10. Übungsblatt Topologie WS 2017/18 (Weiss)

1. a) Man stelle sich vor: Kettenkomplexe B und C und eine Kettenabbildung f: $B \to C$. Ausserdem sei für jedes n ein Homomorphismus

$$h_n \colon B_n \longrightarrow C_{n+1}$$

gegeben. Dann soll $g_n \colon B_n \to C_n$ definiert werden durch

$$g_n := d^C h_n + h_{n-1} d^B + f_n$$

(wobei d^B und d^C die Differentiale in B, C bezeichnen). Man zeige, dass die g_n zusammengenommen eine Kettenabbildung $g\colon B\to C$ bilden und dass g kettenhomotop ist zu f.

- b) Sei B ein Kettenkomplex von freien abelschen Gruppen und C irgendein Kettenkomplex mit $H_n(C)=\emptyset$ für alle n. Zeigen Sie, dass jede Kettenabbildung von B nach C kettenhomotop zur Null-Abbildung ist. ¹
- c) Beispiel geben für einen Kettenkomplex C, der $H_n(C) = 0$ erfüllt für alle $n \in \mathbb{Z}$, aber nicht zusammenziehbar ist (d.h. die Identität $C \to C$ ist nicht kettenhomotop zur 0-Abbildung).
- 2. Lemma 7.5.1 (aus Vorlesungsnotizen) beweisen.
- **3.** a) Homologiegruppen von $S^1 \times S^1$ mit Hilfe der Mayer-Vietoris-Folge (Thm 7.1.3) ausrechnen. (Dazu sollte eine Überdeckung von $S^1 \times S^1$ mit zwei offenen Teilmengen V und W gewählt werden. Es wäre natürlich gut, wenn Sie schon wüssten, wie $H_m(V)$, $H_m(W)$ und $H_m(V \cap W)$ aussehen für beliebige m.)
 - b) Homologiegruppen von $\mathbb{R}\mathsf{P}^2$ mit Hilfe der Mayer-Vietoris-Folge ausrechnen.

Zur Abgabe: alle Aufgaben (bis 8:15 am Do 21.12. in den dafür vorgesehenen Briefkästen). Punkte dafür: 2+4+2, 3, 6+3.

 $^{^1\}mathrm{Es}$ ist als Anwendung von Aufgabenteil a) gedacht. Die Aussagen von Blatt 6 Aufgabe2können ohne Beweis benutzt werden.

 $^{^2\}mathbb{R}P^2$ ist der Quotientenraum, der aus S^2 entsteht, wenn man gegenüberliegende Punkte von S^2 miteinander identifiziert. Also $\mathbb{R}P^2=S^2/\sim$ wobei \sim die Äquivalenzrelation auf S^2 bezeichnet, bei der $x\sim y$ genau dann wenn $x=\pm y$. Sei $q\colon S^2\to\mathbb{R}P^2$ die Projektion (die jedes $x\in S^2$ auf seine Äquivalenzklasse $\{x,-x\}$ abbildet). Eine offene Teilmenge V von $\mathbb{R}P^2$ bestimmt eine offene Teilmenge $V'=q^{-1}(V)$ von S^2 , die folgende Eigenschaft hat: $x\in V'$ genau dann, wenn $-x\in V'$. Auf diese Weise entsprechen die offenen Teilmengen V von $\mathbb{R}P^2$ genau den offenen Teilmengen V' von S^2 mit der Eigenschaft $(x\in V')\Leftrightarrow (-x\in V')$.