implies

H∗(X∞, V ) = H∗(D∞, τ∗V ) .
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For any subset Θ ⊆ ∆ we introduce the space

IndGPΘ
(VUΘ

) := space of all locally constant functions

φ : G→ VUΘ
such that

φ(ghu) = h−1(φ(g))

for all g ∈ G,h ∈MΘ, and u ∈ UΘ

on which G acts smoothly by left translations. (This is unnormalized induction!)

Lemma IV.3.1:

For any proper subset Θ ⊂ ∆ the restriction of τ∗V to DΘ
∞ is the constant sheaf

with value IndGPΘ
(VUΘ).

Proof: The map

G/PΘ ×DΘ
∞

∼−→ τ−1DΘ
∞

(gPΘ, x) 7−→ gx

is a homeomorphism and τ corresponds to the second projection map on the left
hand side. The inverse image of V on the left hand space can be computed as

follows. For any x ∈ DΘ
∞ and any g ∈ G we have the obvious map

VUΘ = VUx

g−→ VUgx .

Also let

ρ := pr × id : G×DΘ
∞ −→ G/PΘ ×DΘ

∞ .

An argument as in the proof of 2.9 shows that the inverse image in question can
be identified with the sheaf on G/PΘ ×DΘ

∞ whose space of sections in an open
subset Ω is the

C-vector space of all locally constant

maps φ : ρ−1Ω −→ VUΘ such that

φ(gh, x) = h−1φ(g, x)

for any (g, x) ∈ ρ−1Ω and h ∈ PΘ.

On the level of sections this identification is given by

s(gx) = gφ(g, x) .

It is quite clear that the direct image of this latter sheaf under the projection
map to DΘ

∞ is the constant sheaf with value IndGPΘ
(VUΘ). Our assertion follows

now by an application of the proper base change theorem.
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Specializing to the case of an induced representation we once and for all fix a
subset Θ0 ⊆ ∆ and an irreducible supercuspidal representation E of MΘ0 and
we put V := Ind(E).
For any Θ ⊆ ∆ we need the subgroup WΘ := ⟨sα : α ∈ Θ⟩ of W ; moreover
let [W/WΘ0 ], resp. [WΘ\W/WΘ0 ], denote the subset in W of representatives of
minimal length for the cosets inW/WΘ0 , resp. the double cosets inWΘ\W/WΘ0 .
The Weyl group W acts on the set of roots Φ. According to [Cas] 1.3.4 two
subsets Θ and Θ′ in ∆ are associated if and only if Θ′ = wΘ for some w ∈W .

Lemma IV.3.2:

For any proper subset Θ ⊂ ∆ the following assertions are equivalent:

i. VUΘ ̸= 0;

ii. wΘ0 ⊆ Θ for some w ∈ [WΘ\W/WΘ0 ];

iii. Θ contains a subset which is associated to Θ0.

Proof: The equivalence of i. and ii. follows from [Cas] 6.3.5. The third assertion
is a trivial consequence of the second one. To see the reverse implication assume
that wΘ0 ⊆ Θ for some w ∈ W . We then have w ∈ [WwΘ0\W/WΘ0 ] by [Cas]
1.1.3 and hence VUwΘ0

̸= 0. But UΘ ⊆ UwΘ0
so that VUΘ

̸= 0, too.

Corollary IV.3.3:

The support of the sheaf τ∗V is equal to the (d−1−#Θ0)-dimensional simplicial
subcomplex

D∞(Θ0) :=
∪

{DΘ
∞ : wΘ0 ⊆ Θ ⊂ ∆ for some w ∈W}

of D∞.

Let ≤ on W denote the Bruhat order. We now fix an enumeration

[W/WΘ0 ] = {1 = w0, w1, w2 . . .}

in such a way that

m ≤ n if wm ≤ wn .

This allows us to define, for any proper subset Θ ⊂ ∆, a decreasing filtration

Fn
ΘV := {φ ∈ Ind(E) : φ|PΘwmPΘ0 = 0 for any m < n}

of V by PΘ-invariant subspaces. It induces corresponding filtrations

(Fn
ΘV )UΘ of VUΘ
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(forming the Jacquet module is exact!) and

FnIndGPΘ
(VUΘ) := IndGPΘ

((Fn
ΘV )UΘ) of IndGPΘ

(VUΘ) .

The latter clearly is G-equivariant. Most importantly we obtain a G-equivariant
filtration Fnτ∗V of the sheaf τ∗V defined by

Fnτ∗V := subsheaf of all sections s such that

s(z) ∈ FnIndGPΘ
(VUΘ)

for any z ∈ DΘ
∞ and any Θ ⊂ ∆.

Our further computation is based on the associated G-equivariant spectral se-
quence

En,m
1 := Hm+n(D∞, gr

n
F τ∗V ) =⇒ Hm+n(D∞, τ∗V ) = Hm+n(X∞, V ) .

First of all we have

(grnF τ∗V )z = IndGPΘ
((grnFΘ

V )UΘ) for any z ∈ DΘ
∞ and Θ ⊂ ∆ .

(The functor IndGPΘ
(.) is exact by [Car] I.1.8.) By construction

grnFΘ
V = 0 if wn ̸∈ [WΘ\W/WΘ0 ] .

Let us fix, for any wn ∈ [W/WΘ], a lifting gn ∈ N . If wn ∈ [WΘ\W/WΘ0 ] then
the computation in [Cas] 6.3.1 and 6.3.4 shows that

(grnFΘ
V )UΘ = 0 if and only if wnΘ0 ̸⊆ Θ and

= δ
−1/2
Θ ⊗

[
normalized induction of g−1

n E
from gnPΘ0g

−1
n ∩MΘ to MΘ

]
if wnΘ0 ⊆ Θ .

Since we have, by [Cas] 1.3.3, the Levi decomposition

gnPΘ0g
−1
n ∩MΘ =MwnΘ0 · (gnUΘ0g

−1
n ∩MΘ)

the last formula simplifies to

(grnFΘ
V )UΘ = δ

−1/2
Θ ⊗

[
normalized parabolic induction

of g−1
n E from MwnΘ0 to MΘ

]
if wnΘ0 ⊆ Θ .

