## Lecture Notes, week 9 Topology WS 2013/14 (Weiss)

### 7.3. Homology of spheres

Proposition 7.7. The homology groups of $S^{1}$ are $\mathrm{H}_{0}\left(\mathrm{~S}^{1}\right) \cong \mathbb{Z}, \mathrm{H}_{1}\left(\mathrm{~S}^{1}\right) \cong \mathbb{Z}$ and $\mathrm{H}_{\mathrm{k}}\left(\mathrm{S}^{1}\right)=0$ for all $\mathrm{k} \neq 0,1$.

Proof. Choose two distinct points $p$ and $q$ in $S^{1}$. Let $V \subset S^{1}$ be the complement of $p$ and let $W \subset S^{1}$ be the complement of $q$. Then $V \cup W=S^{1}$. Clearly V is homotopy equivalent to a point, W is homotopy equivalent to a point and $\mathrm{V} \cap \mathrm{W}$ is homotopy equivalent to a discrete space with two points. Therefore $H_{k}(V) \cong H_{k}(W) \cong \mathbb{Z}$ for $k=0$ and $H_{k}(V) \cong H_{k}(W)=0$ for all $k \neq 0$. Similarly $H_{k}(V \cap W) \cong \mathbb{Z} \oplus \mathbb{Z}$ for $k=0$ and $H_{k}(V \cap W)=0$ for all $k \neq 0$. The exactness of the Mayer-Vietoris sequence associated with the open covering of $S^{1}$ by $V$ and $W$ implies immediately that $H_{k}\left(S^{1}\right)=0$ for $k \neq 0,1$. The part of the Mayer-Vietoris sequence which remains interesting after this observation is

$$
0 \longrightarrow \mathrm{H}_{1}\left(\mathrm{~S}^{1}\right) \xrightarrow{\partial} \mathbb{Z} \oplus \mathbb{Z} \longrightarrow \mathbb{Z} \oplus \mathbb{Z} \longrightarrow \mathrm{H}_{0}\left(\mathrm{~S}^{1}\right) \longrightarrow 0
$$

Since $S^{1}$ is path-connected, the group $H_{0}\left(S^{1}\right)$ is isomorphic to $\mathbb{Z}$. The homomorphism from $\mathbb{Z} \oplus \mathbb{Z}$ to $\mathrm{H}_{0}\left(\mathrm{~S}^{1}\right)$ is onto by exactness, so its kernel is isomorphic to $\mathbb{Z}$. Hence the image of the homomorphism $\mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z}$ is isomorphic to $\mathbb{Z}$, so its kernel is again isomorphic to $\mathbb{Z}$. Now exactness at $H_{1}\left(S^{1}\right)$ leads to the conclusion that $H_{1}\left(S^{1}\right) \cong \mathbb{Z}$.

Theorem 7.8. The homology groups of $\mathrm{S}^{\mathfrak{n}}($ for $\mathrm{n}>0)$ are

$$
H_{k}\left(S^{n}\right) \cong\left\{\begin{array}{cc}
\mathbb{Z} & \text { if } k=n \\
\mathbb{Z} & \text { if } k=0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Proof. We proceed by induction on $\mathfrak{n}$. The induction beginning is the case $\mathrm{n}=1$ which we have already dealt with separately in proposition 7.7 . For the induction step, suppose that $\mathfrak{n}>1$. We use the Mayer-Vietoris sequence for $S^{n}$ and the open covering $\{V, W\}$ with $V=S^{n} \backslash\{p\}$ and $W=S^{n} \backslash\{q\}$ where $\mathrm{p}, \mathrm{q} \in \mathrm{S}^{n}$ are the north and south pole, respectively. We will also use the homotopy invariance of homology. This gives us

$$
H_{k}(V) \cong H_{k}(W) \cong\left\{\begin{array}{cc}
\mathbb{Z} & \text { if } k=0 \\
0 & \text { otherwise }
\end{array}\right.
$$

because V and W are homotopy equivalent to a point. Also we get

$$
H_{k}(V \cap W) \cong\left\{\begin{array}{cc}
\mathbb{Z} & \text { if } k=n-1 \\
\mathbb{Z} & \text { if } k=0 \\
0 & \text { otherwise }
\end{array}\right.
$$

