Lecture Notes, week 8 Topology WS 2013/14 (Weiss)

7.1. The homotopy decomposition theorem

Notation for the following theorem and the corollary: X and Y are topological spaces, V and W are open subsets of Y such that $\mathrm{V} \cup \mathrm{W}=\mathrm{Y}$, and C is a closed subset of X . We assume that X is paracompact.

Theorem 7.1. Let $\gamma: \mathrm{X} \times[0,1] \rightarrow \mathrm{Y}$ be a mapping cycle which restricts to zero on an open neighborhood of $\mathrm{X} \times\{0\}$. Then there exists a decomposition

$$
\gamma=\gamma^{v}+\gamma^{w}
$$

where $\gamma^{\mathrm{V}}: \mathrm{X} \times[0,1] \rightarrow \mathrm{V}$ and $\gamma^{\mathrm{W}}: \mathrm{X} \times[0,1] \rightarrow \mathrm{W}$ are mapping cycles, both zero on an open neighborhood of $\mathrm{X} \times\{0\}$. If γ is zero on some neighborhood of $C \times[0,1]$, then it can be arranged that γ_{V} and γ_{W} are zero on a neighborhood of $C \times[0,1]$.

The proof of this is hard. We postpone it.
Corollary 7.2. Let $\mathrm{a} \in[[\mathrm{X}, \mathrm{V}]]$ and $\mathrm{b} \in[[\mathrm{X}, \mathrm{W}]]$ be such that the images of a and b in $[[\mathrm{X}, \mathrm{Y}]]$ agree. Then there exists $\mathrm{c} \in[[\mathrm{X}, \mathrm{V} \cap \mathrm{W}]]$ whose image in $[[\mathrm{X}, \mathrm{V}]]$ is a and whose image in $[[\mathrm{X}, \mathrm{W}]]$ is b .

Proof. Let α be a mapping cycle which represents a and let β be a mapping cycle which represents b . Choose a mapping cycle $\gamma: \mathrm{X} \times[0,1] \rightarrow \mathrm{Y}$ which is a homotopy from 0 to $\beta-\alpha$. It is easy to arrange this in such a way that γ is zero on a neighborhood of $X \times\{0\}$. Use the theorem to obtain a decomposition $\gamma=\gamma^{V}+\gamma^{W}$. Let γ_{1}^{V} and γ_{1}^{W} be the restrictions of γ^{V} and γ^{W} to $X \times\{\mathbf{1}\}$. Then α and $\alpha+\gamma_{1}^{V}$ are homotopic as mapping cycles $\mathrm{X} \rightarrow \mathrm{V}$, by the homotopy $\alpha \circ p+\gamma^{\vee}$, where p is the projection $\mathrm{X} \times[0,1] \rightarrow \mathrm{X}$. Similarly $\beta=\alpha+\gamma_{1}^{\vee}+\gamma_{1}^{\bigvee}$ and $\alpha+\gamma_{1}^{\vee}$ are homotopic as mapping cycles $X \rightarrow W$. Finally, $\alpha+\gamma_{1}^{V}=\beta-\gamma_{1}^{W}$ lands in $V \cap W$ by construction.

7.2. Mayer-Vietoris sequence in homology

A sequence of abelian groups $\left(A_{n}\right)_{n \in \mathbb{Z}}$ together with homomorphisms

$$
f_{n}: A_{n} \rightarrow A_{n-1}
$$

for all $\mathfrak{n} \in \mathbb{Z}$ is called an exact sequence of abelian groups if the kernel of f_{n} is equal to the image of f_{n+1}, for all $n \in \mathbb{Z}$. More generally, we sometimes have to deal with diagrams of abelian groups and homomorphisms in the shape of a string

$$
A_{n} \rightarrow A_{n-1} \rightarrow \underset{1}{A_{n-2}} \rightarrow \cdots \rightarrow A_{n-k}
$$

Such a diagram is exact if the kernel of each homomorphism in the string is equal to the image of the preceding one, if there is a preceding one.

Definition 7.3. Alternative definition of homology: Write $I=[0,1]$. For a space Y , and $\mathrm{n} \geq 0$, re-define $\mathrm{H}_{\mathrm{n}}(\mathrm{Y})$ as the abelian group of homotopy classes of mapping cycles $I^{n} \rightarrow \mathrm{Y}$ which vanish on some open neighborhood of ∂I^{n}.

