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CHAPTER 1

Homotopy

1.1. The homotopy relation

Let X and Y be topological spaces. (If you are not sufficiently familiar with topological
spaces, you should assume that X and Y are metric spaces.) Let f and g be continuous
maps from X to Y . Let [0, 1] be the unit interval with the standard topology, a subspace
of R .

Definition 1.1.1. A homotopy from f to g is a continuous map

h : X× [0, 1]→ Y

such that h(x, 0) = f(x) and h(x, 1) = g(x) for all x ∈ X . If such a homotopy exists, we
say that f and g are homotopic, and write f ' g . We also sometimes write h : f ' g to
indicate that h is a homotopy from the map f to the map g .

Remark 1.1.2. If you made the assumption that X and Y are metric spaces, then you
should use the product metric on X× [0, 1] and Y × [0, 1] , so that for example

d((x1, t1), (x2, t2)) := max{d(x1, x2), |t1 − t2| }

for x1, x2 ∈ X and t1, t2 ∈ [0, 1] . If you were happy with the assumption that X and
Y are “just” topological spaces, then you need to know the definition of product of two
topological spaces in order to make sense of X× [0, 1] and Y × [0, 1] .

Remark 1.1.3. A homotopy h : X× [0, 1]→ Y from f : X→ Y to g : X→ Y can be seen
as a “family” of continuous maps

ht : X→ Y ; ht(x) = h(x, t)

such that h0 = f and h1 = g . The important thing is that ht depends continuously on
t ∈ [0, 1] .

Example 1.1.4. Let f : Rn → Rn be the identity map. Let g : Rn → Rn be the map such
that g(x) = 0 ∈ Rn for all x ∈ Rn . Then f and g are homotopic. The map h : Rn× [0, 1]
defined by h(x, t) = tx is a homotopy from f to g .

Example 1.1.5. Let f : S1 → S1 be the identity map, so that f(z) = z . Let g : S1 → S1

be the antipodal map, g(z) = −z . Then f and g are homotopic. Using complex number
notation, we can define a homotopy by h(z, t) = eπitz .

Example 1.1.6. Let f : S2 → S2 be the identity map, so that f(z) = z . Let g : S2 → S2

be the antipodal map, g(z) = −z . Then f and g are not homotopic. We will prove this
later in the course.

Example 1.1.7. Let f : S1 → S1 be the identity map, so that f(z) = z . Let g : S1 → S1

be the constant map with value 1 . Then f and g are not homotopic. We will prove this
quite soon.
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Proposition 1.1.8. “Homotopic” is an equivalence relation on the set of continuous maps
from X to Y .

Proof. Reflexive: For every continuous map f : X→ Y define the constant homotopy
h : X× [0, 1]→ Y by h(x, t) = f(x) .
Symmetric: Given a homotopy h : X × [0, 1] → Y from a map f : X → Y to a map
g : X→ Y , define the reverse homotopy h̄ : X× [0, 1]→ Y by h̄(x, t) = h(x, 1 − t) . Then
h̄ is a homotopy from g to f .
Transitive: Given continuous maps e, f, g : X → Y , a homotopy h from e to f and a
homotopy k from f to g , define the concatenation homotopy k ∗ h as follows:

(x, t) 7→ {h(x, 2t) if 0 6 t 6 1/2

k(x, 2t− 1) if 1/2 6 t 6 1 .

Then k ∗ h is a homotopy from e to g . �

Definition 1.1.9. The equivalence classes of the above relation “homotopic” are called
homotopy classes. The homotopy class of a map f : X → Y is often denoted by [f] . The
set of homotopy classes of maps from X to Y is often denoted by [X, Y] .

Proposition 1.1.10. Let X , Y and Z be topological spaces. Let f : X→ Y and g : X→ Y
and u : Y → Z and v : Y → Z be continuous maps. If f is homotopic to g and u is
homotopic to v , then u ◦ f : X→ Z is homotopic to v ◦ g : X→ Z .

Proof. Let h : X× [0, 1]→ Y be a homotopy from f to g and let w : Y × [0, 1]→ Z
be a homotopy from u to v . Then u ◦ h is a homotopy from u ◦ f to u ◦ g and the map
X × [0, 1] → Z given by (x, t) 7→ w(g(x), t) is a homotopy from u ◦ g to v ◦ g . Because
the homotopy relation is transitive, it follows that u ◦ f ' v ◦ g . �

Definition 1.1.11. Let X and Y be topological spaces. A (continuous) map f : X → Y
is a homotopy equivalence if there exists a map g : Y → X such that g ◦ f ' idX and
f ◦ g ' idY .
We say that X is homotopy equivalent to Y if there exists a map f : X → Y which is a
homotopy equivalence.

Definition 1.1.12. If a topological space X is homotopy equivalent to a point, then we say
that X is contractible. This amounts to saying that the identity map X→ X is homotopic
to a constant map from X to X .

Example 1.1.13. Rm is contractible, for any m ≥ 0 .

Example 1.1.14. Rm r {0} is homotopy equivalent to Sm−1 .

Example 1.1.15. The general linear group of Rm is homotopy equivalent to the orthogonal
group O(m) . The Gram-Schmidt orthonormalisation process leads to an easy proof of
that.

1.2. Homotopy classes of maps from the circle to itself

Let p : R → S1 be the (continuous) map given in complex notation by p(t) = exp(2πit)
and in real notation by p(t) = (cos(2πt), sin(2πt)) . In the first formula we think of S1 as
a subset of C and in the second formula we think of S1 as a subset of R2 .
Note that p is surjective and p(t + 1) = p(t) for all t ∈ R . We are going to use p to
understand the homotopy classification of continuous maps from S1 to S1 . The main
lemma is as follows.
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Lemma 1.2.1. Let γ : [0, 1]→ S1 be continuous, and a ∈ R such that p(a) = γ(0) . Then
there exists a unique continuous map γ̃ : [0, 1]→ R such that γ = p ◦ γ̃ and γ̃(0) = a .

Proof. The map γ is uniformly continuous since [0, 1] is compact. It follows that
there exists a positive integer n such that d(γ(x), γ(y)) < 1/100 whenever |x−y| ≤ 1/n .
Here d denotes the standard (euclidean) metric on S1 as a subset of R2 . We choose such
an n and write

[0, 1] =

n⋃
k=1

[tk−1, tk]

where tk = k/n . We try to define γ̃ on [0, tk] by induction on k . For the induction
beginning we need to define γ̃ on [0, t1] where t1 = 1/n . Let U ⊂ S1 be the open ball
of radius 1/100 with center γ(0) . (Note that open ball is a metric space concept.) Then
γ([0, t1]) ⊂ U . Therefore, in defining γ̃ on [0, t1] , we need to ensure that γ̃([0, t1]) is
contained in p−1(U) . Now p−1(U) ⊂ R is a disjoint union of open intervals which are
mapped homeomorphically to U under p . One of these, call it Va , contains a , since
p(a) = γ(0) ∈ U . The others are translates of the form `+ Va where ` ∈ Z . Since [0, t1]
is connected, its image under γ̃ will also be connected, whatever γ̃ is, and so it must
be contained entirely in exactly one of the intervals ` + Va . Since we want γ̃(0) = a ,
we must have ` = 0 , that is, image of γ̃ contained in Va . Since the map p restricts to
a homeomorphism from Va to U , we must have γ̃ = qγ where q is the inverse of the
homeomorphism from Va to U . This formula determines the map γ̃ on [0, t1] .
The induction steps are like the induction beginning. In the next step we define γ̃ on
[t1, t2] , using a “new” a which is γ̃(t1) and a “new” U which is the open ball of radius
1/100 with center γ(t1) . �

Now let g : S1 → S1 be any continuous map. We want to associate with it an integer, the
degree of g . Choose a ∈ R such that p(a) = g(1) . Let γ = g ◦ p on [0, 1] ; this is a map
from [0, 1] to S1 . Construct γ̃ as in the lemma. We have pγ̃(1) = γ(1) = γ(0) = pγ̃(0) ,
which implies γ̃(1) = γ̃(0) + ` for some ` ∈ Z .

Definition 1.2.2. This ` is the degree of g , denoted deg(g) .

It looks as if this might depend on our choice of a with p(a) = g(1) . But if we make
another choice then we only replace a by m+ a for some m ∈ Z , and we only replace γ̃
by m+ γ̃ . Therefore our calculation of deg(g) leads to the same result.

Remark. Suppose that g : S1 → S1 is a continuous map which is not surjective. Then
deg(g) = 0 . Reason: choose z ∈ S1 which is not in the image of g . Then R r p−1(z) is
the disjoint union of many open intervals of length exactly 1. The image of [0, 1] under γ̃
is connected and has empty intersection with p−1(z) ; therefore it is contained in one of
these intervals. It follows that |γ̃(1) − γ̃(0)| < 1 , that is to say, |deg(g)| < 1 .

Remark. Suppose that f, g : S1 → S1 are continuous maps. Let w : S1 → S1 be defined by
w(z) = f(z) · g(z) (using the multiplication in S1 ⊂ C). Then deg(w) = deg(f) + deg(g) .
The verification is mechanical. Define ϕ,γ,ω : [0, 1] → S1 by ϕ(t) = f(p(t)) , γ(t) =
g(p(t)) and ω(t) = w(p(t)) . Construct ϕ̃ : [0, 1]→ R and γ̃ : [0, 1]→ R as in lemma 1.2.1.
Put ω̃ := ϕ̃+ γ̃ . Then p ◦ ω̃ = ω , so

deg(w) = ω̃(1) − ω̃(0) = · · · = deg(f) + deg(g).

Lemma 1.2.3. If f, g : S1 → S1 are continuous maps which are homotopic, f ∼ g , then
they have the same degree.
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Proof. Let h : S1×[0, 1]→ S1 be a homotopy from f to g . As usual let ht : S
1 → S1

be the map defined by ht(z) = h(z, t) , for fixed t ∈ [0, 1] . By uniform continuity of h , we
can find δ > 0 such that d(ht(z), hs(z)) < 1/1000 for all z ∈ S1 and all s, t ∈ [0, 1] which
satisfy |s − t| < δ . Therefore hs(z) = g(z) · ht(z) for such t and s , where g : S1 → S1

is a map (depending on s and t) which satisfies d(g(z), 1) < 1/1000 for all z ∈ S1 .
Then g is not surjective and so deg(g) = 0 by the remark above, and so deg(hs) =
deg(g) + deg(ht) = deg(ht) .
We have now shown that the the map [0, 1]→ Z given by t 7→ deg(ht) is locally constant
(equivalently, continuous as a map of metric spaces) and so it is constant (since [0, 1] is
connected). In particular deg(f) = deg(h0) = deg(h1) = deg(g) . �

Lemma 1.2.4. If f, g : S1 → S1 are continuous maps which have the same degree, then
they are homotopic.

Proof. Certainly f is homotopic to a map which takes 1 to 1 and g is homotopic
to a map which takes 1 to 1 (using complex notation, 1 ∈ S1 ⊂ C). Therefore we can
assume without loss of generality that f(1) = 1 and g(1) = 1 .
Let ϕ : [0, 1] → S1 and γ : [0, 1] → S1 be defined by ϕ(t) = f(p(t)) and γ(t) = g(p(t)) .
Construct ϕ̃ and γ̃ as in the lemma, using a = 0 in both cases, so that ϕ̃(0) = 0 = γ̃(0) .
Then

ϕ̃(1) = deg(f) = deg(g) = γ̃(1).

Note that f can be recovered from ϕ̃ as follows. For z ∈ S1 choose t ∈ [0, 1] such that
p(t) = z . Then f(z) = f(p(t)) = ϕ(t) = pϕ̃(t) . If z = 1 ∈ S1 , we can choose t = 0
or t = 1 , but this ambiguity does not matter since pϕ̃(1) = pϕ̃(0) . Similarly, g can be
recovered from γ̃ . Therefore we can show that f is homotopic to g by showing that ϕ̃ is
homotopic to γ̃ with endpoints fixed. In other words we need a continuous

H : [0, 1]× [0, 1]→ R
where H(s, 0) = ϕ̃(s) , H(s, 1) = γ̃(s) and H(0, t) = 0 for all t ∈ [0, 1] and H(1, t) =
ϕ̃(1) = γ̃(1) for all t ∈ [0, 1] . This is easy to do: let H(s, t) = (1− t)ϕ̃(s) + tγ̃(s) . �

Summarizing, we have shown that the degree function gives us a well defined map from
[S1, S1] to Z , and moreover, that this map is injective. It is not hard to show that this
map is also surjective! Namely, for arbitrary ` ∈ Z the map f : S1 → S1 given by f(z) = z`

(complex notation) has deg(f) = ` . (Verify this.)

Corollary 1.2.5. The degree function is a bijection from [S1, S1] to Z . �



CHAPTER 2

Fiber bundles and fibrations

2.1. Fiber bundles and bundle charts

Definition 2.1.1. Let p : E→ B be a continuous map between topological spaces and let
x ∈ B . The subspace p−1({x}) is sometimes called the fiber of p over x .

Definition 2.1.2. Let p : E → B be a continuous map between topological spaces. We
say that p is a fiber bundle if for every x ∈ B there exist an open neighborhood U of x in
B , a topological space F and a homeomorphism h : p−1(U)→ U× F such that h followed
by projection to U agrees with p .

Note that h restricts to a homeomorphism from the fiber of f over x to {x}×F . Therefore
F must be homeomorphic to the fiber of p over x .

Terminology. Often E is called the total space of the fiber bundle and B is called the base
space. A homeomorphism h : p−1(U)→ U×F as in the definition is called a bundle chart.
A fiber bundle p : E → B whose fibers are discrete spaces (intuitively, just sets) is also
called a covering space. (A discrete space is a topological space (X,O) in which O is the
entire power set of X .)
Here is an easy way to make a fiber bundle with base space B . Choose a topological space
F , put E = B × F and let p : E → B be the projection to the first factor. Such a fiber
bundle is considered unexciting and is therefore called trivial. Slightly more generally, a
fiber bundle p : E→ B is trivial if there exist a topological space F and a homeomorphism
h : E→ B×F such that h followed by the projection B×F→ B agrees with p . Equivalently,
the bundle is trivial if it admits a bundle chart h : p−1(U)→ U× F where U is all of B .
Two fiber bundles p0 : E0 → B and p1 : E1 → B with the same base space B are considered
isomorphic if there exists a homeomorphism g : E0 → E1 such that p1 ◦ g = p0 . In that
case g is an isomorphism of fiber bundles.

According to the definition above a fiber bundle is a map, but the expression is often used
informally for a space rather than a map (the total space of the fiber bundle).

Proposition 2.1.3. Let p : E → B be a fiber bundle where B is a connected space. Let
x0, y0 ∈ B . Then the fibers of p over x0 and y0 , respectively, are homeomorphic.

Proof. For every x ∈ B choose an open neighborhood Ux of x , a space Fx and a
bundle chart hx : p−1(Ux) → Ux × Fx . The open sets Ux for all x ∈ B form an open
cover of B . We make an equivalence relation R on the set B in the following manner:
xRy means that there exist elements

z0, z1, . . . , zk ∈ B
such that z0 = x , zk = y and Uzj−1

∩Uzj 6= ∅ for j = 1, . . . , k . Clearly xRy implies that
Fx is homeomorphic to Fy . Therefore it suffices to show that R has only one equivalence
class. Each equivalence class is open, for if x ∈ B belongs to such an equivalence class,
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2.1. FIBER BUNDLES AND BUNDLE CHARTS 7

then Ux is contained in the equivalence class. Each equivalence class is closed, since its
complement is open, being the union of the other equivalence classes. Since B is connected,
this means that there can only be one equivalence class. �

Example 2.1.4. One example of a fiber bundle is p : R → S1 , where p(t) = exp(2πit) .
We saw this in section 1. To show that it is a fiber bundle, select some z ∈ S1 and some
t ∈ R such that p(t) = z . Let V =]t − δ, t + δ[ where δ is a positive real number,
not greater than 1/2 . Then p restricts to a homeomorphism from V ⊂ R to an open
neighborhood U = p(V) of z in S1 ; let q : U → V be the inverse homeomorphism. Now
p−1(U) is the disjoint union of the translates `+V , where ` ∈ Z . This amounts to saying
that

g : U× Z→ p−1(U)

given by (y,m) 7→ m + q(y) is a homeomorphism. The inverse h of g is then a bundle
chart. Moreover Z plays the role of a discrete space. Therefore this fiber bundle is a cover-
ing space. It is not a trivial fiber bundle because the total space, R , is not homeomorphic
to S1 × Z .

Example 2.1.5. The Möbius strip leads to another popular example of a fiber bundle.
Let E ⊂ S1 × C consist of all pairs (z,w) where w2 = c2z for some c ∈ R . This is a
(non-compact) implementation of the Möbius strip. There is a projection

q : E→ S1

given by q(z,w) = z . Let us look at the fibers of q . For fixed z ∈ S1 , the fiber of q over
z is identified with the space of all w ∈ C such that w2 = c2z for some real c . This is
equivalent to w = c

√
z where

√
z is one of the two roots of z in C . In other words, w

belongs to the one-dimensional linear real subspace of C spanned by the two square roots
of z . In particular, each fiber of q is homeomorphic to R . The fact that all fibers are
homeomorphic to each other should be taken as an indication (though not a proof) that
q is a fiber bundle. The full proof is left as an exercise, along with another exercise which
is slightly harder: show that this fiber bundle is not trivial.

In preparation for the next example I would like to recall the concept of one-point com-
pactification. Let X = (X,O) be a locally compact topological space. (That is to say, X
is a Hausdorff space in which every element x ∈ X has a compact neighborhood.) Let
Xc = (Xc,U) be the topological space defined as follows. As a set, Xc is the disjoint union
of X and a singleton (set with one element, which in this case we call ∞). The topology
U on Xc is defined as follows. A subset V of Xc belongs to U if and only if

• either ∞ /∈ V and V ∈ O ;
• or ∞ ∈ V and Xc r V is a compact subset of X .

Then Xc is compact Hausdorff and the inclusion u : X→ Xc determines a homeomorphism
of X with u(X) = Xc r {∞} . The space Xc is called the one-point compactification of X .
The notation Xc is not standard; instead people often write X∪∞ and the like. The one-
point compactification can be characterized by various good properties; see books on point
set topology. For use later on let’s note the following, which is clear from the definition
of the topology on Xc . Let Y = (Y,W) be any topological space. A map g : Y → Xc is
continuous if and only if the following hold:

• g−1(X) is open in Y
• the map from g−1(X) to X obtained by restricting g is continuous
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• for every compact subset K of X , the preimage g−1(K) is a closed subset of Y
(that is, its complement is an element of W).

Example 2.1.6. A famous example of a fiber bundle which is also a crucial example in
homotopy theory is the Hopf map from S3 to S2 , so named after its inventor Heinz Hopf.
(Date of invention: around 1930.) Let’s begin with the observation that S2 is homeomor-
phic to the one-point compactification C∪∞ of C . (The standard homeomorphism from
S2 to C ∪∞ is called stereographic projection.) We use this and therefore describe the
Hopf map as a map

p : S3 → C ∪∞.
Also we like to think of S3 as the unit sphere in C2 . So elements of S3 are pairs (z,w)
where z,w ∈ C and |z|2 + |w|2 = 1 . To such a pair we associate

p(z,w) = z/w

using complex division. This is the Hopf map. Note that in cases where w = 0 , we must
have z 6= 0 as |z|2 = |z|2 + |w|2 = 1 ; therefore z/w can be understood and must be
understood as ∞ ∈ C ∪∞ in such cases. In the remaining cases, z/w ∈ C .
Again, let us look at the fibers of p before we try anything more ambitious. Let s ∈ C∪∞ .
If s = ∞ , the preimage of s under p consists of all (z,w) ∈ S3 where w = 0 . This is a
circle. If s 6=∞ , the preimage of s under p consists of all (z,w) ∈ S3 where w 6= 0 and
z/w = s . This is the intersection of S3 ⊂ C2 with the one-dimensional complex linear
subspace {(z,w) | z = sw} ⊂ C2 . It is also a circle! Therefore all the fibers of p are
homeomorphic to the same thing, S1 . We take this as an indication (though not a proof)
that p is a fiber bundle.
Now we show that p is a fiber bundle. First let U = C , which we view as an open subset
of C ∪∞ . Then

p−1(U) = {(z,w) ∈ S3 ⊂ C2 | w 6= 0} .

A homeomorphism h from there to U× S1 = C× S1 is given by

(z,w) 7→ (z/w,w/|w|).

This has the properties that we require from a bundle chart: the first coordinate of h(z,w)
is z/w = p(z,w) . (The formula g(y, z) = (yz, z)/‖(yz, z)‖ defines a homeomorphism g
inverse to h .) Next we try V = (C ∪∞)r {0} , again an open subset of C ∪∞ . We have
the following commutative diagram

S3

p

��

α // S3

p

��
C ∪∞ ζ // C ∪∞

where α(z,w) = (w, z) and ζ(s) = s−1 . (This amounts to saying that p ◦ α = ζ ◦ p .)
Therefore the composition

p−1(V)
α // p−1(U)

h // U× S1
(s,w) 7→(s−1,w) // V × S1

has the properties required of a bundle chart. Since U ∪ V is all of C ∪∞ , we have
produced enough charts to know that p is a fiber bundle. �
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2.2. Restricting fiber bundles

Let p : E → B be a fiber bundle. Let A be a subset of B . Put E|A = p−1(A) . This is a
subset of E . We want to regard A as a subspace of B (with the subspace topology) and
E|A as a subspace of E .

Proposition 2.2.1. The map pA : E|A → A obtained by restricting p is also a fiber
bundle.

Proof. Let x ∈ A . Choose a bundle chart h : p−1(U) → U × F for p such that
x ∈ U . Let V = U ∩ A , an open neighborhood of x in A . By restricting h we obtain a
bundle chart hA : p−1(V)→ V × F for pA . �

Remark. In this proof it is important to remember that a bundle chart as above is not just
any homeomorphism h : p−1(U) → U × F . There is a condition: for every y ∈ p−1(U)
the U-coordinate of h(y) ∈ U× F must be equal to p(y) . The following informal point of
view is recommended: A bundle chart h : p−1(U)→ U× F for p is just a way to specify,
simultaneously and continuously, homeomorphisms hx from the fibers of p over elements
x ∈ U to F . Explicitly, h determines the hx and the hx determine h by means of the
equation

h(y) = (x, hx(y)) ∈ U× F
when y ∈ p−1(x) , that is, x = p(y) .

Let p : E → B be any fiber bundle. Then B can be covered by open subsets Ui such
that E|Ui

is a trivial fiber bundle. This is true by definition: choose the Ui together with

bundle charts hi : p
−1(Ui) → Ui × Fi . Rename p−1(Ui) = E|Ui

if you must. Then each
hi is a bundle isomorphism of p|Ui

: E|Ui
→ Ui with a trivial fiber bundle Ui × Fi → Ui .

There are cases where we can say more. One such case merits a detailed discussion because
it takes us back to the concept of homotopy.

Lemma 2.2.2. Let B be any space and let q : E → B × [0, 1] be a fiber bundle. Then B
admits a covering by open subsets Ui such that

q|Ui×[0,1] : E|Ui×[0,1] −→ Ui × [0, 1]

is a trivial fiber bundle (for all i).

Proof. We fix x0 ∈ B for this proof. We try to construct an open neighborhood U
of x0 in B such that q|U×[0,1] : E|U×[0,1] −→ U × [0, 1] is a trivial fiber bundle. This is
enough.
We introduce a relation R on [0, 1] as follows. Two elements s, t ∈ [0, 1] satisfy sRt if
and only if there exists an open neighborhood U of {x0} × [s, t] in B × [0, 1] such that
E|U → U (restriction of q) is a trivial fiber bundle. (Here we have assumed s ≤ t ; if not,
write [t, s] instead of [s, t] .)
The main point of the proof is to show that the relation R is transitive. To show this, let
us suppose that we have r, s, t ∈ [0, 1] where r < s < t , and rRs holds as well as sRt .
Choose U , open neighborhood of {x0}× [r, s] , and V , open neighborhood of {x0}× [s, t] ,
such that E|U → U and E|V → V (the restrictions of q) are both trivial fiber bundles.
Let

g : E|U −→ U× FU
be a trivialization of the fiber bundle E|U → U and let

h : E|V −→ V × FV
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be a trivialization of the fiber bundle E|V → V . Without loss of generality, U = U ′ ×U ′′
where U ′ is an open neighborhood of x0 in B and U ′′ is a connected open subset of
[0, 1] containing [r, s] . Without loss of generality, V = V ′ × V ′′ where V ′ is an open
neighborhood of x0 in B and V ′′ is a connected open subset of [0, 1] containing [s, t] .
Without loss of generality, U ′ = V ′ . Without loss of generality, FU = FV since both are
homeomorphic to p−1(x0, s) ; we write F for both. Now U ′′ ∪ V ′′ is a connected open
subset of [0, 1] containing [r, t] and W := U ′ × (U ′′ ∪ V ′′) is an open neighborhood of
{x}× [r, t] in B× [0, 1] . We make a trivialization

k : E|W −→W × F

as follows. For (x, t) ∈ U ′ ×U ′′ with t ≤ r we take k(x,t) = g(x,t) , where g(x,t) denotes

the F-coordinate of g restricted to p−1(x, t) . (This is notation as in the remark following
proposition 2.2.1.) For (x, t) ∈ U ′ × V ′′ with t ≥ r we take

k(x,t) = g(x,r) ◦ h−1(x,r) ◦ h(x,t) .

Therefore R is transitive. It is clearly also symmetric and reflexive; so it is an equivalence
relation. The equivalence classes are clearly open! Then there is only one equivalence
class, since [0, 1] is connected. �

2.3. Pullbacks of fiber bundles

Let p : E → B be a fiber bundle. Let g : X → B be any continuous map of topological
spaces.

Definition 2.3.1. The pullback of p : E→ B along g is the space

g∗E := { (x, y) ∈ X× E | g(x) = p(y)}.

It is regarded as a subspace of X× E with the subspace topology.

Lemma 2.3.2. The projection g∗E→ X given by (x, y) 7→ x is a fiber bundle.

Proof. First of all it is helpful to write down the obvious maps that we have in a
commutative diagram:

g∗E

q

��

r // E

p

��
X

g // B

Here q and r are the projections given by (x, y) 7→ x and (x, y) 7→ y . Commutative
means that the two compositions taking us from g∗E to B agree. Suppose that we have
an open set V ⊂ B and a bundle chart

h : p−1(V)
∼=−−−−→ V × F .

Now U := g−1(V) is open in X . Also q−1(U) is an open subset of g∗E and we describe
elements of that as pairs (x, y) where x ∈ U and y ∈ E , with g(x) = p(y) . We make a
homeomorphism

q−1(U)→ U× F
by the formula (x, y) 7→ (x, hg(x)(y)) = (x, hp(y)(y)) . It is a homeomorphism because the
inverse is given by

(x, z) 7→ (x, (hg(x))
−1(z))
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for x ∈ U and z ∈ F , so that (g(x), z) ∈ V × F . Its is also clearly a bundle chart. In this
way, every bundle chart

h : p−1(V)
∼=−−−−→ V × F

for p : E→ B determines a bundle chart

q−1(U)
∼=−−−−→ U× F

with the same F , where U is the preimage of V under g . Since p : E → B is a fiber
bundle, we have many such bundle charts p−1(Vj) → Vj × Fj such that the union of the
Vj is all of B . Then the union of the corresponding Uj is all of X , and we have bundle
charts q−1(Uj)→ Uj × Fj . This proves that q is a fiber bundle. �

This proof was too long and above all too formal. Reasoning in a less formal way, one
should start by noticing that the fiber of q over z ∈ X is essentially the same (and certainly
homeomorphic) to the fiber of p over g(z) ∈ B . Namely,

q−1(z) = {(x, y) ∈ X× E | g(x) = p(y), x = z} = {z}× p−1({g(z)}) .
Now recall once again that a bundle chart h : p−1(U) → U × F for p is just a way to
specify, simultaneously and continuously, homeomorphisms hx from the fibers of p over
elements x ∈ U to F . If we have such a bundle chart for p , then for any z ∈ g−1(U) we
get a homeomorphism from the fiber of q over z , which “is” the fiber of p over g(z) , to
F . And so, by letting z run through g−1(U) , we get a bundle chart for q .