Using the transitivity of parabolic induction ([BZ] 1.9.(c)) we therefore obtain
that

(grnF τ∗V )z =

{
Ind(g

−1
n E) if wn ∈ [WΘ\W/WΘ0 ] and wnΘ0 ⊆ Θ ,

0 otherwise
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for any z ∈ DΘ
∞ and Θ ⊂ ∆. Put

D∞(n) := ∪{DΘ
∞ : wnΘ0 ⊆ Θ ⊂ ∆ and wn ∈ [WΘ\W/WΘ0 ]}

= ∪{DΘ
∞ : Θ ⊂ ∆ and wnΘ0 ⊆ Θ ⊆ wnΦ

+} ;

the equality is a consequence of [Cas] 1.1.3. This set is empty if wnΘ0 is not

properly contained in ∆; otherwise it is an open subset in DwnΘ0∞ which contains
DwnΘ0

∞ . Altogether this establishes the following fact.

Lemma IV.3.4:

grnF τ∗V is the constant sheaf with value Ind(g
−1
n E) on D∞(n) extended by zero

to all of D∞.

For the corresponding cohomology groups this has the consequence that

H∗(D∞, gr
n
F τ∗V ) = H∗

c (D∞(n),ZZ)⊗ Ind(g
−1
n E)

=


H∗−1(DwnΘ0∞ \D∞(n),ZZ)⊗ Ind(g

−1
n E) if ∗ ≥ 2 ,

coker(ZZ −→ H0(DwnΘ0∞ \D∞(n),ZZ))⊗ Ind(g
−1
n E) if ∗ = 1 ,

ker( — ” — ) ⊗ Ind(g
−1
n E) if ∗ = 0

provided D∞(n) ̸= ∅.

Lemma IV.3.5:

Assume that wnΘ0 is a proper subset of ∆ and that n ̸= 0, #W/WΘ0 ; then

DwnΘ0∞ \D∞(n) is contractible.

Proof: DwnΘ0∞ is the geometric realization of the abstract simplex given by the
poset (w.r.t. inclusion) of all nonempty subsets of ∆\wnΘ0 (note that by assump-

tion ∆\wnΘ0 ̸= ∅). DwnΘ0∞ \D∞(n) is the geometric realization of the subcom-
plex given by the subposet of all those subsets which do not contain ∆\wnΦ

+.
Our assumption that n ̸= 0, resp. ̸= #W/WΘ0 , implies that ∆\wnΦ

+ ̸= ∅, resp.
̸= ∆\wnΘ0. The first implication is a consequence of [Bor] 21.3. In order to see
the second implication assume n ̸= #W/WΘ0 and put w := wn. Let w∆, resp.
wΘ0

, be the unique maximal (w.r.t. the Bruhat order) element inW , resp.WΘ0
;

then w ̸= w∆wΘ0 so that wwΘ0 ̸= w∆. Hence there is an α0 ∈ ∆ such that

sα0wwΘ0 > wwΘ0 and a fortiori sα0w > w
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which means α0 ∈ wΦ+. On the other hand denoting by ℓ(.) the length function
on W w.r.t. ∆ we have, for any α ∈ Θ0,

ℓ(sw(α)wwΘ0
) = ℓ(wsαwΘ0

) = ℓ(w) + ℓ(sαwΘ0
) = ℓ(w) + ℓ(wΘ0

)− 1

= ℓ(wwΘ0)− 1 .

It follows that α0 ̸∈ wΘ0.
What we have to convince ourselves of therefore is the following. Let C be a
nonempty finite set, let ∅ ⊂ C0 ⊂ C be a nonempty proper subset, and denote by
Π the poset (w.r.t. inclusion) of all nonempty subsets of C which do not contain
C0. Then the geometric realization |Π| of the abstract simplicial complex given
by Π is contractible. But this is clear: Fix an element c ∈ C\C0. The subset
{c} corresponds to a vertex in |Π|. Since for any C ′ ∈ Π also C ′ ∪ {c} ∈ Π it
follows that |Π| can be contracted onto that vertex.

Lemma IV.3.6:

i. D∞(0) = DΘ0∞ if Θ0 ⊂ ∆;

ii. D∞(n) = DwnΘ0
∞ if Θ0 ⊂ ∆ and n = #W/WΘ0 .

Proof: i. Obvious. ii. This follows from the fact that wnΘ0 = wnΦ
+ ∩∆ if wn

is the unique maximal element in [W/WΘ0 ] ([Cas] 1.1.4).

Theorem IV.3.7:

Assume that V = Ind(E) for some irreducible supercuspidal representation E
of MΘ0 ; let g

−1 ∈ N be a lifting of the unique maximal element in [W/WΘ0 ];
we then have

H∗(X∞, V ) ∼=


V ⊕ Ind(gE) if ∗ = 0 , #Θ0 = d− 1 ,
V if ∗ = 0 , #Θ0 < d− 1 ,
Ind(gE) if ∗ = d− 1−#Θ0 > 0 ,
0 otherwise .

Proof: In case Θ0 = ∆ we have V = 0. In the following we therefore assume
that Θ0 ⊂ ∆. According to the previous results the only nonzero E1-terms in
our spectral sequence then are

En,m
1

∼=
{
V if n = m = 0 ,
Ind(gE) if n = #W/WΘ0

, n+m = d− 1−#Θ0 .

Moreover since V is a quotient of the constant sheaf with value V on X∞ we

have a natural augmentation map V → H0(X∞, V ) which splits the edge ho-
momorphism

H0(X∞, V ) = H0(D∞, τ∗V ) −→ H0(D∞, gr
0
F τ∗V ) = E0,0

1 = V .

Hence the spectral sequence degenerates and the assertion follows.
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IV.4. Cohomology with compact support

Our main aim in this section is to establish the following result. In the
proof we will follow the strategy developped for II.3.1; but the tools used there
have to be analyzed in more depth.

Theorem IV.4.1:

Let x be a special vertex in A and let e ≥ 0 be an integer; for any representation

V in AlgU
(e)
x (G) we have:

i. the natural map V
∼=−→ H0(X, j∗,∞V≈

) is an isomorphism;

ii. H∗(X, j∗,∞V≈
) = 0 for ∗ > 0.

In the proof we twice will make use of homological resolutions. This is made
possible by the following observation.

Lemma IV.4.2:

i. cd(X) = d;

ii. cd(X∞) = d− 1 if d ≥ 1;

iii. cd(X) = d.

