Lecture Notes, week 7 Topology WS 2013/14 (Weiss)

6.1. Homotopies in ATop

Definition 6.1. Let X and Y be topological spaces. We call two mapping cycles f and g from X to Y *homotopic* if there exists a mapping cycle h from $X \times [0, 1]$ to Y such that $f = h \circ \iota_0$ and $g = h \circ \iota_0$. Here $\iota_0, \iota_1 \colon X \to X \times [0, 1]$ are defined by $\iota_0(x) = (x, 0)$ and $\iota_1(x) = (x, 1)$ as usual. Such a mapping cycle h is a *homotopy* from f to g.

Remark. In that definition, $X \times [0, 1]$ still means the product of X and [0, 1] in Top. We saw some evidence suggesting that in \mathcal{A} Top this does not have the properties that we might expect from a product (in a category sense).

Lemma 6.2. "Homotopic" is an equivalence relation on the set of mapping cycles from X to Y. The set of equivalence classes will be denoted by [[X, Y]] and the equivalence class of a mapping cycle f will be denoted by [[f]].

Proof. Reflexivity and symmetry are fairly obvious. Transitivity is more interesting. Let h be a homotopy from e to f and k a homotopy from f to g, where e, f and g are mapping cycles from X to Y. Without loss of generality, h and k are *stationary* at times 0 and 1, in the following precise sense: for some small positive ε , the mapping cycle h agrees on the open subset $X \times [0, \varepsilon[$ of $X \times [0, 1]$ with $e \circ p_1$ where $p_1(x, t) = x$, and agrees on the open subset $X \times [1 - \varepsilon, 1]$ with $f \circ p_1$; and similarly for k. (If not, choose a continuous map λ : $[0, 1] \rightarrow [0, 1]$ such that $\lambda(t) = 0$ and $\lambda(1 - t) = 1$ for $t < \varepsilon$. Re-define h and k by pre-composing with the continuous map $X \times [0, 1] \rightarrow X \times [0, 1]$ given by $(x, t) \mapsto (x, \lambda(t))$.) Then by the sheaf property for mapping cycles, there is a mapping cycle

$$X \times [0, 2] \longrightarrow Y$$

which on the open set $U_1 = X \times [0, 1 + \varepsilon[$ agrees with the composition $h \circ q_1$ where $q_1(x, t) = (x, \min\{1, t\})$, and which on the open set $U_2 = X \times [1 - \varepsilon, 2[$ agrees with the composition $k \circ q_2$ where $q_2(x, t) = (x, \max\{0, t-1\})$. (These mapping cycles agree on $U_1 \cap U_2$ by our assumptions on h and k.) Precompose this mapping cycle from $X \times [0, 2]$ to Y with the homeomorphism $X \times [0, 1] \rightarrow X \times [0, 2]$ given by stretching, $(x, t) \mapsto (x, 2t)$.

Proposition 6.3. The set [[X,Y]] is an abelian group.

Proof. This amounts to observing that the homotopy relation is compatible with addition of mapping cycles. In other words, if f is homotopic to g and u is homotopic to v, where f, g, u, v are mapping cycles from X to Y, then f+u is homotopic to g+v. Indeed, if h is a homotopy from f to g and k is a homotopy from u to v, then h+k is a homotopy from f+u to g+v. \Box

Lemma 6.4. A composition map $[[Y, Z]] \times [[X, Y]] \rightarrow [[X, Z]]$ can be defined by $([[f]], [[g]]) \mapsto [[f \circ g]]$. Composition is bilinear, i.e., for fixed [[g]] the map $[[f]] \mapsto [[f \circ g]]$ is a homomorphism of abelian groups and for fixed [[f]] the map $[[g]] \mapsto [[f \circ g]]$ is a homomorphism of abelian groups. \Box

As a result there is a homotopy category \mathcal{HoATop} whose objects are (still) the topological spaces, while the set of morphisms from X to Y is [[X,Y]].

6.2. First calculations

Write \star for a singleton, alias one-point space.

Proposition 6.5. For any space X the abelian group $[[X, \star]]$ is isomorphic to the set of continuous (=locally constant) functions from X to Z, where Z has the discrete topology.