Example 2.3.3. Restriction of fiber bundles is a special case of pullback, up to isomor-
phism of fiber bundles. More precisely, suppose that p : E → B is a fiber bundle and let
A ⊂ B be a subspace, with inclusion g : A → B . Then there is an isomorphism of fiber
bundles from pA : E|A → A to the pullback g∗E → A . This takes y ∈ E|A to the pair
(p(y), y) ∈ g∗E ⊂ A× E .

2.4. Homotopy invariance of pullbacks of fiber bundles

Theorem 2.4.1. Let p : E → B be a fiber bundle. Let f, g : X → B be continuous maps,
where X is a compact Hausdorff space. If f is homotopic to g , then the fiber bundles
f∗E→ X and g∗E→ X are isomorphic.

Remark 2.4.2. The compactness assumption on X is unnecessarily strong; paracompact is
enough. But paracompactness is also a more difficult concept than compactness. Therefore
we shall prove the theorem as stated, and leave a discussion of improvements for later.

Remark 2.4.3. Let X be a compact Hausdorff space and let U0, U1, . . . , Un be open
subsets of X such that the union of the Ui is all of X . Then there exist continuous
functions

ϕ0, ϕ1, . . . , ϕn : X→ [0, 1]

such that
∑n
j=0ϕj ≡ 1 and such that supp(ϕj) , the support of ϕj , is contained in Uj

for j = 0, 1, . . . , n . Here supp(ϕj) is the closure in X of the open set

{x ∈ X | ϕj(x) > 0}.

A collection of functions ϕ0, ϕ1, . . . , ϕn with the stated properties is called a partition of
unity subordinate to the open cover of X given by U0, . . . , Un . For readers who are not
aware of this existence statement, here is a reduction (by induction) to something which
they might be aware of.
First of all, if X is a compact Hausdorff space, then it is a normal space. This means,
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in addition to the Hausdorff property, that any two disjoint closed subsets of X admit
disjoint open neighborhoods. Next, for any normal space X we have the Tietze-Urysohn
extension lemma. This says that if A0 and A1 are disjoint closed subsets of X , then there
is a continuous function ψ : X → [0, 1] such that ψ(x) = 1 for all x ∈ A1 and ψ(x) = 0
for all x ∈ A0 . Now suppose that a normal space X is the union of two open subsets U0
and U1 . Because X is normal, we can find an open subset V0 ⊂ U0 such that the closure
of V0 in X is contained in U0 and the union of V0 and U1 is still X . Repeating this, we
can also find an open subset V1 ⊂ U1 such that the closure of V1 in X is contained in
U1 and the union of V1 and V0 is still X . Let A0 = XrV0 and A1 = XrV1 . Then A0
and A1 are disjoint closed subsets of X , and so by Tietze-Urysohn there is a continuous
function ψ : X → [0, 1] such that ψ(x) = 1 for all x ∈ A1 and ψ(x) = 0 for all x ∈ A0 .
This means that supp(ψ) is contained in the closure of XrA0 = V0 , which is contained
in U0 . We take ϕ1 = ψ and ϕ0 = 1 − ψ . Since 1 − ψ is zero on A1 , its support is
contained in the closure of V1 , which is contained in U1 . This establishes the induction
beginning (case n = 1).
For the induction step, suppose that we have an open cover of X given by U0, . . . , Un where
n ≥ 2 . By inductive assumption we can find a partition of unity subordinate to the cover
U0∪U1, U2, . . . , Un and by the induction beginning, another partition of unity subordinate
to U0, U1 ∪U2 ∪ · · ·Un . Call the functions in the first partition of unity ϕ01, ϕ2, . . . , ϕn
and those in the second ψ0, ψ1 , we see that the functions ψ0ϕ01, ψ1ϕ01, ϕ2, . . . , ϕn form
a partition of unity subordinate to the cover by U0, . . . , Un . �

Proof of theorem 2.4.1. Let h : X × [0, 1] → B be a homotopy from f to g , so
that h0 = f and h1 = g . Then h∗E → X × [0, 1] is a fiber bundle. We give this a new
name, say q : L → X × [0, 1] . Let ι0 and ι1 be the maps from X to X × [0, 1] given by
ι0(x) = (x, 0) and ι1(x) = (x, 1) . It is not hard to verify that the fiber bundle f∗E→ X is
isomorphic to ι∗0L→ X and g∗E→ X is isomorphic to ι∗1L→ X . Therefore all we need to
prove is the following.
Let q : L → X × [0, 1] be a fiber bundle, where X is compact Hausdorff. Then the fiber
bundles ι∗0L → X and ι∗1L → X obtained from q by pullback along ι0 and ι1 are iso-
morphic. To make this even more explicit: given the fiber bundle q : L → X × [0, 1] , we
need to produce a homeomorphism from L|X×{0} to L|X×{1} which fits into a commutative
diagram

L|X×{0}

res. of q

��

our homeom. // L|X×{1}

res. of q

��
X× {0}

(x,0) 7→(x,1) // X× {1}

Here L|K means q−1(K) , for any K ⊂ X× [0, 1] .
By a lemma proved last week (lecture notes week 2), we can find a covering of X by
open subsets Ui such that that qUi×[0,1] : L|Ui×[0,1] → Ui × [0, 1] is a trivial bundle, for
each i . Since X is compact, finitely many of these Ui suffice, and we can assume that
their names are U1, . . . , Un . Let ϕ1, . . . , ϕn be continuous functions from X to [0, 1]
making up a partition of unity subordinate to the open covering of X by U1, . . . , Un .

For j = 0, 1, 2, . . . , n let vj =
∑j
k=1ϕk and let Γj ⊂ X × [0, 1] be the graph of vj . Note

that Γ0 is X × {0} and Γn is X × {1} . It suffices therefore to produce a homeomorphism
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ej : L|Γj−1
→ L|Γj which fits into a commutative diagram

L|Γj−1

res. of q

��

ej // L|Γj

res. of q

��
Γj−1

(x,vj−1(x)) 7→ (x,vj(x)) // Γj

(for j = 1, 2, . . . , n). Since qUj×[0,1] : L|Uj×[0,1] → Uj × [0, 1] is a trivial fiber bundle, we
have a single bundle chart for it, a homeomorphism

g : L|Uj×[0,1] −→ (Ui × [0, 1])× F

with the additional good property that we require of bundle charts. Fix j now and write
L = L ′ ∪ L ′′ where L ′ consists of the y ∈ L for which q(y) = (x, t) with x /∈ supp(ϕj) ,
and L ′′ consists of the y ∈ L for which q(y) = (x, t) with x ∈ Uj . Both L ′ and L ′′ are
open subsets of L . Now we make our homeomorphism e = ej as follows. By inspection,
L|Γj−1

∩ L ′ = L|Γj ∩ L ′ , and we take e to be the identity on L|Γj−1
∩ L ′ . By restricting

the bundle chart g , we have a homeomorphism L|Γj−1
∩ L ′′ → Uj × F ; more precisely, a

homeomorphism from L|Γj−1
∩L ′′ to (Γj−1∩Uj×[0, 1])×F . By the same reasoning, we have

a homeomorphism L|Γj ∩ L ′′ → Uj × F ; more precisely, a homeomorphism from L|Γj ∩ L ′′
to (Γj ∩Uj × [0, 1])× F . Therefore we have a preferred homeomorphism from L|Γj−1

∩ L ′′
to L|Γj ∩ L ′′ , and we use that as the definition of e on L|Γj−1

∩ L ′′ . By inspection, the
two definitions of e which we have on the overlap L|Γj−1

∩ L ′ ∩ L ′′ agree, so e is well
defined. �

Corollary 2.4.4. Let p : E → B be a fiber bundle where B is compact Hausdorff and
contractible. Then p is a trivial fiber bundle.

Proof. By the contractibility assumption, the identity map f : B → B is homotopic
to a constant map g : B → B . By the theorem, the fiber bundles f∗E → B and g∗E → B
are isomorphic. But clearly f∗E→ B is isomorphic to the original fiber bundle p : E→ B .
And clearly g∗E→ B is a trivial fiber bundle. �

Corollary 2.4.5. Let q : E→ B× [0, 1] be a fiber bundle, where B is compact Hausdorff.
Suppose that the restricted bundle

qB×{0} : E|B×{0} → B× {0}

admits a section, i.e., there exists a continuous map s : B× {0}→ E|B×{0} such that q ◦ s
is the identity on B× {0} . Then q : E→ B× [0, 1] admits a section s̄ : B× [0, 1]→ E which
agrees with s on B× {0} .

Proof. Let f, g : B × [0, 1] → B × [0, 1] be defined by f(x, t) = (x, t) and g(x, t) =
(x, 0) . These maps are clearly homotopic. Therefore the fiber bundles f∗E→ B×[0, 1] and
g∗E→ B× [0, 1] are isomorphic fiber bundles. Now f∗E→ B× [0, 1] is clearly isomorphic
to the original fiber bundle

q : E→ B× {0, 1}

and g∗E→ B× [0, 1] is clearly isomorphic to the fiber bundle

E|B×{0} × [0, 1]→ B× [0, 1]

given by (y, t) 7→ (q(y), t) for y ∈ E|B×{0} , that is, y ∈ E with q(y) = (x, 0) for some
x ∈ B . Therefore we may say that there is a homeomorphism h : E|B×{0} × [0, 1] → E
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which is over B× [0, 1] , in other words, which satisfies

(q ◦ h)(y, t) = (q(y), t)

for all y ∈ E|B×{0} and t ∈ [0, 1] . Without loss of generality, h satisfies the addi-
tional condition h(y, 0) = y for all y ∈ E|B×{0} . (In any case we have a homeomor-
phism u : E|B×{0} → E|B×{0} defined by u(y) = h(y, 0) . If it is not the identity, use the

homeomorphism (y, t) 7→ h(u−1(y), t) instead of (y, t) 7→ h(y, t) .) Now define s̄ by
s̄(x, t) = h(s(x), t) for x ∈ B and t ∈ [0, 1] . �

2.5. The homotopy lifting property

Definition 2.5.1. A continuous map p : E → B between topological spaces is said to
have the homotopy lifting property (HLP) if the following holds. Given any space X and
continuous maps f : X→ E and h : X× [0, 1]→ B such that h(x, 0) = p(f(x)) for all x ∈ X ,
there exists a continuous map H : X×[0, 1]→ E such that p◦H = h and H(x, 0) = f(x) for
all x ∈ X . A map with the HLP can be called a fibration (sometimes Hurewicz fibration).

It is customary to summarize the HLP in a commutative diagram with a dotted arrow:

X
f //

x 7→(x,0)

��

E

p

��
X× [0, 1]

h //

H

<<

B

Indeed, the HLP for the map p means that once we have the data in the outer commutative
square, then the dotted arrow labeled H can be found, making both triangles commutative.
More associated customs: we think of h as a homotopy between maps h0 and h1 from
X to B , and we think of f : X→ E as a lift of the map h0 , which is just a way of saying
that p ◦ f = h0 .

More generally, or less generally depending on point of view, we say that p : E→ B satisfies
the HLP for a class of spaces Q if the dotted arrow in the above diagram can always be
supplied when the space X belongs to that class Q .

Proposition 2.5.2. Let p : E → B be a fiber bundle. Then p has the HLP for compact
Hausdorff spaces.

Proof. Suppose that we have the data X , f and h as in the above diagram, but
we are still trying to construct or find the diagonal arrow H . We are assuming that X is
compact Hausdorff. The pullback of p along h is a fiber bundle h∗E → X × [0, 1] . The
restricted fiber bundle

(h∗E)|X×{0} → X× {0}

has a continuous section s given essentially by f , and if we say it very carefully, by the
formula

(x, 0) 7→ ((x, 0), f(x)) ∈ h∗E ⊂ (X× [0, 1] )× E .
The section s extends to a continuous section s̄ of h∗E → X × [0, 1] by corollary 2.4.5.
Now we can define H := r ◦ s̄ , where r is the standard projection from h∗E to E . �
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Example 2.5.3. Let p : S3 → S2 be the Hopf fiber bundle. Assume if possible that p is
nullhomotopic; we shall try to deduce something absurd from that. So let

h : S3 × [0, 1]→ S2

be a nullhomotopy for p . Then h0 = p and h1 is a constant map. Applying the HLP in
the situation

S3

x 7→(x,0)

��

id // S3

p

��
S3 × [0, 1]

H

::

h // S2

we deduce the existence of H : S3 × [0, 1]→ S3 , a homotopy from the identity map H0 =
id : S3 → S3 to a map H1 : S

3 → S3 with the property that p ◦ H1 is constant. Since p
itself is certainly not constant, this means that H1 is not surjective. If H1 is not surjective,
it is nullhomotopic. (A non-surjective map from any space to a sphere is nullhomotopic;
that’s an exercise.) Consequently id : S3 → S3 is also nullhomotopic, being homotopic to
H1 . This means that S3 is contractible.
Is that absurd enough? We shall prove later in the course that S3 is not contractible. Until
then, what we have just shown can safely be stated like this: if S3 is not contractible, then
the Hopf map p : S3 → S2 is not nullhomotopic. (I found this argument in Dugundji’s
book on topology. Hopf used rather different ideas to show that p is not nullhomotopic.)

Let p : E→ B be a fibration (for a class of spaces Q) and let f : X→ B be any continous
map between topological spaces. We define the pullback f∗E by the usual formula,

f∗E = {(x, y) ∈ X× E | f(x) = p(y) }.

Lemma 2.5.4. The projection f∗E→ X is also a fibration for the class of spaces Q .

The proof is an exercise. �

In example 2.5.3, the HLP was used for something resembling a computation with ho-
motopy classes of maps. Let us try to formalize this, as an attempt to get hold of some
algebra in homotopy theory. So let p : E → B be a continuous map which has the HLP
for a class of topological spaces Q . Let f : X → B be any continuous map of topological
spaces. Now we have a commutative square

f∗E

q1

��

q2

// E

p

��
X

f // B

where q1 and q2 are the projections. Take any space W in the class Q . There is then a
commutative diagram of sets and maps

[W, f∗E]

��

// [W,E]

��
[W,X] // [W,B]
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Proposition 2.5.5. The above diagram of sets of homotopy classes is “half exact” in the
following sense: given a ∈ [W,X] and b ∈ [W,E] with the same image in [W,B] , there
exists c ∈ [W, f∗E] which is taken to a and b by the appropriate maps in the diagram.

Proof. Represent a by a map α : W → X , and b by some map β : W → E . By
assumption, f ◦ α is homotopic to p ◦ β . Let h = (ht)t∈[0,1] be a homotopy, so that
h0 = p ◦β and h1 = f ◦α , and ht : W → B for t ∈ [0, 1] . By the HLP for p , there exists
a homotopy H : W × [0, 1]→ E such that p ◦H = h and H0 = β . Then H1 is homotopic
to H0 = β , and p ◦H1 = f ◦α . Therefore the formula w 7→ (α(w), H1(w)) defines a map
W → f∗E . The homotopy class c of that is the solution to our problem. �

Looking back, we can say that example 2.5.3 is an application of proposition 2.5.5 with
p : E→ B equal to the Hopf fibration and f equal to the inclusion of a point (and Q equal
to the class of compact Hausdorff spaces, say). We made some unusual choices: W = E
and b = [id] ∈ [W,E] .

[S3, S1] //

��

[S3, S3]

[p]◦
��

[S3, ∗] // [S3, S2]

In the lower right-hand term [S3, S2] , we have the homotopy class of p . The assumption
that p is homotopic to a constant map implies that this is the image of an element a in
the lower left-hand term [S3, ∗] . It also the image of b = [id] in the upper right-hand
term [S3, S3] . Therefore (by proposition 2.5.5) we should be able to find c in the upper
left-hand term [S3, S1] which maps to b . This implies that id : S3 → S3 is homotopic to
a non-surjective map, and therefore that S3 is contractible. (All under the assumption
that the Hopf map p : S3 → S2 is homotopic to a constant map.)

2.6. Remarks on paracompactness and fiber bundles

Quoting from many books on point set topology: a topological space X = (X,O) is para-
compact if it is Hausdorff and every open cover (Ui)i∈Λ of X admits a locally finite
refinement (Vj)j∈Ψ .

There is a fair amount of open cover terminology in that definition. In this formulation,
we take the view that an open cover of X is a family, i.e., a map from a set to O (with a
special property). This is slightly different from the equally reasonable view that an open
cover of X is a subset of O (with a special property), and it justifies the use of round
brackets as in (Ui)i∈Λ , as opposed to curly brackets. Here the map in question is from
Λ to O . There is an understanding that (Vj)j∈Ψ is also an open cover of X , but Ψ need
not coincide with Λ . Refinement means that for every j ∈ Ψ there exists i ∈ Λ such that
Vj ⊂ Ui . Locally finite means that every x ∈ X admits an open neighborhood W in X
such that the set {j ∈ Ψ | W ∩ Vj 6= ∅} is a finite subset of Ψ .

It is wonderfully easy to get confused about the meaning of paracompactness. There is a
strong similarity with the concept of compactness, and it is obvious that compact (together
with Hausdorff) implies paracompact, but it is worth emphasizing the differences. Namely,
where compactness has something to do with open covers and sub-covers, the definition of
paracompactness uses the notion of refinement of one open cover by another open cover.
We require that every Vj is contained in some Ui ; we do not require that every Vj is
equal to some Ui . And locally finite does not just mean that for every x ∈ X the set
{j ∈ Ψ | x ∈ Vj} is a finite subset of Ψ . It means more.
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For some people, the Hausdorff condition is not part of paracompact, but for me, it is.

An important theorem: every metrizable space is paracompact. This is due to A.H.
Stone who, as a Wikipedia page reminds me, is not identical with Marshall Stone of the
Stone-Weierstrass theorem and the Stone-Čech compactification. The proof is not very
complicated, but you should look it up in a book on point-set topology which is not too
ancient, because it was complicated in the A.H. Stone version.

Another theorem which is very important for us: in a paracompact space X , every open
cover (Ui)i∈Λ admits a subordinate partition of unity. In other words there exist contin-
uous functions ϕi : X→ [0, 1] , for i ∈ Λ , such that

• every x ∈ X admits an open neighborhood W in X for which the set

{ i ∈ Λ | W ∩ supp(ϕi) 6= ∅}

is finite;
•
∑
i∈Λϕi ≡ 1 ;

• supp(ϕi) ⊂ Ui .

The second condition is meaningful if we assume that the first condition holds. (Then,
for every x ∈ X , there are only finitely many nonzero summands in

∑
i∈Λϕi(x) . The

first condition also ensures that for any subset Ξ ⊂ Λ , the sum
∑
i∈Ξϕi is a continuous

function on X .)
The proof of this theorem (existence of subordinate partition of unity for any open cover
of a paracompact space) is again not very difficult, and boils down mostly to showing that
paracompact spaces are normal. Namely, in a normal space, locally finite open covers
admit subordinate partitions of unity, and this is easy.

Many of the results about fiber bundles in this chapter rely on partitions of unity, and
to ensure their existence, we typically assumed compactness here and there. But now it
emerges that paracompactness is enough.
Specifically, in theorem 2.4.1 it is enough to assume that X is paracompact. In corol-
lary 2.4.4 it is enough to assume that B is paracompact (and contractible). In corol-
lary 2.4.5 it is enough to assume that B is paracompact. In proposition 2.5.2 we have the
stronger conclusion that p has the HLP for paracompact spaces.

Proof of variant of thm. 2.4.1. Here we assume only that X is paracompact
(previously we assumed that it was compact). By analogy with the case of compact X ,
we can easily reduce to the following statement. Let q : L → X × [0, 1] be a fiber bundle,
where X is paracompact. Then the fiber bundles ι∗0L → X and ι∗1L → X obtained from q
by pullback along ι0 and ι1 are isomorphic. And to make this more explicit: given the
fiber bundle q : L→ X× [0, 1] , we need to produce a homeomorphism h from L|X×{0} to
L|X×{1} which fits into a commutative diagram

L|X×{0}

res. of q

��

h // L|X×{1}

res. of q

��
X× {0}

(x,0) 7→(x,1) // X× {1}
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By a lemma proved in lecture notes week 2, we can find an open cover (Ui)i∈Λ of X
such that that qUi×[0,1] : L|Ui×[0,1] → Ui × [0, 1] is a trivial bundle, for each i ∈ Λ . Let
(ϕi)i∈Λ be a partition of unity subordinate to (Ui)i∈Λ . So ϕi : X→ [0, 1] is a continuous
function with supp(ϕi) ⊂ Ui , and

∑
iϕi ≡ 1 . Every x ∈ X admits a neighborhood W

in X such that the set
{i ∈ Λ | supp(ϕi) ∩W 6= ∅}

is finite.
Now choose a total ordering on the set Λ . (A total ordering on Λ is a relation ≤ on
Λ which is transitive and reflexive, and has the additional property that for any distinct
i, j ∈ Λ , precisely one of i ≤ j or j ≤ i holds. We need to assume something here to
get such an ordering: for example the Axiom of Choice in set theory is equivalent to the
Well-Ordering Principle, which states that every set can be well-ordered. A well-ordering
is also a total ordering.) Given x ∈ X , choose an open neighborhood W of x such that
the set of i ∈ Λ having supp(ϕi) ∩W 6= ∅ is finite; say it has n elements. We list these
elements in their order (provided by the total ordering on Λ which we selected):

i1 ≤ i2 ≤ i3 ≤ · · · in .
The functions ϕi1 , ϕi2 , . . . , ϕin (restricted to W ) make up a partition of unity on W
which is subordinate to the covering by open subsets W ∩ Ui1 ,W ∩ Ui2 , . . .W ∩ Uin .
Now we can proceed exactly as in the proof of theorem 2.4.1 to produce (in n steps) a
homeomorphism hW which makes the following diagram commute:

L|W×{0}

res. of q

��

hW // L|W×{1}

res. of q

��
W × {0}

(x,0) 7→(x,1) // W × {1}

Finally we can regard W or x as variables. If we choose, for every x ∈ X , an open
neighborhood Wx with properties like W above, then the Wx for all x ∈ X constitute
an open cover of X . For each Wx we get a homeomorphism hWx

as above. These
homeomorphisms agree with each other wherever this is meaningful, and so define together
a homeomorphism h : L|X×{0} → L|X×{1} with the property that we require. �



CHAPTER 3

Categories, functors and natural transformations

The concept of a category and the related notions functor and natural transformation
emerged in the middle of the 20th century (Eilenberg-MacLane, 1945) and were imme-
diately used to re-organize algebraic topology (Eilenberg-Steenrod, 1952). Later these
notions became very important in many other branches of mathematics, especially alge-
braic geometry. Category theory has many definitions of great depth, I think, but in the
foundations very few theorems and fewer proofs of any depth. Among those who love
difficult proofs, it has a reputation of shallowness, boring-ness; for many of the theorizers
who appreciate good definitions, it is an ever-ongoing revelation. Young mathematicians
tend to like it better than old mathematicians ... probably because it helps them to see
some order in a multitude of mathematical facts.

3.1. Categories

Definition 3.1.1. A category C consists of a class Ob(C) whose elements are called the
objects of C and the following additional data.

• For any two objects c and d of C , a set morC(c, d) whose elements are called
the morphisms from c to d .

• For any object c in C , a distinguished element idc ∈ morC(c, c) , called the
identity morphism of c .

• For any three objects b, c, d of C , a map from morC(c, d) × morC(b, c) to
morC(b, d) called composition and denoted by (f, g) 7→ f ◦ g .

These data are subject to certain conditions, namely:

• Composition of morphisms is associative.
• The identity morphisms act as two-sided neutral elements for the composition.

The associativity condition, written out in detail, means that

(f ◦ g) ◦ h = f ◦ (g ◦ h)

whenever a, b, c, d are objects of C and f ∈ morC(c, d) , g ∈ morC(b, c) , h ∈ morC(a, b) .
The condition on identity morphisms means that f ◦ idc = f = idd ◦ f whenever c and d
are objects in C and f ∈ morC(c, d) . Saying that Ob(C) is a class, rather than a set, is
a subterfuge to avoid problems which are likely to arise if, for example, we talk about the
set of all sets (Russell’s paradox). If the object class is a set, which sometimes happens,
we speak of a small category.
Notation: we shall often write mor(c, d) instead of morC(c, d) if it is obvious that the
category in question is C . Morphisms are often denoted by arrows, as in f : c → d when
f ∈ mor(c, d) . It is customary to say in such a case that c is the source or domain of f ,
and d is the target or codomain of f .
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A morphism f : c → d in a category C is said to be an isomorphism if there exists a
morphism g : d→ c in C such that g◦ f = idc ∈ morC(c, c) and f◦g = idd ∈ morC(d, d) .

Example 3.1.2. The prototype is Sets, the category of sets. The objects of that are the
sets. For two sets S and T , the set of morphisms mor(S, T) is the set of all maps from S
to T . Composition is composition of maps as we know it and the identity morphisms are
the identity maps as we know them.
Another very important example for us is Top, the category of topological spaces. The
objects are the topological spaces. For topological spaces X = (X,OX) and Y = (Y,OY) ,
the set of morphisms mor(X, Y) is the set of continuous maps from X to Y . Composition is
composition of continuous maps as we know it and the identity morphisms are the identity
maps as we know them.
Another very important example for us is HoTop, the homotopy category of topological
spaces. The objects are the topological spaces, as in Top. But the set of morphisms from
X = (X,OX) to Y = (Y,OY) is [X, Y] , the set of homotopy classes of continuous maps from
X to Y . Composition ◦ is defined by the formula

[f] ◦ [g] = [f ◦ g]

for [f] ∈ [Y, Z] and [g] ∈ [X, Y] . Here f : Y → Z and g : X→ Y are continuous maps repre-
senting certain elements of [Y, Z] and [X, Y] , and f◦g : X→ Z is their composition. There
is an issue of well-defined-ness here, but fortunately we settled this long ago in chapter 1.
As a result, associativity of composition is not in doubt because it is a consequence of
associativity of composition in Top. The identity morphisms in HoTop are the homotopy
classes of the identity maps.
Another popular example is Groups, the category of groups. The objects are the groups.
For groups G and H , the set of morphisms mor(G,H) is the set of group homomorphisms
from G to H . Composition of morphisms is composition of group homomorphisms.
The definition of a category as above permits some examples which are rather strange.
One type of strange example is as follows. Let (P,≤) be a partially ordered set, alias
poset. That is to say, P is a set and ≤ is a relation on P which is transitive (x ≤ y and
y ≤ z forces x ≤ z), reflexive (x ≤ x holds for all x) and antisymmetric (in the sense
that x ≤ y and y ≤ x together implies x = y). We turn this setup into a small category
(nameless) such that the object set is P . We decree that, for x, y ∈ P , the set mor(x, y)
shall be empty if x is not ≤ y , and shall contain exactly one element, denoted ∗ , if x ≤ y .
Composition

◦ : mor(y, z)×mor(x, y) −→ mor(x, z)

is defined as follows. If y is not ≤ z , then mor(y, z) is empty and so mor(y, z)×mor(x, y)
is empty, too. There is exactly one map from the empty set to mor(x, z) and we take that.
If x is not ≤ y , then mor(y, z) × mor(x, y) is empty, and we have only one choice for
our composition map, and we take that. The remaining case is the one where x ≤ y
and y ≤ z . Then x ≤ z by transitivity. Therefore mor(y, z)×mor(x, y) has exactly one
element, but more importantly, mor(x, z) has also exactly one element. Therefore there
is exactly one map from mor(y, z)×mor(x, y) to mor(x, z) and we take that.
Another type of strange example (less important for us but still instructive) can be con-
structed by starting with a specific group G , with multiplication map µ : G × G → G .
From that we construct a small category (nameless) whose object set has exactly one
element, denoted ∗ . We let mor(∗, ∗) = G . The composition map

mor(∗, ∗)×mor(∗, ∗)→ mor(∗, ∗)
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now has to be a map from G × G to G , and for that we choose µ , the multiplication of
G . Since µ has an associativity property, composition of morphisms is associative. For
the identity morphism id∗ ∈ mor(∗, ∗) we take the neutral element of G .
There are also some easy ways to make new categories out of old ones. One important
example: let C be any category. We make a new category Cop , the opposite category of
C . It has the same objects as C , but we let

morCop(c, d) := morC(d, c)

when c and d are objects of C , or equivalently, objects of Cop . The identity morphism
of an object c in Cop is the identity morphism of c in C . Composition

morCop(c, d)×morCop(b, c) −→ morCop(b, d)

is defined by noting morCop(c, d)×morCop(b, c) = morC(d, c)×morC(c, b) and going from
there to morC(c, b)×morC(d, c) by an obvious bijection, and from there to morC(d, b) =
morCop(b, d) using composition of morphisms in the category C .