Proof: (Here cd(.) refers to the cohomology with compact support.) iii. is a
consequence of i. and ii. by the additivity of the cohomological dimension. Con-
cerning i. it is a standard fact that a d-dimensional locally finite polysimplicial
complex has cohomological dimension = d. Finally ii. follows from the existence
of a proper map from X∞ onto a (d− 1)-simplex whose fibers are compact and
totally disconnected ([BS] 3.1).

The functor V 7→ j∗,∞V≈
is exact and commutes with arbitrary direct sums

as can be seen most easily from the description of the stalks. Moreover X
being compact the cohomology functor H∗(X, .) commutes with arbitrary direct
sums.
In the proof of II.3.1 we had seen that any V as in Theorem 1 has an exact

homological resolution in AlgU
(e)
x (G) by representations which are direct sums

of the “universal” representation Cc(T ) with T := G/U
(e)
x . Using Lemma 2 and

the facts given in the above paragraph we conclude by standard arguments of
homological algebra that in order to prove Theorem 1 it suffices to treat the case
V = Cc(T ).
For the rest of the proof V always denotes the representation Cc(T ). We begin
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by constructing a very convenient simplicial resolution of the sheaf V
≈

on X. Fix

an integer m ≥ 0 and consider the (m+ 1)-fold product

Tm := Tm+1 := T × . . .× T .

As in the proof of II.3.1 we put, for any facet F in X,

TF := U
(e)
F \T and TF

m := T ×
TF

. . . ×
TF

T (m+ 1 factors).

The latter is a subset in Tm+1. For facets F ′ ⊆ F we have TF ′

m ⊆ TF
m . Extending

functions by zero therefore induces inclusions

Cc(T
F
m) ⊆ Cc(T

m+1)

in such a way that

Cc(T
F ′

m ) ⊆ Cc(T
F
m) if F ′ ⊆ F .

We recall that Cc(.) stands for the space of complex valued functions with finite
support. If the point z ∈ X is contained in the facet F we write

Tz := TF and T z
m := TF

m .

A sheaf Tm on X can now be defined in the following way: For any open subset
Ω ⊆ X put

Tm(Ω) := C-vector space of all maps s : Ω →
∪̇
z∈Ω

Cc(T
z
m)

such that

— s(z) ∈ Cc(T
z
m) for any z ∈ Ω ,

— there is an open covering Ω =
∪
i∈I

Ωi and

functions ψi ∈ Cc(T
m+1) with

s(z) = ψi for any z ∈ Ωi and i ∈ I .

Lemma IV.4.3:

i. (Tm)z = Cc(T
z
m) for any z ∈ X;

ii. the restriction of Tm to any facet F of X is the constant sheaf with value
Cc(T

F
m);

iii. for any facet F in X we have

H∗(St(F ), Tm|St(F )) = H∗(F, Tm|F =

{
Cc(T

F
m) if ∗ = 0 ,

0 if ∗ > 0 .

Proof: Entirely analogous to 1.1 and 1.2.
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In order to distinguish various constant sheaves in the following it is convenient
to follow the convention thatM/Y , for any abelian groupM and any topological
space Y , denotes the constant sheaf with value M on Y . Obviously

T. : . . .
−→−→−→−→ T × T × T

−→−→−→ T × T −→−→ T

as well as

T.F : . . .
−→−→−→−→ T ×

TF

T ×
TF

T
−→−→−→ T ×

TF

T −→−→ T

for any facet F in a natural way are simplicial sets. The pushforward of functions
with finite support with respect to these face maps commutes with extension by
zero. In this way we obtain simplicial sheaves

Cc(T.)/X : . . .
−→−→−→−→ Cc(T2)/X

−→−→−→ Cc(T1)/X −→−→ Cc(T )/X

and

T . : . . .
−→−→−→−→ T2

−→−→−→ T1 −→−→ T0

on X together with an inclusion

T . ⊆ Cc(T.)/X

which in degree 0 is an equality T0 = Cc(T )/X . The obvious surjection
Cc(T )/X →→ V

≈
defines an augmentation

T . −→ V
≈

.

Applying j∗ we obtain the augmented simplicial sheaf

j∗T . −→ j∗V≈

on X.

Lemma IV.4.4:

For any abelian group M we have

j∗(M/X) =M/X .

Proof: We will establish a slightly stronger fact. Fix a boundary point z ∈ X∞.
We will show that z has a fundamental system of open neighbourhoods Ω in X
such that both Ω and Ω ∩ X are path-connected. The tool to construct such
neighbourhoods is the notion of the angle between two intersecting geodesics in
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X ([Bro] VI.7 Ex. 1). We first need some notation. Let x ∈ X be any point.
For any other point y ∈ X different from x we put

[xy) :=

{
[xy]\{y} if y ∈ X ,
half-line emanating from x in direction y if y ∈ X∞

([Bro] VI.9A). In either case [xy] := [xy)∪ {y} then is a path from x to y in X.
We also put

(xy] := [xy]\{x} and (xy) := [xy]\{x, y} .

There is a unique facet F (x; y) in X such that

x ∈ F (x; y) and (xy) ∩ F (x; y) ̸= ∅ ;

clearly the latter intersection is of the form

(xy) ∩ F (x; y) = (xyx) for some yx ∈ (xy] .

Given now two points y, y′ ∈ X different from x then the two geodesics [xyx]
and [xy′x] lie in a common apartment (which is euclidean) so that the angle
0 ≤ γ(x; y, y′) ≤ 3, 14 . . . between them is defined (and, in fact, is independent
of the chosen apartment). For any real number 0 < ε < 1 we consider the subset

Ω(x; z; ε) := {y ∈ X\{x} : γ(x; y, z) < ε}

of X which contains z. We will successively prove:
1. Ω(x; z; ε) and Ω(x; z; ε) ∩X are path-connected.
2. The function

X\{x} −→ IR+

y 7−→ γ(x; y, z)

is continuous.
3. There is a constant 0 < ε(x; z) < 1 such that

F (x; z) ⊆ F (x; y) for any y ∈ Ω(x; z; ε(x; z)) .

4. For any z′ ∈ Ω(x; z; ε)∩X∞ and any ε′ < min(ε−γ(x; z′, z), ε(x; z′)) we have

Ω(x; z′; ε′) ⊆ Ω(x; z; ε) .

