
19.11.2013

Lecture Notes, week 6
Topology WS 2013/14 (Weiss)

5.1. The stalks of a presheaf

Let F a presheaf on a topological space X . Fix z ∈ X . There are situations
where we want to understand the behavior of F near z , that is to say, in
small neighborhoods of z . Then it is a good idea to work with pairs (U, s)
where U is an open neighborhood of z and s is an element of F(U) . Two
such pairs (U, s) and (V, t) are considered to be germ-equivalent if there
exists an open neighborhood W of z such that W ⊂ U ∩ V and s|W = t|W
in F(W) . It is easy to show that germ equivalence is indeed an equivalence
relation.

Definition 5.1. The set of equivalence classes is called the stalk of F at z
and denoted by Fz . The elements of Fz are often called germs (at z , of
something ... depending on the meaning of F).

Example 5.2. Let F be the sheaf on X where F(U) is the set of continuous
maps from U to Y , for a fixed Y . An element of Fz is called a germ of
continuous maps from (X, z) to Y .

Example 5.3. Fix a continuous map p : Y → X . Let F be the sheaf on X
where F(U) is the set of continuous maps s : U → Y such that p ◦ s is the
inclusion U → X . An element of F(U) can be called a continuous section
of p over U . For z ∈ X , an element of Fz can be called a germ at z of
continuous sections of p : X→ Y .

Example 5.4. Let X be the union of the two coordinate axes in R2 . For
open U in X , let G(U) be the set of connected components of X r U . For
open subsets U,V of X such that U ⊂ V , define

resV,U : G(V) → G(U)

by saying that resV,U(C) is the unique connected component of XrU which
contains C (where C can be any connected component of X r V ). These
definitions make G into a presheaf on X . For z ∈ X , what can we say about
the stalk Gz ? If z is the origin, z = (0, 0) , then Gz has four elements. In all
other cases Gz has two elements. (Despite that, for any z ∈ X and any open
neighborhood V of z in X , there exists an open neighborhood W of z in X
such that W ⊂ V and G(W) has more than 1000 elements.)

Now let α : F → G be a map (morphism) of sheaves on X . Again fix z ∈ X .
Then every pair (U, s) , where U is an open neighborhood of z and s ∈ F(s) ,
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determines another pair (U,α(s)) where U is still an open neighborhood of
z and α(s) ∈ G(U) . The assignment (U, s) 7→ (U,α(s)) is compatible with
germ equivalence. That is, if V is another open neighborhood of z in X , and
t ∈ F(V) , and (U, s) is germ equivalent to (V, t) , then (U,α(s)) is germ
equivalent to (V,α(t)) . In short, α determines a map of sets from Fz to
Gz which takes the equivalence class (the germ) of (U, s) to the equivalence
class (the germ) of (U,α(s)) . In category jargon: the assignment

F 7→ Fz

is a functor from PreSh(X) , the category of presheaves on X , to Sets.

When a presheaf F on X is a sheaf, the stalks Fz carry a lot of information
about F . The following theorem illustrates that.

Theorem 5.5. Let β : F → G be a morphism of sheaves on X. Suppose that
for every z ∈ X, the map of stalks Fz → Gz determined by β is a bijection.
Then β is an isomorphism.

Proof. The claim that β is an isomorphism means, abstractly speaking, that
there exists a morphism γ : G → F of sheaves such that β ◦ γ is the identity
on G and γ◦β is the identity on F . In more down-to-earth language it means
simply that βU : F(U) → G(U) is a bijection for every open U in X , so this
is what we have to show. To ease notation, we write β : F(U) → G(U) .
We fix U , an open subset of X . First we want to show that β : F(U) → F(G)
is injective. For that we set up a commutative square of sets and maps:∏

z∈U Fz
β //

∏
z∈U Gz

F(U)

OO

β // G(U)

OO

The left-hand vertical arrow is obtained by noting that each s ∈ F(U) de-
termines a pair (U, s) representing an element of Fz , for each z ∈ U . The
right-hand vertical arrow is similar. We show that the left-hand vertical ar-
row is injective. Suppose that s, t ∈ F(U) have the same image in

∏
z∈U Fz .