3.2. Functors

It turns out that there is something like a category of all categories. Let us not try to
make that very precise because there are some small difficulties and complications in that.
In any case there is a concept of morphism between categories, and the name of that is
functor.

Definition 3.2.1. A functor from a category C to a category D is a rule F which to
every object c of C assigns an object F(c) of D , and to every morphism g : b → c in C

a morphism F(g) : F(b)→ F(c) in D , subject to the following conditions.

• For any object c in C with identity morphism idc , we have F(idc) = idF(c) .
• Whenever a, b, c are objects in C and h ∈ morC(a, b) , g ∈ morC(b, c) , we have
F(g ◦ h) = F(g) ◦ F(h) in morD(F(a), F(c)) .

Example 3.2.2. A functor F from the category Top to the category Sets can be defined
as follows. For a topological space X let F(X) be the set of path components of X . A
continuous map g : X→ Y determines a map F(g) : F(X)→ F(Y) like this: F(g) applied to
a path component C of X is the unique path component of Y which contains g(C) .
Fix a positive integer n . Let Rings be the category of rings and ring homomorphisms.
(For me, a ring does not have to be commutative, but it should have distinguished elements
0 and 1 and in this example I require 0 6= 1 .) A functor F from Rings to Groups can be
defined by F(R) = GLn(R) , where GLn(R) is the group of invertible n×n matrices with
entries in R . A ring homomorphism g : R1 → R2 determines a group homomorphism F(g)
from F(R1) to F(R2) . Namely, in an invertible n×n-matrix with entries in R1 , apply g
to each entry to obtain an invertible n× n-matrix with entries in R2 .
Let G be a group which comes with an action on a set S . In example 3.1.2 we constructed
from G a category with one object ∗ and mor(∗, ∗) = G . A functor F from that category to
Sets can now be defined by F(∗) = S , and F(g) = translation by g , for g ∈ mor(∗, ∗) = G .
More precisely, to g ∈ G = mor(∗, ∗) we associate the map F(g) from S = F(∗) to S = F(∗)
given by x 7→ g · x (which has a meaning because we are assuming an action of G on S).
Let C be any category and let x be any object of C . A functor Fx from C to Sets
can be defined as follows. Let Fx(c) = morC(x, c) . For a morphism g : c → d in C

define Fx(g) : Fx(c) → Fx(d) by Fx(g)(h) = g ◦ h . In more detail, we are assuming
h ∈ Fx(c) = morC(x, c) and g ∈ morC(c, d) , so that g ◦ h ∈ morC(x, d) = Fx(d) .
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The functors of definition 3.2.1 are also called covariant functors for more precision. There
is a related concept of contravariant functor. A contravariant functor from C to D is
simply a (covariant) functor from Cop to D (see example 3.1.2). If we write this out, it
looks like this. A contravariant functor F from C to D is a rule which to every object
c of C assigns an object F(c) of D , and to every morphism g : c → d in C a morphism
F(g) : F(d) → F(c) ; note that the source of F(g) is F(d) , and the target is F(c) . And so
on.

Example 3.2.3. Let C be any category and let x be any object of C . A contravariant
functor Fx from C to Sets can be defined as follows. Let Fx(c) = morC(c, x) . For a
morphism g : c→ d in C define

Fx(g) : Fx(d)→ Fx(c)

by Fx(g)(h) = h ◦ g . In more detail, we are assuming h ∈ Fx(d) = morC(d, x) and
g ∈ morC(c, d) , so that h ◦ g ∈ morC(c, x) = F

x(c) .
There is a contravariant functor P from Sets to Sets given by P(S) = power set of S , for a
set S . In more detail, a morphism g : S→ T in Sets determines a map P(g) : P(T)→ P(S)
by “preimage”. That is, P(g) applied to a subset U of T is g−1(U) , a subset of S . (You
may have noticed that this example of a contravariant functor is not very different from a
special case of the preceding one; we will return to this point later.)
Next, let Man be the category of smooth manifolds. The objects are the smooth manifolds
(of any dimension). The morphisms from a smooth manifold M to a smooth manifold
N are the smooth maps from M to N . For any fixed integer k ≥ 0 the rule which
assigns to a smooth manifold M the real vector space Ωk(M) of smooth differential k -
forms is a contravariant functor from Man to the category Vect of real vector spaces
(with linear maps as morphisms). Namely, a smooth map f : M→ N determines a linear
map f∗ : Ωk(N)→ Ωk(M) . (You must have seen the details if you know anything about
differential forms.)

3.3. Natural transformations

The story does not end there. The functors from a category C to a category D also form
something like a category. There is a concept of morphism between functors from C to
D , and the name of that is natural transformation.

Definition 3.3.1. Let F and G be functors, both from a category C to a category D . A
natural transformation from F to G is a rule ν which for every object c in C selects a
morphism νc : F(c)→ G(c) in D , subject to the following condition. Whenever u : c→ d
is a morphism in C , the square of morphisms

F(c)
νc //

F(u)

��

G(c)

G(u)

��
F(d)

νd // G(d)

in D commutes; that is, the equation G(u) ◦ νc = νd ◦ F(u) holds in morD(F(c), G(d)) .

Example 3.3.2. MacLane (in his book Categories for the working mathematician) gives
the following pretty example. For a fixed integer n ≥ 1 the rule which to a ring R assigns
the group GLn(R) can be viewed as a functor GLn from the category of rings to the
category of groups, as was shown earlier. There we allowed non-commutative rings, but
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here we need commutative rings, so we shall view GLn as a functor from the category
cRings of commutative rings to Groups. Note that GL1(R) is essentially the group of
units of the ring R . The group homomorphisms

det : GLn(R)→ GL1(R)

(one for every commutative ring R) make up a natural transformation from the functor
GLn : cRings→ Groups to the functor GL1 : cRings→ Groups.
Returning to smooth manifolds and differential forms: we saw that for any fixed k ≥ 0 the
assignment M 7→ Ωk(M) can be viewed as a contravariant functor from Man to Vect.
The exterior derivative maps

d : Ωk(M) −→ Ωk+1(M)

(one for each object M of Man) make up a natural transformation from the contravariant
functor Ωk to the contravariant functor Ωk+1 .

Notation: let F and G be functors from C to D . Sometimes we describe a natural
transformation ν from F to G by a strong arrow, as in ν : F⇒ G .

Remark : one reason for being a little cautious in saying category of categories etc. is that
the functors from one big category (such as Top for example) to another big category
(such as Sets for example) do not obviously form a set. Of course, some people would
not exercise that kind of caution and would instead say that the definition of category as
given in 3.1.1 is not bold enough. In any case, it must be permitted to say the category of
small categories.



CHAPTER 4

Combinatorial description of some spaces

4.1. Vertex schemes and simplicial complexes

Definition 4.1.1. A vertex scheme consists of a set V and a subset S of the power set
P(V) , subject to the following conditions: every T ∈ S is finite and nonempty, every subset
of V which has exactly one element belongs to S , and if T ′ is a nonempty subset of some
T ∈ S , then T ′ ∈ S .
The elements of V are called vertices (singular: vertex ) of the vertex scheme. The elements
of S are called distinguished subsets of V .

Example 4.1.2. The following are examples of vertex schemes:

(i) Let V = {1, 2, 3, . . . , 10} . Define S ⊂ P(V) so that the elements of S are the
following subsets of V : all the singletons, that is to say {1}, {2}, . . . , {10} , and
{1, 2} , {2, 3} , . . . , {9, 10} as well as {10, 1} .

(ii) Let V = {1, 2, 3, 4} and define S ⊂ P(V) so that the elements of S are exactly
the subsets of V which are nonempty and not equal to V .

(iii) Let V be any set and define S so that the elements of S are exactly the nonempty
finite subsets of V .

(iv) Take a regular icosahedron. Let V be the set of its vertices (which has 12 ele-
ments). Define S ⊂ P(V) in such a way that the elements of S are all singletons,
all doubletons which are connected by an edge, and all tripletons which make up
a triangular face of the icosahedron. (There are twenty such tripletons, which is
supposed to explain the name icosahedron.)

The simplicial complex determined by a vertex scheme (V, S) is a topological space X =
|V |S . We describe it first as a set. An element of X is a function f : V → [0, 1] such that∑

v∈V

f(v) = 1

and the set {v ∈ V | f(v) > 0} is an element of S .
It should be clear that X is the union of certain subsets ∆(T) , where T ∈ S . Namely, ∆(T)
consists of all the functions f : V → [0, 1] for which

∑
v∈V f(v) = 1 and f(v) = 0 if v /∈ T .

The subsets ∆(T) of X are not always disjoint. Instead we have ∆(T)∩∆(T ′) = ∆(T ∩ T ′)
if T ∩ T ′ is nonempty; also, if T ⊂ T ′ then ∆(T) ⊂ ∆(T ′) .
The subsets ∆(T) of X , for T ∈ S , come equipped with a preferred topology. Namely,
∆(T) is (identified with) a subset of a finite dimensional real vector space, the vector space
of all functions from T to R , and as such gets a subspace topology. (For example, ∆(T)
is a single point if T has one element; it is homeomorphic to an edge or closed interval if
T has two elements; it looks like a compact triangle if T has three elements; etc. We say
that ∆(T) is a simplex of dimension m if T has cardinality m+ 1 .) These topologies are
compatible in the following sense: if T ⊂ T ′ , then the inclusion ∆(T) → ∆(T ′) makes a
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homeomorphism of ∆(T) with a subspace of ∆(T ′) .
We decree that a subset W of X shall be open if and only if W ∩ ∆(T) is open in ∆(T) ,
for every T in S . Equivalently, and perhaps more usefully: a map g from X to another
topological space Y is continuous if and only if the restriction of g to ∆(T) is a continuous
from ∆(T) to Y , for every T ∈ S .

Every v ∈ V determines a map βv : |V |S → [0, 1] by f 7→ f(v) . This is continuous (almost
by definition). It is called the barycentric coordinate associated with v ∈ V .

Example 4.1.3. The simplicial complex associated to the vertex scheme (i) in exam-
ple 4.1.2 is homeomorphic to S1 . In (ii) and (iv) of example 4.1.2, the associated simplicial
complex is homeomorphic to S2 .

Example 4.1.4. The simplicial complex associated to the vertex scheme (V, S) where
V = {1, 2, 3, 4, 5, 6, 7, 8} and

S =

{
{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {1, 3}, {2, 3}, {3, 4},
{3, 5}, {3, 6}, {4, 5}, {5, 6}, {5, 7}, {7, 8}, {3, 4, 5}, {3, 5, 6}

}
looks like this:

Lemma 4.1.5. The simplicial complex X = |V |S associated with a vertex scheme (V, S) is
a Hausdorff space.

Proof. Let f and g be distinct elements of X . Keep in mind that f and g are
functions from V to [0, 1] . Choose v0 ∈ V such that f(v0) 6= g(v0) . Let ε = |f(v0)−g(v0)| .
Let Uf be the set of all h ∈ X such that |h(v0) − f(v0)| < ε/2 . Let Ug be the set of
all h ∈ X such that |h(v0) − g(v0)| < ε/2 . From the definition of the topology on
X , the sets Uf and Ug are open. They are also disjoint, for if h ∈ Uf ∩ Ug then
|f(v0) − g(v0)| ≤ |f(v0) − h(v0)| + |h(v0) − g(v0)| < ε , contradiction. Therefore f and g
have disjoint neighborhoods in X . �

Lemma 4.1.6. Let (V, S) be a vertex scheme and (W,T) a vertex sub-scheme, that is,
W ⊂ V and T ⊂ S ∩ P(W) . Then the evident map ι : |W|T → |V |S is a closed, continuous
and injective map and therefore a homeomorphism onto its image.

Proof. The map ι is obtained by viewing functions from W to [0, 1] as functions
from V to [0, 1] by defining the values on elements of V rW to be 0 . A subset A of |V |S
is closed if and only if A ∩ ∆(T) is closed for the standard topology on ∆(T) , for every
T ∈ S . Therefore, if A is a closed subset of |V |S , then ι−1(A) is a closed subset of |W|T ;
and if C is a closed subset of |W|S , then ι(C) is closed in |V |S . �
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Remark 4.1.7. The notion of a simplicial complex is old. Related vocabulary comes in
many dialects. I have taken the expression vertex scheme from Dold’s book Lectures on
algebraic topology with only a small change (for me, ∅ /∈ S). It is in my opinion a good
choice of words, but the traditional expression for that appears to be abstract simplicial
complex. Most authors agree that a simplicial complex (non-abstract) is a topological
space with additional data. For me, a simplicial complex is a space of the form |V |S for
some vertex scheme (V, S) ; other authors prefer to write, in so many formulations, that
a simplicial complex is a topological space X together with a homeomorphism |V |S → X ,
for some vertex scheme (V, S) .

4.2. Semi-simplicial sets and their geometric realizations

Semi-simplicial sets are closely related to vertex schemes. A semi-simplicial set has a
geometric realization, which is a topological space; this is similar to the way in which a
vertex scheme determines a simplicial complex.

Definition 4.2.1. A semi-simplicial set Y consists of a sequence of sets

(Y0, Y1, Y2, Y3, ...)

(each Yk is a set) and, for each injective order-preserving map

f : {0, 1, 2, . . . , k} −→ {0, 1, 2, . . . , `}

where k, ` ≥ 0 , a map f∗ : Y` → Yk . The maps f∗ are called face operators and they are
subject to conditions:

• if f is the identity map from {0, 1, 2, . . . , k} to {0, 1, 2, . . . , k} then f∗ is the
identity map from Yk to Yk .
• (g ◦ f)∗ = f∗ ◦ g∗ when g ◦ f is defined (so f : {0, 1, . . . , k} → {0, 1, . . . , `} and
g : {0, 1, . . . , `}→ {0, 1, . . . ,m}).

Elements of Yk are often called k-simplices of Y . If x ∈ Yk has the form f∗(y) for some
y ∈ Y` , then we may say that x is a face of y corresponding to face operator f∗ .

Remark 4.2.2. The definition of a semi-simplicial set can be reformulated in category
language as follows. There is a category C whose objects are the sets [n] = {0, 1, . . . , n} ,
where n can be any non-negative integer. A morphism in C from [m] to [n] is an order-
preserving injective map from the set [m] to the set [n] . Composition of morphisms is,
by definition, composition of such order-preserving injective maps.
A semi-simplicial set is a contravariant functor Y from C to the category of sets. We like
to write Yn when we ought to write Y([n]) . We like to write f∗ : Yn → Ym when we ought
to write Y(f) : Y([n])→ Y([m]) , for a morphism f : [m]→ [n] in C .
Nota bene: if you wish to define (invent) a semi-simplicial set Y , you need to invent
sets Y0, Y1, Y2, . . . (one set Yn for each integer n ≥ 0) and you need to invent maps
f∗ : Yn → Ym , one for each order-preserving injective map f : [m] → [n] . Then you need
to convince yourself that (g ◦ f)∗ = f∗ ◦ g∗ whenever f : [k] → [`] and g : [`] → [m] are
order-preserving injective maps.

Example 4.2.3. Let (V, S) be a vertex scheme as in the preceding (sub)section. Choose
a total ordering of V . From these data we can make a semi-simplicial set Y as follows.

• Yn is the set of all order-preserving injective maps β from {0, 1, . . . , n} to V
such that im(β) ∈ S . Note that for each T ∈ S of cardinality n + 1 , there is
exactly one such β .



4.2. SEMI-SIMPLICIAL SETS AND THEIR GEOMETRIC REALIZATIONS 27

• For an order-preserving injective f : {0, 1, . . . ,m} → {0, 1, . . . , n} and β ∈ Yn ,
define f∗(β) = β ◦ f ∈ Ym .

The category C is more officially denoted ∆ (which can be confusing since we use the
symbol ∆ in so many other closely related situations).

In order to warm up for geometric realization, we introduce a (covariant) functor from the
category C in remark 4.2.2 to the category of topological spaces. On objects, the functor
is given by

{0, 1, 2, . . . ,m} 7→ ∆m

where ∆m is the space of functions u from {0, 1, . . . ,m} to R which satisfy the condition∑m
j=0 u(j) = 1 . (As usual we view this as a subspace of the finite-dimensional real vector

space of all functions from {0, 1, . . . , n} to R . It is often convenient to think of u ∈ ∆n as
a vector, (u0, u1, . . . , um) , where all coordinates are ≥ 0 and their sum is 1 .) Here is a
picture of ∆2 as a subspace of R3 (with basis vectors e0, e1, e2 ):

For a morphism f , meaning an order-preserving injective map

f : {0, 1, 2, . . . ,m} −→ {0, 1, 2, . . . , n},

we want to see an induced map

f∗ : ∆
m → ∆n.

This is easy: for u = (u0, u1, . . . , um) ∈ ∆m we define

f∗(u) = v = (v0, v1, . . . , vn) ∈ ∆n

where vj = ui if j = f(i) and vj = 0 if j /∈ im(f) .
(Keep the following conventions in mind. For a covariant functor G from a category
A to a category B , and a morphism f : x → y in A , we often write f∗ : G(x) → G(y)
instead of G(f) : G(x) → G(y) . For a contravariant functor G from a category A to a
category B , and a morphism f : x → y in A , we often write f∗ : G(y) → G(x) instead of
G(f) : G(y)→ G(x) .)

The geometric realization |Y| of a semi-simplicial set Y is a topological space defined as
follows. Our goal is to have, for each n ≥ 0 and y ∈ Yn , a preferred continuous map

cy : ∆
n → |Y|
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(the characteristic map associated with the simplex y ∈ Yn ). These maps should match
in the sense that whenever we have an injective order-preserving

f : {0, 1, . . . ,m}→ {0, 1, . . . , n}

and y ∈ Yn , so that f∗y ∈ Ym , then the diagram

∆n
cy // |Y|

∆m

f∗

OO

cf∗y // |Y|

=

OO

is commutative. There is a “most efficient” way to achieve this. As a set, let |Y| be the
set of all pairs (y, u) where y ∈ Yn for some n ≥ 0 and u ∈ ∆n , modulo the relations1

(y, f∗(u)) ∼ (f∗(y), u)

(notation and assumptions as in that diagram). This ensures that we have maps cy from
∆n to |Y| , for each y ∈ Yn , given in the best tautological manner by

cy(u) := equivalence class of (y, u) .

Also, those little squares which we wanted to be commutative are now commutative be-
cause we enforced it. Finally, we say that a subset U of |Y| shall be open (definition
coming) if and only if c−1y (U) is open in ∆n for each characteristic map cy : ∆

n → |Y| .

A faster way to say the same thing is as follows:

|Y| :=

∐
n≥0

Yn × ∆n
/ ∼

where ∼ is a certain equivalence relation on
∐
n Yn×∆n . It is the smallest equivalence rela-

tion which has (y, f∗(u)) equivalent to (f∗(y), u) whenever f : {0, 1, . . . ,m}→ {0, 1, . . . , n}
is injective order-preserving and y ∈ Yn , u ∈ ∆m . Note that, where it says Yn × ∆n ,
the set Yn is regarded as a topological space with the discrete topology, so that Yn ×∆n
has meaning; we could also have written

∐
y∈Yn

∆n instead of Yn × ∆n .

This new formula for |Y| emphasizes the fact that |Y| is a quotient space of a topological
disjoint union of many standard simplices ∆n (one simplex for every pair (n, y) where
y ∈ Yn ). Go ye forth and look up quotient space or identification topology in your favorite
book on point set topology.—

Example 4.2.4. Fix an integer n ≥ 0 . We might like to invent a semi-simplicial set

Y = ∆n

such that |Y| is homeomorphic to ∆n . The easiest way to achieve that is as follows. Define
Yk to be the set of all order-preserving injective maps from {0, 1, . . . , k} to {0, 1, . . . , n} . So

Yk has
(
n+1
k+1

)
elements (which implies Yk = ∅ if k > n). For an injective order-preserving

map
g : {0, 1, . . . , k}→ {0, 1, . . . , `},

define the face operator g∗ : Y` → Yk by g∗(f) = f ◦ g . This makes sense because f ∈ Y`
is an order-preserving injective map from {0, 1, . . . , `} to {0, 1, . . . , n} . There is a unique

1Modulo the relations is short for the following process: form the smallest equivalence relation on the

set of all those pairs (y, u) which contains the stated relation. Then pass to the set of equivalence classes

for that equivalence relation. That set of equivalence classes is |Y| .
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element y ∈ Yn , corresponding to the identity map of {0, 1, . . . , n} . It is an exercise to
verify that the characteristic map cy : ∆

n → |Y| is a homeomorphism.

Example 4.2.5. Up to relabeling there is a unique semi-simplicial set Y such that Y0
has exactly one element, Y1 has exactly one element, and Yn = ∅ for n > 1 . Then
|Y| is homeomorphic to S1 . More precisely, let z ∈ Y1 be the unique element; then the
characteristic map

cz : ∆
1 −→ |Y|

is an identification map. (Translation: it is surjective and a subset of the target is open in
the target if and only if its preimage is open in the source.) The only identification taking
place is cz(a) = cz(b) , where a and b are the two boundary points of ∆1 .

4.3. Technical remarks concerning the geometric realization

Proposition 4.3.1. Let (V, S) be a vertex scheme, with a total ordering on V , and let Y
be the associated semi-simplicial set, as in example 4.2.3. The geometric realization |Y| is
homeomorphic to the simplicial complex |V |S .

Proof. An element of Yn is an order-preserving injective map from [n] = {0, 1, . . . , n}
to V . This is determined by its image T , a distinguished subset of V (where distinguished
means that T ∈ S). We make a continuous map

ᾱ :
∐
n≥0

Yn × ∆n −→ |V |S

by taking a pair (y, b) with y ∈ Yn and b ∈ ∆n to the function f : V → [0, 1] which
has f(y(t)) = bt for t ∈ [n] and f(v) = 0 if v ∈ V is not in the image of y : [n] → V .
This is clearly onto, and continuous. It is easy to see that ᾱ((y, b)) = ᾱ((x, a)) if and
only if (y, b) and (x, y) are equivalent in the sense that they have the same image in |Y| .
Therefore the map ᾱ determines a bijective continuous map α : |Y| → |V |S . The inverse
is continuous when we restrict to a subset of the form ∆(T) ⊂ |V |S (where T ∈ S) since
it is essentially cy : ∆

n → |Y| for the unique y : [n] → V which has image T (up to an
identification of ∆n with ∆(T)). Therefore the inverse is continuous. �

Lemma 4.3.2. Let Y be any semi-simplicial set. For every element a of |Y| there exist
unique m ≥ 0 and (z,w) ∈ Ym × ∆m such that a = cz(w) and w is in the “interior” of
∆m , that is, the coordinates w0, w1, . . . , wm are all strictly positive.
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Furthermore, if a = cx(u) for some (x, u) ∈ Yk × ∆k , then there is a unique order-
preserving injective f : {0, 1, . . . ,m} → {0, 1, 2, . . . , k} such that f∗(x) = z and f∗(w) = u ,
for the above-mentioned (z,w) ∈ Ym × ∆m with w0, w1, . . . , wm > 0 .

Proof. Let us call such a pair (z,w) with a = cz(w) a reduced presentation of a ;
the condition is that all coordinates of w must be positive. More generally we say that
(x, u) is a presentation of a if (x, u) ∈ Yk × ∆k for some k ≥ 0 and a = cx(u) . First we
show that a admits a reduced presentation and then we show uniqueness.
We know that a = cx(u) for some (x, u) ∈ Yk × ∆k . Some of the coordinates u0, . . . , uk
can be zero (not all, since their sum is 1). Suppose that m + 1 of them are nonzero.
Let f : {0, 1, . . . ,m}→ {0, 1, . . . , k} be the unique order-preserving map such that uf(j) 6= 0
for j = 0, 1, 2, . . . ,m . Then a = cz(w) where z = f∗(x) and w ∈ ∆m with coordinates
wj = uf(j) . (Note that f∗(w) = u .) So (z,w) is a reduced presentation of a .
We have also shown that any presentation (x, u) of a (whether reduced or not) determines
a reduced presentation. Namely, there exist unique m , f and w ∈ ∆m such that v = f∗(w)
for some w ∈ ∆m with all wi > 0 ; then (f∗(x), w) is a reduced presentation of a .
It remains to show that if a has two presentations, say (x, u) ∈ Yk × ∆k and (y, v) ∈
Y` × ∆` , then they determine the same reduced representation of a . We are assuming
that (x, u) and (y, v) are equivalent, and so (recalling how that equivalence relation was
defined) we find that there is no loss of generality in assuming that x = g∗(y) and v =
g∗(u) for some order-preserving injective g : {0, 1, . . . , k} → {0, 1, . . . , `} . Now determine
the unique m and order-preserving injective f : {0, 1, . . . ,m} → {0, 1, . . . , k} such that
u = f∗(w) where w ∈ ∆m and all wi > 0 . Then we also have v = g∗(u) = g∗(f∗(w)) =
(g ◦ f)∗(w) and it follows that we get the same reduced presentation,

(f∗(x), w) = ((g ◦ f)∗(y), w),

in both cases. �

Corollary 4.3.3. The space |Y| is a Hausdorff space.

Proof. For a ∈ |Y| with reduced presentation (z,w) ∈ Ym × ∆m and ε > 0 , define
N(a, ε) ⊂ |Y| as follows. It consists of all b ∈ |Y| with a presentation (x, u) ∈ Yk × ∆k
(which does not have to be reduced) such that there exists an order-preserving injective
f : {0, 1, . . . ,m}→ {0, 1, . . . , k} for which

• f∗(x) = z
• f∗(w) is ε -close to u , that is, the numbers |wj − uf(j)| for j ∈ [m] and the

numbers ui for i /∈ im(f) are all < ε ;
• uf(j) > 0 for all j ∈ [m] .

Then from the definitions, N(a, ε) is open in |Y| ; so it is a neighborhood of a .
Let a ′ ∈ |Y| be another element, with reduced presentation (y, v) ∈ Yn×∆n . Suppose that
N(a ′, ε)∩N(a, ε) is nonempty. Then we know, first of all, that there exists (x, u) ∈ Yk×∆k
(reduced presentation) and order-preserving injective maps f : [m]→ [k] and g : [n]→ [k]
such that f∗(x) = z and g∗(x) = y and f∗(w) is ε -close to u and g∗(v) is ε -close to u .
Then f∗(w) and g∗(v) are 2ε-close to each other in ∆k . If 2ε is less than the minimum
of the (barycentric) coordinates of v and w , then we can deduce that f = g and m = n ,
and w is 2ε-close to v in ∆m = ∆n . Therefore N(a ′, ε)∩N(a, ε) 6= ∅ can only happen if
2ε is at least as large as the the minimum of the (barycentric) coordinates of v and w , or
if m = n and v is 2ε-close to w in ∆m = ∆n . So if a 6= a ′ and ε > 0 is small enough,
it will not happen. �
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Remark 4.3.4. In the proof above, and in a similar proof in the previous section, ar-
guments involving distances make an appearance, suggesting that we have a metrizable
situation. To explain what is going on let me return to the situation of a vertex scheme
(V, S) with simplicial complex |V |S , which is easier to understand. A metric on the set |V |S
can be introduced for example by d(f, g) =

∑
v |f(v)−g(v)| . Here we insist/remember that

elements of |V |S are functions f, g, . . . : V → [0, 1] subject to some conditions. The sums
in the formulas for d(f, g) are finite, even though V might not be a finite set. However
the topology on |V |S that we have previously decreed (let me call it the weak topology)
is not in all cases the same as the topology determined by that metric. Every subset of
|V |S which is open in the metric topology is also open in the weak topology. But the
weak topology can have more open sets. Since the topology determined by the metric is
certainly Hausdorff, the weak topology is a fortiori a Hausdorff topology. — In the case
where V is finite, weak topology and metric topology on |V |S coincide. (Exercise.)