Comment. In this definition, we regard two mapping cycles $\mathrm{I}^{\mathrm{n}} \rightarrow \mathrm{Y}$ which vanish on some neighborhood of $\partial \mathrm{I}^{\mathrm{n}}$ as homotopic if they are related by a homotopy $\mathrm{I}^{\mathrm{n}} \times \mathrm{I} \rightarrow \mathrm{Y}$ which vanishes on some neighborhood of $\partial \mathrm{I}^{\mathrm{n}} \times \mathrm{I}$. Such a homotopy will be called (informally) a homotopy relative to $\partial \mathrm{I}^{\mathrm{n}}$ or a homotopy rel $\partial \mathrm{I}^{\mathrm{n}}$.
To relate the old definition of $\mathrm{H}_{n}(\mathrm{Y})$ to the new one, we make a few observations. Given a mapping cycle $\alpha: \mathrm{I}^{n} \rightarrow \mathrm{Y}$ which vanishes on some neighborhood of $\partial \mathrm{I}^{\mathrm{n}}$, we immediately obtain a mapping cycle from the quotient $I^{n} / \partial I^{n}$ to Y. To view this as a mapping cycle $\beta: S^{n} \rightarrow Y$, we pretend that $S^{n}=\mathbb{R}^{n} \cup \infty$ (one-point compactification of \mathbb{R}^{n}) and specify a homeomorphism u: $\mathrm{I}^{\mathrm{n}} / \partial \mathrm{I}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{n}} \cup \infty$ taking base point to base point. (Note that $I^{n} / \partial I^{n}$ has a preferred base point, the point represented by all elements of ∂I^{n}.) We are specific enough if we say that u is smooth and orientation preserving on $I^{n} \backslash \partial I^{n}$ (i.e., the Jacobian determinant is everywhere positive). Conversely, given a mapping cycle $\beta: S^{n} \rightarrow \mathrm{Y}$ representing an element of $H_{n}(Y)$ according to the old definition, we may subtract a suitable constant to arrange that β is zero when restricted to the base point of S^{n}. We can also assume that β is zero on a neighborhood of the base point; if not, compose with a continuous map $S^{n} \rightarrow S^{n}$ which is homotopic to the identity and takes a neighborhood of the base point to the base point. Then $\beta \circ u$ is a mapping cycle $\mathrm{I}^{\mathrm{n}} / \partial \rightarrow \mathrm{Y}$ which can also be viewed as a mapping cycle $\mathrm{I}^{\mathrm{n}} \rightarrow \mathrm{Y}$ vanishing on a neighborhood of $\partial \mathrm{I}^{\mathrm{n}}$.

Definition 7.4. Suppose that Y comes with two open subspaces V and W such that $\mathrm{V} \cup \mathrm{W}=\mathrm{Y}$. The boundary homomorphism

$$
\partial: H_{n}(Y) \rightarrow H_{n-1}(V \cap W)
$$

is defined as follows, using the alternative definition of H_{n}. Let $x \in H_{n}(Y)$ be represented by a mapping cycle $\gamma: \mathrm{I}^{\mathrm{n}} \rightarrow \mathrm{Y}$ which is zero on an open neighborhood of $\partial \mathrm{I}^{\mathrm{n}}$. Think of γ as a homotopy, $\gamma: \mathrm{I}^{\mathrm{n}-1} \times \mathrm{I} \rightarrow \mathrm{Y}$. Choose a decomposition $\gamma=\gamma^{\vee}+\gamma^{W}$ as in theorem 7.1. The theorem guarantees that γ^{V} and γ^{W} can be arranged to vanish on a neighborhood of $\partial \mathrm{I}^{\mathrm{n}-1} \times \mathrm{I}$. Let $\partial(x)$ be the class of the mapping cycle

$$
\gamma_{1}^{W}: \mathrm{I}^{\mathrm{n}-1} \rightarrow \mathrm{~V} \cap \mathrm{~W},
$$

composition of γ^{W} with the map $\mathfrak{l}_{1}: I^{n-1} \rightarrow I^{n-1} \times I$ defined by $\mathfrak{l}_{1}(x)=(x, 1)$. (Then γ_{1}^{W} vanishes on some open neighborhood of ∂I^{n-1}.)