5. Ω(x; z; ε) is open in X.
6. For x′ ∈ [xz) and 0 < ε′ ≤ ε we have

Ω(x′; z; ε′) ⊆ Ω(x; z; ε) .
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7. Let ε(.) : IR+ → (0, 1) be a decreasing function; then∩
x′∈[xz)

Ω(x′; z; ε(d(x, x′))) = {z} .

8. The Ω(x; z; ε) for varying x and ε form a fundamental system of neighbour-
hoods of z in X.
The assertions 1., 5., and 8. contain what we wanted to establish.
Ad 1: Let y and y′ be points in Ω(x; z; ε). Then obviously [yxy] ∪ [y′xy

′] ⊆
Ω(x; z; ε). By looking at an apartment which contains F (x; y) and F (x; z) and
hence the convex hull of {x, yx, zx} one sees that [yxzx] ⊆ Ω(x; z; ε). We simi-
larly have [y′xzx] ⊆ Ω(x; z; ε).
Ad 2: The sets F\{x} with F running through all the facets of X form a locally
finite closed covering of X\{x}. It therefore suffices to check the continuity of
the function restricted to each such set. But the latter is clear again by looking
at an apartment which contains F (x; z) and F .
Ad 3: This follows from [BT] I.2.5.11 and the elementary geometry of an apart-
ment containing F (x; z) and F (x; y).
Ad 4: Let y be a point in Ω(x; z′; ε′). Looking at an apartment which contains
F (x; z) and F (x; y) and hence, by the assumption on ε′, also F (x; z′) we find

γ(x; y, z) ≤ ε′ + γ(x; z′, z) < ε .

Ad 5: As a consequence of 2, we know already that Ω(x; z; ε) ∩ X lies in the
interior of Ω(x; z; ε). It remains to consider a boundary point. Because of 4.
it is actually sufficient to show that Ω(x; z; ε) is a neighbourhood of z where in
addition we may assume that z ∈ D∞. Suppose this would not be true. Then
we find a sequence (zn)n∈IIN of points in X\(Ω(x; z; ε) ∪ {x}) which converges
to z. This means in particular that γ(x; zn, z) ≥ ε for all n ∈ IIN. On the other
hand we will show below that

lim
n→∞

γ(x; zn, z) = 0 whenever lim
n→∞

zn = z .

This gives a contradiction and proves our claim.
By the construction of X we have zn = hnyn with hn ∈ P0 and yn ∈ D. Since
P0/C and D are compact we may assume by passing to a subsequence that the
hnC converge to hC for some h ∈ P0 and that the yn converge to some y ∈ D.
It follows that hy = z and hence even y = z so that h ∈ P0 ∩ Pz. Passing again
to a subsequence we further may assume that all hh−1

n fix F (x; z) pointwise.
Using that the G-action on X respects angles ([BT] I.7.4.11) we conclude that

γ(x; zn, z) = γ(hh−1
n x;hyn, hh

−1
n z) = γ(x;hyn, z) .

This argument shows that it suffices (replace D by hD) to consider a sequence
zn contained in D. Now using [BT] I.7.4.18 (ii) or [Bro] VI.8 Thm. we find a

95



subsector D′ := x′ + D ⊆ D such that x and D′ are contained in a common
apartment A′. In particular z ∈ D′ because of (D′)∞ = D∞; moreover (x′ +
zn)n∈IIN is a sequence in D′ which converges to z (note that x′ + zn = zn if
zn ∈ D∞). It is clear from the definition of the topology of A′ that

lim
n→∞

γ(x;x′ + zn, z) = 0 .

From the cosine inequality in [Bro] VI.7 Ex. 2 it is also clear that

lim
n→∞

γ(x; zn, x
′ + zn) = 0 .

We finally pass for a last time to subsequences of (zn) and (x′ + zn) in such a
way that the facet F := F (x; zn), resp. F

′ := F (x;x′ + zn), is independent of
n ∈ IIN. Then necessarily F (x; z) ⊆ F ′. In this situation we see by working in
an apartment which contains F and F ′ that

γ(x; zn, z) ≤ γ(x; zn, x
′ + zn) + γ(x;x′ + zn, z) .

Combining the last three formulas we obtain lim
n→∞

γ(x; zn, z) = 0.

Ad 6: Let y be any point in Ω(x′; z; ε′). Assume that y ̸∈ [xz) because otherwise
y for trivial reasons lies in Ω(x; z; ε). Then the function

x′ 7−→ γ(x′; y, z) on [xz)

is defined. We show that it is increasing as a function of d(x, x′). Choose
an apartment A′ which contains F (x′; z) ∪ {y}. Looking at the convex hull of
{x′, zx′ , y} in A′ it is clear that

γ(x′′; y, z) ≥ γ(x′; y, z) for any x′′ ∈ [x′zx′ ] .

Ad 7: Let y be any point in the intersection on the left hand side. Then y ̸∈ [xz)
and γ(x′; y, z) ≤ ε(d(x, x′)) for any x′ ∈ [xz). The left hand side is increasing
with d(x, x′) by the previous argument whereas the right hand side is decreasing
by assumption. It follows that γ(x′; y, z) = 0 for any x′ ∈ [xz). Would y and z
be different then we would have

[xz] ∩ [xy] = [xx′] for some x′ ∈ [xz) .

On the other hand one easily deduces from γ(x′; y, z) = 0 that (x′yx′)∩(x′zx′) ̸=
∅. Hence we would obtain a contradiction.
Ad 8: Choose a sequence of points x1, x2, . . . in [xz) such that d(x, xi) is in-
creasing and tends to ∞ and choose a decreasing sequence of real numbers
0 < ε1, ε2, . . . < 1 which converges to 0. Then the subsets Ω(xi; z; εi) form,
by 5. and 6., a decreasing sequence of open neighbourhoods of z such that the
intersection of their closures is, by 6. and 7., equal to {z}. It is a general fact
about compact Hausdorff spaces that such a sequence has to be a fundamental
system of neighbourhoods.
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This has two consequences: First of all we obtain an inclusion

j∗T . ⊆ Cc(T.)/X

of simplicial sheaves on X. Secondly because of j∗T0 = V/X it follows from 2.11

that j∗,∞V≈
is the image of the augmentation map. Therefore we actually have

an augmented simplicial sheaf

j∗T .→→ j∗,∞V≈

with surjective augmentation map.