4.4. A shorter but less conceptual definition of semi-simplicial set

Every injective order-preserving map from [k] = {0, 1, . . . , k} to [`] = {0, 1, . . . , `} is a
composition of `− k injective order preserving maps

[m− 1] −→ [m]

where k < m ≤ ` . It is easy to list the injective order-preserving maps from [m − 1] to
[m] ; there is one such map fi for every i ∈ [m] , characterized by the property that the
image of fi is

[m]r {i} .

(This fi really depends on two parameters, m and i . Perhaps we ought to write fm,i ,
but it is often practical to suppress the m subscript.) We have the important relations

(I) fifj = fjfi−1 if j < i

(You are allowed to read this from left to right or from right to left! It is therefore a formal
consequence that fifj = fj+1fi when j ≥ i .) These generators and relations suffice to
describe the category C of remark 4.2.2 (also denoted ∆). In other words, the structure
of C alias ∆ as a category is pinned down if we say that it has objects [k] for k ≥ 0 and
that, for every k > 0 and i ∈ {0, 1, . . . , k} , there are certain morphisms fi : [k − 1] → [k]
which, under composition when it is applicable, satisfy the relations (I). Prove it!
Consequently a semi-simplicial set Y , which is a contravariant functor from C to spaces,
can also be described as a sequence of sets Y0, Y1, Y2, . . . and maps

di : Yk → Yk−1

which are subject to the relations

(II) djdi = di−1dj if j < i

Here di : Yk → Yk−1 denotes the map induced by fi : [k − 1] → [k] , whenever 0 ≤ i ≤
k . Because of contravariance, we had to reverse the order of composition in translating
relations (I) to obtain relations (II).



32 4. COMBINATORIAL DESCRIPTION OF SOME SPACES

4.5. The singular semi-simplicial set of a space

Let X be a topological space.

Definition 4.5.1. The singular semi-simplicial set of X is the semi-simplicial set sing(X)
defined as follows. An n-simplex of sing(X) is a continuous map from ∆n to X ; in
other words, sing(X)n is the set of all continuous maps from ∆n to X . For a monotone
injective f : [m] → [n] , the induced map of sets f∗ : sing(X)n → sing(X)m is given by
pre-composition with f∗ : ∆

m → ∆n .

There are curious historical explanations for the appearance of the word singular in the
expression the singular semi-simplicial set of X . Somebody wanted to emphasize that we
allow all continuous maps from standard simplices ∆n to X when we define sing(X) . Older
variants might have asked for additional conditions to be satisfied, such as injectivity, or
other conditions which make sense for some X but not others.

There is a comparison map
κ : |sing(X)| −→ X .

It is defined in such a way that the composition∐
n≥0

sing(X)n × ∆n −→ |sing(X)| −→ X

agrees with the evaluation map, (y, v) 7→ y(v) , on sing(X)n × ∆n . Equivalently, we can
define κ by saying that κ ◦ cy equals y , for every y ∈ sing(X)n . (What does this mean?
Remember that y ∈ sing(X)n is a continuous map from ∆n to X ; and cy : ∆

n → |sing(X)|
is the characteristic map for y ; so the formula makes sense.)

Clearly, sing is a functor from the category Top to the category of semi-simplicial sets.
There is an important relationship between this functor and the functor geometric real-
ization, which is a functor from the category of semi-simplicial sets to the category Top.

Proposition 4.5.2. Let X be a topological space and let Y be a semi-simplicial set. There
is a (bi-)natural bijection

morTop(|Y|, X) −→ morssSets(Y, sing(X))

where ssSets denotes the category of semi-simplicial sets.

The bijection is rather obvious. If f : |Y| → X is a continuous map, and y ∈ Yn , then
we can make a continuous map ∆n → X by composing f with the characteristic map
cy : ∆

n → |Y| . with f . Now Yn 3 y 7→ f ◦ cy ∈ sing(X)n is a morphism from Y
to sing(X) in ssSets. Conversely, if we have a morphism g : Y → sing(X) , then the
composition of |g| : |Y| → |sing(X)| with the above map κ : |sing(X)| → X is a continuous
map κ ◦ |g| : |Y|→ X . The naturality properties are also obvious as soon as we state them.
But let us do this at a more abstract level.

Definition 4.5.3. Suppose given categories C , D and functors F : C → D , G : D → C .
We say that F is left adjoint to G (or synonymously that G is right adjoint to F) if there
exists a bi-natural bijection

morD(F(c), d) −→ morC(c,G(d))

for objects c in C and d in D . (The left-hand side is a functor from Cop×D to Sets and
the right-hand side is also a functor from Cop×D to Sets. We are asking for an invertible
natural transformation between these two.)
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Adjoints are unique. The following lemma makes this precise for right adjoints; there is
an analogue for left adjoints (mutatis mutandis).

Lemma 4.5.4. Suppose that F : C→ D has two right adjoints, G : D→ C and G ′ : D→ C .
Then there exists a natural isomorphism from G to G ′ .

Proof. We suppose that we have bi-natural bijections

α : morD(F(c), d) −→ morC(c,G(d)), β : morD(F(c), d) −→ morC(c,G
′(d)).

Fix an object d in D . Put c := G(d) . Then idc ∈ morC(c,G(d)) and so

βα−1(idc) ∈ morC(c,G
′(d)) = morC(G(d), G

′(d)).

This means that we have selected a morphism G(d)→ G ′(d) , for every d . The conditions
on α and β imply that this was a natural selection, i.e., a natural transformation u from
G to G ′ . In the same way, we obtain a preferred natural transformation v from G ′ to
G (using αβ−1 instead of βα−1 ). It is clear from the constructions that uv = idG ′ and
vu = idG . �

Therefore we can say that geometric realization (of semi-simplicial sets) is the (essentially
unique) left adjoint to singular simplicial set (of topological spaces), and singular simplicial
set is the right adjoint to geometric realization.

Remark 4.5.5. Adjoint functors are unique up to natural isomorphism if they exist, but
they don’t always exist. How should we search for the left adjoint (for example) of a functor
G : A → B if we suspect that it exists? To generate some ideas, let us first suppose that
a left adjoint F does exist. Take some object b in B . There is a distinguished morphism

ub : b −→ G(F(b))

in B . This is the morphism which corresponds to idF(b) ∈ morA(F(b), F(b)) under the
adjunction morA(F(b), F(b)) ↔ morB(b,G(F(b))) . The morphism ub is called the unit
morphism of the adjunction (for the object b). It has the following universal property.
Given any object a in A and a morphism v : b → G(a) in B , there exists a unique
morphism w : F(b)→ a such that G(w) ◦ ub = v . In fact w corresponds to v under the
adjunction

morA(F(b), a)↔ morB(b,G(a)).

What is being said here is that the adjunction can be written in the form w 7→ G(w)◦ub .
(Reader, prove it.)
Therefore, if for an object b in B , we can find an object ab of A and a morphism
u : b→ G(ab) which has this universal property (... for any object a in A and morphism
v : b→ G(a) in B , there exists a unique morphism w : ab → a such that G(w) ◦ u = v),
then ab is an excellent candidate for F(b) . (A more precise statement can be made: up
to isomorphism it is the only possible candidate.)
Here is a standard illustration of this principle. Let G be the forgetful functor from the
category of abelian groups to the category of sets. For a set S , let Z[S] be the free abelian
group with generating set S . (Alternative description:

⊕
s∈S Z .) Then there is an obvious

inclusion map S → Z[S] (of sets), and this has the well-known universal property: every
map from S to an abelian group A has a unique extension to a homomorphism from Z[S]
to A . Therefore if G has a left adjoint F , then Z[S] is our candidate for F(S) , and the
inclusion S → Z[S] is our candidate for the unit morphism of the adjunction. And this
works ...
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This illustration suggests that left adjoints have something to do with “free” constructions.
Indeed this is not bad as a guiding principle if the functor G whose left adjoint we are
trying to find looks enough like a forgetful functor. As a student, long ago, I participated
in a seminar where, on one occasion, the professor made the following observation. You
can try to describe free constructions in the style of Arthur Schopenhauer, by asking for
the necessary generators and the absolute minimum imaginable of relations ... but as an
alternative you can describe them using the language of categories, specifically the concept
of adjunction. That was roughly what he said. I think he was not trying to say that one
description is worse or better than the other. I am sure he was trying to be funny, but
there was a lot of wisdom in his words.



CHAPTER 5

Chain complexes

5.1. The category of chain complexes

Definition 5.1.1. A chain complex is a collection of abelian groups Cr indexed by the
integers r ∈ Z , together with homomorphisms

dr : Cr → Cr−1

which satisfy the condition

dr ◦ dr+1 = 0
for all r ∈ Z . The homomorphisms dr taken together are often called the differential, and
denoted simply by d . (It is customary to use the letter d for the differential in any chain
complex whatsoever.)

· · · C−2
oo C−1

oo C0oo C1oo C2oo C3oo · · ·oo

We may write C for the entire chain complex ((Cr)r∈Z, (dr)r∈Z) .

Definition 5.1.2. A chain map from a chain complex B to a chain complex C is a
collection of homomorphisms

fr : Br → Cr

which satisfy the conditions drfr = fr−1dr , so that the following diagram is commutative:

· · · B−2
oo

f−2

��

B−1
oo

f−1

��

B0oo

f0

��

B1oo

f1

��

B2oo

f2

��

B3oo

f3

��

· · ·oo

· · · C−2
oo C−1

oo C0oo C1oo C2oo C3oo · · ·oo

We may write f : B→ C for the chain map, instead of (fr : Br → Cr)r∈Z .

It is clear from these definitions that chain complexes are the objects of a category C . A
morphism from chain complex C to chain complex D is, by definition, a chain map from
C to D . Composition is obvious.
This category C has some additional structure. The set of morphisms from C to D
comes equipped with the structure of an abelian group (i.e., chain maps from C to D
can be added, subtracted, etc.) Composition of chain maps is bilinear (more precisely,
bi-homomorphic).

Example 5.1.3. This is our most important example of a chain complex. A semi-simplicial
set Y determines a chain complex C(Y) in the following way. For r ≥ 0 let C(Y)r be the
free abelian group generated by the set Yr . (In other words, C(Y)r is the set of formal
linear combinations, with integer coefficients, of elements in Yr .) For r < 0 let C(Y)r := 0 .
The differential

d : C(Y)r → C(Y)r−1

35
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is defined for r > 0 by the formula

d(z) =

r∑
i=0

(−1)if∗i (z)

where z is an element of Yr , viewed as one of the generators of C(Y)r , and fi : [r−1]→ [r]
is the unique monotone injective map whose image is [r] r {i} . (Exercise: show that dd
from C(Y)r to C(Y)r−2 is the zero homomorphism.)

Example 5.1.4. A morphism f : X → Y of semi-simplicial sets determines a chain map
C(X) → C(Y) in the obvious way, that is, the chain map takes x ∈ Xr , viewed as one
of the generators of C(X)r , to f(x) ∈ Yr , viewed as one of the generators of C(Y)r .
(Exercise: show that this is indeed a chain map.) Therefore Y 7→ C(Y) is a functor from
the category of semi-simplicial sets to the category of chain complexes.

5.2. Chain homotopies and homology groups

The category of chain complexes has some features in common with the category Top of
topological spaces. In particular there is a concept of chain homotopy, analogous to the
concept of homotopy between continuous maps.

Definition 5.2.1. Let B and C be chain complexes. Let f and g be chain maps from C
to D . A chain homotopy h from f to g is a collection of group homomorphisms

hr : Br −→ Cr+1

such that dr+1hr + hr−1dr = gr − fr for all r ∈ Z . If such a chain homotopy exists, then
we say that f and g are chain homotopic. Notation: f ' g .

Let’s make a few remarks on this relation, chain homotopic.

• It is a transitive relation: if e, f, g are chain maps from B to C , and e is
homotopic to f , and f is homotopic to g , then e is homotopic to g . Proof: let
h be a homotopy from e to f and let k be a homotopy from f to g . Then h+k
is a homotopy from e to g .

• It is reflexive (obvious) and symmetric (obvious).
• It is a congruence relation, i.e., if f ' g and u ' v , then f+u ' g+v , assuming

that f, g, u, v are chain maps from B to C .
• If h is a homotopy from f : B→ C to g : B→ C and u : C→ D is a chain map,

then uh is meaningful and it is a homotopy from uf to ug .
• If h is a homotopy from f : B→ C to g : B→ C and v : A→ B is a chain map,

then hv is meaningful and it is a homotopy from fv to gv .

It follows in the usual manner that we can make a category HC where the objects are the
chain complexes, as before, but the morphisms are chain homotopy classes of chain maps.
We write [C,D] for the abelian group of chain homotopy classes of chain maps from chain
complex C to chain complex D . We write [f] ∈ [C,D] for the chain homotopy class of a
chain map f : C→ D . Composition is (well) defined by

[D,E]× [C,D] −→ [C, E] ; ([g], [f]) 7→ [gf]

and it is bi-homomorphic. We say that f : C → D is a chain homotopy equivalence if
[f] ∈ [C,D] is invertible, that is, if there exists a chain map g : D → C such that gf
is chain homotopic to idC and fg is chain homotopic to idD . It is acceptable to say
homotopic etc. instead of chain homotopic (if confusion is unlikely).
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Definition 5.2.2. Let C be a chain complex. The subgroup ker(dn : Cn → Cn−1) of
Cn is often called the group of n-cycles. The subgroup im(dn+1 : Cn+1 → Cn) is often
called the group of n-boundaries. The group of n-boundaries is contained in the group
of n-cycles since dd = 0 . The n-th homology group of a chain complex C is the abelian
group

Hn(C) :=
ker(dn : Cn → Cn−1)

im(dn+1 : Cn+1 → Cn)

called the n-th homology group of C . The element of Hn(C) represented by an n -cycle
x can be called the homology class of x .

The n -th homology group Hn(C) can also be defined as follows. We introduce a special
chain complex denoted (Z, n) ; this has (Z, n)n = Z and (Z, n)k = 0 for k ∈ Z , k 6= n .
The differentials in (Z, n) are necessarily all zero. Now observe that a chain map f from
(Z, n) to C is determined by f(1) ∈ Cn , which must be an n-cycle. Similarly a chain
homotopy h from f : (Z, n)→ C to g : (Z, n)→ C is determined by h(1) , and this must
satisfy

d(h(1)) = g(1) − f(1) .

Therefore the group of chain homotopy classes of chain maps from (Z, n) to C is identified
with the quotient of subgroup of n-cycles by subgroup of n-boundaries. In a formula,

Hn(C) ∼= [ (Z, n), C ] .

As a corollary of this observation we obtain:

Proposition 5.2.3. A chain map f : C→ D induces a homomorphism Hn(C)→ Hn(D)
by the rule

homology class of x 7→ homology class of f(x)

for n-cycles x ∈ Cn . Therefore Hn is a functor from the category of chain complexes to
the category of abelian groups. If f and g are homotopic chain maps, then they induce
the same homomorphism Hn(C)→ Hn(D) .

Corollary 5.2.4. If f : C→ D is a chain homotopy equivalence, then the homomorphisms
Hn(C)→ Hn(D) induced by f are isomorphisms, for all n ∈ Z .

Example 5.2.5. Fix an integer n ≥ 0 . Let f : [0]→ [n] be the monotone injection taking
0 to 0 . Let

X := ∆0, Y := ∆n

(semi-simplicial sets defined in example 4.2.4). There is a unique semi-simplicial map
X → Y taking the unique element in X0 to the element f in Y0 = mor∆([0], [n]) . This
induces a chain map C(X) → C(Y) . That chain map is a chain homotopy equivalence.
(Exercise.) It follows that Hj(C(Y)) = 0 for j 6= 0 and H0(C(Y)) ∼= Z .

5.3. Long exact sequence of homology groups

A diagram of abelian groups and homomorphisms A→ B→ C is exact if the image of the
first arrow agrees with the kernel of the second. Similarly, a chain complex B is exact if
the image of dn+1 : Bn+1 → Bn agrees with the kernel of dn : Bn → Bn−1 , for all n . (The
image of dn+1 : Bn+1 → Bn is automatically contained in the kernel of dn : Bn → Bn−1 .)
The expression long exact sequence is also used for exact chain complex.
A diagram of abelian groups and homomorphisms A→ B→ C is short exact if it is exact
and, moreover, A → B is injective and B → C is surjective. (Another way to say that:
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A→ B→ C is short exact if and only if, in the diagram 0→ A→ B→ C→ 0 , each pair
of consecutive arrows is exact.)
Similarly, a diagram of chain complexes and chain maps A → B → C is exact if the
diagram of abelian groups An → Bn → Cn is exact for every n . And the diagram
A → B → C of chain complexes and chain maps is called short exact if An → Bn → Cn
is short exact for every n . (Here we are not assuming that the chain complexes A , B and
C are exact in their own right.)
Up to isomorphism, if we see a short exact sequence of chain complexes A→ B→ C , then
we can always pretend that A is a chain subcomplex of B and C is the quotient chain
complex B/A . (I did not define chain subcomplex, but the meaning should be clear: we
have An ⊂ Bn as an abelian subgroup, for each n , and each dn : Bn → Bn−1 satisfies
dn(An) ⊂ An−1 .)

Proposition 5.3.1. Let A
j // B

p // C be a short exact sequence of chain complexes.
For each n ∈ Z there is a homomorphism ∂ : Hn(C) −→ Hn−1(A) , well defined by

∂[z] := [d(z!)] ,

where z ∈ Cn denotes a cycle and z! ∈ Bn satisfies p(z!) = z .

Proof. We can assume that A is a chain subcomplex of B and C = B/A . First we
verify that the formula for ∂ makes sense. If z is a cycle in Bn/An , then we can certainly
choose z! in Bn mapping to z under the projection pn : Bn → Bn/An . We are assuming
that d(z) = 0 , but it does not follow that d(z!) = 0 . It does follow that

d(z!) ∈ An−1 ⊂ Bn−1
and clearly dd(z!) = 0 in An−2 ⊂ Bn−2 , because dd is zero as a homomorphism from
Bn to Bn−2 . Therefore d(z!) is an (n − 1) -cycle for the chain complex A , and we may
form its homology class.
That was a long explanation. Now we need to verify that the definition of ∂ is unambigu-
ous. There are two choices that we made, but we can wrap them up as one: we started
with an element of Hn(B/A) and we chose z! ∈ Bn such that p(z!) ∈ Bn/An is an n -cycle
in B/A representing that element of Hn(B/A) . So suppose that z!! is another element of
Bn such that p(z!!) is an n-cycle in B/A which represents the same element of Hn(B/A) .
Then

p(z! − z!!) = p(z!) − p(z!!) = d(p(y)) = p(d(y)) in B/A

for some y ∈ Bn+1 . Therefore p(z! − z!! −d(y)) = 0 in B/A and therefore z! − z!! −d(y)
belongs to An (calculation in B) and so

d(z!) − d(z!!) = d(z!) − d(z!!) − dd(y) = d(z! − z!! − dy)

is an (n − 1) -boundary in A , so that it represents zero in Hn−1(A) . This means that ∂
is well defined. Finally, it is clear from the definition that ∂ is a homomorphism. �

Theorem 5.3.2. In the situation of proposition 5.3.1, the diagram

· · · // Hn+1(C)
∂ // Hn(A)

j∗ // Hn(B)
p∗ // Hn(C)

∂ // Hn−1(A)
j∗ // Hn−1(B) // · · ·

(where n ∈ Z) is exact.

Proof. To show: (i) j∗∂ = 0 , (ii) p∗j∗ = 0 , (iii) ∂p∗ = 0 , (iv) im(j∗) ⊃ ker(p∗) ,
(v) im(∂) ⊃ ker(j∗) , (vi) im(p∗) ⊃ ker(∂) . We can assume A ⊂ B and C = B/A as
before.
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(i) For an (n + 1) -cycle z in B/A choose z! ∈ Bn+1 which represents z . Then ∂[z] =
[d(z!)] . But d(z!) is a boundary in Bn , so that j(d(z!)) represents zero in Hn(B) .

(ii) Obvious.

(iii) If y is an n-cycle in B and z = p(y) in B/A , then we can take z! = y in the
definition of ∂[z] and we get d(z!) = 0 , therefore ∂[z] = ∂[p(y)] = 0 .

(iv) Suppose that y is an n -cycle in B and p(y) is an n -boundary in B/A . Choose
x ∈ Bn+1 such that d(p(x)) = p(y) . Then d(x)−y ∈ An and d(d(x)−y) = dd(x)−d(y) =
−d(y) = 0 . Therefore d(x) − y represents an element of Hn(A) and the image of that in
Hn(B) agrees with [y] .

(v) Suppose that y is an n-cycle in A which becomes an n -boundary in B . Choose
x ∈ Bn+1 such that d(x) = y in Bn . Then p(x) ∈ Bn+1/An+1 is a cycle and we calculate
∂[p(x)] = [d(x)] = [y] in Hn(A) .

(vi) Suppose that z is an n -cycle in B/A and ∂[z] = 0 . We can write z = p(z!) where
z! ∈ Bn . Then d(z!) is a boundary in A by assumption. Choose x ∈ An such that d(x) =
d(z!) in A . Then x− z! is an n -cycle in B . Clearly p∗[x− z

!] = [p(x) − p(z!)] = [z] . �

Corollary 5.3.3. Let E be a chain complex with chain subcomplexes K and L such that
K+ L = E ; we are not assuming K ∩ L = 0 . Then there is an exact sequence of homology
groups

· · · // Hn+1(E) // Hn(K ∩ L) // Hn(K)⊕Hn(L) // Hn(E) // Hn−1(K ∩ L) // · · ·

Proof. Let us write jK : K → E , jL : L → E , gK : K ∩ L → K , gL : K ∩ L → L for the
various inclusions. Then there is a short exact sequence of chain complexes

K ∩ L
(gK,−gL) // K⊕ L jK⊕jL // E

so that we are in the situation of theorem 5.3.2. — This reasoning adds more precision
to the statement. Namely, the homomorphism Hn(K∩ L)→ Hn(K)⊕Hn(L) in the exact
sequence is ((gK)∗ ,−(gL)∗) . The homomorphism Hn(K)⊕Hn(L)→ Hn(E) in the exact
sequence is (jK)∗ ⊕ (jL)∗ . �

The long exact sequence of corollary 5.3.3 is associated with the names Mayer and Vietoris;
Mayer-Vietoris sequence.

5.4. Euler characteristic

The rank of a finitely generated abelian group A is the dimension of A⊗Z Q as a vector
space over the field Q . To put it differently, the classification theorem for finitely generated
abelian groups says that A ∼= Zk ⊕ B where B is a finite abelian group; the integer k is
the rank of A . Notation: rk(A) .

Definition 5.4.1. Let C be a chain complex. Suppose that the homology groups Hn(C)
are all finitely generated, and only finitely many of them are nonzero. Then the Euler
characteristic of C is defined; it is the integer

χ(C) :=
∑
n∈Z

(−1)nrk(Hn(C)) .
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Proposition 5.4.2. Let C be a chain complex; suppose that the groups Cn are all finitely
generated, and only finitely many of them are nonzero. Then the Euler characteristic χ(C)
is defined and it is equal to

χ(C) =
∑
n∈Z

(−1)nrk(Cn) .

Proof. It is clear that the homology groups of C are finitely generated, and that
only finitely many of them can be nonzero. Therefore χ(C) is defined. Next, each abelian
group Cn has two distinguished subgroups: the group of cycles Zn = ker[ d : Cn → Cn−1 ]
and the group of boundaries Bn = im[ d : Cn+1 → Cn ] . Therefore

rk(Cn) = rk(Cn/Zn) + rk(Zn/Bn) + rk(Bn)

= rk(Bn−1) + rk(Hn(C)) + rk(Bn)

(where we have used Cn/Zn ∼= Bn−1 , special case of the Nöther isomorphism theorem).
Substituting rk(Bn−1) + rk(Hn(C)) + rk(Bn) for rk(Cn) in the expression∑

n∈Z
(−1)nrk(Cn)

and making the obvious cancellations, we obtain χ(C) . �



CHAPTER 6

The singular chain complex of a space

6.1. A functor from spaces to chain complexes

A topological space X determines a semi-simplicial set sing(X) and a semi-simplicial set
Y determines a chain complex C(Y) . More precisely, there is a functor sing which to a
space X associates sing(X) and to a continuous map g : X → X ′ a semi-simplicial map
sing(X)→ sing(Y) . And there is a functor which to a semi-simplicial set Y associates the
chain complex C(Y) and to a semi-simplicial map Y → Y ′ a chain map from C(Y) to
C(Y ′) . These are two functors which we have already seen. Now we compose them:

X 7→ sing(X) 7→ C(sing(X)).

Instead of C(sing(X)) I may also write sC(X) . (This is not exactly standard notation.
Other people write C or S or S∗ instead of sC .) The chain complex sC(X) is called the
singular chain complex of X . Therefore singular chain complex is a functor sC from Top
to the category of chain complexes (and chain maps).
The singular chain complex sC(X) is typically gigantic. Let us write out the definition
once again: sC(X)n is the free abelian group generated by the set of all continuous maps
from the standard simplex ∆n to X . The differential sC(X)n → sC(X)n−1 is defined, on
the generators corresponding to continuous maps σ : ∆n → X , by

d(σ) =

n∑
i=0

(−1)iσ ◦ϕi

where ϕi : ∆
n−1 → ∆n is the continuous map given, in barycentric coordinates, by insert-

ing a 0 in position i . (For example, if n = 5 and i = 2 , we get ϕ2(x0, x1, x2, x3, x4) =
(x0, x1, 0, x2, x3, x4) ∈ ∆5 .) In the notation of section 4.4, the map ϕi could also be
described as (fi)∗ where fi : [n− 1]→ [n] is the unique monotone injection whose image
does not contain i .

Example 6.1.1. Suppose that X is a one-point space. This is one of the few cases where
we can get a good idea of sC(X) by inspection. Namely, sC(X)n for n ≥ 0 is an infinite
cyclic group, freely generated by the unique continuous map from ∆n to X .

· · · 0oo 0oo Zoo Zd1oo Zd2oo Zd3oo · · ·oo

The differential dn is multiplication with the integer
∑n
i=0(−1)

i , in other words with 0
if n is odd and with 1 if n is even (n > 0) . Therefore the homology groups of sC(X) ,
for this X , are H0(sC(X)) = Z and Hj(sC(X)) = 0 for all j 6= 0 .

41
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6.2. Homotopy invariance of the singular chain complex

Theorem 6.2.1. Let g0 : X → X × [0, 1] and g1 : X → X × [0, 1] be the two continuous
maps given by g0(x) = (x, 0) and g1(x) = (x, 1) . Then the chain maps

sC(g0) : sC(X)→ sC(X× [0, 1]), sC(g1) : sC(X)→ sC(X× [0, 1])

are chain homotopic.

Proof. For integers n ≥ 0 and k ∈ {0, 1, 2, . . . , n} let qk : ∆
n+1 → ∆n × [0, 1] be

defined as follows. On the vertices ei of ∆n+1 (where 0 ≤ i ≤ n + 1) we want to have
qk(ei) = (ei, 0) if i ≤ k and qk(ei) = (ei−1, 1) if i > k . Extend this linearly. In
barycentric coordinates this means

qk(x0, x1, . . . , xn, xn+1) =
(
(x0, x1, . . . , xk−1, xk + xk+1, xk+2, . . . , xn+1),

n+1∑
i=k+1

xi

)
.