We must show that this is well defined. There were two choices involved: the choice of representative γ, and the choice of decomposition $\gamma=\gamma^{\vee}+\gamma^{W}$. For the moment, keep γ fixed, and let us see what happens if we try another decomposition of γ. Any other decomposition will have the form

$$
\left(\gamma^{\vee}+\eta\right)+\left(\gamma^{w}-\eta\right)
$$

where $\eta: I^{n-1} \times I \rightarrow V \cap W$ is a mapping cycle which vanishes on an open neighborhood of $\partial \mathrm{I}^{\mathrm{n}-1} \times \mathrm{I}$ and on an open neighborhood of $\mathrm{I}^{\mathrm{n}-1} \times\{0\}$. We need to show that $\gamma_{1}^{W}-\eta_{1}$ is homotopic (rel boundary of I^{n-1}) to γ_{1}^{W}. But η_{1} is homotopic to zero by the homotopy η.
Next we worry about the choice of representative γ. Let φ be another representative of the same class x, and let $\lambda: \mathrm{I} \times \mathrm{I}^{\mathrm{n}} \rightarrow \mathrm{Y}$ be a homotopy from φ to γ. (Writing the factor I on the left might help us to avoid confusion.) We can think of λ as a homotopy in a different way:

$$
\left(\mathrm{I} \times \mathrm{I}^{\mathrm{n}-1}\right) \times \mathrm{I} \longrightarrow \mathrm{Y}
$$

Then we can apply the homotopy decomposition theorem and choose a decomposition $\lambda=\lambda^{V}+\lambda^{W}$ where λ^{V} and λ^{W} vanish on a neighborhood of $\mathrm{I} \times \partial \mathrm{I}^{\mathrm{n}-1} \times \mathrm{I}$. We then find that λ_{1}^{W} is a mapping cycle from $X=\mathrm{I} \times \mathrm{I}^{\mathrm{n}-1}$ to $\mathrm{V} \cap \mathrm{W}$ which we may regard as a homotopy (now with parameters written on the left). The homotopy is between γ_{1}^{W} and φ_{1}^{W}, provided the decompositions $\gamma=\gamma^{V}+\gamma^{W}$ and $\varphi=\varphi^{V}+\varphi^{W}$ are the ones obtained by restricting the decomposition $\lambda=\lambda^{V}+\lambda^{W}$.

The boundary homomorphisms ∂ can be used to make a sequence of abelian groups and homomorphisms

where $n \in \mathbb{Z}$. (Set $H_{n}(X)=0$ for $n<0$ and any space X. The unlabelled homomorphisms in the sequence are as follows: $H_{n}(V) \oplus H_{n}(W) \rightarrow H_{n}(Y)$ is $j_{V_{*}}+j_{W_{*}}$, the sum of the two maps given by composition with the inclusions $j_{V}: V \rightarrow Y$ and $j_{W}: W \rightarrow Y$, and $H_{n}(V \cap W) \rightarrow H_{n}(V) \oplus H_{n}(W)$ is
$\left(e_{V_{*}},-e_{W_{*}}\right)$, where $e_{V_{*}}$ and $e_{W_{*}}$ are given by composition with the inclusions $e_{V}: V \cap W \rightarrow V$ and $e_{W}: V \cap W \rightarrow W$.) The sequence is called the homology Mayer-Vietoris sequence of Y and V, W.

Theorem 7.5. The homology Mayer-Vietoris sequence of Y and V, W is exact. ${ }^{1}$

Terminology for the proof. Let X and Q be topological spaces and let $h: X \times I \rightarrow Q$ be a map or mapping cycle (which we think of as a homotopy). Let $\mathrm{p}: \mathrm{X} \times \mathrm{I} \rightarrow \mathrm{X}$ be the projection and let $\iota_{0}, \iota_{1}: X \rightarrow X \times I$ be the maps given by $x \mapsto(x, 0)$ and $x \mapsto(x, 1)$, respectively. We say that h is stationary near $X \times\{0,1\}$ if there exist open neighborhoods U_{0} and U_{1} of $\mathrm{X} \times\{0\}$ and $X \times\{1\}$, respectively, in $X \times I$ such that h agrees with $h \circ \mathfrak{l}_{0} \circ p$ on U_{0} and with $h \circ \mathfrak{l}_{1} \circ p$ on U_{1}.
Proof. (i) Exactness of the pieces $\mathrm{H}_{\mathrm{n}}(\mathrm{V} \cap \mathrm{W}) \rightarrow \mathrm{H}_{\mathrm{n}}(\mathrm{V}) \oplus \mathrm{H}_{\mathrm{n}}(\mathrm{W}) \rightarrow \mathrm{H}_{\mathrm{n}}(\mathrm{Y})$ follows from corollary 7.2 , for all $n \in \mathbb{Z}$. (It is more convenient to use the standard definition of H_{n} at this point.) More precisely, we have exactness of