Proposition IV.4.5:

The associated complex of sheaves

. . . −→ j∗T1 −→ j∗T0 −→ j∗,∞V≈
−→ 0

is exact.

Proof: This is shown stalkwise. First let z be a point in X. By 1.1.i and Lemma
3.i the sequence of stalks in z is the complex of functions with finite support
associated with the augmented simplicial set T.z → Tz. It is exact since the
fibers of that augmentation are contractible simplicial sets (compare [SS] p. 22).
The same reasoning works for a boundary point z ∈ X∞ where we use the
unipotent subgroup Uz in order to analogously define

Tz := Uz\T and T z
m := T ×

Tz

. . .×
Tz

T (m+ 1 factors)

once we show that the augmented simplicial vector spaces

(j∗T .)z −→ Cc(T )Uz

and

Cc(T.
z) −→ Cc(Tz)

coincide. Both simplicial vector spaces are contained in Cc(T.) so that the
comparison can be done termwise. We need the subsequent two facts.
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Lemma IV.4.6:

Let z ∈ X∞ be a boundary point; for any open neighbourhood Ω of z in X we
have ∩

y∈Ω∩X

T y
m ⊆ T z

m .

Proof: Assume that (t0, . . . , tm) is a tuple which is contained in the left hand
side but not in the right hand side. Then there is a 1 ≤ j ≤ m such that

gt0 ̸= tj for any g ∈ Uz .

Let g0 ∈ G be a coset representative of t0 = g0U
(e)
x . Choose a point y ∈

Ω ∩ [g0(x)z). By assumption we have

ht0 = tj for some h ∈ U (e)
y .

In I.3.2 it was shown that

U (e)
y ⊆ Uz · U (e)

g0x

or equivalently

U (e)
y g0U

(e)
x ⊆ Uzg0U

(e)
x

holds true. (Observe that by [Bro] Thm. VI.8 there is an apartment which
contains the special point g0x and the boundary point z in its closure.) But this

implies U
(e)
y · t0 ⊆ Uz · t0 which is a contradiction.

Lemma IV.4.7:

Let z ∈ X∞ be a boundary point; for any tuple (t0, . . . , tm) ∈ T z
m there is an

open neighbourhood Ω of z in X such that

(t0, . . . , tm) ∈ T y
m for any y ∈ Ω ∩X .

Proof: By G-equivariance we may assume that z ∈ D∞ where D is the funda-
mental Weyl chamber introduced in 2.1. Let U ′ ⊆ G be an open subgroup such
that

gtj = tj for all g ∈ U ′ and 0 ≤ j ≤ m .

By assumption there are elements uj ∈ Uz such that

tj = ujt0 for 1 ≤ j ≤ m .

The subset

c :=
∪

1≤j≤m

{hujh−1 : h ∈ P0 ∩ Pz}
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of Uz is compact. Hence we find, by 2.7, an open neighbourhood Ω0 of z in A
such that

c ⊆ U
(e)
F for any facet F ⊆ Ω0 ∩X .

According to 2.5 there is now an open neighbourhood Ω of z in X of the form

Ω = U(P0 ∩ Pz) · Ω1

where

— U ⊆ U ′ is an open subgroup,

— Ω1 is an open neighbourhood of z in D such that Ω1∩X is a union of facets,
and

— Ω1 ⊆ Ω0.

In particular we have

c ⊆ U
(e)
y′ for any y′ ∈ Ω1 ∩X .

Consider an arbitrary point

y = ghy′ with g ∈ U , h ∈ P0 ∩ Pz , and y
′ ∈ Ω1 ∩X

in Ω ∩X. By construction we obtain

tj = gtj = gujt0 = gujg
−1t0 = gh(h−1ujh)h

−1g−1t0

∈ ghU
(e)
y′ h

−1g−1 · t0 = U (e)
y · t0

for any 1 ≤ j ≤ m which means that (t0, . . . , tm) ∈ T y
m.

Returning to the proof of Proposition 5 let first ψ be a function in (j∗Tm)z ⊆
Cc(Tm). This means that there is an appropriate open neighbourhood Ω of z in
X such that ψ ∈ Cc(T

y
m) for any y ∈ Ω ∩X. In other words the support of ψ is

contained in
∩

y∈Ω∩X

T y
m and hence in T z

m by Lemma 6.

Conversely let ψ be a function in Cc(T
z
m). Then it follows from Lemma 7 that

ψ can be viewed as a section in Tm(Ω ∩X) = j∗Tm(Ω) for some neighbourhood
Ω of z in X.
Finally in order to compare the two augmentation maps we have to check that
the pushforward of functions with respect to the projection map T → Tz induces
an isomorphism

Cc(T )Uz

∼=−→ Cc(Tz) .

The surjectivity is trivial. For the injectivity it suffices to consider a function
ψ ∈ Cc(T ) whose image in Cc(Tz) vanishes and which is supported on a single
Uz-orbit in T . We then find a compact open subgroup U in Uz such that ψ
even is supported on a single U -orbit in T . Hence the image of ψ in Cc(U\T )
vanishes which implies that ψ = 0modU . This finishes the proof of Proposition
5.
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The computation of the cohomology of a sheaf j∗Tm will be based on the obser-
vation that this sheaf has a natural direct sum decomposition. For each tuple
(t0, . . . , tm) ∈ Tm we introduce the subset

X
(t0,...,tm)

:= {z ∈ X : (t0, . . . , tm) ̸∈ T z
m}

of X and we put

X(t0,...,tm) := X
(t0,...,tm) ∩X and

X(t0,...,tm)
∞ := X

(t0,...,tm) ∩X∞ .

Clearly X
(t0,...,tm)

= ∅ if t0 = . . . = tm. Assuming therefore that {t0, . . . , tm}
has cardinality at least 2 let us first collect a number of properties of the subspace

X
(t0,...,tm)

which will be of use later on.

IV.4.8. X(t0,...,tm) is a nonempty closed geodesically contractible CW-subspace
of X.
(This was already noted in the proof of II.3.1.)

IV.4.9. For any open subset Ω ⊆ X such that Ω ∩ X
(t0,...,tm)
∞ ̸= ∅ we have

Ω ∩X(t0,...,tm) ̸= ∅.
(This follows from Lemma 6.)

IV.4.10. Any boundary point z ∈ X∞\X(t0,...,tm)
∞ has an open neighbourhood Ω

in X such that Ω ∩X(t0,...,tm) = ∅.
(This follows from Lemma 7.)