Warning : we write qk although the thing depends on n and k ; the correct n must be
guessed from the context (if possible). — The maps qk satisfy the equations

q0ϕ0 = (id, 1), q0ϕ1 = q1ϕ1, q1ϕ2 = q2ϕ2, . . . , qn−1ϕn = qnϕn, qnϕn+1 = (id, 0)

and also (for n > 0) clearly

qkϕi = (ϕi−1 × [0, 1]) ◦ qk
if i > k+ 1 , as well as

qkϕi = (ϕi × [0, 1]) ◦ qk−1
if i < k . (Here the warning applies. The qk in the left-hand side is a map from ∆n+1 to
∆n× [0, 1] and the qk or qk−1 in the right-hand side is a map from ∆n to ∆n−1× [0, 1] .
Similarly the ϕi in the left-hand side is a map from ∆n to ∆n+1 and the ϕi or ϕi−1 in
the right-hand side is a map from ∆n−1 to ∆n .) A chain homotopy h = (hn)n∈Z from
sC(g0) to sC(g1) can be defined by

hn : sC(X)n → sC(X× [0, 1])n+1 ; σ 7→ n∑
k=0

(−1)k(σ× [0, 1]) ◦ qk

where σ : ∆n → X is a continuous map. Indeed,

dn+1hn(σ) =

n∑
k=0

n+1∑
i=0

(−1)k+i(σ× [0, 1]) ◦ qkϕi .

If n > 0 , the terms where i = k and i = k+ 1 , except i = k = 0 and i = k+ 1 = n+ 1 ,
cancel out. The terms where i /∈ {k, k+1} can be rewritten using qkϕi = (ϕi−1×[0, 1])◦qk
if i > k+ 1 and qkϕi = (ϕi× [0, 1]) ◦qk−1 if i < k . Their total contribution is therefore
equal to −hn−1dn(σ) . We must still account for the terms corresponding to indices i, k
where i = k = 0 and i = k+ 1 = n+ 1 . They are equal to

(−1)0(σ× [0, 1]) ◦ q0ϕ0 = (σ× [0, 1]) ◦ (id, 1) = (g1)∗(σ)

and
(−1)n+1+n(σ× [0, 1]) ◦ qnϕn+1 = −(σ× [0, 1]) ◦ (id, 0) = −(g0)∗(σ),

respectively. This proves dn+1hn(σ)+hn−1dn(σ) = (g1)∗(σ)−(g0)∗(σ) provided n > 0 .
Finally, in the important case n = 0 the map σ is a map from ∆0 to X . Then it is easy to
verify directly that dn+1hn(σ) is (g1)∗(σ) − (g0)∗(σ) , since the double sum has exactly
these two terms. �
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Corollary 6.2.2. Let f0, f1 : X→ Y be maps of spaces. If they are homotopic, then (f0)∗
and (f1)∗ are chain homotopic chain maps from sC(X) to sC(Y) .

Proof. Choose a homotopy h : X × [0, 1] → Y from f0 to f1 . Then f0 = hg0 and
f1 = hg1 where g0, g1 : X→ X× [0, 1] are as in the theorem. Therefore (f0)∗ = h∗(g0)∗ is
chain homotopic to (f1)∗ = h∗(g1)∗ , since already (g0)∗ is chain homotopic to (g1)∗ . �

Corollary 6.2.3. If f : X→ Y is a homotopy equivalence, then f∗ : sC(X)→ sC(Y) is a
chain homotopy equivalence. �

Corollary 6.2.4. If X is contractible, then Hn(sC(X)) ∼= Z for n = 0 and Hn(sC(X)) =
0 for n 6= 0 .

Proof. See example 6.1.1. �

6.3. Barycentric subdivision

For every permutation λ of [n] = {0, 1, . . . , n} there is a map uλ : ∆
n → ∆n defined as

follows. We want the map to be linear,

uλ(x0, x1, . . . , xn) =

n∑
i=0

xiuλ(ei)

and for the vertices ei ∈ ∆n we let

uλ(ei) = average of the eλ(j) for j ≤ i .

The right-hand side of this formula is the barycenter of the face of ∆n spanned by the
vertices eλ(j) for j ≤ i . (That face is the subset or subspace of ∆n consisting of all
(y0, y1, . . . , yn) such that yλ(j) = 0 if j > i .) So uλ(e0) is a vertex of ∆n , uλ(e1) is
the midpoint of an edge spanned by that vertex and another, uλ(e2) is the midpoint of a
triangle spanned by these two vertices and a third, and so on. An explicit formula for uλ
is therefore

uλ(x0, x1, . . . , xn) =

 ∑
i≥λ−1(0)

xi

i+ 1
,
∑

i≥λ−1(1)

xi

i+ 1
, . . . ,

∑
i≥λ−1(n)

xi

i+ 1

 .
But it is better to forget that immediately.

Proposition 6.3.1. Let X be a topological space. The formula

σ 7→ ∑
λ perm. of [n]

sgn(λ) · σ ◦ uλ

(for n ≥ 0 and continuous σ : ∆n → X , viewed as a generator of sC(X)n ) defines a
natural chain map β : sC(X)→ sC(X) .

Proof. For a permutation λ of [n] let λ? be the permutation of [n − 1] obtained
from λ by deleting n in the source and λ(n) in the target, and renumbering to close the
gaps. Then we have

uλϕn = ϕλ(n)uλ? : ∆
n−1 −→ ∆n .

For i such that 0 ≤ i < n we have

uλτϕi = uλϕi
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where τ is the transposition interchanging i and i + 1 . Therefore if σ : ∆n → X is any
continuous map, then we have, very briefly,

dβ(σ) = (−1)n
∑

λ per. of [n]

sgn(λ) · σuλϕn +
∑

i∈[n−1]

(
(−1)i

∑
λ per. of [n]

sgn(λ) · σuλϕi
)

= (−1)n
∑

λ per. of [n]

sgn(λ) · σuλϕn + 0

= (−1)n
∑

λ per. of [n]

sgn(λ) · σϕλ(n)uλ?

=
∑
j∈[n]

(−1)j
( ∑
ρ per. of [n− 1]

sgn(ρ) · σϕjuρ
)

and that agrees with βd(σ) . The last equality sign was obtained by writing ρ for λ?
and j for λ(n) . We have used (−1)nsgn(λ) = (−1)jsgn(ρ) . — The naturality of β is
obvious. �

6.4. The method of acyclic models

Theorem 6.4.1. Let α : sC(X)→ sC(X) be a natural chain map. If α : sC(∗)0 → sC(∗)0
is the zero homomorphism, then α admits a natural chain homotopy to zero.

Proof. We use the method of acyclic models (due to Eilenberg and MacLane). These
words stand for two ideas.

(i) If we wish to construct a natural chain maps from sC(X) to sC(X) , or natural
chain homotopies between such, then the cases where X is ∆n for some n deserve
special attention. (The geometric simplices ∆n are the models.)

(ii) If X is ∆n , then it is contractible and so corollary 6.2.4 is applicable. (The
models are acyclic. The word acyclic is often used informally in connection with
chain complexes C whose homology groups Hj(C) are all zero, except perhaps
for a specfic j such as j = 0 .)

In the spirit of (i) we make the following observation. Let ιm ∈ sC(∆m)m be the identity
map of ∆m , viewed as one of the generators of the free abelian group sC(∆m)m . A natural
homomorphism g : sC(X)m → sC(X)n is determined by its value on ιm ∈ sC(∆m)m ,
which is an element of sC(∆m)n ; and this can be selected arbitrarily. Proof: if we know
g(ιm) , then we know g(σ) for every continuous σ : ∆m → X (viewed as a generator of
sC(X)m ) since g(σ) = g(σ∗(ιm)) = σ∗(g(ιm)) . The last equality sign uses the naturality
of g . The formula g(σ) = σ∗(g(ιm)) can also be taken as a definition of g in terms of
the element g(ιm) .

sC(∆m)m

σ∗

��

g // sC(∆m)n

σ∗

��
sC(X)m

g // sC(X)m

We apply this observation first in the case m = n and g = αm . So let am = αm(ιm) ∈
sC(∆m)m . Then we know that am determines αm . The fact that the αm together form
a chain map can be expressed by equations relating the am for different m :

(Im) d(am) =

m∑
i=0

(−1)i(ϕi)∗(am−1)
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where ϕi : ∆
m−1 → ∆m is the usual map which omits vertex i . Proof of this:

d(am) = dαm(ιm) = αm−1d(ιm) =
∑m
i=0(−1)

iαm−1ϕi

=
∑m
i=0(−1)

i(ϕi)∗αm−1(ιm−1) =
∑m
i=0(−1)

i(ϕi)∗(am−1) .

Next we apply similar ideas to the natural homomorphisms hm : sC(X)→ sC(X)m+1 in a
(still hypothetical) natural chain homotopy h from 0 to α . Write bm ∈ sC(∆m)m+1 for
hm(ιm) . Since we want

αm = dhm + hm−1d

we must have

am = αm(ιm) = (dhm + hm−1d)(ιm) = d(bm) +
∑m
i=0(−1)

ihm−1(ϕi)

= d(bm) +
∑m
i=0(−1)

i(ϕi)∗hm−1(ιm−1) = d(bm) +
∑m
i=0(−1)

i(ϕi)∗(bm−1),

therefore

(IIm) d(bm) = am −

m∑
i=0

(−1)i(ϕi)∗(bm−1)

for all m ≥ 0 . Now we try to solve (IIm) by induction on m . For m = 0 we have am = 0
and bm−1 = 0 inevitably, so that the right-hand side of (II0) is zero. Therefore we can
choose b0 = 0 . Next, suppose that (IIm−1) is satisfied, where m > 0 . We apply the
differential d to the right-hand side of (IIm) . This gives

d(am) −
∑m
i=0(−1)

i(ϕi)∗(d(bm−1)) =
∑m
i=0(−1)

i(ϕi)∗
(
am−1 − d(bm−1)

)
=
∑m
i=0(−1)

i(ϕi)∗
(∑m−1

j=0 (−1)j(ϕj)∗(bm−2)
)

=
∑m
i=0

∑m−1
j=0 (−1)i+j(ϕiϕj)∗(bm−2) = 0

where we have used equation (Im) , too. Therefore the right-hand side of (IIm) is an
m -cycle in sC(∆m) . By corollary 6.2.4, it follows that it is an m -boundary; so it can be
written as d(bm) for some bm in sC(∆m)m+1 , which we simply choose. This completes
the induction step. �

Corollary 6.4.2. The natural chain map β : sC(X) → sC(X) in proposition 6.3.1 is
naturally chain homotopic to the identity.

Proof. Apply theorem 6.4.1 using α := β− id. �

6.5. Small singular chains

Let X be a topological space and let U be a cover of X . To be more specific, U is a family
(Uj)j∈J of subsets of X ; the Uj are not required to be open subsets of X , but instead we
impose the condition ⋃

j∈J

int(Uj) = X .

(So the sets int(Uj) for j ∈ J do form an open cover of X .) A continuous map σ : ∆n → X
will be called U-small if its image is contained in one of the sets Uj of the cover U . Let

sC(X,U) ⊂ sC(X)

be the chain subcomplex defined as follows: sC(X,U)n ⊂ sC(X)n is the free abelian group
generated by the set of all continuous maps σ : ∆n → X which are U -small. (Whereas
sC(X)n itself is the free abelian group generated by the set of all continuous maps σ from
∆n to X .)
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The following important theorem can be viewed as a “user-friendly” summary of state-
ments that we have proved in the last few sections.

Theorem 6.5.1. The homomorphism Hn(sC(X,U)) −→ Hn(sC(X)) determined by the
inclusion of sC(X;U) in sC(X) is an isomorphism, for all n .

Proof. Let us begin by observing that the natural chain map β : sC(X)→ sC(X) of
proposition 6.3.1 maps the chain subcomplex sC(X,U) to itself. This is obvious from the
construction: if σ : ∆n → X is U -small, then β(σ) ∈ sC(X)n is a formal linear combination
of terms σuλ which are again U-small.
Slightly less obvious: the natural chain homotopy h from β to id which we get from
corollary 6.4.2 also maps the chain subcomplex sC(X,U) to itself. This is a consequence
of naturality. If σ : ∆n → X is U -small, and if we view it as an element of sC(X)n , then
we can write it in the form σ∗(ιn) where ιn ∈ sC(∆n)n is the special element which we
know from the proof of theorem 6.4.1. Therefore hn(σ) = hn(σ∗(ιn)) = σ∗(hn(ιn)) , and
this is clearly an element of sC(X,U)n+1 since σ∗ : sC(∆

n)→ sC(X) has image contained
in sC(X,U) .
An element of Hn(sC(X)) can be represented by some n-cycle z ∈ sC(X)n . For suf-
ficiently large k , the n-cycle βk(z) belongs to sC(X,U) . But in sC(X) , the difference
z − βk(z) is an n -boundary since βk is chain homotopic to the identity. Therefore
[βk(z)] ∈ Hn(sC(X,U)) maps to [z] ∈ Hn(sC(X)) . This proves surjectivity.
If y is an n-cycle in sC(X,U) which is an n-boundary in sC(X) , then we can choose
w ∈ sC(X)n+1 such that d(w) = y in sC(X) . For sufficiently large k , we have βk(w) ∈
sC(X,U) , and we still have d(βk(w)) = βk(y) . Therefore the class [βk(y)] ∈ Hn(sC(X,U))
is zero. But since β as a chain map from sC(X,U) to sC(X,U) is chain homotopic to the
identity, this implies that [y] itself was zero to begin with. This proves injectivity. �



CHAPTER 7

Homology of spaces

7.1. Generalities

The singular homology groups Hn(X) of a topological space X are defined as the homology
groups of the singular chain complex sC(X) :

Hn(X) := Hn(sC(X)) = Hn(C(sing(X)))

for n ∈ Z . (As a rule we just say: the homology groups of X .) To be more precise, Hn is a
functor from Top to the category of abelian groups. Namely, a continuous map f : X→ Y
determines a chain map sC(X)→ sC(Y) and the chain map determines a homomorphism
Hn(sC(X))→ Hn(sC(Y)) which we can also write in the form

f∗ : Hn(X)→ Hn(Y) .

The plan for this chapter is modest: the results on sC(X) in the last chapter have conse-
quences for the groups Hn(X) which we want to spell out.

Proposition 7.1.1. If X is a one-point space, then Hn(X) ∼= Z for n = 0 and Hn(X) = 0
for n 6= 0 . If X = ∅ , then Hn(X) = 0 for all n .

Proof. The calculation for the one-point space was done in example 6.1.1. For the
case X = ∅ , we observe that sC(∅)n = 0 for all n ∈ Z since there are no maps ∆n → ∅
for n ≥ 0 . �

Theorem 7.1.2. For each n ∈ Z , the functor Hn from Top to the category of abelian
groups is homotopy invariant. That is to say, if f, g : X→ Y are continuous maps, and if
f is homotopic to g , then f∗ = g∗ : Hn(X)→ Hn(Y) for all n .

Proof. This follows from corollary 6.2.2 and proposition 5.2.3. �

Theorem 7.1.3. Let U and V be subsets of a space X such that int(U) ∪ int(V) = X .
Then there is a natural long exact sequence of homology groups (Mayer-Vietoris sequence)

· · · // Hn+1(X)
∂ // Hn(U ∩ V) // Hn(U)⊕Hn(V) // Hn(X)

∂ // Hn−1(U ∩ V) // · · ·

Proof. In the chain complex sC(X) , we have the chain subcomplexes sC(U) and
sC(V) . For the chain complex sC(U)+sC(V) ⊂ sC(X) (internal sum, not direct sum), we
have corollary 5.3.3. That is, we can take E = sC(U) + sC(V) ⊂ sC(X) and K = sC(U)
and L = sC(V) in corollary 5.3.3. Then we get a long exact sequence of homology
groups. Furthermore, by theorem 6.5.1 the inclusion of sC(U)+sC(V) in sC(X) is a chain
homotopy equivalence. So we can substitute Hn(X) = Hn(sC(X)) for Hn(sC(U)+sC(V))
in the long exact sequence which we already have. �

Nota bene: the unlabeled homomorphisms in the long exact sequence of the theorem are

((jU)∗,−(jV)∗) : Hn(U ∩ V) −→ Hn(U)⊕Hn(V)

47
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(where jU : U ∩ V → U and jV : U ∩ V → V are the inclusions), and

(gU)∗ ⊕ (gV)∗ : Hn(U)⊕Hn(V) −→ Hn(X)

where gU : U→ X and gV : V → X are the inclusions.

Naturality in theorem 7.1.3 means the following. Suppose that we have a continuous map
f : X0 → X1 , open subsets U0, V0 of X0 and open subsets U1 , V1 of X1 such that
f(U0) ⊂ U1) and f(V0) ⊂ V1 , and such that U0 : V0 = X0 and U1 ∪ V1 = X1 . Then we
get a commutative diagram

· · · // Hn+1(X0)
∂ //

��

Hn(U0 ∩ V0) //

��

Hn(U0)⊕Hn(V0) //

��

Hn(X0)
∂ //

��

· · ·

· · · // Hn+1(X1)
∂ // Hn(U1 ∩ V1) // Hn(U1)⊕Hn(V1) // Hn(X1)

∂ // · · ·

where the rows are Mayer-Vietoris sequences as in the theorem and the vertical arrows are
induced by f (and appropriate restrictions of f).

Remark 7.1.4. From the construction, the homomorphisms ∂ in theorem 7.1.3 depend
on the order on which we list U and V (here U first, V second). If we interchange this
order, that is if we list V before U , then U∩V does not change (it is the same as V ∩U),
but the new

∂ : Hn(X) −→ Hn−1(V ∩U)
is equal to −1 times the old ∂ : Hn(X) −→ Hn−1(U ∩ V) . The verification is left to the
gentle reader.

The theorems 7.1.2 and 7.1.3 together with proposition 7.1.1 can be viewed as a set of
axioms for homology. That is to say, they should be enough to determine the functors Hn
for all n as long as we restrict attention to spaces X, Y, ... which are not too complicated:
for example, compact simplicial complexes or geometric realizations of finite semi-simplicial
sets. Remark 7.1.4 is probably superfluous, that is to say, it can probably be deduced from
the other axioms listed, but since this is somewhat tedious I prefer to think of this remark
as fine print to be included in the Mayer-Vietoris axiom, 7.1.3.
The idea of writing out axioms for homology goes back to Eilenberg and Steenrod; therefore
we speak of the Eilenberg-Steenrod axioms. In fact Eilenberg and Steenrod preferred a
slightly different setup which relies on the notion homology of pairs. We come to this later.
I am not planning to present a formal proof that axioms so-and-so determine the homology
functors on such-and-such spaces. But there are many situations where computations of
homology groups of spaces can be deduced from only a few axiom-like statements, and
when that is happening I will try to alert the reader to it.

7.2. Homology of spheres

Proposition 7.2.1. The homology groups of S1 are H0(S
1) ∼= Z , H1(S

1) ∼= Z and
Hk(S

1) = 0 for all k 6= 0, 1 .

Proof. Choose two distinct points p and q in S1 . Let V ⊂ S1 be the complement
of p and let W ⊂ S1 be the complement of q . Then V ∪W = S1 . Clearly V is homotopy
equivalent to a point, W is homotopy equivalent to a point and V ∩ W is homotopy
equivalent to a discrete space with two points. Therefore Hk(V) ∼= Hk(W) ∼= Z for k = 0
and Hk(V) ∼= Hk(W) = 0 for all k 6= 0 . Similarly Hk(V ∩W) ∼= Z ⊕ Z for k = 0 and
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Hk(V ∩W) = 0 for all k 6= 0 . The exactness of the Mayer-Vietoris sequence associated
with the open covering of S1 by V and W implies immediately that Hk(S

1) = 0 for
k 6= 0, 1 . The part of the Mayer-Vietoris sequence which remains interesting after this
observation is

0 // H1(S1)
∂ // Z⊕ Z // Z⊕ Z // H0(S1) // 0

The homomorphism in the middle is not a mystery, since all spaces that go into it are
contractible. It is given in matrix form by[

1 1
−1 −1

]
Therefore its kernel and cokernel are both isomorphic to Z . This means that H1(S

1) ∼= Z
and H0(S

1) ∼= Z . �

Theorem 7.2.2. The homology groups of Sn (for n > 0) are

Hk(S
n) ∼=

 Z if k = n
Z if k = 0
0 otherwise.

Proof. We proceed by induction on n . The induction beginning is the case n = 1
which we have already dealt with separately in proposition 7.2.1. For the induction step,
suppose that n > 1 . We use the Mayer-Vietoris sequence for Sn and the open covering
{V,W} with V = Sn r {p} and W = Sn r {q} where p, q ∈ Sn are the north and south
pole, respectively. We will also use the homotopy invariance of homology. This gives us

Hk(V) ∼= Hk(W) ∼=

{
Z if k = 0
0 otherwise

because V and W are homotopy equivalent to a point. Also we get

Hk(V ∩W) ∼=

 Z if k = n− 1
Z if k = 0
0 otherwise.

by the induction hypothesis, since V ∩W is homotopy equivalent to Sn−1 . Furthermore
it is clear what the inclusion maps V ∩W → V and V ∩W →W induce in homology: an
isomorphism in H0 (see remark 7.2.3 below) and (necessarily) the zero map in Hk for all
k 6= 0 . Thus the homomorphism

Hk(V ∩W) −→ Hk(V)⊕Hk(W)

from the Mayer-Vietoris sequence takes the form

Z −−−−→ Z⊕ Z ; 1 7→ 1⊕−1

when k = 0 , and

Z −−−−→ 0

when k = n − 1 . In all other cases, its source and target are both zero. Therefore the
exactness of the Mayer-Vietoris sequence implies that H0(S

n) and Hn(S
n) are isomorphic

to Z , while Hk(S
n) = 0 for all other k ∈ Z . �

Remark 7.2.3. In the above calculation we used the following:

(i) if X is a space such that H0(X) ∼= Z , then the unique map p : X→ ? induces an
isomorphism p∗ : H0(Z)→ H0(?) ;
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(ii) if X and Y are spaces such that H0(X) ∼= Z and H0(Y) ∼= Z , then any continuous
map f : X→ Y induces an isomorphism f∗ : H0(X)→ H0(Z) .

Proof of (i): if H0(X) ∼= Z , then X 6= ∅ and we can choose a map j : ? → X . There is a
unique map p : X→ ∗ . Since pj is the identity of ? , the composition

H0(?)
j∗ // H0(X)

p∗ //→ H0(?)

is the identity of H0(?) ∼= Z . Therefore p∗ : H0(X) → H0(?) is onto, and therefore it is
an isomorphism. — Proof of (ii): We have the maps pX : X → ? and pY : Y → ? and we
know pYf = pX . Therefore (pY)∗f∗ : H0(X) → H0(?) agrees with (pX)∗ . Using (i), we
deduce that f∗ : H0(X)→ H0(Y) is an isomorphism.
Later we will come to a more detailed and illuminating description of H0(X) for arbitrary
spaces. This could also be used in the calculation of theorem 7.2.2, but I prefer the
simple-minded argument just given because it uses only the axioms.

Theorem 7.2.4. Let f : Sn → Sn be the antipodal map (f(z) = −z for all z). The induced
homomorphism f∗ : Hn(S

n)→ Hn(S
n) is multiplication by (−1)n+1 .

Proof. We proceed by induction again. For the induction beginning, we take n = 1 .
The antipodal map f : S1 → S1 is homotopic to the identity, so that f∗ : H1(S

1)→ H1(S
1)

has to be the identity, too. For the induction step, we use the setup and notation from the
previous proof. Exactness of the Mayer-Vietoris sequence for Sn and the open covering
{V,W} shows that

∂ : Hn(S
n) −→ Hn−1(V ∩W)

is an isomorphism. The diagram

Hn(S
n)

∂−−−−→ Hn−1(V ∩W)

f∗

y f∗

y
Hn(S

n)
∂−−−−→ Hn−1(W ∩ V)

is meaningful because f takes V ∩ W to V ∩ W = W ∩ V . But the diagram is not
commutative (i.e., it is not true that f∗◦∂ equals ∂◦f∗ ). The reason is that f interchanges
V and W , and it does matter in the Mayer-Vietoris sequence which of the two comes first,
as pointed out in remark 7.1.4. Therefore we have instead

f∗ ◦ ∂ = −∂ ◦ f∗
in the above square. By the inductive hypothesis, the f∗ in the left-hand column of the
square is multiplication by (−1)n , and therefore the f∗ in the right-hand column of the
square must be multiplication by (−1)n+1 . �

7.3. The usual applications

Theorem 7.3.1. (Brouwer’s fixed point theorem). Let f : Dn → Dn be a continuous map,
where n ≥ 1 . Then f has a fixed point, i.e., there exists y ∈ Dn such that f(y) = y .

Proof. Suppose for a contradiction that f does not have a fixed point. For x ∈ Dn ,
let g(x) be the point where the ray (half-line) from f(x) to x intersects the boundary Sn−1

of the disk Dn . Then g is a smooth map from Dn to Sn−1 , and we have g|Sn−1 = idSn−1 .
Summarizing, we have

Sn−1
j−−−−→ Dn

g−−−−→ Sn−1
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where j is the inclusion, g ◦ j = idSn−1 . Therefore we get

Hn−1(S
n−1)

j∗−−−−→ Hn−1(D
n)

g∗−−−−→ Hn−1(S
n−1)

where g∗j∗ = id. Thus the abelian group Hn−1(S
n−1) is isomorphic to a direct summand

of Hn−1(D
n) . But from our calculations above, we know that this is not true. If n > 1 we

have Hn−1(D
n) = 0 while Hn−1(S

n−1) is not trivial. If n = 1 we have Hn−1(D
n) ∼= Z

while Hn−1(S
n−1) ∼= Z⊕ Z . �

Let f : Sn → Sn be any continuous map, n > 0 . The induced homomorphism f∗ from
Hn(S

n) to Hn(S
n) is multiplication by some number nf ∈ Z , since Hn(S

n) is isomorphic
to Z .

Definition 7.3.2. The number nf is the degree of f . We may write deg(f) for it.

Remark. The degree of f : Sn → Sn is clearly an invariant of the homotopy class of f .

Remark. In the case n = 1 , the definition of deg(f) as given just above agrees with the
definition of deg(f) given in section 1. See exercises.

Example 7.3.3. According to theorem 7.2.4, the degree of the antipodal map Sn → Sn

is (−1)n+1 .

Proposition 7.3.4. Let f : Sn → Sn be a continuous map. If f(x) 6= x for all x ∈ Sn ,
then f is homotopic to the antipodal map, and so has degree (−1)n+1 . If f(x) 6= −x for
all x ∈ Sn , then f is homotopic to the identity map, and so has degree 1 .

Proof. Let g : Sn → Sn be the antipodal map, g(x) = −x for all x . Assuming that
f(x) 6= x for all x , we show that f is homotopic to g . We think of Sn as the unit sphere in
Rn+1 , with the usual notion of distance. We can make a homotopy (ht : S

n → Sn)t∈[0,1]
from f to g by “sliding” along the unique minimal geodesic arc from f(x) to g(x) , for
every x ∈ Sn . In other words, ht(x) ∈ Sn is situated t · 100 percent of the way from f(x)
to g(x) along the minimal geodesic arc from f(x) to g(x) . (The important thing here is
that f(x) and g(x) are not antipodes of each other, by our assumptions. Therefore that
minimal geodesic arc is unique.)
Next, assume f(x) 6= −x for all x ∈ Sn . Then, for every x , there is a unique minimal
geodesic from x to f(x) , and we can use that to make a homotopy from the identity map
to f . �

Corollary 7.3.5. (Hairy ball theorem). Let ξ be a tangent vector field (explanations
follow) on Sn . If ξ(z) 6= 0 for every z ∈ Sn , then n is odd.

Comments. A tangent vector field on Sn ⊂ Rn+1 can be defined as a continuous map ξ
from Sn to the vector space Rn+1 such that ξ(x) is perpendicular to (the position vector
of) x , for every x ∈ Sn . We say that vectors in Rn+1 which are perpendicular to x ∈ Sn
are tangent to Sn at x because they are the velocity vectors of smooth curves in Sn ⊂ Rn
as they pass through x .