It follows that every z ∈ U admits a neighborhood Wz in U such that
s|Wz = t|Wz . Selecting such a Wz for every z ∈ U , we have an open cover

(Wz)z∈U

of U . Since s|Wz = t|Wz for each of the open sets Wz in the cover, the
sheaf property for F implies that s = t . Hence the left-hand vertical arrow
in our square is injective, and so is the right-hand arrow by the same argu-
ment. But the top horizontal arrow is bijective by our assumption. Therefore
β : F(U) → F(G) is injective.
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Next we show that β : F(U) → F(G) is surjective. We can use the same
commutative square that we used to prove injectivity. An element s ∈ G(U)
determines an element of

∏
z∈U Gz (right-hand vertical arrow) which comes

from an element of
∏

z∈U Fz because the top horizontal arrow is bijective.
So for each z ∈ U we can find an element of Fz which under β is mapped to
the germ of s at z (an element of Gz ). In terms of representatives of germs,
this means that for each z ∈ U we can find an open neighborhood Vz of z
in U and an element tz ∈ F(Vz) such that β(tz) = s|Vz ∈ G(Vz) . Selecting
such a Vz for every z ∈ U , we have an open cover

(Vz)z∈U

of U and we have tz ∈ F(Vz) . Can we use the sheaf property of F to produce
t ∈ F(U) such that t|Vz = tz for all z ∈ U ? We need to verify the matching
condition,

tz|Vz∩Vy = ty|Vz∩Vy ∈ F(Vz ∩ Vy)
whenever y, z ∈ U . By the injectivity of β : F(Vz∩Vy) → G(Vz∩Vy) , which
we have established, it is enough to show

β(tz)|Vz∩Vy = β(ty)|Vz∩Vy ∈ G(Vz ∩ Vy).

This clearly holds as β(tz) = s|Vz by construction, so that both sides of the
equation agree with s|Vz∩Vy . So we obtain t ∈ F(U) such that t|Vz = tz for all
z ∈ U . Now it is easy to show that β(t) = s . Indeed we have β(t)|Vz = s|Vz
by construction, for all open sets Vz in the covering (Vz)z∈U of U , so the
sheaf property of F implies β(t) = s . Since s ∈ G(U) was arbitrary, this
means that β : F(U) → G(U) is surjective. �

5.2. Sheafification

Proposition 5.6. Let F be a presheaf on a topological space X. There is
a sheaf ΦF on X and there is a morphism η : F → ΦF of presheaves such
that, for every z ∈ X, the map of stalks Fz → (ΦF)z determined by η is
bijective.

Proof. Let U be an open subset of X . We are going to define (ΦF)(U) as a
subset of the product ∏

z∈U

Fz .

Think of an element of that product as a function s which for every z ∈ U
selects an element s(z) ∈ Fz . The function s qualifies as an element of
(ΦF)(U) if and only if it satisfies the following coherence condition. For
every y ∈ U there is an open neighborhood W of y in U and there is
t ∈ F(W) such that the pair (W, t) simultaneously represents the germs
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s(z) ∈ Fz for all z ∈W .
From the definition, it is clear that there are restriction maps

resV,U : (ΦF)(V) → (ΦF)(U)

whenever U,V are open in X and U ⊂ V . Namely, a function s which selects
an element s(z) ∈ Fz for every z ∈ V determines by restriction a function s|U
which selects an element s(z) ∈ Fz for every z ∈ U . The coherence condition
is satisfied by s|U if it is satisfied by s . With these restriction maps, ΦF is
a presheaf. Furthermore, it is straightforward to see that ΦF satisfies the
sheaf condition. Indeed, suppose that (Vi)i∈Λ is a collection of open subsets
of X , and suppose that elements si ∈ (ΦF)(Vi) have been selected, one for
each i ∈ Λ , such that the matching condition

si|Vi∩Vj = sj|Vi∩Vj

is satisfied for all i, j ∈ Λ . Then clearly we get a function s on V =
⋃
i Vi

which for every z ∈ V selects s(z) ∈ Fz by declaring, unambiguously,

s(z) := si(z)

for any i such that z ∈ Vi . The coherence condition is satisfied because it is
satisfied by each si .
The morphism of presheaves η : F → ΦF is defined in the following mechan-
ical way. Given t ∈ F(U) , we need to say what η(t) ∈ (ΦF)(U) should be.
It is the function which to z ∈ U assigns the element of Fz represented by
the pair (U, t) , that is to say, the germ of (U, t) at z .
Last not least, we need to show that for any z ∈ X the map Fz → (ΦF)z
determined by η is a bijection. We fix z . Injectivity : we consider elements
a and b of Fz represented by pairs (Ua, sa) and (Ub, sb) respectively, where
Ua, Ub are neighborhoods of z and sa ∈ F(Ua) , sb ∈ F(Ub) . Suppose that
a and b are taken to the same element t ∈ (ΦF)z by η . Then in particular
t(z) ∈ Fz is the germ at z of sa , and also the germ at z of sb , so the
germs of sa and sb (elements of Fz ) are equal. Surjectivity : let an element
of (ΦF)z be represented by a pair (U, t) where U is an open neighborhood
of z in X and t ∈ (ΦF)(U) . By the coherence condition, there exists an
open neighborhood W of z in U and there exists s ∈ F(W) such that t|W is
the function which to y ∈W assigns the germ at y of (W, s) , an element of
Fy . But this means that the map of stalks Fz → (ΦF)z determined by the
morphism η takes the element of Fz represented by (W, s) to the element of
(ΦF)z represented by (U, t) . �

Example 5.7. Let T be any set. Let F be the constant presheaf on X given
by F(U) = T for all open subsets U of X (and resV,U : F(V) → F(U) is idT ).
What does the sheaf ΦF look like? This question has quite an interesting
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answer. Let’s keep a cool head and approach it mechanically. For any z ∈ X ,
the stalk Fz can be identified with T . This is easy. Let U be an open subset
of X . The elements of (ΦF)(U) are functions s which for every z ∈ U select
an element s(z) ∈ Fz = T , subject to a coherence condition. So the elements
of (ΦF)(U) are maps s from U to T subject to a coherence condition. What
is the coherence condition? The condition is that s must be locally constant,
i.e., every z ∈ U admits an open neighborhood W in U such that s|W is
constant. So the elements of (ΦF)(U) are the locally constant maps s from
U to T . A locally constant map s from U to T is the same thing as a
continuous map s from U to T , if we agree that T is equipped with the
discrete topology (every subset of T is declared to be open). Summing up,
(ΦF)(U) is the set of continuous functions from U to T . We can say that
ΦF is the sheaf of continuous functions (from open subsets of X) to T .
To appreciate the beauty of this answer, take a space X which is a little
out of the ordinary; for example, Q with the standard topology inherited
from R , or the Cantor set (a subset of R). For T , any set with more than
one element is an interesting choice. (What happens if T has exactly one
element? What happens if T = ∅?)

There are a few things of a general nature to be said about proposition 5.6
— not difficult, not surprising, but important. The construction Φ is a
functor; we can view it as a functor from the category PreSh(X) to itself.
This means in particular that any morphism of presheaves α : F → G on X
determines a morphism

Φα : ΦF → ΦG .

Namely, for s ∈ ΦF(V) we define t = (Φα)(s) ∈ ΦG(V) in such a way that
t(z) ∈ Gz is the image of s(z) ∈ Fz under the map Fz → Gz induced by α .
(It is easy to verify that t satisfies the coherence condition.)
Furthermore η is a natural transformation from the identity functor id on
PreSh(X) to the functor Φ : PreSh(X) → PreSh(X) . This means that, for a
morphism of presheaves α : F → G on X as above, the diagram

F
α //

η

��

G

η

��
ΦF

Φα // ΦG

in PreSh(X) is commutative. That is also easily verified.
There is one more thing of a general nature which must be mentioned. Let
F be any presheaf on X . What happens if we apply the functor Φ to the
morphism ηF : F → ΦF ? The result is obviously a morphism of sheaves

Φ(ηF) : ΦF → Φ(ΦF).



6

It is an isomorphism of sheaves. The verification is easy using theorem 5.5.

The sheaf ΦF is the sheafification (or the associated sheaf ) of the presheaf
F ; also Φ may be called the sheafification functor, or the associated sheaf
functor.

Corollary 5.8. Let β : F → G be any morphism of presheaves on X. If G is
a sheaf, then β has a unique factorization β = β1 ◦ ηF where ηF : F → ΦF

is the morphism of proposition 5.6:

F
β //

ηF
��

G

ΦF

β1

88

Proof. Apply Φ and η to F , G and β to obtain a commutative diagram

F
β //

ηF
��

G

ηG
��

ΦF
Φβ // ΦG

By proposition 5.6, the vertical arrows determine bijections Fz → (ΦF)z and
Gz → (ΦG)z for every z ∈ X . Both G and ΦG are sheaves, so theorem 5.5
applies and we may deduce that the right-hand vertical arrow is an isomor-
phism of sheaves on X . Let λ : ΦG → G be an inverse for that isomorphism.
The factorization problem has a solution, β1 = λ ◦Φβ .
To see that the solution is unique, apply Φ and η to the commutative dia-
gram

F
β //

ηF
��

G

ΦF

88
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in PreSh(X) . The result is a commutative diagram in PreSh(X) in the shape
of a prism:

F

$$

β //

ηF

��

G

ηG

$$
ΦF

$$

::

ΦF
Φβ //

Φ(ηF)

��

ΦG

Φ(ΦF)

::

