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Lecture Notes, week 2
Topology WS 2013/14 (Weiss)

2.1. Fiber bundles

Definition 2.1. Let p : E → B be a continuous map between topological
spaces an x ∈ B . The subspace p−1({x}) is sometimes called the fiber of p
over x .

Definition 2.2. Let p : E → B be a continuous map between topological
spaces. We say that p is a fiber bundle if for every x ∈ B there exist an open
neighborhood U of x in B , a topological space F and a homeomorphism
h : p−1(U) → U× F such that h followed by projection to U equals p .

Note that h restricts to a homeomorphism from the fiber of f over x to
{x}× F . Therefore F must be homeomorphic to the fiber of p over x .

Terminology. Often E is called the total space of the fiber bundle and B
is called the base space. A homeomorphism h : p−1(U) → U × F as in the
definition is called a bundle chart.

A fiber bundle p : E→ B whose fibers are discrete spaces (intuitively, just
sets) is also called a covering space. (A discrete space is a topological space
(X,O) in which O is the entire power set of X .)

Here is an easy way to make a fiber bundle with base space B . Choose a
topological space F , set E = B × F and let p : E → B be the projection to
the first factor. Such a fiber bundle is considered unexciting and is therefore
called trivial. Slightly more generally, a fiber bundle p : E → B is trivial if
there exist a topological space F and a homeomorphism h : E→ B× F such
that h followed by the projection B × F → B agrees with p . Equivalently,
the bundle is trivial if it admits a bundle chart h : p−1(U) → U× F where U
is all of B .

Two fiber bundles p0 : E0 → B and p1 : E1 → B with the same base space
B are considered isomorphic if there exists a homeomorphism g : E0 → E1
such that p1 ◦ g = p0 . In that case g is an isomorphism of fiber bundles.

According to the definition above a fiber bundle is a map, but the expres-
sion is often used informally for a space rather than a map (the total space
of the fiber bundle).

Proposition 2.3. Let p : E → B be a fiber bundle where B is a connected
space. Let x0, y0 ∈ B. Then the fibers of p over x0 and y0 , respectively, are
homeomorphic.
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Proof. For every x ∈ B choose an open neighborhood Ux of x ∈ B , a space
Fx and a bundle chart hx : p

−1(Ux) → Ux × Fx . The open sets Ux for all
x ∈ B form an open cover of B . We make an equivalence relation R on the
set B in the following manner: xRy means that there exist elements

x0, x1, . . . , xk ∈ B

such that x0 = x , xk = y and Uxj−1
∩Uxj 6= ∅ for j = 1, . . . , k . Clearly xRy

implies that Fx is homeomorphic to Fy . Therefore it suffices to show that R
has only one equivalence class. Each equivalence class is open, for if x ∈ B
belongs to such an equivalence class, then Ux is contained in the equivalence
class. Each equivalence class is closed, since its complement is open, being
the union of the other equivalence classes. Since B is connected, this means
that there can only be one equivalence class. �

Example 2.4. One example of a fiber bundle is p : R → S1 , where p(t) =
exp(2πit) . We saw this in section 1. To show that it is a fiber bundle, select
some z ∈ S1 and some t ∈ R such that p(t) = z . Let V =]t − δ, t + δ[
where δ is a positive real number, not greater than 1/2 . Then p restricts
to a homeomorphism from V ⊂ R to an open neighborhood U = p(V) of
z in S1 ; let q : U → V be the inverse homeomorphism. Now p−1(U) is the
disjoint union of the translates `+ V , where ` ∈ Z . This amounts to saying
that

g : U× Z → p−1(U)

given by (y,m) 7→ m + q(y) is a homeomorphism. The inverse h of g is
then a bundle chart. Moreover Z plays the role of a discrete space. Therefore
this fiber bundle is a covering space. It is not a trivial fiber bundle because
the total space, R , is not homeomorphic to S1 × Z .

Example 2.5. The Möbius strip leads to another example of a fiber bundle.
Let E ⊂ S1 × C consist of all pairs (z,w) where w2 = c2z for some c ∈ R .
This is an implementation of the Möbius strip. There is a projection

q : E→ S1

given by q(z,w) = z . Let us look at the fibers of q . For fixed z ∈ S1 , the
fiber of q over z is identified with the space of all w ∈ C such that w2 = c2z
for some real c . This is equivalent to w = c