Proof. Define f : Sn → Sn by f(x) = ξ(x)/‖ξ(x)‖ . Then f(x) 6= x and f(x) 6= −x
for all x ∈ Sn , since f(x) is always perpendicular to x . Therefore f is homotopic to the
antipodal map, and also homotopic to the identity. It follows that the antipodal map is
homotopic to the identity. Therefore n is odd by theorem 7.2.4. �
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Remark 7.3.6. Theorem 7.2.4 has an easy generalization which says that the degree of
the map f : Sn → Sn given by

(x1, x2, . . . , xn+1) 7→ (x1, . . . , xk,−xk+1, . . . ,−xn+1)

is (−1)n+1−k . Here we assume n ≥ 1 as usual. The proof can be given by induction
on n + 1 − k . The induction step is now routine, but the induction beginning must
cover all cases where n = 1 . This leaves the three possibilities k = 0, 1, 2 . One of these
gives the identity map S1 → S1 , and another gives the antipodal map S1 → S1 which
is homotopic to the identity. The interesting case which remains is the map f : S1 → S1

given by f(x1, x2) = (x1,−x2) . We need to show that it has degree −1 , in the sense of
definition 7.3.2. One way to do this is to use the following diagram

H1(S
1)

∂

��

f∗ // H1(S1)

∂

��
H0(V ∩W)

f∗ // H0(W ∩ V)

where V = S1r{(0, 1)} and W = S1r{(0,−1)} . We know from the previous chapter that it
commutes up to a factor (−1) . In the lower row, we have the identity homomorphism Z⊕
Z→ Z⊕Z . The vertical arrows are injective (seen earlier in the proof of proposition 7.2.1).
Therefore the upper horizontal arrow is multiplication by −1 .
To state this result in a more satisfying manner, let us note that the orthogonal group
O(n + 1) (the group of orthogonal (n + 1) × (n + 1) -matrices with real entries) is a
topological group which has two path components. The two path components are the
preimages of +1 and −1 under the homomorphism

det : O(n+ 1)→ {−1,+1}.

Let f : Sn → Sn be given by f(z) = Az for some A ∈ O(n+ 1) . Because deg(f) depends
only on the homotopy class of f , it follows that deg(f) depends only on the path component
of A in O(n+1) , and hence only on det(A) . What we have just shown means that deg(f)
is equal to det(A) .

Remark 7.3.7. The path components of a space X ... you should know this, but they are
the equivalence classes of an equivalence relation on the set X which is defined as follows:
x0 ∈ X is equivalent to x1 ∈ X if there exists a continuous γ : [0, 1] → X (a path) such
that γ(0) = x0 and γ(1) = x1 .
To show that O(n + 1) has exactly two path components (if n ≥ 0): the case n = 0 is
easy and for n ≥ 1 we begin with the observation that the map

q : O(n+ 1) −→ Sn

given by q(A) = Aen+1 (where en+1 = (0, 0, . . . , 0, 1) ∈ Rn+1 ) is a fiber bundle projec-
tion. (The details of that are left to the gentle reader, once again.) Therefore q has the
HLP, homotopy lifting property. Given A ∈ O(n+1) , we can choose a path γ : [0, 1]→ Sn

from Aen+1 to en+1 (since Sn is path connected, since n ≥ 1). By the HLP, we can
then find a path γ̄ : [0, 1] → O(n + 1) such that γ̄(0) = A and qγ̄ = γ . This implies
that B := γ̄(1) ∈ O(n + 1) satisfies Ben+1 = en+1 . Therefore the matrix B satisfies
B11 = 1 and Bi1 = 0 , B1j = 0 for all i, j ∈ {2, 3, . . . , n+ 1} . That is to say, B comes from
O(n) . In other words, since B is in the same path component as A by construction, and
A was arbitrary, we have shown that the standard inclusion O(n) → O(n + 1) induces
a surjection of the sets of path components. Since it is clear that O(1) has exactly two
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path components, it follows that O(n + 1) has at most two path components. But the
continuous map det : O(n + 1) → {1,−1} is onto. So there must be at least two path
components.

7.4. Homology of pairs: Generalities again

Definition 7.4.1. A pair of topological spaces (X, Y) consists of a space X and a subspace
Y of X . Pairs of topological spaces are the objects of a category: a morphism from a pair
(X0, Y0) to a pair (X1, Y1) is a continuous map f : X0 → X1 such that f(Y0) ⊂ Y1 . It is
permitted to write

f : (X0, Y0) −→ (X1, Y1)

for such a morphism. We may write Top(2) for the category. Two morphisms

f, g : (X0, Y0) −→ (X1, Y1)

are considered homotopic if there exists a homotopy (ht)t∈[0,1] from f : X0 → X1 to
g : X0 → X1 such that ht(Y0) ⊂ Y1 for all t ∈ [0, 1] .
The singular chain complex of the pair (X, Y) is the quotient chain complex sC(X)/sC(Y) .
I may occasionally write sC(X, Y) for this. The homology groups of the pair (X, Y) are
the groups Hn(X, Y) := Hn(sC(X)/sC(Y)) = Hn(C(X, Y)) where n ∈ Z . Homology Hn
can therefore be viewed as a functor from the category of pairs of spaces to the category
of abelian groups.

Homology of pairs is a generalization of homology of spaces: we can write and we will
write, without lying very hard, Hn(X) = Hn(X, ∅) . From a slightly axiomatic point of
view, let us say that Hn(X) is just an abbreviation for Hn(X, ∅) .

Now let’s list axioms for homology of pairs.

Proposition 7.4.2. If X is a one-point space, then Hn(X) ∼= Z for n = 0 and Hn(X) = 0
for n 6= 0 .

This is just a part proposition 7.1.1, repeated here for bureaucratic reasons. �

Proposition 7.4.3. For pairs of spaces (X, Y) there is a natural long exact sequence

· · · // Hn+1(X, Y)
∂ // Hn(Y) // Hn(X) // Hn(X, Y) // Hn−1(Y)

∂ // · · ·

Proof. The short exact sequence sC(Y) → sC(X) → sC(X)/sC(Y) of chain com-
plexes determines a long exact sequence of homology groups as in theorem 5.3.2. �

Theorem 7.4.4. For each n ∈ Z , the functor Hn from Top(2) to the category of abelian
groups is homotopy invariant. That is to say, if f, g : (X0, Y0) → (X1, Y1) are morphisms
in Top(2) , and if they are homotopic as such, then f∗ = g∗ : Hn(X0, Y0)→ Hn(X1, Y1) for
all n .

Proof. This can be proved like 7.1.2. We require a version of theorem 6.2.1 for a pair
(X, Y) of spaces. This would state that the chain maps sC(X, Y)→ sC(X× [0, 1], Y× [0, 1])
induced by

g0 : (X, Y)→ (X× [0, 1], Y × [0, 1]), g1 : (X, Y)→ (X× [0, 1], Y × [0, 1])

(where g0(x) = (x, 0) and g1(x) = (x, 1)), respectively, are chain homotopic. The proof is
the same for arbitrary Y ⊂ X as in the case Y = ∅ . (As an alternative, one could point out
that the chain homotopy constructed in the proof of theorem 6.2.1 is natural, and exploit
this naturality in the case of the inclusion Y → X .) �
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Theorem 7.4.5. (Excision axiom.) Let (X, Y) be a pair of spaces and let Z be a subspace
of X such that the closure of Z is contained in the interior of Y . Then the inclusion of
pairs (Xr Z, Y r Z)→ (X, Y) induces an isomorphism Hn(Xr Z, Y r Z)→ Hn(X, Y) for
all n ∈ Z .

For the proof of this, we need:

Lemma 7.4.6. (The five lemma) Suppose that, in a commutative diagram of abelian groups
and homomorphisms

a
f //

(1)

��

b //

(2)

��

c //

(3)

��

d
g //

(4)

��

e

(5)

��
a ′

f ′ // b ′ // c ′ // d ′
g ′ // e ′

the rows are exact and the arrows labeled (1) , (2) , (4) and (5) are isomorphisms. Then
the arrow (3) is an isomorphism.

Proof. We can quickly reduce to the situation where a = a ′ = 0 and e = e ′ = 0 .
(Replace b by b/im(f) = coker(f) and b ′ by coker(f ′) , and d by ker(g) , and d ′ by
ker(g ′) .) Then the rows are short exact sequences:

b //

∼= (2)

��

c //

(3)

��

d

∼= (4)

��
b ′ // c ′ // d ′

It is easy to see that any element in the kernel of (3) must come from b . But then it
is zero since the map from b to c ′ is injective by assumption. Therefore (3) is injective.
Next, given any y ∈ c ′ we can find an element of c having the same image as y in d ′ ,
since the map from c to d ′ is surjective. Therefore y = y1+y2 where y1 is in the image
(3) and y2 comes from b ′ . But the image of b ′ → c ′ is contained in the image of (3) ;
so y is in the image of (3) . �

Remark 7.4.7. The five lemma has the following consequence. If

B //

��

C //

��

D

��
B ′ // C ′ // D ′

is a commutative diagram of chain complexes and chain maps with short exact rows, and
if two of the three vertical arrows induce isomorphisms of the homology groups Hn for
all n , then the same can be said of the remaining vertical arrow. To see this, form the
long exact homology group sequences and arrange them in a ladder-shaped commutative
diagram:

· · · // Hn(B) //

��

Hn(C) //

��

Hn(D) //

��

Hn−1(B) //

��

· · ·

· · · // Hn(B ′) // Hn(C ′) // Hn(D ′) // Hn−1(B ′) // · · ·

Now two out of any three adjacent vertical arrows are isomorphisms. The five lemma then
implies that all vertical arrows are isomorphisms. �
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Proof of theorem 7.4.5. Since Z̄ ⊂ int(Y) , we have a cover U of X by subsets
Xr Z and Y such that int(Xr Z) ∪ int(Y) = X . By theorem 6.5.1, the inclusion

sC(X,U) −→ sC(X)

is a chain homotopy equivalence. Therefore by remark 7.4.7, the inclusion

sC(X,U)/sC(Y)→ sC(X)/sC(Y)

induces an isomorphism in homology groups. But there is another inclusion-induced map

sC(Xr Z)/sC(Y r Z) −→ sC(X,U)/sC(Y)

which is an isomorphism, by inspection. Therefore the composition of these two,

sC(Xr Z)/sC(Y r Z) −→ sC(X)/sC(Y)

induces an isomorphism in homology groups. �

7.5. Homology of spheres again

To illustrate how homology of pairs works, let us calculate the homology of spheres again.
The following more or less abstract observation will be useful.

Lemma 7.5.1. Let f : (X0, Y0) → (X1, Y1) be a map of pairs of spaces such that the
underlying maps X0 → X1 and Y0 → Y1 are homotopy equivalences. Then

f∗ : Hm(X0, Y0) −→ Hm(X1, Y1)

is in isomorphism for all m .

Proof. Exercise. (This should preferably be deduced from the axiom-like statements
in section 7.4; of course it is allowed to use the five lemma, too.)

Lemma 7.5.2. Hm(∅) = 0 for all m ∈ Z .

This is obvious from the definitions, and I emphasized it before, but it can also be deduced
from the axiom-like statements in section 7.4. And that is an exercise. Remember that
Hm(X) is an abbreviation for Hm(X, ∅) .

Lemma 7.5.3. For all m ≥ 0 and all k ∈ Z and any choice of base point ∗ ∈ Sm , we have
Hk(S

m, ∗) ∼= Hk(D
m, Sm−1) .

Proof. Let z ∈ Sm be the point opposite to ∗ ∈ Sm and let V = Sm r {z} . Then
the inclusion (Sm, ∗)→ (Sm, V) induces isomorphisms

Hk(S
m, ∗)

∼=−→ Hk(Sm, V)

by lemma 7.5.1. By excision,

Hk(S
m, V) ∼= Hk(Q

m, Qm ∩ V)

where Qm is the closed upper hemisphere of Sm (consisting of all y ∈ Sm whose scalar
product with z is ≥ 0). By lemma 7.5.1 again, we have

Hk(Q
m, Qm ∩ V) ∼= Hk(Q

m, ∂Qm)

where ∂Qm is the boundary of Qm (consisting of all y ∈ Sm whose scalar product with
z is = 0). But clearly (Qm, ∂Qm) is homeomorphic to (Dm, Sm−1) . �

Corollary 7.5.4. Hk(S
m, ∗) ∼= Hk−1(S

m−1, ∗) for m > 0 and arbitrary k ∈ Z .
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Proof. In the long exact homology sequence for the pair (Dm, Sm−1) , the homo-
morphisms Hk(S

m−1) → Hk(D
m) induced by the inclusion j : Sm−1 → Dm are always

onto (since there exists a map g : Dm → Sm−1 such that jg is homotopic to the iden-
tity of Dm ). Therefore the homomorphisms ∂ : Hk(D

m, Sm−1) → Hk−1(S
m−1) in the

long exact sequence are injective, and by exactness Hk(D
m, Sm−1) is isomorphic to

the kernel of Hk−1(S
m−1) → Hk−1(D

m) . That kernel is isomorphic to the kernel of
Hk−1(S

m−1) → Hk−1(∗) , homomorphism induced by the unique map Sm−1 → ∗ , and
also to the cokernel of Hk−1(∗) −→ Hk−1(S

m−1) , homomorphism induced by inclusion of
the base point (since the composition of ∗ → Sm−1 and Sm−1 → ∗ is an identity map).
Finally that cokernel is isomorphic to

Hk−1(S
m−1, ∗)

as we can see from the long exact homology sequence of the pair (Sm−1, ∗) . �

This is nearly the end of the calculation, for now we can say that

Hk(S
0, ∗) ∼=

{
0 if k 6= 0
Z if k = 0

by using the long exact homology sequence of the pair (S0, ∗) . Then we deduce

Hk(S
m, ∗) ∼=

{
0 if k 6= m
Z if k = m

using corollary 7.5.4. To that we can add the observation

Hk(S
m) ∼= Hk(S

m, ∗)⊕Hk(∗)
which follows from the long exact homology sequence of the pair (Sm, ∗) .



CHAPTER 8

Special properties of singular homology

8.1. Path components

Let X be a topological space. The set of path components of X is denoted π0(X) . I
allow myself to write things like α ∈ π0(X) and Xα ⊂ X for the corresponding nonempty
subspace of X (that path component), although strictly speaking it is wrong to make a
distinction between α and Xα . In any case X , as a set, is the disjoint union of the subsets
Xα for α ∈ π0(X) . But as a space X is not always the (topological) disjoint union of
the Xα . Also, the path components of X should not be confused with the connected
components of X . (Each connected component of X is a union of path components of X .)

Example 8.1.1. Let X be the closure (in R2 with the euclidean metric) of

Y := { (x, sin(1/x)) | x > 0 }.

Then X has exactly two path components: Y and X r Y . So π0(X) has two elements.
But X has only one connected component. It follows that X is not the topological disjoint
union of its path components. Indeed, it is clear that one of the path components of X is
not a closed subset of X .

Proposition 8.1.2. For every X and every k ∈ Z , the inclusions jα : Xα → X of the path
components determine an isomorphism

⊕α(jα)∗ :
⊕

α∈π0(X)

Hk(Xα) −→ Hk(X).

Proof. It is enough to show that the singular chain complex sC(X) splits as a direct
sum of chain subcomplexes sC(Xα) . For that it is enough to show that, for n ≥ 0 , the
free abelian group sC(X)n is a direct sum⊕

α

sC(Xα)n

and that the differential d : sC(X)n → sC(X)n−1 respects the splitting (for n > 0). These
statements are nearly obvious. Namely, sC(X)n is freely generated by the set of continuous
maps σ : ∆n → X . Since ∆n is always path connected, each σ has image contained in a
unique path component Xα . Moreover, if n > 0 and σ : ∆n → X has image contained in
Xα , then

d(σ) = (−1)iσ ◦ϕi
is a formal linear combination of terms σ ◦ϕi : ∆n−1 → X whose image is again contained
in the same path component Xα . �

Proposition 8.1.3. If X is nonempty and path connected, and z ∈ X , then the inclusion
{z}→ X induces an isomorphism

Z ∼= H0({z}) −→ H0(X) .

57
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Proof. From the definition of H0(X) we have a surjective map sC(X)0 → H0(X) ;
therefore H0(X) is generated by the homology classes [σ] where σ : ∆0 → X can be any
map. To put it differently, H0(X) is generated by the images of σ∗ : H0(∆

0) → H0(X) .
But these maps σ : ∆0 → X are all homotopic to each other (since X is path connected),
so that, by the homotopy axiom, the image of σ∗ : H0(∆

0) → H0(X) is always the same.
We may choose one of the σ , for example the one which hits z ∈ X , and we may conclude
that σ∗ : H0(∆

0) → H0(X) is surjective for this σ . It is also injective since we can make
a map τ : X→ ∆0 such that τσ = id : ∆0 → ∆0 . �

Corollary 8.1.4. H0(X) ∼=
⊕

α∈π0(X)

Z .

8.2. Compact subspaces

Here we want to make the following idea precise. For every k ∈ Z , the functor Hk (from
Top to abGroups) is determined by its behavior on compact spaces and continuous maps
between compact spaces.

Proposition 8.2.1. Let X be any topological space and let k ∈ Z . For every z ∈ Hk(X)
there exists a compact subspace L ⊂ X and an element zL ∈ Hk(L) such that the homo-
morphism Hk(L)→ Hk(X) induced by the inclusion L→ X takes zL to z .
If L and M are two compact subspaces of X , and zL ∈ Hk(L) , zM ∈ Hk(M) have the
same image z in Hk(X) , then there exists a compact subspace N of X such that L∪M ⊂ N
and zL , zM have the same image in Hk(N) .

Proof. First part: given z ∈ Hk(X) , choose a k-cycle z̄ in sC(X) representing z .
This may be written in the form

z̄ =

r∑
i=1

aiσi ∈ sC(X)k

where the σi are continuous maps from ∆k to X and that ai are integers. Let

L :=

r⋃
i=1

im(σi) .

This is a compact subspace of X since im(σi) is compact for each i (the image of a
compact space under a continuous map is compact). Now we can think of z̄ as a k -cycle
in sC(L) ⊂ sC(X) , and we can write zL ∈ Hk(L) for its homology class.
Second part: Suppose that zL ∈ Hk(L) and zM ∈ Hk(M) are represented by k -cycles

z̄L ∈ sC(L) ⊂ sC(X), z̄M ∈ sC(M) ⊂ sC(X) .

By assumption, z̄M−z̄L is a boundary in sC(X) ; in other words, there exists y ∈ sC(X)k+1
such that

d(y) = z̄M − z̄L .

Again we can write

y =

t∑
j=1

bjτj ∈ sC(X)k+1
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where the τj are continuous maps from ∆k+1 to X . Let

N := L ∪M ∪
t⋃
j=1

im(τj)

This is compact and the equation d(y) = z̄M − z̄L can now be viewed as an equation in
sC(N) . Therefore zL , zM have the same image in Hk(N) . �

8.3. Homology of realizations of semi-simplicial sets

Let X be a semi-simplicial set. With that we associated a chain complex C(X) where

C(X)n = free abelian group generated by the set Xn .

The differential was defined, on a generator z ∈ Xn ⊂ C(X)n , by

d(x) :=

n∑
i=1

(−1)if∗ix

where fi : [n − 1] → [n] is the monotone injection which has image [n] − {i} . This chain
complex C(X) is in many cases a rather small and computable chain complex. For example,
if Xn is finite for all n , then C(X)n is a finitely generated free abelian group and the
differential d : C(X)n → C(X)n−1 can be described as a matrix with integer coefficients.
(The matrix format is an−1 × an where an is the number of elements of Xn .)
By contrast the singular chain complex of the geometric realization |X| is typically gigan-
tic; if Xk is nonempty for some k > 0 , then sC(|X|)n is a free abelian group with an
uncountable set of generators, for each n ≥ 0 . Unraveling the definitions, we can write

sC(|X|) = C(sing(|X|))

which reminds us that the gigantic nature of this chain complex is due to the gigantic
nature of the semi-simplicial set sing(|X|) . But there is an important (natural) morphism
of semi-simplicial sets

u : X −→ sing(|X|).

This is the unit morphism of the adjunction

geometric realization : ssSets 
 Top : sing

(See proposition 4.5.2 and definition 4.5.3.) In other words, u ∈ morssSets(X, sing(|X|))
corresponds to id ∈ morTop(|X|, |X|) under the natural bijection

morssSets(X, sing(|X|)) −→ morTop(|X|, |X|).

It is easy to give a formula for u :

u(z) = cz

for z ∈ Xn , where cz : ∆
n → |X| is the characteristic map associated with z . (If you feel

like it, verify that this is a morphism of simplicial sets.)

Theorem 8.3.1. The map of chain complexes

u∗ : C(X) −→ C(sing(|X|)) = sC(|X|)

induces an isomorphism of homology groups Hn , for all n ∈ Z . Therefore Hn(|X|) , the
n-th homology group of the space |X| , is isomorphic to the n-th homology group of the
chain complex C(X) .
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Slightly more generally, if Y is a semi-simplicial subset of X , then

u∗ : C(X)/C(Y) −→ C(sing(|X|))/C(sing(|Y|)) = sC(|X|, |Y|)

induces an isomorphism of homology groups Hn for all n ∈ Z . Therefore Hn(|X|, |Y|) is
isomorphic to Hn of the chain complex C(X)/C(Y) .

Example 8.3.2. Let X be the semi-simplicial set such that X0 and X1 have exactly
one element, while all other Xn are empty. Then |X| is homeomorphic to S1 . The chain
complex C(X) has the following form: C(X)n is isomorphic to Z if n = 0 or 1 , and is zero
otherwise. The differential from C(X)1 to C(X)0 is zero (small calculation). Therefore it
is immediately clear that Hn(C(X)) is isomorphic to Z if n = 0 or 1 , and Hn(C(X)) = 0
otherwise. By the theorem, this computes the homology of |X| ∼= S1 ; that is, we get
H1(S

1) ∼= Z ∼= H0(S
1) and Hn(S

1) = 0 for all other values of n . Of course this only
confirms what we already know.

Example 8.3.3. Fix n ≥ 0 , let X = ∆n and let Y = ∂∆n ⊂ X be the semi-simplicial subset
such that Yk = Xk for k < n but Yn = ∅ (in contrast to Xn , which has one element). We
can say without lying very hard that |X| is ∆n and that |Y| is ∂∆n (the subspace of ∆n

consisting of all (x0, x1, . . . , xn) , in barycentric coordinates, for which at least one xi is
zero). — Then C(X)/C(Y) is a very small chain complex: it has (C(X)/C(Y))n = Z and
(C(X)/C(Y))k = 0 for k 6= n . The preferred generator of (C(X)/C(Y))n = Z maps to the
element represented by

id : ∆n → |X|

under u∗ : C(X)/C(Y)→ sC(|X|, |Y|) (remember that |X| = ∆n ). Therefore we have shown
that the n-cycle id : ∆n → ∆n in

sC(∆n, ∂∆n)

represents a generator of Hn(∆
n, ∂∆n) ∼= Z . This is quite useful.

One important ingredient in the proof of theorem 8.3.1 is lemma 8.3.4 just below. In the
lemma we assume that X is a semi-simplicial set and that n is a positive integer. We
assume that Y ⊂ X is a semi-simplicial subset, and that Xnr Yn has exactly one element
z , whereas Xk r Yk is empty for all k 6= n . The characteristic map

cz : ∆
n −→ |X|

associated with z ∈ Xn can then be viewed as a map of pairs:

cz : (∆
n, ∂∆n) −→ (|X|, |Y|) .

Here, as before, ∂∆n ⊂ ∆n is the subspace consisting of all (x0, x1, . . . , xn) (in barycentric
coordinates) for which at least one of the xi is zero.

Lemma 8.3.4. The homomorphisms in homology

Hk(∆
n, ∂∆n) −→ Hk(|X|, |Y|)

induced by cz are isomorphisms.

Proof. Let V = ∆nrbn where bn is the barycenter of ∆n . Let W = |X|r cz(bn) .
Then V is open in ∆n and W is open in |X| . We have

∂∆n ⊂ V ⊂ ∆n, |Y| ⊂W ⊂ |X| .
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It is easy to see that the inclusions ∂∆n → V and |Y| → W are homotopy equivalences.
Now we have a commutative diagram

Hk(∆
n, ∂∆n)

��

// Hk(|X|, |Y|)

��
Hk(∆

n, V) // Hk(|X|,W)

Hk(∆
n r ∂∆n, V r ∂∆n)

OO

// Hk(|X|r |Y|,W r |Y|)

OO

where the upper vertical arrows are isomorphisms by lemma 7.5.1 and the lower vertical
arrows are isomorphisms by excision. (All vertical arrows are induced by inclusion maps.)
The lower horizontal arrow is an isomorphism because the map of pairs

(∆n r ∂∆n, V r ∂∆n) −→ (|X|r |Y|,W r |Y|)

which induces it is a homeomorphism. �

Proof of theorem 8.3.1 for finite X . Here we assume that the semi-simplicial
set X is finite, that is to say, each of the sets Xk is finite and there exists n ≥ −1 such
that Xk = ∅ for k > n . The minimal n with this property is called the dimension of X .
(In particular, if Xk = ∅ for all n ≥ 0 , we say that the dimension of X is −1 .)
(i) Induction beginning : If X has dimension −1 , then C(X) is the zero chain complex and
|X| = ∅ and sC(|X|) is also the zero chain complex. Therefore u∗ : C(X) −→ sC(|X|) is an
isomorphism of chain complexes.
(ii) Not an induction step: let us verify that the theorem is true for X = ∆n , any n ≥ 0 . In
this case |X| = ∆n and we know that H0(∆

n) ∼= Z and Hk(∆
n) = 0 for k 6= 0 . Therefore

it is nearly enough to show that H0(C(X)) ∼= Z and Hk(C(X)) = 0 for k 6= 0 . This was
an exercise (a few weeks ago) and I do not want to spoil the exercise. But we still have to
show that u∗ : C(X)→ sC(|X|) induces an isomorphism

H0(C(X)) −→ H0(sC(|X|)) = H0(|X|) = H0(∆
n).

Since ∆n is path connected, we know (by ...) that any map σ : ∆0 → ∆n is a 0-cycle in
sC(∆n) and as such represents a generator of H0(∆

n) ∼= Z . If we choose σ so that it hits
one of the vertices of ∆n , for example (1, 0, 0, . . . , 0) , then it is in the image of the chain
map u∗ : C(X) → sC(|X|) . Therefore this homomorphism H0(C(X)) −→ H0(sC(|X|)) is
surjective, and so it is an isomorphism (because any surjective homomorphism from Z to
Z is injective).
(iii) Induction step: Suppose that X has dimension n and that Xn has r elements, where
r > 0 . Choose z ∈ Xn and let Y ⊂ X be the simplicial subset which has Yk = Xk for
k < n and Yn = Xn r {z} . Now we want to prove the theorem for X and we may assume
that it holds for all semi-simplical sets Z which have either dimension < n , or dimension
= n and fewer than r elements in Zn . In particular, we may assume that the theorem
holds for Y . Now we have the following commutative diagram of chain complexes

(∗)

C(Y) //

��

C(X) //

��

C(X)/C(Y)

��
sC(|Y|) // sC(|X|) // sC(|X|)/sC(|Y|)
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where the rows are short exact. We know that the left-hand vertical arrow induces an
isomorphism in homology groups. We want to know that the middle vertical arrow induces
an isomorphism in homology groups. Therefore (by remark 7.4.7) it suffices to show that
the right-hand vertical arrow induces an isomorphism in homology groups. In order to
deal with this, we set up another commutative diagram

(∗∗)

C(X)/C(Y)

��

C(∆n)/C(∂∆n)oo

��
sC(|X|)/sC(|Y|) sC(∆n)/sC(∂∆n)oo

where the vertical arrows are of type u∗ and the horizontal arrows are induced by the
unique morphism ∆n → X which takes the unique element in (∆n)n to z ∈ Xn . By
lemma 8.3.4, the lower horizontal arrow induces an isomorphism in homology groups.
By inspection, the upper horizontal arrow induces an isomorphism in homology groups.
(Indeed the underlying chain map is an isomorphism; the two chain complexes involved
are zero in all dimensions except dimension n , where C(X)n/C(Y)n ∼= Z and similarly
C(∆n)n/C(∂∆

n)n ∼= Z .) Therefore it is enough to show that the vertical arrow on the
right in (∗∗) induces an isomorphism in homology. In order to show this, we return to
diagram (∗) , taking X = ∆n and Y = ∂∆n . Now we want to show that the right-hand
vertical arrow in (∗) induces an isomorphism in homology. But we know that the middle
vertical arrow induces an isomorphism in homology (by step (ii) of this proof, which was
neither an induction beginning nor an induction step) and we know that the vertical arrow
on the left induces an isomorphism in homology (by inductive assumption, since ∂∆n is
(n− 1) -dimensional. This is enough by remark 7.4.7. �

To complete the proof of theorem 8.3.1 in general, i.e., to remove the condition that X is
finite, we need mainly proposition 8.1.3. But we also need an observation concerning the
topology of |X| . This could have been mentioned earlier.