Here the arrow labeled Φ(ηF) is an isomorphism of sheaves, as noted above
under things of a general nature. This makes the lower dotted arrow unique.
But the arrow labeled ηG is also an isomorphism by theorem 5.5 and the
property of ηG stated in proposition 5.6. This ensures that the upper dotted
arrow is determined by the lower dotted arrow. �

5.3. Mapping cycles

Let X and Y be topological spaces. One of the first examples of a sheaf that
we saw was the sheaf F on X such that

F(U) = set of continuous maps from U to Y

etc., for open U in X . From that we constructed a presheaf G on X such
that that

G(U) = free abelian group generated by F(U)

etc., for open U in X . In other words, G(U) is the set of formal linear
combinations (with coefficients in Z) of continuous functions from X to Y .
It turned out that G is never a sheaf, and for many reasons. The stalk Gz
at z ∈ X can be described (after some unraveling) as the set of formal linear
combinations, with integer coefficients, of germs of continuous maps from
(X, z) to Y . (Recall that germ of continuous maps from (X, z) to Y means
an equivalence class of pairs (U, f) where U is an open neighborhood of z
in X and f : U → Y is continuous.) Of course, we ask what Gz is because
it feeds into the construction of ΦG , the sheafification of G . It is permitted
and even exciting to evaluate ΦG on X , since X is an open subset of X .

Definition 5.9. An element of (ΦG)(X) will be called a mapping cycle from
X to Y .

So what is a mapping cycle from X to Y ?
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First answer. A mapping cycle from X to Y is a function s which for every
z ∈ X selects s(z) , a formal linear combination with integer coefficients of
germs1 of continuous maps from (X, z) to Y . There is a coherence condition
to be satisfied: it must be possible to cover X by open sets Wi such that all
values s(z) , where z ∈Wi , can be simultaneously represented by one formal
linear combination ∑

j

bijfij

where fij : Wi → Y are continuous maps and the bij are integers.

Second answer. A mapping cycle from X to Y can be specified (described,
constructed) by choosing an open cover (Ui)i∈Λ of X and for every i ∈ Λ
a formal linear combination si with integer coefficients of continuous maps2

from Ui to Y . There is a matching condition to be satisfied3: for any i, j ∈ Λ
and any x ∈ Ui ∩ Uj , there should exist an open neighborhood W of x in
Ui ∩Uj such that si|W = sj|W .

(The second answer is in some ways less satisfactory than the first because
it does not say explicitly what a mapping cycle is, only how we can construct
mapping cycles. But it can indeed be useful when we need to construct
mapping cycles.)

Some of the “counter”examples which we saw previously now serve as
illustrations of the concept of mapping cycle.

Example 5.10. If S is a set with 6 elements and T is a set with 2 elements,
both to be viewed as topological spaces with the discrete topology, then
the abelian group of mapping cycles from S to T is isomorphic to Z12 ∼=∏6

i=1(Z⊕ Z) . Do not confuse with Z/12 .

Example 5.11. Let X and Y be two topological spaces related by a covering
map p : Y → X with finite fibers. In other words, p is a fiber bundle whose
fibers are finite sets (viewed as topological spaces with the discrete topology).
For simplicity, suppose also that X is connected. Choose an open covering
(Wj)j∈Λ of X such that p admits a bundle chart over Wj for each j :

hj : p
−1(Wj) →Wj × F

1Grown-up formulation: selects an element in the free abelian group generated by the
set of germs ...

2Grown-up formulation: for every i ∈ Λ an element si in the free abelian group
generated by the set of continuous maps ...

3Did you expect to see the condition

si|Ui∩Uj
= sjUi∩Uj

?

Sheaf theory dictates a weaker condition!
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where F is a finite set (with the discrete topology). For j ∈ Λ and z ∈ F
there is a continuous map σj,z : Wj → Y given by σj,z(x) = h−1

j (x, z) for
x ∈Wj . Define

sj =
∑
z∈F

σj,z .

This is a formal linear combination of continuous maps from Wj to Y . Clearly

si|Wi∩Wj
= sj|Wi∩Wj

(yes, this is more than we require). Therefore, by “second answer”, we have
specified a mapping cycle from X to Y (which agrees with sj on Wj ).

Example 5.12. Let X and Y be topological spaces. Suppose that X =
V1 ∪ V2 where V1 and V2 are open subsets of X . Let continuous maps
f, g : V1 → Y be given such that

f|V1∩V2 = g|V1∩V2 .

