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Lecture Notes, week 7
Topology WS 2013/14 (Weiss)

6.1. Homotopies in ATop

Definition 6.1. Let X and Y be topological spaces. We call two mapping
cycles f and g from X to Y homotopic if there exists a mapping cycle h from
X× [0, 1] to Y such that f = h ◦ ι0 and g = h ◦ ι0 . Here ι0, ι1 : X→ X× [0, 1]
are defined by ι0(x) = (x, 0) and ι1(x) = (x, 1) as usual. Such a mapping
cycle h is a homotopy from f to g .

Remark. In that definition, X × [0, 1] still means the product of X and
[0, 1] in Top. We saw some evidence suggesting that in ATop this does
not have the properties that we might expect from a product (in a category
sense).

Lemma 6.2. “Homotopic” is an equivalence relation on the set of mapping
cycles from X to Y . The set of equivalence classes will be denoted by [[X, Y]]
and the equivalence class of a mapping cycle f will be denoted by [[f]] .

Proof. Reflexivity and symmetry are fairly obvious. Transitivity is more
interesting. Let h be a homotopy from e to f and k a homotopy from f
to g , where e, f and g are mapping cycles from X to Y . Without loss of
generality, h and k are stationary at times 0 and 1 , in the following precise
sense: for some small positive ε , the mapping cycle h agrees on the open
subset X× [0, ε[ of X× [0, 1] with e ◦ p1 where p1(x, t) = x , and agrees on
the open subset X×]1− ε, 1] with f ◦p1 ; and similarly for k . (If not, choose
a continuous map λ : [0, 1] → [0, 1] such that λ(t) = 0 and λ(1 − t) = 1
for t < ε . Re-define h and k by pre-composing with the continuous map
X×[0, 1]→ X×[0, 1] given by (x, t) 7→ (x, λ(t)) .) Then by the sheaf property
for mapping cycles, there is a mapping cycle

X× [0, 2] −→ Y

which on the open set U1 = X× [0, 1+ ε[ agrees with the composition h ◦q1
where q1(x, t) = (x,min{1, t}) , and which on the open set U2 = X× [1−ε, 2[
agrees with the composition k◦q2 where q2(x, t) = (x,max{0, t−1}) . (These
mapping cycles agree on U1 ∩ U2 by our assumptions on h and k .) Pre-
compose this mapping cycle from X × [0, 2] to Y with the homeomorphism
X× [0, 1]→ X× [0, 2] given by stretching, (x, t) 7→ (x, 2t) . �

Proposition 6.3. The set [[X, Y]] is an abelian group.
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Proof. This amounts to observing that the homotopy relation is compatible
with addition of mapping cycles. In other words, if f is homotopic to g and
u is homotopic to v , where f, g, u, v are mapping cycles from X to Y , then
f+u is homotopic to g+v . Indeed, if h is a homotopy from f to g and k is
a homotopy from u to v , then h+k is a homotopy from f+u to g+v . �

Lemma 6.4. A composition map [[Y, Z]]× [[X, Y]]→ [[X,Z]] can be defined
by ([[f]], [[g]]) 7→ [[f◦g]]. Composition is bilinear, i.e., for fixed [[g]] the map
[[f]] 7→ [[f ◦ g]] is a homomorphism of abelian groups and for fixed [[f]] the
map [[g]] 7→ [[f ◦ g]] is a homomorphism of abelian groups. �

As a result there is a homotopy category HoATop whose objects are (still)
the topological spaces, while the set of morphisms from X to Y is [[X, Y]] .

6.2. First calculations

Write ? for a singleton, alias one-point space.

Proposition 6.5. For any space X the abelian group [[X, ?]] is isomorphic
to the set of continuous (=locally constant) functions from X to Z, where Z
has the discrete topology.

Proof. We saw already in the previous section that the set of mapping cycles
from X to ? is identified with the set of continuous functions from X to Z .
(It is (ΦG)(X) where ΦG is the sheaf associated to the constant presheaf G

which has G(U) = Z for all open U ⊂ X .) Similarly, the set of mapping cycles
from X × [0, 1] to ? is identified with the set of continuous functions from
X× [0, 1] to Z . But a continuous function h from X× [0, 1] to Z is constant
on {x}× [0, 1] for each x ∈ X , and so will have the form h(x, t) = g(x) for a
unique continuous g : X → Z . It follows that the homotopy relation on the
set of mapping cycles from X to ? is trivial, i.e., two mapping cycles from X
to ∗ are homotopic only if they are equal. �

Example 6.6. Take X = Q , a subspace of R with the standard topology.
The group [[Q, ?]] is uncountable because the set of continuous maps from
Q to Z is uncountable.