by the induction hypothesis, since $\mathrm{V} \cap \mathrm{W}$ is homotopy equivalent to $\mathrm{S}^{\mathrm{n-1}}$. Furthermore it is clear what the inclusion maps $\mathrm{V} \cap \mathrm{W} \rightarrow \mathrm{V}$ and $\mathrm{V} \cap \mathrm{W} \rightarrow \mathrm{W}$ induce in homology: an isomorphism in $\mathrm{H}_{0}$ and (necessarily) the zero map in $H_{k}$ for all $k \neq 0$. Thus the homomorphism

$$
\mathrm{H}_{\mathrm{k}}(\mathrm{~V} \cap \mathrm{~W}) \longrightarrow \mathrm{H}_{\mathrm{k}}(\mathrm{~V}) \oplus \mathrm{H}_{\mathrm{k}}(\mathrm{~W})
$$

from the Mayer-Vietoris sequence takes the form

$$
\mathbb{Z} \longrightarrow \mathbb{Z} \oplus \mathbb{Z}
$$

when $k=0$, and

$$
\mathbb{Z} \longrightarrow 0
$$

when $k=n-1$. In all other cases, its source and target are both zero. Therefore the exactness of the Mayer-Vietoris sequence implies that $H_{0}\left(S^{n}\right)$ and $H_{n}\left(S^{n}\right)$ are isomorphic to $\mathbb{Z}$, while $H_{k}\left(S^{n}\right)=0$ for all other $k \in \mathbb{Z}$.

Theorem 7.9. Let $\mathrm{f}: \mathrm{S}^{n} \rightarrow \mathrm{~S}^{n}$ be the antipodal map. The induced homomorphism $\mathrm{f}_{*}: \mathrm{H}_{\mathrm{n}}\left(\mathrm{S}^{\mathrm{n}}\right) \rightarrow \mathrm{H}_{\mathrm{n}}\left(\mathrm{S}^{\mathrm{n}}\right)$ is multiplication by $(-1)^{\mathrm{n}+1}$.

Proof. We proceed by induction again. For the induction beginning, we take $\mathrm{n}=1$. The antipodal map $\mathrm{f}: \mathrm{S}^{1} \rightarrow S^{1}$ is homotopic to the identity, so that $f^{*}: H_{1}\left(S^{1}\right) \rightarrow H_{1}\left(S^{1}\right)$ has to be the identity, too. For the induction step, we use the setup and notation from the previous proof. Exactness of the Mayer-Vietoris sequence for $S^{n}$ and the open covering $\{\mathrm{V}, \mathrm{W}\}$ shows that

$$
\partial: \mathrm{H}_{\mathrm{n}}\left(\mathrm{~S}^{n}\right) \longrightarrow \mathrm{H}_{\mathrm{n}-1}(\mathrm{~V} \cap \mathrm{~W})
$$

is an isomorphism. The diagram

is meaningful because $f$ takes $V \cap W$ to $V \cap W=W \cap V$. But the diagram is not commutative (i.e., it is not true that $f_{*} \circ \partial$ equals $\partial \circ f_{*}$ ). The reason is that f interchanges V and W , and it does matter in the Mayer-Vietoris sequence which of the two comes first. Therefore we have instead

$$
f_{*} \circ \partial=-\partial \circ f_{*}
$$

in the above square. By the inductive hypothesis, the $f_{*}$ in the left-hand column of the square is multiplication by $(-1)^{n}$, and therefore the $f^{*}$ in the right-hand column of the square must be multiplication by $(-1)^{\mathrm{n}+1}$.