√
z where

√
z is one of the two

roots of z in C . In other words, w belongs to the one-dimensional linear
real subspace of C spanned by the two square roots of z . In particular, each
fiber of q is homeomorphic to R . The fact that all fibers are homeomorphic
to each other should be taken as an indication (though not a proof) that q
is a fiber bundle. The full proof is left as an exercise, along with another
exercise which is slightly harder: show that this fiber bundle is not trivial.
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In preparation for the next example I would like to recall the concept of
one-point compactification. Let X = (X,O) be a locally compact topological
space. (That is to say, X is a Hausdorff space in which every element x ∈ X
has a compact neighborhood.) Let Xc = (Xc,U) be the topological space
defined as follows. As a set, Xc is the disjoint union of X and a singleton
(set with one element, which in this case we call ∞). The topology U on Xc

is defined as follows. A subset V of Xc belongs to U if and only if

• either ∞ /∈ V and V ∈ O ;
• or ∞ ∈ V and Xc r V is a compact subset of X .

Then Xc is compact Hausdorff and the inclusion u : X → Xc determines a
homeomorphism of X with u(X) = Xc r {∞} . The space Xc is called the
one-point compactification of X . The notation Xc is not standard; instead
people often write X ∪∞ and the like. The one-point compactification can
be characterized by various good properties; see books on point set topology.
For use later on let’s note the following, which is clear from the definition
of the topology on Xc . Let Y = (Y,W) be any topological space. A map
g : Y → Xc is continuous if and only if the following hold:

• g−1(X) is open in Y
• the map from g−1(X) to X obtained by restricting g is continuous
• for every compact subset K of X , the preimage g−1(K) is a closed

subset of Y (that is, its complement is an element of W).

Example 2.6. A famous example of a fiber bundle which is also a crucial
example in homotopy theory is the Hopf map from S3 to S2 , so named after
its inventor Heinz Hopf. (Date of invention: around 1930.) Let’s begin with
the observation that S2 is homeomorphic to the one-point compactification
C ∪∞ of C . (The standard homeomorphism from S2 to C ∪∞ is called
stereographic projection.) We use this and therefore describe the Hopf map
as a map

p : S3 → C ∪∞.
Also we like to think of S3 as the unit sphere in C2 . So elements of S3 are
pairs (z,w) where z,w ∈ C and |z|2 + |w|2 = 1 . To such a pair we associate

p(z,w) = z/w

using complex division. This is the Hopf map. Note that in cases where
w = 0 , we must have z 6= 0 as |z|2 = |z|2 + |w|2 = 1 ; therefore z/w can be
understood and must be understood as ∞ ∈ C ∪∞ in such cases. In the
remaining cases, z/w ∈ C .
Again, let us look at the fibers of p before we try anything more ambitious.
Let s ∈ C ∪ ∞ . If s = ∞ , the preimage of {s} under p consists of all
(z,w) ∈ S3 where w = 0 . This is a circle. If s /∈ {0,∞} , the preimage of {s}
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under p consists of all (z,w) ∈ S3 where w 6= 0 and z/w = s . So this is the
intersection of S3 ⊂ C2 with the one-dimensional complex linear subspace
{(z,w) | z = sw} ⊂ C2 . It is also a circle! Therefore all the fibers of p are
homeomorphic to the same thing, S1 . We take this as an indication (though
not a proof) that p is a fiber bundle.
Now we show that p is a fiber bundle. First let U = C , which we view as
an open subset of C ∪∞ . Then

p−1(U) = {(z,w) ∈ S3 ⊂ C2 | w 6= 0} .
A homeomorphism h from there to U× S1 = C× S1 is given by

(z,w) 7→ (z/w,w/|w|).

This has the properties that we require from a bundle chart: the first coordi-
nate of h(z,w) is z/w = p(z,w) . (The formula g(y, z) = (yz, z)/‖(yz, z)‖
defines a homeomorphism g inverse to h .) Next we try V = (C ∪∞)r {0} ,
again an open subset of C∪∞ . We have the following commutative diagram

S3

p

��

α // S3

p

��
C ∪∞ ζ // C ∪∞

where α(z,w) = (w, z) and ζ(s) = s−1 . (This amounts to saying that
p ◦ α = ζ ◦ p .) Therefore the composition

p−1(V)
α // p−1(U)

h // U× S1
(s,w) 7→(s−1,w)

// V × S1

has the properties required of a bundle chart. Since U ∪ V is all of C ∪∞ ,
we have produced enough charts to know that p is a fiber bundle. �

2.2. Restricting fiber bundles

Let p : E→ B be a fiber bundle. Let A be a subset of B . Put E|A = p−1(A) .
This is a subset of E . We want to regard A as a subspace of B (with the
subspace topology) and E|A as a subspace of E .

Proposition 2.7. The map pA : E|A → A obtained by restricting p is also a
fiber bundle.