Lemma 6.7. For a path-connected (non-empty) space Y the abelian group
[[?, Y]] is isomorphic to Z.

Proof. Fix some point z ∈ Y . A mapping cycle from ? to Y is the same thing
as a formal linear combination of points in Y , say

∑
j bjyj where bj ∈ Z and

yj ∈ Y . In the abelian group [[?, Y]] we have

[[Σjbjyj]] = Σjbj[[yj]] = (Σjbj)[[z]].

(Here [[yj]] for example denotes the homotopy class of the mapping cycle
determined by the continuous map ? → Y which has image {yj} . As that
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continuous map is homotopic to the map ? → Y which has image {z} , we
obtain [[yj]] = [[z]] .) Therefore [[?, Y]] is cyclic, generated by the element
[[z]] . To see that it is infinite cyclic we use the homomorphism

[[?, Y]]→ [[?, ?]]

given by composition with the continuous map Y → ? . Now [[?, ?]] is infinite
cyclic by proposition 6.5. It is also clear that the homomorphism just above
takes [[z]] to the generator of [[?, ?]] , the class of the identity mapping cycle.
Hence it must be an isomorphism and so [[?, Y]] is infinite cyclic. �

Corollary 6.8. For any space Y the abelian group [[?, Y]] is isomorphic to
the free abelian group generated by the set of path components of Y .

Proof. The abelian group of mapping cycles from ? to Y is simply the free
abelian group A generated by the underlying set of Y . Write this as a direct
sum

⊕
λ∈ΛAλ where Λ is an indexing set for the path components Yλ of Y

and Aλ is the free abelian group generated by the underlying set of Yλ . Now
fix some λ . Claim: If f ∈ A is homotopic to g ∈ A , by a mapping cycle
h : [0, 1]→ Y , then the coordinate of f in Aλ is homotopic to the coordinate
of g in Aλ , by a mapping cycle [0, 1]→ Yλ . To see this, cover the interval
[0, 1] by finitely many open subsets Ui such that h|Ui

can be represented
by a formal linear combination of continuous maps from Ui to Y . This is
possible by the coherence condition on h . Choose a subdivision

0 = t0 < t1 < · · · tN−1 < tN = 1

of [0, 1] such that for each of the the subintervals [tr, tr+1] , where r =
0, 1, . . . ,N − 1 , there exists Ui containing it. Let htr ∈ A be obtained
by restricting h to tr . Then ht0 = f and htN = g , so it suffices to show
that the λ-coordinate of htr is homotopic to the λ-coordinate of htr+1

, for
r = 0, 1, . . . ,N − 1 . But [tr, tr+1] is contained in some Ui and so there is a
formal linear combination ∑

j

bjuj

where bj ∈ Z and the uj are continuous maps from [tr, tr+1] to Y , and∑
j bjuj restricts to htr on tr and to htr+1

on tr+1 . Each uj maps to only
one path component of Y ; in the formal linear combination

∑
j bjuj , select

the terms bjuj where uj is a map to Yλ and discard the others. Then the
selected linear sub-combination is a homotopy from the λ-component of htr
to the λ-component of htr+1

. This proves the claim.
Therefore [[?, Y]] is the direct sum of the [[?, Yλ]] . By the lemma above, each
[[?, Yλ]] is isomorphic to Z . �
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Proposition 6.9. For topological spaces X and Y where X is a topological
disjoint union X1 q X2 , there is an isomorphism

[[X, Y]] −→ [[X1, Y]]× [[X2, Y]] ; [[f]] 7→ ([[f|X1
]], [[f|X2

]]) .

For topological spaces X and Y where Y is a topological disjoint union Y1qY2 ,
there is an isomorphism

[[X, Y1]]⊕ [[X, Y2]] −→ [[X, Y]] ; [[f]]⊕ [[g]] 7→ [[j1 ◦ f+ j2 ◦ g]]
where j1 : Y1 → Y and j2 : Y2 → Y are the inclusions.

Proof. First statement: the set morATop(X, Y) of mapping cycles breaks up
as a product morATop(X1, Y) × morATop(X2, Y) by restriction to X1 and X2 ,
and a similar statement holds for the set morATop(X × [0, 1], Y) . Second
statement: the set morATop(X, Y) of mapping cycles breaks up as a di-
rect sum morATop(X, Y1) × morATop(X, Y2) , and a similar statement holds
for morATop(X× [0, 1], Y) . �

Proposition 6.10. For any topological space X we have

[[∅, X]] = 0 = [[X, ∅]] .