Then it makes (some) sense to view the formal linear combination f − g =
1 · f + (−1) · g as a mapping cycle from X to Y . How? We have the open
cover of X consisting of V1 and V2 , and we specify s1 = f − g (a mapping
cycle from V1 to Y ), and s2 = 0 (a mapping cycle from V2 to Y ). Then
s1|V1∩V2 = 0 = s2|V1∩V2 . So the matching condition is satisfied, and so by
“second answer” we have specified a mapping cycle from X to Y .

Mapping cycles are complicated beasts, but I am hoping that readers hav-
ing survived the excursion into sheaf theory remain sufficiently intoxicated
to find the definition obvious and unavoidable. With that, the excursion into
sheaf theory is over (for now, though I do not say never again). Now we
shall try to develop a comfortable relationship with mapping cycles. Here is
a list of some of their good uses and properties.

(1) Every continuous map from X to Y determines a mapping cycle from
X to Y .

(2) The mapping cycles from X to Y form an abelian group.
(3) A mapping cycle from X to Y can be composed with a (continuous)

map from Y to Z to give a mapping cycle from X to Z . A mapping
cycle from Y to Z can be composed with a (continuous) map from X
to Y to give a mapping cycle from X to Z . But more remarkably, a
mapping cycle from X to Y can be composed with a mapping cycle
from Y to Z to give a mapping cycle from X to Z .

(4) Composition of mapping cycles is bilinear.
(5) Mapping cycles satisfy a sheaf property: if (Ui)i∈Λ is an open covering

of X and si : Ui → Y is a mapping cycle, for each i ∈ Λ , such that

si|Ui∩Uj
= sj|Ui∩Uj
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for all i, j ∈ Λ , then there is a unique mapping cycle s from X to Y
such that s|Ui

= si for all i ∈ Λ .
(6) There is exactly one mapping cycle from X to ∅ . And there is exactly

one mapping cycle from ∅ to Y , for any space Y .
(7) Mapping cycles from a topological disjoint union X1

∐
X2 to Y are in

bijection with pairs (s1, s2) where si is a mapping cycle from Xi to
Y for i = 1, 2 . Mapping cycles from X to a topological disjoint union
Y1

∐
Y2 are in bijection with pairs (s1, s2) where si is a mapping

cycle from X to Yi for i = 1, 2 .

Some comments on that.
(1) A continuous map f : X → Y determines a mapping cycle s = sf where
s(z) is the germ of f at z . Interesting observation: the map f 7→ sf from the
set of continuous maps from X to Y to the set of mapping cycles from X to
Y is injective.
(2) Obvious.
(3) Given a mapping cycle s from X to Y and a continuous map g : Y → Z
we get a mapping cycle g ◦ s from X to Z by x 7→ ∑

bj(g ◦ fj) when x ∈ X
and s(x) =

∑
bjfj . Given a mapping cycle s from Y to Z and a continuous

map g : X→ Y we get a mapping cycle s◦g from X to Z by x 7→ ∑
bj(fj◦g)

when x ∈ X and s(x) =
∑
bjfj . Given a mapping cycle s from X to Y and

a mapping cycle t from Y to Z we get a mapping cycle t ◦ s from X to Z
by the formula

x 7→ ∑
(bjcij)(fij ◦ gj)

when x ∈ X and s(x) =
∑

j bjgj and t(gj(x)) =
∑

i cijfij . (The notation
is not fantastically precise; in any case bj , cij etc. are meant to be integers
while fj , gj etc. are meant to be germs of continuous functions. Note that
fij in the last formula is a germ at gj(x) , while gj is a germ at x .)
(4) Should be clear from the last formula in the comment on (3).
(5) By construction.
(6) Mapping cycles from ∅ to Y : there is exactly one by construction. A
mapping cycle s from X to ∅ is a function which for each x ∈ X selects
a formal linear combination of germs of continuous maps from (X, x) to ∅ ,
etc.; since there no such germs, the only possible formal linear combination
is the zero linear combination. This does satisfy the coherence condition.
(7) By construction and by inspection.

In category language, we can say that there is a category ATop whose
objects are the topological spaces and where a morphism from space X to
space Y is a mapping cycle from X to Y . There is an “inclusion” functor

Top → ATop
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taking every object X to the same object X , and taking a morphism f : X→ Y
(continuous map) to the corresponding mapping cycle as explained in (1).
For each X and Y , the set morATop(X, Y) is equipped with the structure of
an abelian group. Composition of morphisms is bilinear. There is a zero
object X in ATop, i.e., an object with the property that morATop(X, Y) has
exactly one element and morATop(Y, X) has exactly one element for arbitrary
Y . Indeed, X = ∅ is a zero object in ATop. The property expressed in
(7) can also be formulated in category language, but we must postpone it
because the vocabulary for that has not been introduced so far. In all, we
can say that ATop is an additive category.