IV.4.11. Choose g0 ∈ G such that t0 = g0U
(e)
x ; for any z ∈ X

(t0,...,tm)
∞ we have

[g0(x)z) ⊆ X
(t0,...,tm)

.
(This is proved literally in the same way as Lemma 6.)

IV.4.12. We have

X
(t0,...,tm)

= X(t0,...,tm) ;

in particular X
(t0,...,tm)

is closed in X.
(This is a consequence of 10. and 11.)

For an arbitrary tuple we now define the sheaf C(t0,...,tm) onX to be the constant

sheaf with value C on the open subset X\X(t0,...,tm) extended by zero to all of
X.

Lemma IV.4.13:

Tm = ⊕
(t0,...,tm)∈Tm

C(t0,...,tm).

Proof: Straightforward.
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Lemma IV.4.14:

j∗C(t0,...,tm) is the constant sheaf with value C on the open subset X\X(t0,...,tm)

extended by zero to all of X.

Proof: This is a consequence of 12 and Lemma 4.

By comparing stalks we obtain

j∗Tm = ⊕
(t0,...,tm)∈Tm

j∗C(t0,...,tm)

and hence

H∗(X, j∗Tm) = ⊕
(t0,...,tm)∈Tm

H∗(X, j∗C(t0,...,tm))

= ⊕
(t0,...,tm)∈Tm

H∗(X,X
(t0,...,tm)

; C) .

Proposition IV.4.15:

H∗(X, j∗Tm) =

{
Cc(T ) if ∗ = 0 ,
0 if ∗ > 0 .

Proof: X is contractible by [BS] 5.4.5. The same argument together with 8. and

11. shows thatX
(t0,...,tm)

, for {t0, . . . , tm} of cardinality at least 2, is contractible
as well.

Because of Lemma 2 the resolution in Proposition 5 gives rise to the hyperco-
homology spectral sequence

Er,s
1 = Hs(X, j∗T−r) =⇒ Hr+s(X, j∗,∞V≈

) .

It degenerates by Proposition 15 and exhibits H∗(X, j∗,∞V≈
) as the homology

of the complex

. . .
0−→ V

id−→ V
0−→ V .

This proves Theorem 1.
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Corollary IV.4.16:

Let V be a representation of finite length in Alg(G); if e is chosen large enough
then we have

H∗
c (X,V≈

) =


ker(V → V (X∞)) if ∗ = 0 ,
coker(V → V (X∞)) if ∗ = 1 ,

H∗−1(X∞, V ) if ∗ ≥ 2 .

We fix a subset Θ ⊆ ∆. As in the proof of 3.5 let w∆, resp. wΘ, denote the
unique maximal (w.r.t. the Bruhat order) element in W , resp. WΘ. We also fix
a lifting g ∈ N of wΘw∆; note that (wΘw∆)

−1 is the unique maximal element
in [W/WΘ].

Theorem IV.4.17:

Assume that V = Ind(E) for some irreducible supercuspidal representation E
of MΘ; if e is chosen large enough then we have

H∗
c (X,V≈

) ∼=
{
Ind(gE) if ∗ = d−#Θ ,
0 otherwise .

Proof: Corollary 16 and 3.7.

Corollary IV.4.18:

Let E be an irreducible supercuspidal representation in Algχ(MΘ); we then have

E∗(Ind(E)) ∼=
{
Ind(gẼ) if ∗ = d−#Θ ,
0 otherwise .

Proof: Theorem 17 and 1.4.

Corollary IV.4.19:

Let V be a representation in Algflχ,Θ(G); if e is chosen large enough then we have

H∗
c (X,V≈

) = 0 for ∗ ̸= d−#Θ.

Proof: This follows from Theorem 17 by an induction argument as in the proof
of III.3.1. (Because of 1.4 the present assertion and III.3.1.i actually are equiv-
alent.)

102



IV.5. The Zelevinsky involution

We fix a central character χ and let RZZ(G;χ) be the Grothendieck group
of representations of finite length in Algχ(G) (w.r.t. exact sequences); the class
in RZZ(G;χ) of a representation V is denoted by [V ]. It follows from III.3.1 that

ι : RZZ(G;χ) −→ RZZ(G;χ)

[V ] 7−→
∑
i≥0

(−1)i · [E i(Ṽ )]

is a well-defined homomorphism such that

ι([V ]) = (−1)d−#Θ0 · [E(Ṽ )] for any V in Algflχ,Θ0
(G) .

Proposition IV.5.1:

ι respects up to sign the classes of irreducible representations.

Proof: This is III.3.2.

Consider a representation V in Algflχ,Θ0
(G). It is a consequence of 3.1 that there

is an augmented complex

⊕
Θ⊆∆
#Θ=d

IndGPΘ
(VUΘ) = V

y
⊕

Θ⊆∆
#Θ=d−1

IndGPΘ
(VUΘ) −→ . . . −→ ⊕

Θ⊆∆
#Θ=0

IndGPΘ
(VUΘ)

which computes the cohomology H∗(X∞, V ). By combining 1.4 and 4.16 we

see that the only nonvanishing homology group of that complex is E(Ṽ ); it sits
in degree d − 1 − #Θ0 if the complex is put in degree −1 up to d − 1. Since
the formation of Jacquet modules as well as the parabolic induction respect
representations of finite length ([Ber] 3.1) each term in the above complex has
a well-defined class in RZZ(G;χ).

Proposition IV.5.2:

For any representation V of finite length in Algflχ (G) we have

ι([V ]) =
∑
Θ⊆∆

(−1)d−#Θ · [IndGPΘ
(VUΘ)] .

Proof: Obvious from the preceding discussion.
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For any Θ ⊆ ∆ let P−Θ be the parabolic subgroup of G which contains MΘ and
is opposite to PΘ; then P−Θ ∩PΘ =MΘ. Let U−Θ denote the unipotent radical
of P−Θ. The modulus character of P−Θ is

P−Θ
pr→→MΘ

δ−1
Θ−→ IR×

+

([Cas] 1.6).

Lemma IV.5.3:

Let E be a representation of finite length in Algχ(MΘ) for some Θ ⊆ ∆; we then
have

[IndGP−Θ
(E)] = [Ind(δ

−1/2
Θ ⊗ E)] .

Proof: If g ∈ N lifts w∆ then g−1P−Θg = Pw∆wΘΘ. We obtain

IndGP−Θ
(E) ∼= IndPw∆wΘΘ(

gE) = Ind(δ
1/2
w∆wΘΘ ⊗ gE) = Ind(g(δ

−1/2
Θ ⊗ E)) .

Because of g−1MΘg =Mw∆wΘΘ we may apply III.2.1 and we see that the latter

representation has the same irreducible constituents as Ind(δ
−1/2
Θ ⊗ E).

Proposition IV.5.4:

For any representation V in Algflχ,Θ0
(G) we have

[E(Ṽ )] = [E(V )∼] .

Proof: Dualizing the discussion preceding Proposition 2 we obtain

[E(V )∼] =
∑
Θ⊆∆

(−1)#Θ+#Θ0 · [IndGPΘ
(ṼUΘ)

∼]

=
∑
Θ⊆∆

(−1)#Θ+#Θ0 · [Ind(δ−1/2
Θ ⊗ VU−Θ)]

where the second equality even holds termwise by [Cas] 4.2.5. On the other
hand Proposition 2 holds true, of course, for any choice of simple roots, e.g.,
−∆. Hence we have

[E(Ṽ )] =
∑
Θ⊆∆

(−1)#Θ+#Θ0 · [IndGP−Θ
(VU−Θ)] .

Apply now Lemma 3.
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Corollary IV.5.5:

ι is an involution, i.e., ι ◦ ι = id.

Proof: Combine Proposition 4 and III.1.5.

The Proposition 2 shows that (−1)d · ι coincides with the involution DG studied
in [Au1] 5.24. It therefore follows from [Au1] 5.36 that in case G = GLd+1(K)
the Zelevinsky involution i considered in [Zel] 9.16 is equal to −ι. Hence Propo-
sition 1 proves the Duality Conjecture 9.17 in [Zel]. It also follows that the
orthogonality property discussed in [Au1] 5.D holds true.

Assume K to have characteristic 0 and the center of G to be compact. Then
the above results hold without having specified a central character. In III.4 after
Thm. 21 we had seen that the Euler-Poincaré characteristic EP (., .) induces a
nondegenerate symmetric bilinear form on the quotient R(G) = R(G)/RI(G)
of the Grothendieck group R(G) = RZZ(G) ⊗ C. It follows from Proposition 2
or from III.4.3.i that EP (ι., .) = EP (., .). Hence the involution ι respects the
subgroup RI(G) and induces the identity on the quotient R(G) or, equivalently,
(id−ι)(R(G)) ⊆ RI(G).
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V. The functor from equivariant coefficient systems to representa-
tions

In this final Chapter we want to examine more closely the relation between
representations and coefficient systems. The category Coeff(X) of coefficient
systems (of complex vector spaces) on X was introduced in II.2. We say the
group G acts on the coefficient system (VF )F if, for any g ∈ G and any facet
F ⊆ X, there is given a linear map

gF : VF −→ VgF

in such a way that

— ghF ◦ hF = (gh)F for any g, h ∈ G and any F ,

— 1F = idVF for any F , and

— the diagram

VF
gF−→ VgF

rF
F ′

y yrgF
gF ′

VF ′
gF ′−→ VgF ′

is commutative for any g ∈ G and any pair of facets F ′ ⊆ F .

In particular the stabilizer P †
F , for any facet F , acts linearly on VF .

Definition:

An equivariant coefficient system on X is a coefficient system (VF )F on X to-
gether with a G-action on it which has the property that, for any facet F , the

stabilizer P †
F acts on VF through a discrete quotient.

Let CoeffG(X) denote the category of all equivariant coefficient systems on X.
This is an abelian category.

Fix an object V = (VF )F in CoeffG(X). For any 0 ≤ q ≤ d the space of oriented
q-chains of V by definition is

Cor
c (X(q),V) := C-vector space of all maps ω : X(q) −→

·∪
F∈Xq

VF

such that

— ω has finite support,

— ω((F, c)) ∈ VF , and, if q ≥ 1,

— ω((F,−c)) = −ω((F, c)) for any (F, c) ∈ X(q).
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The group G acts smoothly on these spaces via

(gω)((F, c)) := gg−1F (ω((g
−1F, g−1c))) .

The boundary map

∂ : Cor
c (X(q+1),V) −→ Cor

c (X(q),V)

ω 7−→ ((F ′, c′) 7→
∑

(F,c)∈X(q+1)

F ′⊆F
∂F
F ′ (c)=c′

rFF ′(ω((F, c))))

is G-equivariant. Hence we obtain the chain complex

Cor
c (X(d),V)

∂−→ . . .
∂−→ Cor

c (X(0),V)

in Alg(G). Its homology is denoted by H∗(X,V). It is not difficult to see that
the above complex as well as its homology actually lies in the full subcategory

Algc(G) := category of those smooth G-representations V

which are generated by V U for some open

subgroup U ⊆ G.

As a consequence of Bernstein’s theorem (I.3) the category Algc(G) is stable with
respect to the formation of G-equivariant subquotients; moreover it is closed
under extensions. In the following only the right exact functor

H0(X, .) : CoeffG(X) −→ Algc(G)

will be of importance for us. Let Σ be the class of morphisms s in CoeffG(X)
such that H0(X, s) is an isomorphism. We then have a unique commutative
diagram of functors

CoeffG(X)
H0(X,.)−→ Algc(G)

Q ↘ ↗ ρ

CoeffG(X)[Σ−1]

where Q is the canonical functor into the category of fractions with respect to
Σ.
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Theorem V.1:

The functor

ρ : CoeffG(X)[Σ−1]
∼−→ Algc(G)

is an equivalence of categories.

Proof: The following properties are a consequence of the right exactness of
H0(X, .) ([GZ] I.3):

1. Σ admits a calculus of left fractions.

2. CoeffG(X)[Σ−1] is additive and has finite direct limits.

3. The functors Q and ρ are additive and respect finite direct limits.

4. The functor ρ detects isomorphisms.

The latter two properties imply:

5. The functor ρ is faithful.

Namely, let a and b be two morphisms in CoeffG(X)[Σ−1] such that ρ(a) = ρ(b).
Using 3. we have that

ρ(coker(a− b)) = coker(ρ(a− b)) = coker(ρ(a)− ρ(b)) = coker(0)

is an isomorphism. By 4. then coker(a− b) is an isomorphism, too; hence a = b.
Fixing a special vertex x in A we have

Algc(G) =
∪
e≥0

AlgU
(e)
x (G) .