Proof. The abelian group of mapping cycles from X to ∅ is a trivial group
and the abelian group of mapping cycles from ∅ to X is a trivial group. �

6.3. Homology and cohomology: the definitions

Definition 6.11. For n ≥ 0 , the n-th homology group of a topological space
X is the abelian group

Hn(X) := [[Sn, X]]/[[?, X]] .

The n-th cohomology group of X is the abelian group

Hn(X) := [[X, Sn]]/[[X, ?]].

Comments. There is an understanding here that [[?, X]] is a subgroup
of [[Sn, X]] . How? By pre-composing mapping cycles from ? to X with
the unique continuous map Sn → ? , we obtain a (well defined) homomor-
phism [[?, X]] → [[Sn, X]] . Conversely, by pre-composing mapping cycles
from Sn to X with a selected continuous map ? → Sn , inclusion of the
base point, we obtain a homomorphism [[Sn, X]]→ [[?, X]] . The composition
[[?, X]] → [[Sn, X]] → [[?, X]] is the identity on [[?, X]] . So we can say that
[[?, X]] is a direct summand of [[Sn, X]] . We remove it, suppress it etc., when
we form Hn(X) .
Similarly, by post-composing mapping cycles from X to Sn with the unique
continuous map Sn → ? , we obtain a homomorphism [[X, Sn]] → [[X, ?]] .
Conversely, by post-composing mapping cycles from X to ? with a selected
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continuous map ?→ Sn , inclusion of the base point, we obtain a homomor-
phism [[X, ?]] → [[X, Sn]] . The composition [[X, ?]] → [[X, Sn]] → [[X, ?]] is
the identity on [[X, ?]] . Therefore [[X, ?]] is a direct summand of [[X, Sn]] .
We remove it, suppress it etc., when we form Hn(X) .

You will be unsurprised to hear that Hn is a functor from Top to the
category of abelian groups. We can also say that it is a functor from ATop
to abelian groups. Both statements are obvious from the definition. Equally
clear from the definition, but important to keep in mind: if f, g : X→ Y are
homotopic maps, then the induced homomorphisms f∗ : Hn(X)→ Hn(Y) and
g∗ : Hn(X) → Hn(Y) are the same. (Therefore we might say that Hn is a
functor from HoTop to the category of abelian groups. Indeed it is a functor
from HoATop to abelian groups ...)
Similarly Hn is a contravariant functor from Top (or from ATop, or from
HoTop, or from HoATop) to the category of abelian groups.

So far we have few tools available for computing Hn(X) and Hn(X) in
general. But in the cases n = 0 , arbitrary X , we are ready for it, and in the
case where n is arbitrary and X = ? we are also ready for it.

Example 6.12. Take n = 0 and X arbitrary. Then H0(X) = [[S0, X]]/[[?, X]] .
For S0 we can write ?q ? (disjoint union of two copies of ?), and using the
first part of proposition 6.9, we get [[S0, X]] ∼= [[?, X]] × [[?, X]] . Therefore
H0(X) ∼= [[?, X]] . Using corollary 6.8, it follows that H0(X) is identified with
the free abelian group generated by the set of path components of X . For
example, if X is path connected, then H0(X) is isomorphic to Z .
By a very similar calculation, H0(X) is isomorphic to [[X, ?]] . Using propo-
sition 6.5, we then obtain that H0(X) is isomorphic to the abelian group of
continuous maps from X to Z . For example, if X is connected, then H0(X)
is isomorphic to Z .

Example 6.13. Take n arbitrary and X = ? . Now Hn(?) = [[Sn, ?]]/[[?, ?]] .
Using proposition 6.5, we find [[Sn, ?]] ∼= Z when n > 0 and [[S0, ?]] ∼= Z⊕Z ;
also [[?, ?]] = Z . By an easy calculation, the quotient [[Sn, ?]]/[[?, ?]] is
therefore 0 when n > 0 , and isomorphic to Z when n = 0 . So we have:

Hn(?) ∼=

{
Z if n = 0
0 if n > 0

Similarly, Hn(?) = [[?, Sn]]/[[?, ?]] . Using corollary 6.8 this time, we find
that [[?, Sn]] ∼= Z when n > 0 and [[?, S0]] ∼= Z⊕Z . By an easy calculation,
the quotient [[?, Sn]]/[[?, ?]] is therefore 0 when n > 0 , and isomorphic to Z
when n = 0 . Therefore:

Hn(?) ∼=

{
Z if n = 0
0 if n > 0