Lemma 8.3.5. Let X be a semi-simplicial set. If L ⊂ |X| is a compact subset, then there
is a finite semi-simplicial subset Y ⊂ X such that L ⊂ |Y| ⊂ |X| .

Proof. Suppose there is no finite semi-simplicial subset Y of X such that L ⊂ |Y| .
Then L is nonempty, and we can choose some a(0) ∈ L . As in lemma 4.3.2, the element
can be written in a unique way as cz(w) for some z ∈ Xr (and some r) and some w ∈ ∆r
whose barycentric coordinates are all > 0 . Here cz : ∆

r → |X| is the characteristic map
associated with z . For the bookkeeping, we write z(0) instead of z and r(0) instead of r
and w(0) instead of w , so that

a(0) = cz(0)(w(0))

where z(0) ∈ Xr(0) . Next, we choose a(1) ∈ L which is not contained in the smallest
semi-simplicial subset of X that contains z(0) ∈ Xr(0) . Then a(1) can be written in a
unique way as

a(1) = cz(1)(w(1))

for some z(1) ∈ Xr(1) and w(1) ∈ ∆r(1) whose barycentric coordinates are all > 0 . Next,
we choose a(2) ∈ L which is not contained in the smallest semi-simplicial subset of X that
contains z(0) ∈ Xr(0) and z(1) ∈ Xr(1) . Then a(2) can be written in a unique way as

a(2) = cz(2)(w(2))
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for some z(2) ∈ Xr(2 and w(2) ∈ ∆r(2) . And so on. We have constructed an infinite
subset

S = {a(0), a(1), a(2), . . . } ⊂ L .
Claim: S is a closed subset of X and every subset of S is also closed in X . To prove this
for S , we ask: what is the pre-image q−1(S) of S under the quotient map

q :
∐
r≥0

∐
z∈Xr

∆r −→ |X|.

Whatever it is exactly, its intersection with any ∆r corresponding to some r ≥ 0 and
z ∈ Xr is a finite subeset of ∆r and as such a closed subset of ∆r . Therefore q−1(S) is
closed and therefore S is closed in |X| , by definition of the topology on |X| . The same
argument works for any subset of S .
Now it is easy to finish the argument. Since S is a closed subset of the compact Hausdorff
space L , it is compact in its own right. But we saw that the subspace topology on S is
discrete (every subset of S is closed in S , and so every subset of S is open in S). It follows
that S is finite. Contradiction. �

Proof of theorem 8.3.1 for general X . The aim is to show that

(∗) Hk(C(X)) −→ Hk(sC(|X|)) = Hk(|X|)

induced by u : X→ sing(|X|) is bijective. The case where X is finite has been taken care of.
To show surjectivity of (∗) in general, we choose some z ∈ Hk(X) . By proposition 8.2.1,
there exists a compact subspace L of |X| such that z is in the image of Hk(L)→ Hk(|X|) ,
homomorphism induced by the inclusion. By lemma 8.3.5, there exists a finite simplicial
subset Y of X such that L ⊂ |Y| ⊂ |X| . Therefore z is in the image of Hk(|Y|)→ Hk(|X|) ,
homomorphism induced by the inclusion. The commutative diagram

Hk(C(Y))
∼= //

��

Hk(|Y|)

��
Hk(C(X)) // Hk(|X|)

(horizontal arrows induced by u , vertical arrows by inclusions) allows us to conclude that
z comes from Hk(C(X)) . This proves surjectivity.
To prove injectivity, suppose that w ∈ Hk(C(X)) is in the kernel of (∗) . By definition
of C(X) , we can find a finite semi-simplicial subset Y of X such that w comes from an
element wY ∈ Hk(C(Y)) . By proposition 8.2.1, there exists a compact subspace M of
|X| , containing |Y| , such that wY is taken to 0 in Hk(M) . By lemma 8.3.5, there exists
a finite simplicial subset Y ′ of X such that M ⊂ |Y ′| ⊂ |X| . Then wY is taken to zero in
Hk(|Y

′|) . Therefore wY is taken to zero in Hk(C(Y
′)) , and also to zero in Hk(C(X)) , and

this means w = 0 . �

Proof of theorem 8.3.1 for pairs (X, Y) . Let X be a semi-simplicial set and let
Y ⊂ X be a semi-simplicial subset. Then we have a commutative diagram of chain com-
plexes

C(Y)

��

// C(X)

��

// C(X)/C(Y)

��
sC(Y) // sC(X) // sC(X)/sC(Y)
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with short exact rows. The vertical arrows are of type u∗ . We know already that the
left-hand vertical arrow and the middle vertical arrow induce isomorphisms in Hk for all
k ∈ Z . Therefore, by the five lemma, the right-hand vertical arrow induces an isomorphism
in Hk for all k . (The five lemma is applicable once we write out the long exact homology
sequences for the two short exact rows, and arrange them in a ladder-shaped diagram.) �

Corollary 8.3.6. Let X be a finite semi-simplicial set, i.e., the disjoint union of the
sets Xn for n ≥ 0 is finite. Let an be the number of elements of Xn . Then the Euler
characteristic of |X| is

∑
n≥0(−1)

nan .

Proof. Since C(X)n is the free abelian group generated by the set Xn , we have
rk(C(X)n) = an . By proposition 5.4.2, the Euler characteristic χ(C(X)) of the chain
complex C(X) is∑

n≥0

(−1)nrk(Hn(C(X)) =
∑
n≥0

(−1)nrk(C(X)n) =
∑
n≥0

(−1)nan .

But Hn(C(X)) ∼= Hn(|X|) by theorem 8.3.1. It follows that the Euler characteristic of |X|
is defined and equal to

∑
n≥0(−1)

nan . �

Example 8.3.7. Let X be any finite semi-simplicial set with the property that |X| is
homotopy equivalent to S3 . Writing an for the number of elements of Xn as before, we
must have ∑

n≥0

(−1)nan = 0

because the Euler characteristic of S3 is 0 . (Compute this directly from the definition:∑
n≥0(−1)

nrk(Hn(S
3)) , using theorem 7.2.2.)

In the exercises we constructed a finite semi-simplicial set X with the property that |X| is
homeomorphic to S3 . In that construction we had a0 = 2 , a1 = 3 , a2 = 2 and a3 = 1 .
The alternating sum of these is indeed 2− 3+ 2− 1 = 0 .

8.4. Jordan curve theorem, Schönflies theorem and related matters

The Jordan curve theorem in the easiest imaginable form states that if f : S1 → R2 is an
injective continuous map, then R2r f(S1) has two connected components. The Schönflies
theorem states that f can be extended to a continuous injective map F : D2 → R2 (so that
F restricted to S1 ⊂ D2 agrees with f).
The Schönflies statement does not have a straightforward generalization to higher dimen-
sions. There is an example of a continuous injective map S2 → R3 wich does not extend
to a continuous injective F : D3 → R3 .
But there is a version of the Jordan curve theorem for arbitrary dimensions. The statement
is as follows: if f : Sm−1 → Rm is an injective continuous map, then Rm r f(Sm−1) has
two connected components.
Let us reformulate this statement in homological language. First of all, it does not make a
great difference whether we use Rm or Sm as the target space, since we can think of Rm as
Sm minus a point. But it turns out that we get prettier results if we use Sm . Suppose then
that f : Sm−1 → Sm is continuous and injective. Since f(Sm−1) is compact, Smrf(Sm−1)
is an open subset of Sm . For an open subset of Sm , the connected components are path
connected (exercise), and so they are also the path components. Therefore the “generalized
Jordan curve statement” is saying that Sm r f(Sm−1) has two path components. This is
equivalent to saying that

H0(S
m r f(Sm−1)) ∼= Z⊕ Z .
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And this is also equivalent to saying that H0(S
m r f(Sm−1)) ∼= H0(S

0) . But it turns out
that we can prove more.

Theorem 8.4.1. Let f : Sk → Sm be an injective continuous map, where k < m . Then

Hj(S
m r f(Sk)) ∼= Hj(S

m−k−1)

for all j ∈ Z .

In particular, if k = m− 1 then Sm r f(Sk) has the same homology as S0 , meaning that
it has two connected components and each of these has the homology of a point. This
goes some way towards a Schönflies statement (but not all the way — for example, we are
not allowed to conclude that each of these connected components is contractible).
We can allow k = −1 in theorem 8.4.1. This is not a very interesting case, since S−1 = ∅ .
But we will see that it is useful as an induction beginning.

In proving theorem 8.4.1, and also theorem 8.5.1 below, I follow E. Spanier (his book,
Algebraic Topology, McGraw-Hill 1966, ch.4 §7). It is a very fine book, hard to beat in the
selection of topics, although the style has something old-fashioned to it. I feel guilty for
not recommending this earlier.

Proposition 8.4.2. Let I = [0, 1] and let g : Ik → Sm be an injective continuous map,
where 0 ≤ k ≤ m . Then Hj(S

m r g(Ik)) ∼= Hj(∗) for all r ∈ Z .

Proof. We proceed by induction on k . Induction beginning: if k = 0 then Smrg(Ik)
is homeomorphic to Rm since g(Ik) is a single point. Therefore Hr(S

m r g(Ik)) is
isomorphic to Hr(Rm) ∼= Hr(∗) in the case k = 0 .
For the induction step we introduce some notation and terminology. The reduced homology
H̃j(X) of a nonempty space X is the kernel of the (surjective) homomorphism

Hj(X)→ Hj(∗)
induced by the unique map X → ∗ . Clearly the tilde makes a difference only if j = 0 .
Nevertheless this is useful notation in situations where we prefer to be unspecific about j .
If X is the union of two subsets V and W such that int(V)∪ int(W) = X , then we have the
long exact Mayer-Vietoris sequence in homology involving H∗(X) and H∗(V) ⊕ H∗(W) ,

H∗(V ∩W) . If moreover V , W and V ∩W are nonempty, then we can replace Hj by H̃j
in that sequence (where applicable) and it will still be a long exact sequence (easy diagram
chase). This is the long exact Mayer-Vietoris sequence in reduced homology.
In that connection, let us note that g : Ik → Sm is not surjective, for otherwise it would
be a homeomorphism (a continuous bijective map between compact Hausdorff spaces is
a homeomorphism). It cannot be a homeomorphism because Ik and Sm can be distin-
guished by their homology groups. It follows that Sm r g(Ik) 6= ∅ .
More notation: for a closed interval J ⊂ I , let V(J) = Sm r g(Ik−1 × J) . (We allow cases
where J is a single point.) This is a nonempty open subset of Sm . In particular for J = I
we get V(I) = Sm r g(Ik) . In reduced homology language, what we have to show is that

H̃r(V(I)) = 0 for all r.

Now assume that this statement is false for a specific k > 0 and for our choice of g , but
correct in all cases for the previous integer, also known as k − 1 . We need to generate a
contradiction from that. Since we are assuming that H̃j(V(I)) is not zero for all j , we can
choose r ≥ 0 and a nonzero element

z0 ∈ H̃r(V(J)).
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As a first step towards the contradiction which we must generate, we show:

(∗) there exists a closed interval J ⊂ I , of length 1/2 , such that the image of z0 under
the homomorphism Hr(V(I))→ Hr(V(J)) induced by the inclusion V(I)→ V(J)
is still nonzero.

To prove this we write I = J ′ ∪ J ′′ where J ′ = [0, 1/2] and J ′′ = [1/2, 1] . Then

V(I) = V(J ′ ∪ J ′′) = V(J ′) ∩ V(J ′′), V(J ′ ∩ J ′′) = V(J ′) ∪ V(J ′′).
Since J ′ ∩ J ′′ is a point, we know (by inductive assumption) that the reduced homology
of V(J ′) ∪ V(J ′′) = V(J ′ ∩ J ′′) = Sm r g(Ik−1 × {1/2}) is zero in all dimensions. From the
exactness of the Mayer-Vietoris sequence in reduced homology (for the open covering of
V(J ′) ∪ V(J ′′) by V(J ′) and V(J ′′)), we obtain therefore that the homomorphism

H̃r(V(I)) −→ H̃r(V(J
′))⊕ H̃r(V(J ′′))

in the sequence (induced by the inclusions V(I)→ V(J ′) and V(I)→ V(J ′′) , up to a sign
which is not important here) is an isomorphism. Therefore one of these inclusion-induced
homomorphisms

H̃r(V(I))→ H̃r(V(J
′)), H̃r(V(I)→ H̃r(V(J

′′))

must take z0 to a nonzero element. If the first one does that, we take J := J ′ ; if not, then
J := J ′′ . This proves (∗) .
Iterating this construction, we obtain a descending infinite sequence of closed intervals

I = J0 ⊃ J1 ⊃ J2 ⊃ J3 ⊃ . . .
such that Js has length 2−s and such that the image zs of z0 under the inclusion-induced
homomorphism

H̃r(V(I)) −→ H̃r(V(Js))

is nonzero, for s = 1, 2, 3, . . . . Now we can make good use of proposition 8.1.3. We have
an increasing sequence of open subsets

V(I) = V(J0) ⊂ V(J1) ⊂ V(J2) ⊂ V(J3) ⊂ . . .

Let W be the union, W =
⋃
s≥0 V(Js) . Let z∞ ∈ H̃r(W) be the image of z0 under

H̃r(V(I))→ H̃r(W)

induced by the inclusion V(I)→W . We want to show z∞ 6= 0 (as part of our struggle to
generate a contradiction). In any case we can find a compact subset K ⊂ V(I) such that
z0 comes from an element

z̄0 ∈ H̃r(K).
If z0 maps to zero in H̃r(W) , then so does z̄0 and so there exists compact L ⊂ W such

that K ⊂ L and z̄0 maps to zero already in H̃r(L) . But L must be contained in V(Js) for
some s . Therefore z̄0 and consequently also z0 map to zero in

H̃r(V(Js))

for this s . This contradicts what we know: zs 6= 0 . Therefore z∞ 6= 0 as claimed. In
particular we get H̃r(W) 6= 0 . But this contradicts our inductive assumption, since

W = V(
⋂
s≥0

Js) = S
m r g(Ik−1 × {p})

where p is the unique element of
⋂
s≥0

Js . �
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Proof of theorem 8.4.1. Again we proceed by induction on k . And again we use
reduced homology; so the statement to be proved is that Sm r f(Sk) is nonempty and

H̃j(S
m r f(Sk)) ∼=

{
Z if j = m− k− 1
0 otherwise

A good induction beginning is the case k = −1 ; as pointed out earlier, an obvious case.
For the induction step we assume k ≥ 0 and k < m and we write Sk = A ∪ B where
A is the closed upper hemisphere and B is the closed lower hemisphere. Then A ∩ B is
the equator, A ∩ B = Sk−1 . The open set V = Sm r f(A ∩ B) is the union of open sets
W0 = S

mr f(A) and W1 = S
mr f(B) . By inductive assumption, V is nonempty and we

have

H̃j(V) ∼=

{
Z if j = m− k
0 otherwise

since V = Smrf(A∩B) = Smrf(Sk−1) . By proposition 8.4.2 the reduced homology groups
of W0 and W1 are all zero. It follows that W0∩W1 is nonempty; otherwise V =W0∪W1
has two connected components, which contradicts H̃0(V) = 0 . — Therefore we may use
the Mayer-Vietoris sequence in reduced homology (for the open cover of V by W0 and
W1 ). Exactness implies

H̃j+1(V) ∼= H̃j(W0 ∩W1)
for all j . But this is exactly what we need since W0∩W1 = Smrf(A∪B) = Smrf(Sk) . �

8.5. Invariance of domain

Theorem 8.5.1. Let V and W be subsets of Rm . If V is homeomorphic to W and V is
open in Rm , then W is open in Rm .

Proof. Let f : V → W be a homeomorphism. Let g : V → Sm be the composition
of f : V → W and the inclusion W → Rm ⊂ Rm ∪∞ = Sm . It suffices to show that
g(V) = W is open in Sm . Let x ∈ V and choose a compact neighborhood K of x in V
which is a small disk (radius ε and center x). This has a boundary sphere ∂K ∼= Sm−1 .
By the Schönflies theorem, Smrg(∂K) has two connected components. Now Smrg(∂K)
is the disjoint union (as a set, disregarding the topology) of g(K r ∂K) and Sm r g(K) .
Both of these subsets are connected; the first because it is the image of a connected set
under a continuous map, and the other by proposition 8.4.2. Therefore these two subsets
must be the connected components of Smrg(∂K) . As such they are open in Sm , because
Smrg(∂K) is clearly open in Sm . In particular g(Kr∂K) is open in Sm . It also contains
g(x) . Therefore g(V) is a neighborhood of g(x) . Since this holds for all x ∈ V , or for all
g(x) ∈ g(V) , it follows that g(V) is open in Sm . �

Corollary 8.5.2. Let V be a nonempty open subset of Rm and let g : V → Rn be a
continuous map. If g is injective, then n ≥ m .

Proof. Suppose for a contradiction that n < m . Choose a linear injective map
e : Rn → Rm . Choose x ∈ V and choose a compact neighborhood K of x ∈ V . Now
e ◦ g gives a homeomorphism from K to e(g(K)) , and from int(K) to e(g(int(K))) . But
int(K) is open in Rm whereas e(g(int(K)) is not open in Rm (because it is contained in
the linear subspace e(Rn) of Rm ). This contradicts theorem 8.5.1. �



CHAPTER 9

Review

In a (mathematical) lecture course with clear goals, the lecturer may not find the time to
point out all the pitfalls, to be generous in giving examples or counterexamples, and to
point out important analogies which may explain a new definition in terms of older ones.
In the last two weeks, which were set aside for a review, I wanted to take the time to do
just that. Time to make “associations”.

9.1. Mo 15.1. and Thu 18.1.

Notion of homotopy. We define homotopies before we define the meaning of homotopy
equivalences and homotopy equivalent.
Structure/syntax: a homotopy between maps f, g : X → Y is a map h : X × [0, 1] −→ Y
such that h(x, 0) = f(x) and h(x, 1) = g(x) for all x . If such an h exists, we say that f
and g are homotopic. (Continuity is assumed where applicable.)
A map p : Y → Z is a homotopy equivalence if there exists a map q : Z→ Y such that qp
is homotopic to idY and pq is homotopic to idZ . If such a homotopy equivalence exists,
we say that Y and Z are homotopy equivalent.
Moral: we deform maps (as in a homotopy), but as a rule we do not try to deform spaces
in order to prove that they are homotopy equivalent.

Example. Take integers ` > k > 0 . Then we have the usual inclusion Rk ↪→ R` and also
Sk−1 ↪→ S`−1 .

Sk−1
incl. //

incl.

��

S`−1

incl.

��
Rk incl. // R`

Let us show that B = S`−1 r Sk−1 is homotopy equivalent to S`−k−1 . More precisely, let

A =
{
(x1, x2, . . . , x`) ∈ S`−1 ⊂ R`

∣∣ x1, x2, . . . , xk = 0
}
.

This is the unit sphere in the linear subspace of R` which is the orthogonal complement
of Rk . Let us show that the inclusion f : A → B is a homotopy equivalence. Then we
need, first of all, a (continuous) map g : B→ A . I define this by the unsurprising formula

g(x1, x2, . . . , xk, xk+1, . . . , x`) :=
1

‖(0, 0, . . . , 0, xk+1, . . . , x`)‖
(0, 0, . . . , 0, xk+1, . . . , x`).

Then gf is equal to the idA (so we don’t have to work hard to invent a homotopy from gf
to idA ). But we need a homotopy from fg to id. This can be done by the unsurprising
formula

ht(x1, . . . , xk, xk+1, . . . , x`) :=
1

‖(tx1, . . . , txk, xk+1, . . . , x`)‖
(tx1, . . . , txk, xk+1, . . . , x`).

68
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Then h0 is fg and h1 is idB . Finished.

The following situation could be regarded as an interesting exception to the rule we do not
deform spaces in order to show that one space is homotopy equivalent to another. Suppose
that p : E → B is a fibration. (See definition 2.5.1.) Let x, y be two points in B . We
might want to show that p−1(x) is homotopy equivalent to p−1(y) . If there is a path
γ : [0, 1] → B from x to y in B , then this is true. (And yikes, this was not proved in
lectures officially, although it is easy. A dreadful omission on my part and a very good
exercise for you on the theme of fibrations.) We might loosely say that the spaces p−1(γ(t))
for t ∈ [0, 1] constitute a deformation of spaces starting with p−1(x) = p−1(γ(0)) and
ending with p−1(y) = p−1(γ(1)) . But saying so does not constitute a proof that p−1(x)
and p−1(y) are homotopy equivalent (although they are).

We have developed good methods for showing (sometimes) that two maps f, g : X → Y
are not homotopic. Example: if f, g : X→ Y induce different homomorphisms from Hj(X)
to Hj(Y) for some j ∈ Z , then they are not homotopic. This follows from the important
theorem 7.1.2. Example of example: let f : S2 → S2 be the identity map and let g : S2 → S2

be the antipodal map, g(x) = −x . Then f and g induce different homomorphisms from
H2(S

2) ∼= Z to H2(S
2) ∼= Z . Therefore they are not homotopic. See theorem 7.2.4.

We have also developed good methods for showing (sometimes) that two spaces are not ho-
motopy equivalent. Example: if X and Y are spaces and Hj(X) is not isomorphic to Hj(Y) ,
for some j ∈ Z , then X is not homotopy equivalent to Y . (Again this follows from the
important theorem7.1.2.) For example, we found that H3(S

3) ∼= Z whereas H3(S
2) = 0 .

Therefore S3 is not homotopy equivalent to S2 . Similarly, S3 is not homotopy equivalent
to a point ∗ , since H3(∗) = 0 .
So far we have hardly developed any methods for showing that two maps f, g : X → Y
are homotopic, or that two spaces X, Y are homotopy equivalent. Some exceptions: very
early in the course we showed that every map S1 → S1 is homotopic to one of the
maps given by z 7→ zn (fixed n , complex number notation). The HLP, homotopy lifting
property, is a condition on a map which says something about existence of homotopies.
See definition 2.5.1.

There was an “iffy” example with the Hopf map p : S3 → S2 . We showed that the Hopf
map is a fibration (by showing that it is a fiber bundle). This led to an argument as
follows: if there is a homotopy from p to a constant map, then there is a homotopy
from id : S3 → S3 to a constant map. [Later we learned, using homology, that there is
no homotopy from id : S3 → S3 to a constant map; and so we were able to conclude that
there is no homotopy from p : S3 → S2 to a constant map.]

I repeated the definitions of: Category, functor, natural transformation. There is no
point in writing these out here; see chapter 3. [But let me just emphasize again that the
homotopy category is an interesting example of a category. The objects are the topological
spaces. A morphism from X to Y is a homotopy class of maps from X to Y . Composition
of morphisms is given by [g] ◦ [f] := [g ◦ f] , where f might be a map from X to Y and
g might be a map from Y to Z , and [f] denotes the homotopy class of f . It is of course
neccessary to show that this composition is well defined, since we gave the definition using
representatives. Also, before it comes to that, one should show that the homotopy relation
is an equivalence relation. We did all that long ago.]
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In a category C , we often write f : a → b to mean: f is a morphism from a to b , in
other words f ∈ morC(a, b) . (It does not have to mean that a, b are sets and f is a map
between sets.)

The notions of opposite category and contravariant functor are closely related notions.
The opposite category Cop of a category C is defined as follows: the objects of Cop are
the objects of C , but a morphism from a to b in Cop is the same thing as a morphism
in C from b to a . (Fill in the remaining details.) A contravariant functor from C to D

is the same thing as a (covariant) functor from Cop to D . Alternatively, it could also be
defined as a (covariant) functor from C to Dop .
An example of a category which we use a lot for combinatorial purposes: the category ∆
(a very unfortunate choice of notation, but it is not my fault). The objects of ∆ are the
sets [n] = {0, 1, . . . , n} , where n can be any non-negative integer. A morphism in ∆ from
[m] to [n] is an order-preserving injective map. Composition of morphisms is defined to
be ordinary composition of such maps. (I often write or say: monotone injective instead
of order-preserving injective.)

A semi-simplicial set Y is defined to be a contravariant functor from ∆ to the category
of sets. We normally write Yn instead of Y([n]) and we write f∗ : Yn → Ym for the map
Y(f) of sets induced by a morphism f : [m]→ [n] in ∆ .
We use semi-simplicial sets as combinatorial models for spaces. From this point of view,
the definition might be a little hard to understand, and I will try something less abstract.
Suppose that we try to make spaces out of little pieces of the form ∆n . Here ∆n is the
geometric n -simplex, a subspace of Rn+1 (not a linear subspace!) defined as

∆n :=
{
(x0, x1, . . . , xn) ∈ Rn+1

∣∣ xi ≥ 0 for all i, Σixi = 1
}
.

(Note also that this is the convex hull of the set of basis elements e0, e1, . . . , en where e0 =
(1, 0, 0, . . . ) , e1 = (0, 1, 0, . . . ) , e2 = (0, 0, 1, 0, . . . ) and so on.) A morphism f : [m]→ [n]
in ∆ determines a (continuous) map

f∗ : ∆
m −→ ∆n

in an unsurprising manner: f∗(x0, x1, . . . , xm) = (y0, y1, . . . , yn) where yf(i) = xi for
i = 0, 1, . . . ,m and yj = 0 in case j is not of the form f(i) . Now let us try to make
spaces out of little pieces of the form ∆n , using maps like f∗ : ∆

m → ∆n above to do some
gluing. In more detail: we start with a disjoint union of such pieces, so we start with∐

n≥0

Yn × ∆n

where Yn is a set which we select (for each n ≥ 0 , in order to say how many pieces of
the form ∆n we want to use). The space that we want is a quotient space of that, so we
imagine it in the form (∐

n≥0

Yn × ∆n
)/

∼

where ∼ is an equivalence relation. The equivalence relation will be described as a col-
lection of gluing instructions, of the form: for fixed x ∈ Ym and y ∈ Yn and arbitrary
z ∈ ∆m , the element (x, z) ∈ Ym×∆m shall be glued to (y, f∗(z)) ∈ Yn×∆n . We encode
this instruction by writing

x = f∗(y) .

This manner of writing may seem a little biased, since it suggests that x is determined
by f and y , although we didn’t ask for that. But: if we have x = f∗(y) and also
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x ′ = f∗(y) , then we must glue (x, z) ∈ Ym × ∆m to (y, f∗(z)) ∈ Yn × ∆n , and we must
glue (x ′, z) ∈ Ym × ∆m to (y, f∗(z)) ∈ Yn × ∆n , and when this is done we cannot fail to
note that we have glued (x, z) ∈ Ym × ∆m to (x ′, z) ∈ Ym × ∆m (for all z ∈ ∆m ), since
the gluing process is transitive. Therefore there was no need to list x and x ′ separately
(the gluing makes one of them superfluous). Consequently there is no loss of generality in
assuming that x is indeed determined by f and y if we express our gluing intentions by
writing x = f∗(y) .
Next, suppose that we have expressed certain gluing intentions by writing x = f∗(y) and
also w = g∗(x) (where y ∈ Yn and x ∈ Ym and w ∈ Y` , and f : [m]→ [n] is a morphism
in ∆ , and g : [`] → [m] is another morphism in ∆). Then we must glue (w, z) ∈ ∆` × Y`
to (x, g∗(z)) ∈ ∆m × Ym and we must glue (x, g∗(z)) to (y, f∗(g∗(z))) = (y, (f ◦ g)∗(z)) ∈
∆n × Yn . Therefore by transitivity of gluing, we have implicitly or otherwise given the
gluing instruction which we must express as

w = (f ◦ g)∗y .

Tempted by the notation we have chosen, we may also want to write

w = g∗(x) = g∗(f∗(y)).