### 7.4. The usual applications

Theorem 7.10. (Brouwer's fixed point theorem). Let $\mathrm{f}: \mathrm{D}^{n} \rightarrow \mathrm{D}^{n}$ be a continuous map, where $\mathrm{n} \geq 1$. Then f has a fixed point, i.e., there exists $\mathrm{y} \in \mathrm{D}^{\mathrm{n}}$ such that $\mathrm{f}(\mathrm{y})=\mathrm{y}$.
Proof. Suppose for a contradiction that f does not have a fixed point. For $x \in D^{n}$, let $g(x)$ be the point where the ray (half-line) from $f(x)$ to $x$ intersects the boundary $S^{n-1}$ of the disk $D^{n}$. Then $g$ is a smooth map from $\mathrm{D}^{n}$ to $S^{n-1}$, and we have $g \mid S^{n-1}=\mathrm{id}_{S^{n-1}}$. Summarizing, we have

$$
S^{n-1} \xrightarrow{j} D^{n} \xrightarrow{g} S^{n-1}
$$

where $\mathfrak{j}$ is the inclusion, $g \circ \mathfrak{j}=\mathrm{id}_{\mathrm{S}^{n-1}}$. Therefore we get

$$
H_{n-1}\left(S^{n-1}\right) \xrightarrow{j_{*}} H_{n-1}\left(D^{n}\right) \xrightarrow{g_{*}} H_{n-1}\left(S^{n-1}\right)
$$

where $g_{*} j_{*}=i d$. Thus the abelian group $\mathrm{H}_{n-1}\left(\mathrm{~S}^{n-1}\right)$ is isomorphic to a direct summand of $H_{n-1}\left(D^{n}\right)$. But from our calculations above, we know that this is not true. If $n>1$ we have $H_{n-1}\left(D^{n}\right)=0$ while $H_{n-1}\left(S^{n-1}\right)$ is not trivial. If $n=1$ we have $H_{n-1}\left(D^{n}\right) \cong \mathbb{Z}$ while $H_{n-1}\left(S^{n-1}\right) \cong \mathbb{Z} \oplus \mathbb{Z}$.

Let $f: S^{n} \rightarrow S^{n}$ be any continuous map, $n>0$. The induced homomorphism $f_{*}: H_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}\right)$ is multiplication by some number $n_{f} \in \mathbb{Z}$, since $\mathrm{H}_{n}\left(\mathrm{~S}^{\mathfrak{n}}\right)$ is isomorphic to $\mathbb{Z}$.

Definition 7.11. The number $n_{f}$ is the degree of $f$.
Remark. The degree $n_{f}$ of $f: S^{n} \rightarrow S^{n}$ is clearly an invariant of the homotopy class of f .

Remark. In the case $n=1$, the definition of degree as given just above agrees with the definition of degree given in section 1 . See exercises.

Example 7.12. According to theorem 7.9, the degree of the antipodal map $S^{n} \rightarrow S^{n}$ is $(-1)^{n+1}$.

Proposition 7.13. Let $\mathrm{f}: \mathrm{S}^{\mathrm{n}} \rightarrow \mathrm{S}^{\mathrm{n}}$ be a continuous map. If $\mathrm{f}(\mathrm{x}) \neq \mathrm{x}$ for all $\mathrm{x} \in \mathrm{S}^{\mathrm{n}}$, then f is homotopic to the antipodal map, and so has degree $(-1)^{\mathrm{n}+1}$. If $\mathrm{f}(\mathrm{x}) \neq-\mathrm{x}$ for all $\mathrm{x} \in \mathrm{S}^{\mathrm{n}}$, then f is homotopic to the identity map, and so has degree 1.
Proof. Let $\mathrm{g}: \mathrm{S}^{\mathrm{n}} \rightarrow \mathrm{S}^{\mathrm{n}}$ be the antipodal map, $\mathrm{g}(\mathrm{x})=-\mathrm{x}$ for all x . Assuming that $f(x) \neq x$ for all $x$, we show that $f$ is homotopic to $g$. We think of $S^{n}$ as the unit sphere in $\mathbb{R}^{n+1}$, with the usual notion of distance. We can make
a homotopy $\left(h_{t}: S^{n} \rightarrow S^{n}\right)_{t \in[0,1]}$ from $f$ to $g$ by "sliding" along the unique minimal geodesic arc from $f(x)$ to $g(x)$, for every $x \in S^{n}$. In other words, $h_{t}(x) \in S^{n}$ is situated $t \cdot 100$ percent of the way from $f(x)$ to $g(x)$ along the minimal geodesic arc from $f(x)$ to $g(x)$. (The important thing here is that $f(x)$ and $g(x)$ are not antipodes of each other, by our assumptions. Therefore that minimal geodesic arc is unique.)
Next, assume $f(x) \neq-x$ for all $x \in S^{n}$. Then, for every $x$, there is a unique minimal geodesic from $x$ to $f(x)$, and we can use that to make a homotopy from the identity map to $f$.