In II.2 we have constructed, for any e ≥ 0, an exact functor

γe : AlgU
(e)
x (G) −→ CoeffG(X) ;

moreover there is an obvious natural transformation

γe −→ γe+1|AlgU
(e)
x (G) .

It follows from II.3.1 that the latter induces a natural isomorphism in homology

H∗(X, γe(.))
∼=−→ H∗(X, γe+1(.)) on AlgU

(e)
x (G) .

After composing with the functor Q the above natural transformation therefore
becomes a natural isomorphism

Q ◦ γe
∼=−→ Q ◦ γe+1|AlgU

(e)
x (G) .
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Hence we obtain in the direct limit the functor

γ := lim−→
e≥0

Q ◦ γe : Algc(G) −→ CoeffG(X)[Σ−1] .

Again by II.3.1 we have

6. ρ ◦ γ ∼= idAlgc(G).

It is an immediate consequence of 5. and 6. that ρ and γ are quasi-inverse to
each other.

Because of their practical importance let us state separately the following facts
which were established in the course of the previous proof.

Lemma V.2:

i. Σ admits a calculus of left fractions;

ii. the functor γ : Algc(G) → CoeffG(X)[Σ−1] is quasi-inverse to ρ.
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Index of Notations

K a nonarchimedean locally compact field

o the ring of integers in K

π a fixed prime element in o

ω the discrete valuation of K normalized by ω(π) = 1

K the residue class field of o

X the base change to K of some object X over o

G a connected reductive group over K

G the group of K-rational points of G

C the center of G

S a maximal K-split torus in G

W the Weyl group of G

Φ the set of roots of G

Φred the set of reduced roots of G

Φ+,Φ− the set of positive resp. negative roots in Φ

∆ the set of simple roots in Φ+

Uα the root subgroup corresponding to the root α

Θ a subset of the set ∆ of simple roots

<Θ> the subset {α ∈ Φ : α is a integral linear combination of
roots from Θ}

SΘ the connected component of
∩

α∈Θ

ker(α)

MΘ the centralizer of SΘ in G, i.e., the Levi subgroup corre-
sponding to Θ

UΘ the unipotent subgroup ofG generated by all root subgroups
Uα for α ∈ Φ+\ <Θ>

PΘ =MΘUΘ the parabolic subgroup of type Θ with respect to the choices
S, Φ+

δΘ the modulus character of the parabolic subgroup PΘ

X the Bruhat-Tits building corresponding to G
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d the distance function on the metric space X

X(q) (Xq) the set of oriented (nonoriented) q-dimensional polysim-
plices of X

X(q) the q-skeleton of X

A a fixed (basic) apartment of X, a d-dimensional affine space

D a fundamental Weyl chamber in the apartment A

F a polysimplex of X

St(F ) the star of the facet F

X the Borel-Serre compactification of X

X∞ the boundary of X in X

PΩ the pointwise stabilizer in G of a subset Ω ⊆ X

P+
Ω the stabilizer in G of a subset Ω ⊆ X

U
(e)
F for any integer e ≥ 0, the e-th filtration subgroup of P+

F

Uα,r subgroup of Uα of ℓ-value ≥ r

T = G/U
(e)
x for a special vertex x ∈ A, the basic homogeneous G-set

Gell the subset of all regular elliptic elements of G

Cell the set of conjugacy classes of regular elliptic elements of G

V a smooth representation of G

Alg(G) the category of smooth G-modules

AlgU (G) for U a compact open subgroup, the subcategory of Alg(G)
of those G-modules which are generated by the subspace of
their U -fixed vectors V U

Algχ(G) for χ a character on the center C of G the full subcategory of
Alg(G) of thoseG-modules on which C acts by the character
χ

Algflχ,Θ(G) the full subcategory of Algχ(G) of those G-modules which
are of finite length and whose irreducible subquotients are
all of type Θ

R(G) the Grothendieck group of representations of finite length
in Alg(G) tensorized by C

IndGPΘ
(E) the (unnormalized) induction to G of a smooth PΘ-module

E

111



Ind(E) the normalized induction to G of a smooth PΘ-module E

Hχ for a character χ of the center C, the Hecke algebra of locally
constant functions on G, compactly supported modulo the
center C and transforming with respect to the action of C
by the character χ

EP (V, V ′) the Euler-Poincaré characteristic of the smooth G-modules
V, V ′, V finite length, V ′ admissible

dV g the Euler-Poincaré measure for V

volV the volume corresponding to dV g

Ed−#Θ the involution functor on Algflχ,Θ(G)

Coeff(X) the category of coefficient systems on X

γe(V ) the coefficient system associated to a smooth G-module V
for a fixed integer e ≥ 0

γe the corresponding functor from Alg(G) to Coeff(X)

Cor
c (X(·), γe(V )) the oriented chain complex associated to a coefficient system

γe(V )

V
≈

the sheaf on the Bruhat-Tits building associated to the

smooth representation V

j∗,∞ V
≈

the smooth extension of V
≈

to the compactification X

V
=

the sheaf on the boundary X∞ of X in X corresponding to

the smooth representation V
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[BT] Bruhat, F., Tits, J.: Groupes réductifs sur un corps local I. Données
radicielles valuées. Publ. Math. IHES 41 (1972). II. Schémas en
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[CLT] Curtis, C.W., Lehrer, G.I., Tits, J.: Spherical Buildings and the Char-
acter of the Steinberg Representation. Invent. Math. 58, 201-210 (1980)

[CR] Curtis, C., Reiner, I.: Representation Theory of Finite Groups and
Associative Algebras. New York-London: J. Wiley 1962

[DL] Deligne, P., Lusztig, G.: Duality for Representations of a Reductive
Group over a Finite Field I. J. Algebra 74, 284-291 (1982)

[Dix] Dixmier, J.: C∗-Algebras. Amsterdam: North-Holland 1982

[Dol] Dold, A.: Lectures on Algebraic Topology. Berlin-Heidelberg-New
York: Springer 1980

[GZ] Gabriel, P., Zisman, M.: Calculus of Fractions and Homotopy Theory.
Berlin-Heidelberg-New York: Springer 1967
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