$$
\left[\left[\mathrm{S}^{n}, \mathrm{~V} \cap \mathrm{~W}\right]\right] \rightarrow\left[\left[\mathrm{S}^{n}, \mathrm{~V}\right]\right] \oplus\left[\left[\mathrm{S}^{n}, \mathrm{~W}\right]\right] \rightarrow\left[\left[\mathrm{S}^{n}, \mathrm{Y}\right]\right]
$$

by corollary 7.2 , and we have exactness of

$$
[[\star, \mathrm{V} \cap \mathrm{~W}]] \rightarrow[[\star, \mathrm{V}]] \oplus[[\star, \mathrm{W}]] \rightarrow[[\star, \mathrm{Y}]]
$$

by corollary 7.2. Note also that $[[\star, \mathrm{V}]] \oplus[[\star, \mathrm{W}]] \rightarrow[[\star, \mathrm{Y}]]$ is surjective. Then it follows easily that

$$
\frac{\left[\left[\mathrm{S}^{n}, \mathrm{~V} \cap \mathrm{~W}\right]\right]}{[[\star, \mathrm{V} \cap \mathrm{~W}]]} \rightarrow \frac{\left[\left[\mathrm{S}^{n}, \mathrm{~V}\right]\right] \oplus\left[\left[\mathrm{S}^{n}, \mathrm{~W}\right]\right]}{[[\star, \mathrm{V}]] \oplus[[\star, \mathrm{W}]]} \rightarrow \frac{\left[\left[\mathrm{S}^{n}, \mathrm{Y}\right]\right]}{[[\star, \mathrm{Y}]]}
$$

is exact.
(ii) Next we look at pieces of the form

$$
\mathrm{H}_{\mathrm{n}}(\mathrm{~V}) \oplus \mathrm{H}_{\mathrm{n}}(\mathrm{~W}) \longrightarrow \mathrm{H}_{n}(\mathrm{Y}) \xrightarrow{\partial} \mathrm{H}_{\mathrm{n}-1}(\mathrm{~V} \cap W) .
$$

The cases $n<0$ are trivial. In the case $n=0$, the claim is that the homomorphism $\mathrm{H}_{0}(\mathrm{~V}) \oplus \mathrm{H}_{0}(\mathrm{~W}) \rightarrow \mathrm{H}_{0}(\mathrm{Y})$ is surjective. This is a pleasant exercise. Now assume $n>0$. It is clear from the definition of ∂ that the composition of the two homomorphisms is zero. Suppose then that $[\gamma] \in$ $H_{n}(Y)$ is in the kernel of ∂, where $\gamma: I^{n} \rightarrow Y$ vanishes on a neighborhood of ∂I^{n}. We must show that $[\gamma]$ is in the image of $H_{n}(V) \oplus H_{n}(W) \rightarrow H_{n}(Y)$. As above, we think of γ as a homotopy, $\mathrm{I}^{\mathrm{n}-1} \times \mathrm{I} \rightarrow \mathrm{Y}$, which we decompose, $\gamma=\gamma^{V}+\gamma^{W}$ as in theorem 7.1, where γ^{V} and γ^{W} vanish on a neighborhood