This is consistent with w = (f ◦ g)∗y if we agree that (f ◦ g)∗ means the same as g∗ ◦ f∗ .
Furthermore, if m = n and f : [m]→ [n] is the identity, then there is no harm in adding the
gluing instruction x = f∗(x) for x ∈ Ym , since this just means that we are “gluing” points
(x, z) ∈ Ym × ∆m to themselves. Therefore we begin to see that we have a contravariant
functor: for every f : [m] → [n] , morphism in ∆ , we get a map f∗ : Yn → Ym which
expresses part of our plans for gluing. Moreover, if e = f ◦ g , then e∗ = g∗ ◦ f∗ , and if f
is an identity morphism, then f∗ is an identity map.

By unraveling the definition of semi-simplicial set in this way, we have almost automati-
cally given a definition of geometric realization of a simplicial set. Namely, the geometric
realization |Y| of a semi-simplicial set Y is the quotient space obtained from∐

Yn × ∆n

by introducing the relations (y, f∗(z)) ∼ (f∗(y), z) for y ∈ Yn , z ∈ ∆m and morphisms
f : [m] → [n] in ∆ . (Introducing the relations ... means: form the smallest equivalence
relation containig this one, and pass to equivalence classes. These equivalence classes are
therefore the elements of |Y| . And make sure you know what a quotient space is! Quotient
topology ... I preached it many times.

One reason for me to emphasize semi-simplicial sets in the lectures was the following:
they are halfway between topological spaces and chain complexes. A semi-simplicial set Y
determines a space |Y| , and a chain complex C(Y) . Without that (or something similar),
the emergence of chain complexes in algebraic topology is a little difficult to explain. (In
any case it remains difficult to explain, but I try it with semi-simplicial sets.)
So let me try to explain what the combinatorial chain complex C(Y) of a semi-simplicial
set Y is, pretending that we do not have a definition of chain complex. So the definition
of chain complex should “emerge” in the process.
For a fixed n ≥ 0 and elements y ∈ Yn and x ∈ Yn−1 , we want to define the incidence
number J(x, y) , an integer. Roughly this counts how many relations of type x = f∗(y)
we have for the chosen x and y . In other words we are asking: how many morphisms
f : [n− 1]→ [n] in ∆ are there such that x = f∗(y) ? First of all, we describe the possible
morphisms [n − 1] → [n] as fi where i = 0, 1, . . . , n and fi is the unique monotone
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injection from [n − 1] to [n] whose image is [n] r {i} . But we want to count these with
signs: therefore

J(x, y) :=
∑

i∈[n]: x=(fi)∗(y)

(−1)i .

(The signs have something to do with orientations; an attempt to explain this will be made
later.) It is convenient to organize these integers J(x, y) in a matrix with integer entries;
let me write this matrix as

D(n) := (J(x, y))x∈Yn−1, y∈Yn
.

(The rows of this matrix are indexed by the elements of the set Yn−1 and the columns are
indexed by the elements of the set Yn . The sets Yn−1 and/or Yn are not equipped with
any ordering, as a rule, and we must live with that.) Now we have an interesting little
“theorem” stating that the matrix product

D(n− 1)D(n)

is a zero matrix (if n ≥ 2). This is really all. What does it mean? The product matrix
D(n−1)D(n) has one entry for each selection (w,y) where w ∈ Yn−2 and y ∈ Yn . That
entry is ∑

x∈Yn−1

J(w, x) · J(x, y)

(The sum might look infinite, but it is really finite since there are only finitely many x
such that J(x, y) 6= 0 for the fixed y .) We are saying that all these entries are zero. (The
proof is an exercise; it is not deep.)
If we had to define the concept of chain complex on the basis of this observation about
incidence numbers, it might come out like this: a chain complex is a sequence of matrices
D(n) , where n = 1, 2, 3, . . . , such that all matrix products D(n − 1)D(n) are defined
and equal to zero. (More details would be required. From which ring should the entries
of these matrices be taken? What can be said about the format of the matrices ... etc.)
This is not bad as a definition. But the generally accepted definition of chain complex is
slightly more abstract. We remember (from linear algebra) that a matrix is a convenient
way to describe a linear map between vector spaces. In our case, the matrices have integer
coefficients, so that vector spaces are not quite the appropriate concept. Instead we might
say: each matrix D(n) describes a homomorphism between free abelian groups (and each
of the free abelian groups is equipped with a basis, although not an ordered one). The
equation D(n − 1)D(n) = 0 means that certain compositions (of homomorphisms) are
zero. In this way, we arrive at definition 5.1.1. Note that, for greater generality, we do not
insist on free abelian groups, with or without basis; we just ask for abelian groups. Note
that dn in definition 5.1.1 corresponds to the matrix D(n) in the above “experiment”.

9.2. Mo 22.1. and Thu 25.1.

I tried to say something about orientations. Strictly speaking we did not need or use
orientations anywhere, but knowing what they are can help us to understand some formulas
better. (Warning : this discussion of orientations seems to generate an awful lot of writing
for very little purpose.)

First a definition of orientation of a finite dimensional real vector space V . An orientation
of V is a function ω which for every ordered basis of V consisting of vectors v1, v2, . . . , vn
selects an element

ω(v1, . . . , vn) ∈ {+1,−1}.



9.2. MO 22.1. AND THU 25.1. 73

Condition: if u1, u2, . . . , un is one ordered basis of V and v1, v2, . . . , vn is another, then

ω(u1, u2, . . . , un)

ω(v1, . . . , vn)
=

det(M)

|det(M)|

where M is the matrix describing the base change. (There are obviously two matrices
which we can set up to describe the base change, but it does not matter which of the
two we choose for this.) Consequence: such an ω is fully determined by its value on a
particular ordered basis of V , and we can choose that value (to be = 1 or −1 as we wish).
Important example. Suppose that V has dimension 0. Then there is exactly one ordered
basis of V . Therefore V has two orientations: the ω which assigns +1 to the unique
ordered basis and the ω which assigns −1 to the unique ordered basis.
Every finite dimensional real vector space V has exactly two orientations. The following
slightly incorrect definition of orientation comes to mind easily: “an orientation of V is
an equivalence class of ordered bases for V , where two bases of V are considered to be
equivalent if the base change matrix has positive determinant”. This is actually correct in
all cases except in the case where V has dimension 0. (If V has dimension 0, then there
is only one ordered basis and so there can only be one equivalence class of such; therefore,
according to this proposed new definition, a 0-dimensional real vector space would only
have one orientation.) But orientations of 0-dimensional vector spaces are very important
in topology, and it is important to insist that a 0-dimensional vector space has two possible
orientations.
Here is a key idea about orientations. Suppose that ψ : V → W is an injective linear
map between finite dimensional real vector spaces. A choice of orientations for V and
W determines an orientation on the quotient vector space W/ψ(V) . (That’s more a
definition than a theorem.) Let ω be the chosen orientation on W and let ω ′ be the
chosen orientation of V . We plan to define ω ′′ , an orientation on W/ψ(V) . So let
w1, . . . , wr be an ordered basis for W/ψ(V) . Choose vectors w̄1, . . . , w̄r in W such that
the projection W → W/ψ(V) takes w̄j to wj for j = 1, 2, . . . , r . Choose any ordered
basis v1, . . . , vm for V . Then w̄1, w̄2, . . . , w̄r, v1, . . . , vm constitute an ordered basis for
W . We define

ω ′′(w1, . . . , wr) :=
ω(w̄1, w̄2, . . . , w̄r, v1, . . . , vm)

ω ′(v1, . . . , vm)
.

(Reader: verify that ω ′′ is well defined as a function on ordered bases and satisfies the
conditions for an orientation on W/ψ(V) .)
Important special case: suppose that the dimension of W/ψ(V) is 1 . An orientation of
W/ψ(V) amounts to a choice of nonzero vector in W/ψ(V) , up to multiplication by a
positive real number. This is the same as a choice of one of the two connected components
of Wrψ(V) . Therefore we can summarize: if ψ : V →W is an injective linear map where
W has dimension n and V has dimension n− 1 , then a choice of orientations for V and
W determines a choice of one of the two connected components of Wrψ(V) . I like to call
this the outer component, and the other one is of course the inner component. Example:
if W = R2 with standard ordered basis (1, 0), (0, 1) (and corresponding orientation) and
V = R with the standard basis and the standard orientation, and ψ is given by ψ(1) =
(1, 0) , then the outer connected component of Wrψ(V) is the lower half plane (it consists
of all vectors (x1, x2) where x2 < 0).
Unfortunately we need a generalization of this to affine spaces. Let us say that an affine
subspace of a (finite dimensional real) vector space W is a subset V of W which is of the
form Vλ+w = {v+w | v ∈ Vλ} , where Vλ is a linear subspace of W and w is some (fixed)
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element of W . Then we say that an orientation of V is the same thing as an orientation
of the vector space Vλ . (Note that Vλ can be determined from V as follows: it is the set
of all v− v ′ ∈W where v, v ′ ∈ V .)
Now let’s apply this to the maps ϕi : ∆

n−1 → ∆n , induced by fi : [n−1]→ [n] . Roughly,
we want to decide whether ϕi is orientation preserving or not. This question does not
make sense for a number of reasons; the strongest reason is that ∆n and ∆n are neither
vector spaces nor affine spaces. However, ∆n is contained in the affine subspace

Vn = {(x0, x1, . . . , xn) ∈ Rn+1 | Σjxj = 1}

of Rn+1 . The corresponding linear subspace Vλn ⊂ Rn+1 has dimension n and our
preferred ordered basis for it is

e1 − e0, e2 − e1, . . . , en − en−1.

Similarly ∆n−1 is contained in the affine subspace Vn−1 ⊂ Rn . The map ϕi : ∆
n−1 → ∆n

extends to an affine map Vn−1 → Vn which we still call ϕi . After adding/subtracting
constants it can be viewed as a a linear map ϕλi : V

λ
n−1 → Vλn . This linear map is given

on the basis vectors by

ϕλi (ek − ek−1) = efi(k) − efi(k−1) =

 ek − ek−1 if k < i
(ek+1 − ek) + (ek − ek−1) if k = i
ek+1 − ek if k > i

where k ∈ {1, 2, . . . , n − 1} . Since Vn−1 and Vn are oriented affine spaces, and ϕi is an
injective affine map, we can decide in principle which connected component of

Vn rϕi(Vn−1)

should be called the outer component. (To be precise ... we should work with the corre-
sponding linear spaces and the corresponding linear map ... but in the end we can make
that decision.) We now ask whether this outer component is the connected component
which we would intuitively call outer because it has empty intersection with the subset
∆n of Vn . (One of the two components has empty intersection with ∆n and the other
contains all of ∆nrϕi(∆n−1) .) If the answer is yes, then we can say that ϕi is compatible
with the standard orientations. If the answer is no, then we say that ϕi is not compatible
with the standard orientations.

Exercise for myself : Do the calculation, for each n ≥ 0 and i ∈ [n] , and show that ϕi is
compatible with the orientations if and only if i is even. Answer : We want to choose a
vector w in

Vλn rϕλi (Vλn−1)
such that the matrix of the linear map

R⊕ Vλn−1 −→ Vλn

given by (t, v) 7→ tw + ϕλi (v) for t ∈ R and v ∈ Vλn−1 has positive determinant (where
we must use the preferred ordered bases). Suppose first i > 0 . If we try w = ±(ei−ei−1)
then the matrix is[

±ci c1 c2 . . . ci−1 ci + ci+1 ci+2 . . . cn
]

where ck denotes a column vector of length n having an entry 1 in position k , all other
entries 0 . The determinant is positive if we choose the sign ± to be (−1)i−1 . So a correct
solution is

w = (−1)i−1(ei − ei−1) = (−1)i(ei−1 − ei) .
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If i is even, this selects the connected component of Vn r ϕi(Vn−1) which has empty
intersection with ∆n . If i is odd, it selects the other component. Very good. Now
suppose i = 0 . (This is an even integer.) Then we try w = e1 − e0 . The matrix is an
n× n identity matrix. It has positive determinant. So w = e1 − e0 is a correct solution
in this case. This selects the connected component of Vn r ϕi(Vn−1) which has empty
intersection with ∆n . Very good. �

This long essay on orientations had the modest purpose of explaining why we define the
differential in the singular chain complex of a topological space X by

d(σ) =

n∑
i=0

(−1)iσ ◦ϕi

where σ : ∆n → Y is a continuous map (also known as singular n-simplex in Y ).

Now back to chain complexes and chain homotopies. There is no need to repeat the
definitions here. I wanted to make one remark about chain homotopies. (This should help
when it comes to calculating sets of chain homotopy classes of chain maps.) Let C and
D be chain complexes and let f : C→ D be a chain map. Suppose that hn : Cn → Dn+1
are some homomorphisms (for n ∈ Z). Define

gn := dn+1hn + hn−1dn + fn : Cn → Dn .

Then g = (gn)n∈Z is again a chain map from C to D . Proof:

dg− gd = d(dh+ hd+ f) − (dh+ hd+ f)d = dhd+ df− dhd− fd = df− fd = 0.

And it is clear from the definition that h is now a chain homotopy from f to g since we
have dh+hd = g− f . In other words: any sequence of homomorphisms hn : Cn → Dn+1
qualifies as a chain homotopy from f : C→ D to some other chain map.

There are ways to make the concept of chain homotopy look analogous to the concept
of homotopy between continuous maps. Remember that the combinatorial chain complex
C(∆1) of the semi-simplicial set ∆1 looks like this:

· · · 0oo Z⊕ Zoo Z
1 7→(−1,1)oo 0oo · · ·oo

(where Z ⊕ Z sits in degree 0). Let us view C(∆1) as an algebraic analogue of the unit
interval [0, 1] . Then we need an algebraic analogue of product (of topological spaces).
Although the product of two chain complexes, also known as direct sum of two chain
complexes, is an accepted concept with the obvious meaning, it is not a good analogue
of the product of topological spaces. (Instead it is a good analogue of the disjoint union
of topological spaces.) The correct analogue of the product of two spaces is the tensor
product of two chain complexes. I do not want to define this in general, but here is a
definition of the chain complex

T = E⊗ C(∆1)
for an arbitrary chain complex E . We take Tn := En ⊕ En−1 ⊕ En . The differential
dT : Tn → Tn−1 is therefore best described as a 3× 3 matrix and as such it is

dT =

dE −id 0

0 −dE 0

0 id dE

 .
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It is a differential becausedE −id 0

0 −dE 0

0 id dE

dE −id 0

0 −dE 0

0 id dE

 =

dEdE dE − dE 0

0 dEdE 0

0 dE − dE dEdE

 =

0 0 0
0 0 0
0 0 0

 .
There are two rather obvious chain maps fu : E → T and gu : E → T . These are given
by the inclusion of En as the first summand of Tn = En ⊕ En−1 ⊕ En and as the third
summand, respectively (for all n). There is also chain homotopy hu from fu to gu . This
is given by the inclusion of En as the second summand of Tn+1 = En+1 ⊕ En ⊕ En+1 , for
all n . Here is the computation to show that it is a homotopy from fu to gu :

dThu(x) = (−x,−dE(x), x), hud(x) = (0, dE(x), 0)

so that (dhu + hud)(x) = (−x, 0, x) = gu(x) − fu(x) . I chose the “u” superscript to
indicate something like universal. Indeed it looks as if hu is the mother of all chain
homotopies (between chain maps from E to another chain complex). We can make this
precise as follows. Chain maps Φ : T → E ′ (for some other chain complex E ′ ) correspond
to triples (f, g, h) where f, g : E→ E ′ are chain maps and h is a homotopy from f to g .
The correspondence is given by f := Φ ◦ fu , g = Φ ◦ gu and h = Φ ◦ hu . (Here T is

still an abbreviation for C(∆1)⊗E , so it depends very much on E . Note that it is easy to
recover Φ : T → E ′ if f , g and h are given.)
(I said I did not define the tensor product E⊗ F of two arbitrary chain complexes E and
F , but perhaps it does not do any harm to reveal that (E ⊗ F)n is the direct sum of the
Ep ⊗ Fq where p+ q = n .)

New topic: subdivision. In the important and difficult chapter 6, we used a few formulas
involving subdvision of simplices. I want to point out that these are inspired by construc-
tions on semi-simplicial sets. If I had to do this in full generality, then I would define,
for every semi-simplicial set X , another semi-simplicial set X ′ which could be called the
barycentric subdivision of X ; and for any two semi-simplicial sets X and Y , another semi-
simplicial set X � Y which (under mild conditions) satisfies |X � Y| ∼= |X| × |Y| . But let’s
not do it in full generality; instead let’s assume that X and Y are of the form X = ∆m ,
Y = ∆m .
Therefore remember that X = ∆m is the semi-simplicial set which has Xq = mor∆([q], [m]) ,
where mor∆([q], [m]) is the set of order-preserving injective maps from [q] to [m] . The
map Xq → Xp induced by an injective monotone f : [p]→ [q] is given by pre-composition
with f .
For a set S , let P∗(S) be the set of all nonempty subsets of S . This is (partially) ordered
by inclusion; so for nonempty subsets T, T ′ of S we agree to write T ≤ T ′ if and only if
T ⊂ T ′ . We define

X ′q = set of order preserving injective maps from [q] to P∗([m]) .

(Example: if q > m then X ′q = ∅ and if q = m then X ′q has exactly (m+ 1)! elements.)
An order preserving map f from [p] to [q] induces a map X ′q → X ′p by (pre-)composition
with f . In this way, X ′ is a semi-simplicial set. There is a “good” homeomorphism

Φ : |X ′| −→ ∆m
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defined as follows. For g : [q] → P∗([m]) , an element of X ′q , we have the characteristic
map cg : ∆

q → |X ′| and we want

Φ(cg(x0, x1, . . . , xq)) :=

q∑
i=0

xi · bg(i)

where bg(i) is the barycenter of the face of ∆m spanned by the vertices ej where j ∈ g(i) .
(More directly: bg(i) is the average of the ej for j ∈ g(i) . Remember that g(i) is a
nonempty subset of [m] = {0, 1, . . . ,m} .) These conditions are enough to determine Φ as
a continuous map. It is also easy to show that they are consistent, i.e., that Φ with these
properties exists. But it is not quite so easy to show that Φ is a homeomorphism. (I omit
this.)

Next, let X = ∆m and Y = ∆n . We make a new semi-simplicial set Z = X� Y by

Zq = set of order-preserving injective maps from [q] to [m]× [n] .

(Here [m]× [n] has the product ordering; therefore an order-preserving map from [q] to
[m] × [n] is as good as two order-preserving maps [q] → [m] and [q] → [n] . But the
injectivity condition comes on top of that. Example: if m = n = 1 then Z2 has two
elements and Z1 has five elements.) An order preserving map f : [p]→ [q] induces a map
Zq → Zp by (pre-)composition with f . In this way, Z = X � Y is a semi-simplicial set.
There is a “good” homeomorphism

Ψ : |Z| −→ ∆m × ∆n

defined as follows. For g = (g1, g2) : [q] → [m] × [n] , an element of Zq , we have the
characteristic map cg : ∆

q → |Z| and we want

Ψ(cg(x0, x1, . . . , xq)) := ((x ′0, x
′
1, . . . , x

′
m), (x ′′0 , x

′′
1 , . . . , x

′′
n)) ∈ ∆m × ∆n

where x ′i is the sum of the xj such that g1(j) = i , and x ′′i is the sum of the xj such that
g2(j) = i . These conditions are enough to determine Ψ as a continuous map. It is also
easy to show that they are consistent, i.e., that Ψ with these properties exists. But it is
not quite so easy to show that Ψ is a homeomorphism. (Again I omit this.)

Question/exercise: I described Φ and Ψ as good homeomorphisms; is there a better word
for this?

Finally, let’s review how the singular chain complex of a space was introduced. We took
the view that semi-simplicial sets are half-way between spaces and chain complexes. More
precisely, we have two functors:

Top = category of topological spaces

category of semi-simplicial sets

geometric realization

OO

combinatorial chain complex

��
category of chain complexes

One of these (the geometric realization) seems to go in the wrong direction for our purposes.
It does not have an inverse, but it has a right adjoint, which is nearly as good. (Section 4.5
has some information on adjoint functors, including a definition of the concept.) The right
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adjoint is the functor “sing” from Top to the category of semi-simplicial sets. For a space
X , the semi-simplicial set sing(X) has

sing(X)n = set of continuous maps from ∆n to X .

The map sing(X)n → sing(X)m induced by a monotone injective f : [m] → [n] is given
by pre-composition with f∗ : ∆

m → ∆n . Therefore we obtain a functor from Top to the
category of chain complexes by composing sing with the combinatorial chain complex
functor:

X 7→ C(sing(X)) := sC(X)

for topological spaces X . (This can be made more explicit ... but there is no need to write
it out here.) We then defined Hj(X) := Hj(sC(X)) and proved a number of difficult and
important theorems about these groups.
This point of view emphasizes the following. For a semi-simplicial set Y there is a so-called
unit morphism Y → sing(|Y|) . It is the morphism which corresponds to id : |Y|→ |Y| under
the adjunction

mor(Y, sing(|Y|)↔ mor(|Y|, |Y|)

(since |...| is left adjoint to sing). The unit morphism induces a chain map

C(Y)→ C(sing(|Y|)) = sC(|Y|)

which has many uses. (In particular we proved that it induces an isomorphism in the
homology groups; if Y is not too complicated, this can be viewed as a way to calculate
the homology groups Hj(|Y|) for all j .)
The two important theorems that we proved about sC(X) were homotopy invariance and
the theorem about small simplices. The first of these has many equivalent formulations,
but one of them states that the two standard inclusions X→ X× [0, 1] given by x 7→ (x, 0)
and x 7→ (x, 1) induce chain homotopic chain maps

sC(X) −→ sC(X× [0, 1]).

There is no need to repeat all of that, but I want to explain how we can “guess” a chain
homotopy h for this. Given a continuous map σ : ∆m → X (which we view as a special
element of sC(X)m ), we get a commutative diagram

C(∆m)

��

// C(∆m � ∆1)

��

C(∆m)oo

��

sC(X) // sC(X× [0, 1]) sC(X)oo

Here the left-hand and right-hand vertical arrows are both the chain map obtained by
composing

C(∆m)
induced by unit map−−−−−−−−−−−−−→ sC(|∆m|) ∼= sC(∆m)

induced by σ−−−−−−−−→ sC(X)

and the middle vertical arrow is defined similarly, using |∆m � ∆1| ∼= ∆m × ∆1 . The
lower horizontal arrows are induced by x 7→ (x, 0) and x 7→ (x, 1) , respectively. The
upper horizontal arrows are defined by analogy with the lower ones, so that the diagram
commutes. And we use ∆1 ∼= [0, 1] . Now we define h(σ) ∈ sC(X × [0, 1])m+1 in such a
way that it is the image (under the middle vertical arrow) of a carefully chosen element in

C(∆m�∆1)m+1 (which depends only on m , not on σ). The point is that C(∆m�∆1)m+1
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is not huge. It is a free abelian group of rank m + 1 . Our choice is limited. This is an
advantage. Another advantage is that, if we construct h in this way, it will be a natural
chain homotopy.
In connection with “small simplices” we can do something similar. A continuous map
σ : ∆n → X determines a chain map C(∆n) → sC(X) as before. We want to define the
chain map β : sC(X)→ sC(X) (barycentric subdivision) in such a way that

C(∆n)

induced by σ

��

// C((∆n) ′)

induced by σ

��
sC(X)

β // sC(X)

commutes, where the upper horizontal arrow is a chain map to be defined. In particular
β(σ) is then the image of a carefully chosen element in C((∆n) ′)n under the right-hand
vertical arrow. (The right-hand vertical arrow uses the homeomorphism |(∆n) ′| ∼= ∆n

sketched above.) Again, because the chain complexes in the upper row are not huge, this
looks like a manageable task. (But a solution must be found which has good naturality
properties.)
Once β : sC(X)→ sC(X) is defined, it should be possible to carry on in the same manner
to show that β is homotopic to the identity. But I must admit that I found this too
tedious. So I gave a less explicit, more abstract argument for that, using the Eilenberg-
Zilber method of acyclic models.

The theorem on barycentric subdivision leads easily to the theorem on small simplices.
The most important special case for us is the following. Suppose that the topological
space X is the union of subsets V and W , where int(V) ∪ int(W) = X . Then we are
told that the inclusion sC(V) + sC(W) → sC(X) is a chain homotopy equivalence. Very
important : the sum sC(V) + sC(W) is an internal sum (not a direct sum) taken inside
sC(X) . In other words sC(V)n+sC(W)n = (sC(V)+sC(W))n is the subgroup of sC(X)n
consisting of all elements c which can somehow be written in the form c = a + b where
a belongs to sC(V)n ⊂ sC(X)n and b belongs to sC(W)n ⊂ sC(X)n . This manner of
writing c = a+b is typically not unique, and this absence of uniqueness, or the distinction
between sC(V) + sC(W) and sC(V)⊕ sC(W) , is the key to the Mayer-Vietoris sequence.
Namely, there is a short exact sequence of chain complexes and chain maps

sC(V ∩W) −→ sC(V)⊕ sC(W) −→ sC(V) + sC(W).

This leads to a long exact sequence relating the homology groups of the three chain com-
plexes. (Use corollary 5.3.3, taking E to be sC(V)+sC(W) , chain subcomplex of sC(X) .)
If if we use the chain homotopy equivalence sC(V) + sC(W)→ sC(X) , then we can write
this as a long exact sequence relating the homology groups of V,W,V∩W and X = V∪W .

Last not least, I tried to illustrate the Mayer-Vietoris sequence by using it to calculate
the homology groups of X , a surface of genus 2 (surface of a pretzel). The pictures below
show X and two open subsets V and W of X such that V ∪W = X . They also show
V ∩W .
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It is not very difficult to determine the homology groups of V and W , and of V ∩W . We
get H1(V) ∼= Z2 ∼= H1(W) and H1(V ∩W) ∼= Z3 . (Here Z3 means the same as Z×Z×Z
or as Z ⊕ Z ⊕ Z ; do not misread as Z/3 .) For q > 1 , the groups Hq(V) , Hq(W) and
Hq(V ∩W) are all zero. The interesting part of the MV sequence is therefore

H2(X) // H1(V ∩W) // H1(V)⊕H1(W) // H1(X) // H0(V ∩W) // H0(V)⊕H0(W)

(the arrow on the left, out of H2(X) , must be injective because of the exactness). It
is a little more difficult to determine the homomorphisms in homology induced by the
inclusions V ∩W → V and V ∩W →W . Here one has to improvise. My suggestion is the
following: we note that V is homotopy equivalent to |Z| where Z is the semi-simplicial
set which has Zn = ∅ for n > 2 , Z2 = {u} (one element), Z1 = {f∗0u, f

∗
1u, f

∗
2u} (three

elements) and Z0 = {v} (one element). The geometric realization |Z| looks like this:

We can use the combinatorial chain complex C(Z) (and theorem 8.3.1) to calculate the
homology of |Z| . Again we get H1(|Z|) ∼= Z2 ; more precisely C(Z) looks like

· · · 0oo Zoooo Z30oo Zvoo 0oo · · ·oo
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where v is given by 1 7→ (1,−1, 1) . Therefore H1(|Z|) is the free abelian group on
generators f∗0u and f∗2u (these are the “inside” boundary curves in the picture), but
now we also see that f∗1u (the outside boundary curve) is in the same homology class as
f∗0u+ f∗2u . Good! This means that the homomorphism

Z3 ∼= H1(V ∩W) −→ H1(V) ∼= Z2

induced by the inclusion is given by (a, b, c) 7→ (a+c, b+c) . (This is on the understanding
that the three Z summands in Z3 correspond to H1 of the left-hand inner annulus, right-
hand inner annulus and large outside annulus in the picture of V∩W , in this order.) Then
it is easy to finish the calculation. We find that

H2(X) ∼= Z
and we find a short exact sequence

Z2 −→ H1(X) −→ Z2

(where the Z2 on the left is the cokernel of H1(V ∩W) −→ H1(V)⊕H1(W) and the Z2
on the right is the kernel of H0(V∩W) −→ H0(V)⊕H0(W) , both from the MV sequence).
The short exact sequence implies somewhat automatically that

H1(X) ∼= Z4

(because a surjective homomorphism p from an abelian group, here H1(X) , to a free
abelian group, here Z2 , always admits a right inverse homomorphism q , meaning that
p◦q = id). Exactness of the MV sequence also implies that Hq(X) = 0 for q > 2 . Finally
H0(X) ∼= Z is clear because X is path connected.