Proof. We saw already in the previous section that the set of mapping cycles from X to \star is identified with the set of continuous functions from X to Z. (It is $(\Phi \mathcal{G})(X)$ where $\Phi \mathcal{G}$ is the sheaf associated to the constant presheaf \mathcal{G} which has $\mathcal{G}(U) = \mathbb{Z}$ for all open $U \subset X$.) Similarly, the set of mapping cycles from $X \times [0, 1]$ to \star is identified with the set of continuous functions from $X \times [0, 1]$ to \times is identified with the set of continuous functions from $X \times [0, 1]$ to \mathbb{Z} . But a continuous function h from $X \times [0, 1]$ to \mathbb{Z} is constant on $\{x\} \times [0, 1]$ for each $x \in X$, and so will have the form h(x, t) = g(x) for a unique continuous $g: X \to \mathbb{Z}$. It follows that the homotopy relation on the set of mapping cycles from X to \star is trivial, i.e., two mapping cycles from X to \star are homotopic only if they are equal.

Example 6.6. Take $X = \mathbb{Q}$, a subspace of \mathbb{R} with the standard topology. The group $[[\mathbb{Q}, \star]]$ is uncountable because the set of continuous maps from \mathbb{Q} to \mathbb{Z} is uncountable.

Lemma 6.7. For a path-connected (non-empty) space Y the abelian group $[[\star, Y]]$ is isomorphic to \mathbb{Z} .

Proof. Fix some point $z \in Y$. A mapping cycle from \star to Y is the same thing as a formal linear combination of points in Y, say $\sum_j b_j y_j$ where $b_j \in \mathbb{Z}$ and $y_j \in Y$. In the abelian group $[[\star, Y]]$ we have

$$[[\Sigma_j b_j y_j]] = \Sigma_j b_j [[y_j]] = (\Sigma_j b_j) [[z]].$$

(Here $[[y_j]]$ for example denotes the homotopy class of the mapping cycle determined by the continuous map $\star \to Y$ which has image $\{y_j\}$. As that

continuous map is homotopic to the map $\star \to Y$ which has image $\{z\}$, we obtain $[[y_j]] = [[z]]$.) Therefore $[[\star, Y]]$ is cyclic, generated by the element [[z]]. To see that it is infinite cyclic we use the homomorphism

$$[[\star, Y]] \rightarrow [[\star, \star]]$$

given by composition with the continuous map $Y \to \star$. Now $[[\star, \star]]$ is infinite cyclic by proposition 6.5. It is also clear that the homomorphism just above takes [[z]] to the generator of $[[\star, \star]]$, the class of the identity mapping cycle. Hence it must be an isomorphism and so $[[\star, Y]]$ is infinite cyclic.

Corollary 6.8. For any space Y the abelian group $[[\star, Y]]$ is isomorphic to the free abelian group generated by the set of path components of Y.

Proof. The abelian group of mapping cycles from \star to Y is simply the free abelian group A generated by the underlying set of Y. Write this as a direct sum $\bigoplus_{\lambda \in \Lambda} A_{\lambda}$ where Λ is an indexing set for the path components Y_{λ} of Y and A_{λ} is the free abelian group generated by the underlying set of Y_{λ} . Now fix some λ . Claim: If $f \in A$ is homotopic to $g \in A$, by a mapping cycle h: $[0,1] \to Y$, then the coordinate of f in A_{λ} is homotopic to the coordinate of g in A_{λ} , by a mapping cycle $[0,1] \to Y_{\lambda}$. To see this, cover the interval [0,1] by finitely many open subsets U_i such that $h_{|U_i|}$ can be represented by a formal linear combination of continuous maps from U_i to Y. This is possible by the coherence condition on h. Choose a subdivision

$$0 = t_0 < t_1 < \cdots t_{N-1} < t_N = 1$$

of [0,1] such that for each of the the subintervals $[t_r,t_{r+1}]$, where $r=0,1,\ldots,N-1$, there exists U_i containing it. Let $h_{t_r}\in A$ be obtained by restricting h to t_r . Then $h_{t_0}=f$ and $h_{t_N}=g$, so it suffices to show that the λ -coordinate of h_{t_r} is homotopic to the λ -coordinate of $h_{t_{r+1}}$, for $r=0,1,\ldots,N-1$. But $[t_r,t_{r+1}]$ is contained in some U_i and so there is a formal linear combination