[^0]of $\partial I^{n-1} \times I$. We can also arrange that the homotopies γ^{V} and γ^{W} are stationary near $\mathrm{I}^{\mathrm{n}-1} \times\{0,1\}$. The assumption $\partial[\gamma]=0$ then means that the zero map
$$
\mathrm{I}^{\mathrm{n}-1} \rightarrow \mathrm{~V} \cap \mathrm{~W}
$$
is homotopic to γ_{1}^{W} by a homotopy $\lambda: \mathrm{I}^{\mathrm{n}-1} \times \mathrm{I} \rightarrow \mathrm{V} \cap \mathrm{W}$ which vanishes on a neighborhood of $\partial \mathrm{I}^{\mathrm{n}-1} \times \mathrm{I}$. We can arrange that λ is stationary near $\mathrm{I}^{\mathrm{n}-1} \times\{0,1\}$. Then $\gamma^{V}+\lambda$ and $\gamma^{W}-\lambda$ are mapping cycles from $\mathrm{I}^{\mathrm{n}-1} \times \mathrm{I}=\mathrm{I}^{\mathrm{n}}$ to V and W , respectively. Both vanish on a neighborhood of $\partial \mathrm{I}^{\mathrm{n}}$. Hence they represent elements in $H_{n}(V)$ and $H_{n}(W)$ whose images in $H_{n}(Y)$ add up to $[\gamma]$.
(iii) We show that the composition
$$
\mathrm{H}_{\mathrm{n}+1}(\mathrm{Y}) \xrightarrow{\partial} \mathrm{H}_{\mathrm{n}}(\mathrm{~V} \cap \mathrm{~W}) \longrightarrow \mathrm{H}_{\mathrm{n}}(\mathrm{~V}) \oplus \mathrm{H}_{\mathrm{n}}(\mathrm{~W}) .
$$
is zero. We can assume $n \geq 0$. Represent an element in $H_{n}(Y)$ by a mapping cycle $\gamma: \mathrm{I}^{\mathrm{n}} \times \mathrm{I} \rightarrow \mathrm{Y}$, vanishing on a neighborhood of the entire boundary; decompose as usual, and obtain $\partial[\gamma]=\left[\gamma_{1}^{W}\right]$. Now $\gamma_{1}^{W}=-\gamma_{1}^{V}$ viewed as a mapping cycle $\mathrm{I}^{\mathrm{n}} \rightarrow \mathrm{V}$ is homotopic to zero by the homotopy $-\gamma^{V}$ vanishing on a neighborhood of $\partial I^{n-1} \times I$. Therefore $\partial[\gamma]$ maps to zero in $H_{n}(V)$. A similar calculation shows that it maps to zero in $H_{n}(W)$.
(iv) Finally let $\varphi: \mathrm{I}^{\mathrm{n}} \rightarrow \mathrm{V} \cap \mathrm{W}$ be a mapping cycle which vanishes on a neighborhood of ∂I^{n}, and suppose that $[\varphi] \in H_{n}(V \cap W)$ is in the kernel of the homomorphism $\mathrm{H}_{\mathrm{n}}(\mathrm{V} \cap W) \rightarrow \mathrm{H}_{\mathrm{n}}(\mathrm{V}) \oplus \mathrm{H}_{\mathrm{n}}(\mathrm{W})$. Choose a homotopy $\gamma^{\vee}: I^{n} \times I \rightarrow V$ from zero to $-\varphi$, and another homotopy $\gamma^{W}: I^{n} \times I \rightarrow W$ from zero to φ, both vanishing on a neighborhood of $\partial \mathrm{I}^{\mathrm{n}} \times \mathrm{I}$, and both stationary near $\mathrm{I}^{\mathrm{n}} \times\{0,1\}$. Then $\gamma:=\gamma^{\vee}+\gamma^{W}$ vanishes on the entire boundary of $I^{n} \times I$, hence represents a class $[\gamma] \in H_{n+1}(Y)$. It is clear that $\partial[\gamma]=[\varphi]$.

Remark 7.6. The Mayer-Vietoris sequence has a naturality property. The statement is complicated. Suppose that Y and Y^{\prime} are topological spaces, $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Y}^{\prime}$ is a continuous map, $\mathrm{Y}=\mathrm{V} \cup \mathrm{W}$ where V and W are open subsets, $\mathrm{Y}^{\prime}=\mathrm{V}^{\prime} \cup \mathrm{W}^{\prime}$ where $\mathrm{V}^{\prime \prime}$ and W^{\prime} are open subsets, $\mathrm{g}(\mathrm{V}) \subset \mathrm{V}^{\prime}$ and $g(W) \subset W^{\prime}$. Then the Mayer-Vietoris sequences for Y, V, W and $Y^{\prime}, V^{\prime}, W^{\prime}$
can be arranged in a ladder-shaped diagram

This diagram is commutative; that is the naturality statement. The proof is not complicated (it is by inspection).
Often this can be usefully combined with the following observation: if, in the Mayer-Vietoris sequence for Y and V, W we interchange the roles (order) of V and W, then the homomorphisms ∂ and $H_{n}(V \cap W) \rightarrow H_{n}(V) \oplus H_{n}(W)$ change sign. To be more precise, we set up a diagram

where the columns are bits from the Mayer-Vietoris sequence of $\mathrm{Y}, \mathrm{V}, \mathrm{W}$ and Y, W, V, respectively. The diagram is not (always) commutative; instead each of the small squares in it commutes up to a factor (-1). The proof is by inspection.

[^0]: ${ }^{1}$ If you wish, view this as a sequence of abelian groups and homomorphisms indexed by the integers, by setting for example $A_{3 n}=H_{n}(Y)$ for $n \geq 0, A_{3 n+1}=H_{n}(V) \oplus H_{n}(W)$ for $n \geq 0, A_{3 n+2}=H_{n}(V \cap W)$ for $n \geq 0$, and $A_{m}=0$ for all $m \leq 0$.