Corollary 7.14. (Hairy ball theorem). Let $\xi$ be a tangent vector field (explanations follow) on $\mathrm{S}^{n}$. If $\xi(z) \neq 0$ for every $z \in \mathrm{~S}^{n}$, then n is odd.

Comments. A tangent vector field on $S^{n} \subset \mathbb{R}^{n+1}$ can be defined as a continuous map $\xi$ from $S^{n}$ to the vector space $\mathbb{R}^{n+1}$ such that $\xi(x)$ is perpendicular to (the position vector of) $x$, for every $x \in S^{n}$. We say that vectors in $\mathbb{R}^{n+1}$ which are perpendicular to $x \in S^{n}$ are tangent to $S^{n}$ at $x$ because they are the velocity vectors of smooth curves in $S^{n} \subset \mathbb{R}^{n}$ as the pass through $x$.

Proof. Define $f: S^{n} \rightarrow S^{n}$ by $f(x)=\xi(x) /\|\xi(x)\|$. Then $f(x) \neq x$ and $f(x) \neq-x$ for all $x \in S^{n}$, since $f(x)$ is always perpendicular to $x$. Therefore f is homotopic to the antipodal map, and also homotopic to the identity. It follows that the antipodal map is homotopic to the identity. Therefore $\mathfrak{n}$ is odd by theorem 7.9.

Remark 7.15. Theorem 7.9 has an easy generalization which says that the degree of the map $f: S^{n} \rightarrow S^{n}$ given by

$$
\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \mapsto\left(x_{1}, \ldots, x_{k},-x_{k+1}, \ldots,-x_{n+1}\right)
$$

is $(-1)^{n+1-k}$. Here we assume $n \geq 1$ as usual. The proof can be given by induction on $\mathfrak{n}+1-k$. The induction step is now routine, but the induction beginning must cover all cases where $n=1$. This leaves the three possibilities $k=0,1,2$. One of these gives the identity map $S^{1} \rightarrow S^{1}$, and another gives the antipodal map $S^{1} \rightarrow S^{1}$ which is homotopic to the identity. The interesting case which remains is the map $f: S^{1} \rightarrow S^{1}$ given by $f\left(x_{1}, x_{2}\right)=\left(x_{1},-x_{2}\right)$. We need to show that it has degree -1 , in the sense of definition 7.11 . One way to do this is to use the following diagram

where $\mathrm{V}=\mathrm{S}^{1} \backslash\{(0,1)\}$ and $\mathrm{W}=\mathrm{S}^{1} \backslash\{(0,-1)\}$. We know from the previous chapter that it commutes up to a factor $(-1)$. In the lower row, we have the identity homomorphism $\mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z}$. The vertical arrows are injective (seen earlier in the proof of proposition 7.7). Therefore the upper horizontal arrow is multiplication by -1 .
To state this result in a more satisfying manner, let us note that the orthogonal group $O(n+1)$ (the group of orthogonal $(n+1) \times(n+1)$-matrices with real entries) is a topological group which has two path components. The two path components are the preimages of +1 and -1 under the homomorphism

$$
\operatorname{det}: O(n+1) \rightarrow\{-1,+1\}
$$

Let $f: S^{n} \rightarrow S^{n}$ be given by $f(z)=A z$ for some $A \in O(n+1)$. Because $\operatorname{deg}(f)$ depends only on the homotopy class of $f$, it follows that $\operatorname{deg}(f)$ depends only on the path component of $A$ in $O(n+1)$, and hence only on $\operatorname{det}(\boldsymbol{A})$. What we have just shown means that $\operatorname{deg}(\mathbf{f})$ is equal to $\operatorname{det}(\boldsymbol{A})$.