$$\sum_{j} b_{j} u_{j}$$

where $b_j \in \mathbb{Z}$ and the u_j are continuous maps from $[t_r, t_{r+1}]$ to Y, and $\sum_j b_j u_j$ restricts to h_{t_r} on t_r and to $h_{t_{r+1}}$ on t_{r+1} . Each u_j maps to only one path component of Y; in the formal linear combination $\sum_j b_j u_j$, select the terms $b_j u_j$ where u_j is a map to Y_{λ} and discard the others. Then the selected linear sub-combination is a homotopy from the λ -component of h_{t_r} . This proves the claim.

Therefore $[[\star, Y]]$ is the direct sum of the $[[\star, Y_{\lambda}]]$. By the lemma above, each $[[\star, Y_{\lambda}]]$ is isomorphic to \mathbb{Z} .

Proposition 6.9. For topological spaces X and Y where X is a topological disjoint union $X_1 \amalg X_2$, there is an isomorphism

$$[[X,Y]] \longrightarrow [[X_1,Y]] \times [[X_2,Y]] ; [[f]] \mapsto ([[f_{|X_1}]], [[f_{|X_2}]]) .$$

For topological spaces X and Y where Y is a topological disjoint union $Y_1\amalg Y_2$, there is an isomorphism

 $[[X, Y_1]] \oplus [[X, Y_2]] \longrightarrow [[X, Y]] ; [[f]] \oplus [[g]] \mapsto [[j_1 \circ f + j_2 \circ g]]$

where $j_1\colon Y_1\to Y$ and $j_2\colon Y_2\to Y$ are the inclusions.

Proof. First statement: the set $\operatorname{mor}_{\mathcal{A}\operatorname{Top}}(X, Y)$ of mapping cycles breaks up as a product $\operatorname{mor}_{\mathcal{A}\operatorname{Top}}(X_1, Y) \times \operatorname{mor}_{\mathcal{A}\operatorname{Top}}(X_2, Y)$ by restriction to X_1 and X_2 , and a similar statement holds for the set $\operatorname{mor}_{\mathcal{A}\operatorname{Top}}(X \times [0, 1], Y)$. Second statement: the set $\operatorname{mor}_{\mathcal{A}\operatorname{Top}}(X, Y)$ of mapping cycles breaks up as a direct sum $\operatorname{mor}_{\mathcal{A}\operatorname{Top}}(X, Y_1) \times \operatorname{mor}_{\mathcal{A}\operatorname{Top}}(X, Y_2)$, and a similar statement holds for $\operatorname{mor}_{\mathcal{A}\operatorname{Top}}(X \times [0, 1], Y)$.

Proposition 6.10. For any topological space X we have

$$[[\emptyset, X]] = 0 = [[X, \emptyset]].$$

Proof. The abelian group of mapping cycles from X to \emptyset is a trivial group and the abelian group of mapping cycles from \emptyset to X is a trivial group. \Box

6.3. Homology and cohomology: the definitions

Definition 6.11. For $n \ge 0$, the n-th *homology group* of a topological space X is the abelian group

$$H_n(X) := [[S^n, X]]/[[\star, X]]$$
.

The n-th cohomology group of X is the abelian group

$$H^{n}(X) := [[X, S^{n}]]/[[X, \star]].$$

Comments. There is an understanding here that $[[\star, X]]$ is a subgroup of $[[S^n, X]]$. How? By pre-composing mapping cycles from \star to X with the unique continuous map $S^n \to \star$, we obtain a (well defined) homomorphism $[[\star, X]] \to [[S^n, X]]$. Conversely, by pre-composing mapping cycles from S^n to X with a selected continuous map $\star \to S^n$, inclusion of the base point, we obtain a homomorphism $[[S^n, X]] \to [[\star, X]]$. The composition $[[\star, X]] \to [[S^n, X]] \to [[\star, X]]$ is the identity on $[[\star, X]]$. So we can say that $[[\star, X]]$ is a direct summand of $[[S^n, X]]$. We remove it, suppress it etc., when we form $H_n(X)$.

Similarly, by post-composing mapping cycles from X to S^n with the unique continuous map $S^n \to \star$, we obtain a homomorphism $[[X, S^n]] \to [[X, \star]]$. Conversely, by post-composing mapping cycles from X to \star with a selected

4

continuous map $\star \to S^n$, inclusion of the base point, we obtain a homomorphism $[[X, \star]] \to [[X, S^n]]$. The composition $[[X, \star]] \to [[X, S^n]] \to [[X, \star]]$ is the identity on $[[X, \star]]$. Therefore $[[X, \star]]$ is a direct summand of $[[X, S^n]]$. We remove it, suppress it etc., when we form $H^n(X)$.

You will be unsurprised to hear that H_n is a functor from Top to the category of abelian groups. We can also say that it is a functor from \mathcal{A} Top to abelian groups. Both statements are obvious from the definition. Equally clear from the definition, but important to keep in mind: if $f, g: X \to Y$ are homotopic maps, then the induced homomorphisms $f_*: H_n(X) \to H_n(Y)$ and $g_*: H_n(X) \to H_n(Y)$ are the same. (Therefore we might say that H_n is a functor from HoATop to abelian groups ...)

Similarly H^n is a contravariant functor from Top (or from \mathcal{A} Top, or from \mathcal{H} o \mathcal{A} Top) to the category of abelian groups.

So far we have few tools available for computing $H_n(X)$ and $H^n(X)$ in general. But in the cases n = 0, arbitrary X, we are ready for it, and in the case where n is arbitrary and $X = \star$ we are also ready for it.

Example 6.12. Take n = 0 and X arbitrary. Then $H_0(X) = [[S^0, X]]/[[\star, X]]$. For S^0 we can write $\star \amalg \star$ (disjoint union of two copies of \star), and using the first part of proposition 6.9, we get $[[S^0, X]] \cong [[\star, X]] \times [[\star, X]]$. Therefore $H_0(X) \cong [[\star, X]]$. Using corollary 6.8, it follows that $H_0(X)$ is identified with the free abelian group generated by the set of path components of X. For example, if X is path connected, then $H_0(X)$ is isomorphic to \mathbb{Z} .

By a very similar calculation, $H^{0}(X)$ is isomorphic to $[[X, \star]]$. Using proposition 6.5, we then obtain that $H^{0}(X)$ is isomorphic to the abelian group of continuous maps from X to Z. For example, if X is connected, then $H^{0}(X)$ is isomorphic to Z.

Example 6.13. Take **n** arbitrary and $X = \star$. Now $H_n(\star) = [[S^n, \star]]/[[\star, \star]]$. Using proposition 6.5, we find $[[S^n, \star]] \cong \mathbb{Z}$ when n > 0 and $[[S^0, \star]] \cong \mathbb{Z} \oplus \mathbb{Z}$; also $[[\star, \star]] = \mathbb{Z}$. By an easy calculation, the quotient $[[S^n, \star]]/[[\star, \star]]$ is therefore 0 when n > 0, and isomorphic to \mathbb{Z} when n = 0. So we have:

$$H_n(\star) \cong \begin{cases} \mathbb{Z} & \text{if } n = 0\\ 0 & \text{if } n > 0 \end{cases}$$

Similarly, $H^{n}(\star) = [[\star, S^{n}]]/[[\star, \star]]$. Using corollary 6.8 this time, we find that $[[\star, S^{n}]] \cong \mathbb{Z}$ when n > 0 and $[[\star, S^{0}]] \cong \mathbb{Z} \oplus \mathbb{Z}$. By an easy calculation, the quotient $[[\star, S^{n}]]/[[\star, \star]]$ is therefore 0 when n > 0, and isomorphic to \mathbb{Z} when n = 0. Therefore:

$$H^{n}(\star) \cong \begin{cases} \mathbb{Z} & \text{if } n = 0 \\ 0 & \text{if } n > 0 \end{cases}$$