Proof. Let x ∈ A . Choose a bundle chart h : p−1(U) → U × F for p such
that x ∈ U . Let V = U∩A , an open neighborhood of x in A . By restricting
h we obtain a bundle chart hA : p

−1(V) → V × F for pA . �

Remark. In this proof it is important to remember that a bundle chart
as above is not just any homeomorphism h : p−1(U) → U × F . There is a
condition: for every y ∈ p−1(U) the U-coordinate of h(y) ∈ U × F must
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be equal to p(y) . The following informal point of view is recommended: A
bundle chart h : p−1(U) → U×F for p is just a way to specify, simultaneously
and continuously, homeomorphisms hx from the fibers of p over elements
x ∈ U to F . Explicitly, h determines the hx and the hx determine h by
means of the equation

h(y) = (x, hx(y)) ∈ U× F
when y ∈ p−1(x) , that is, x = p(y) .

Let p : E → B be any fiber bundle. Then B can be covered by open
subsets Ui such that E|Ui

is a trivial fiber bundle. This is true by definition:
choose the Ui together with bundle charts hi : p

−1(Ui) → Ui × Fi . Rename
p−1(Ui) = E|Ui

if you must. Then each hi is a bundle isomorphism of
p|Ui

: E|Ui
→ Ui with a trivial fiber bundle Ui × Fi → Ui .

There are cases where we can say more. One such case merits a detailed
discussion because it takes us back to the concept of homotopy.

Lemma 2.8. Let B be any space and let q : E→ B× [0, 1] be a fiber bundle.
Then B admits a covering by open subsets Ui such that

q|Ui×[0,1] : E|Ui×[0,1] −→ Ui × [0, 1]

is a trivial fiber bundle.

Proof. We fix x0 ∈ B for this proof. We try to construct an open neighbor-
hood U of {x0} in B such that q|U×[0,1] : E|U×[0,1] −→ U × [0, 1] is a trivial
fiber bundle. This is enough.
To minimize bureaucracy let us set it up as a proof by analytic induction.
So let J be the set of all t ∈ [0, 1] for which there exist an open U ′ ⊂ B and
an open subset U ′′ of [0, 1] which is also an interval containing 0 , such that
x0 ∈ U ′ and t ∈ U ′′ and such that q|U ′×U ′′ is a trivial fiber bundle. The
following should be clear.

• J is an open subset of [0, 1] .
• J is nonempty since 0 ∈ J .
• If t ∈ J then [0, t] ⊂ J ; hence J is an interval.

If 1 ∈ J , then we are happy. So we assume 1 /∈ J for a contradiction. Then
J = [0, σ[ for some σ where 0 < σ ≤ 1 . Since q is a fiber bundle, the point
(x0, σ) admits an open neighborhood V in B × [0, 1] with a bundle chart
g : q−1(V) → V × FV . Without loss of generality V has the form V ′ × V ′′
where V ′ ⊂ B is an open neighborhood of x0 in B and V ′′ is an interval
which is also an open neighborhood of σ in [0, 1] . There exists r < σ such
that V ′′ ⊃ [r, σ] . Then r ∈ J and so there exists W = W ′ ×W ′′ open in
B × [0, 1] with a bundle chart h : q−1(W) → U × FW such that x0 ∈ W ′

and W ′′ = [0, τ[ where τ > r . Without loss of generality, W ′ = V ′ . Now
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W ′′∪V ′′ is an open subset of [0, 1] which is an interval (since r ∈W ′′∩V ′′ ).
It contains both 0 and σ . Now let U ′ = V ′ and U ′′ = W ′′ ∪ V ′′ . If we
can show that q|U ′×U ′′ is a trivial fiber bundle, then the proof is complete
because U ′ × U ′′ contains {x0} × [0, σ] , which implies that σ ∈ J , which is
the contradiction that we need. Indeed we can make a bundle chart

k : q−1(U ′ ×U ′′) → (U ′ ×U ′′)× FW
as follows. For (x, t) ∈ U ′ × U ′′ with t ≤ r we take k(x,t) = h(x,t) . For

(x, t) ∈ U ′ ×U ′′ with t ≥ r we take k(x,t) = h(x,r) ◦ g−1(x,r) ◦ g(x,t) .
Decoding: remember that h(x,t) is a homeomorphism from the fiber of q over
(x, t) ∈W ⊂ B× [0, 1] to FW . Similarly g(x,t) is a homeomorphism from the

fiber of q over (x, t) ∈ V ⊂ B× [0, 1] to FV . Also note that h(x,r) ◦ g−1(x,r) is a

homeomorphism from FV to FW , depending on x ∈ V1 =W1 ⊂ B . �


