Lecture Notes, week 1 Topology WS 2013/14 (Weiss)

1.1. The homotopy relation

Let X and Y be topological spaces. (If you are not sufficiently familiar with topological spaces, you should assume that X and Y are metric spaces.) Let f and g be continuous maps from X to Y. Let $[0,1]$ be the unit interval with the standard topology, a subspace of \mathbb{R}.
Definition 1.1. A homotopy from f to g is a continuous map

$$
h: X \times[0,1] \rightarrow Y
$$

such that $h(x, 0)=f(x)$ and $h(x, 1)=g(x)$ for all $x \in X$. If such a homotopy exists, we say that f and g are homotopic, and write $f \simeq g$. We also sometimes write $h: f \simeq g$ to indicate that h is a homotopy from the map f to the map g.
Remark 1.2. If you made the assumption that X and Y are metric spaces, then you should use the product metric on $X \times[0,1]$ and $Y \times[0,1]$, so that for example

$$
d\left(\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right)\right):=\max \left\{d\left(x_{1}, x_{2}\right),\left|t_{1}-t_{2}\right|\right\}
$$

for $x_{1}, x_{2} \in X$ and $t_{1}, t_{2} \in[0,1]$. If you were happy with the assumption that X and Y are "just" topological spaces, then you need to know the definition of product of two topological spaces in order to make sense of $X \times[0,1]$ and $\mathrm{Y} \times[0,1]$.

Remark 1.3. A homotopy $h: X \times[0,1] \rightarrow Y$ from $f: X \rightarrow Y$ to $g: X \rightarrow Y$ can be seen as a "family" of continuous maps

$$
h_{t}: X \rightarrow Y ; h_{t}(x)=h(x, t)
$$

such that $h_{0}=f$ and $h_{1}=g$. The important thing is that h_{t} depends continuously on $t \in[0,1]$.

Example 1.4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the identity map. Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the map such that $g(x)=0 \in \mathbb{R}^{n}$ for all $x \in \mathbb{R}^{n}$. Then f and g are homotopic. The map $h: \mathbb{R}^{n} \times[0,1]$ defined by $h(x, t)=t x$ is a homotopy from f to g.

Example 1.5. Let $\mathrm{f}: \mathrm{S}^{1} \rightarrow S^{1}$ be the identity map, so that $\mathrm{f}(z)=z$. Let $g: S^{1} \rightarrow S^{1}$ be the antipodal map, $g(z)=-z$. Then f and g are homotopic. Using complex number notation, we can define a homotopy by $h(z, t)=e^{\pi i t} z$.

Example 1.6. Let $\mathrm{f}: \mathrm{S}^{2} \rightarrow \mathrm{~S}^{2}$ be the identity map, so that $\mathrm{f}(z)=z$. Let $g: S^{2} \rightarrow S^{2}$ be the antipodal map, $g(z)=-z$. Then f and g are not homotopic. We will prove this later in the course.

Example 1.7. Let $f: S^{1} \rightarrow S^{1}$ be the identity map, so that $f(z)=z$. Let $\mathrm{g}: \mathrm{S}^{1} \rightarrow \mathrm{~S}^{1}$ be the constant map with value 1 . Then f and g are not homotopic. We will prove this quite soon.

Proposition 1.8. "Homotopic" is an equivalence relation on the set of continuous maps from X to Y .

Proof. Reflexive: For every continuous map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ define the constant homotopy $\mathrm{h}: \mathrm{X} \times[0,1] \rightarrow \mathrm{Y}$ by $\mathrm{h}(\mathrm{x}, \mathrm{t})=\mathrm{f}(\mathrm{x})$.
Symmetric: Given a homotopy $h: X \times[0,1] \rightarrow Y$ from a map $f: X \rightarrow Y$ to a map $g: X \rightarrow Y$, define the reverse homotopy $\bar{h}: X \times[0,1] \rightarrow Y$ by $\bar{h}(x, t)=h(x, 1-t)$. Then \bar{h} is a homotopy from g to f.
Transitive: Given continuous maps $e, f, g: X \rightarrow Y$, a homotopy h from e to f and a homotopy k from f to g , define the concatenation homotopy $\mathrm{k} * \mathrm{~h}$ as follows:

$$
(x, t) \mapsto \begin{cases}h(x, 2 t) & \text { if } 0 \leqslant t \leqslant 1 / 2 \\ k(x, 2 t-1) & \text { if } 1 / 2 \leqslant t \leqslant 1\end{cases}
$$

Then $k * h$ is a homotopy from e to g.
Definition 1.9. The equivalence classes of the above relation "homotopic" are called homotopy classes. The homotopy class of a map $f: X \rightarrow Y$ is often denoted by [f]. The set of homotopy classes of maps from X to Y is often denoted by $[\mathrm{X}, \mathrm{Y}]$.

Proposition 1.10. Let X, Y and Z be topological spaces. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{u}: \mathrm{Y} \rightarrow \mathrm{Z}$ and $v: \mathrm{Y} \rightarrow \mathrm{Z}$ be continuous maps. If f is homotopic to g and u is homotopic to v, then $\mathfrak{u} \circ \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Z}$ is homotopic to $v \circ \mathrm{~g}: \mathrm{X} \rightarrow \mathrm{Z}$.

Proof. Let $\mathrm{h}: \mathrm{X} \times[0,1] \rightarrow \mathrm{Y}$ be a homotopy from f to g and let $w:$ $\mathrm{Y} \times[0,1] \rightarrow \mathrm{Z}$ be a homotopy from \boldsymbol{u} to v. Then $\boldsymbol{u} \circ h$ is a homotopy from $u \circ f$ to $u \circ g$ and the map $X \times[0,1] \rightarrow Z$ given by $(x, t) \mapsto w(g(x), t)$ is a homotopy from $u \circ g$ to $v \circ \mathrm{~g}$. Because the homotopy relation is transitive, it follows that $u \circ f \simeq v \circ g$.

Definition 1.11. Let X and Y be topological spaces. A (continuous) map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a homotopy equivalence if there exists a map $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{X}$ such that $\mathrm{g} \circ \mathrm{f} \simeq \mathrm{id}_{\mathrm{X}}$ and $\mathrm{f} \circ \mathrm{g} \simeq \mathrm{id}_{\mathrm{r}}$.
We say that X is homotopy equivalent to Y if there exists a map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ which is a homotopy equivalence.

Definition 1.12. If a topological space X is homotopy equivalent to a point, then we say that X is contractible. This amounts to saying that the identity map $X \rightarrow X$ is homotopic to a constant map from X to X.

Example 1.13. \mathbb{R}^{m} is contractible, for any $m \geq 0$.
Example 1.14. $\mathbb{R}^{m} \backslash\{0\}$ is homotopy equivalent to S^{m-1}.
Example 1.15. The general linear group of \mathbb{R}^{m} is homotopy equivalent to the orthogonal group $\mathrm{O}(\mathrm{m})$. The Gram-Schmidt orthonormalisation process leads to an easy proof of that.

1.2. Homotopy classes of maps from the circle to itself

Let $p: \mathbb{R} \rightarrow S^{1}$ be the (continuous) map given in complex notation by $p(t)=$ $\exp (2 \pi i t)$ and in real notation by $p(t)=(\cos (2 \pi t), \sin (2 \pi t))$. In the first formula we think of S^{1} as a subset of \mathbb{C} and in the second formula we think of S^{1} as a subset of \mathbb{R}^{2}.
Note that p is surjective and $p(t+1)=p(t)$ for all $t \in \mathbb{R}$. We are going to use p to understand the homotopy classification of continuous maps from S^{1} to S^{1}. The main lemma is as follows.

Lemma 1.16. Let $\gamma:[0,1] \rightarrow S^{1}$ be a continuous map and let $a \in \mathbb{R}$ be such that $p(a)=\gamma(0)$. Then there exists a unique continuous map $\tilde{\gamma}:[0,1] \rightarrow \mathbb{R}$ such that $\gamma=\mathrm{p} \circ \tilde{\gamma}$ and $\tilde{\gamma}(0)=a$.

Proof. The map γ is uniformly continuous since [0,1] is compact. It follows that there exists a positive integer n such that $d(\gamma(x), \gamma(y))<1 / 100$ whenever $|x-y| \leq 1 / n$. Here d denotes the standard (euclidean) metric on S^{1} as a subset of \mathbb{R}^{2}. We choose such an n and write

$$
[0,1]=\bigcup_{k=1}^{n}\left[t_{k-1}, t_{k}\right]
$$

where $t_{k}=k / n$. We try to define $\tilde{\gamma}$ on $\left[0, t_{k}\right]$ by induction on k. For the induction beginning we need to define $\tilde{\gamma}$ on $\left[0, t_{1}\right]$ where $t_{1}=1 / n$. Let $\mathrm{U} \subset \mathrm{S}^{1}$ be the open ball of radius $1 / 100$ with center $\gamma(0)$. (Note that open ball is a metric space concept.) Then $\gamma\left(\left[0, \mathrm{t}_{1}\right]\right) \subset \mathrm{U}$. Therefore $\tilde{\gamma}\left(\left[0, \mathrm{t}_{1}\right]\right)$ must be contained in $p^{-1}(\mathrm{U})$. Now $\mathrm{p}^{-1}(\mathrm{U}) \subset \mathbb{R}$ is a disjoint union of open intervals which are mapped homeomorphically to U under p. One of these, call it V_{a}, contains a, since $p(a)=\gamma(0) \in U$. The others are translates of the form $\ell+V_{a}$ where $\ell \in \mathbb{Z}$. Since $\left[0, \mathrm{t}_{1}\right]$ is connected, its image under $\tilde{\gamma}$ will also be connected, whatever $\tilde{\gamma}$ is, and so it must be contained entirely in exactly one of the intervals $\ell+\mathrm{V}_{\mathrm{a}}$. Since we want $\tilde{\gamma}(0)=\mathrm{a}$, we must have $\ell=0$, that is, image of $\tilde{\gamma}$ contained in V_{a}. Since the map p restricts to a homeomorphism from V_{a} to U , we must have $\tilde{\gamma}=\mathrm{q} \gamma$ where q is the
inverse of the homeomorphism from V_{a} to U . This formula determines the $\operatorname{map} \tilde{\gamma}$ on $\left[0, t_{1}\right]$.
The induction steps are like the induction beginning. In the next step we define $\tilde{\gamma}$ on $\left[t_{1}, t_{2}\right]$, using a "new" a which is $\tilde{\gamma}\left(t_{1}\right)$ and a "new" U which is the open ball of radius $1 / 100$ with center $\gamma\left(\mathrm{t}_{1}\right)$.
Now let $\mathrm{g}: \mathrm{S}^{1} \rightarrow \mathrm{~S}^{1}$ be any continuous map. We want to associate with it an integer, the degree of g. Choose $a \in \mathbb{R}$ such that $p(a)=g(1)$. Let $\gamma=g \circ p$ on $[0,1]$; this is a map from $[0,1]$ to S^{1}. Construct $\tilde{\gamma}$ as in the lemma. We have $\mathrm{p} \tilde{\gamma}(1)=\gamma(1)=\gamma(0)=\mathrm{p} \tilde{\gamma}(0)$, which implies $\tilde{\gamma}(1)=\tilde{\gamma}(0)+\ell$ for some $\ell \in \mathbb{Z}$.

Definition 1.17. This ℓ is the degree of g, denoted $\operatorname{deg}(g)$.
It looks as if this might depend on our choice of a with $p(a)=g(1)$. But if we make another choice then we only replace a by $m+a$ for some $m \in \mathbb{Z}$, and we only replace $\tilde{\gamma}$ by $m+\tilde{\gamma}$. Therefore our calculation of $\operatorname{deg}(\mathrm{g})$ leads to the same result.

Remark. Suppose that g: $S^{1} \rightarrow S^{1}$ is a continuous map which is close to the constant map $z \mapsto 1 \in S^{1}$ (complex notation). To be more precise, assume $\mathrm{d}(\mathrm{g}(z), 1)<1 / 1000$ for all $z \in \mathrm{~S}^{1}$. Then $\operatorname{deg}(\mathrm{g})=0$.
The verification is mechanical. Define $\gamma:[0,1] \rightarrow S^{1}$ by $\gamma(t)=g(p(t))$. Let $V \subset \mathbb{R}$ be the open interval from $-1 / 100$ to $1 / 100$. The map p restricts to a homeomorphism from V to $p(V) \subset S^{1}$, with inverse $q: p(V) \rightarrow V$. Put $\tilde{\gamma}=\mathrm{q} \circ \gamma$, which makes sense because the image of γ is contained in $\mathrm{p}(\mathrm{V})$ by our assumption. Then $p \circ \tilde{\gamma}=\gamma$ as required. Now the image of $\tilde{\gamma}$ is contained in V and therefore

$$
|\operatorname{deg}(g)|=|\tilde{\gamma}(1)-\tilde{\gamma}(0)| \leq 2 / 100
$$

and so $\operatorname{deg}(\mathrm{g})=0$.
Remark. Suppose that f, g: $S^{1} \rightarrow S^{1}$ are continuous maps. Let $w: S^{1} \rightarrow S^{1}$ be defined by $w(z)=f(z) \cdot g(z)$ (using the multiplication in $S^{1} \subset \mathbb{C}$). Then $\operatorname{deg}(w)=\operatorname{deg}(f)+\operatorname{deg}(g)$.
The verification is also mechanical. Define $\varphi, \gamma, \omega:[0,1] \rightarrow S^{1}$ by $\varphi(t)=$ $f(p(t)), \gamma(t)=g(p(t))$ and $\omega(t)=w(p(t))$. Construct $\tilde{\varphi}:[0,1] \rightarrow \mathbb{R}$ and $\tilde{\gamma}:[0,1] \rightarrow \mathbb{R}$ as in lemma 1.16. Put $\tilde{\omega}:=\tilde{\varphi}+\tilde{\gamma}$. Then $p \circ \tilde{\omega}=\omega$, so

$$
\operatorname{deg}(w)=\tilde{\omega}(1)-\tilde{\omega}(0)=\cdots=\operatorname{deg}(f)+\operatorname{deg}(g)
$$

Lemma 1.18. If $\mathrm{f}, \mathrm{g}: \mathrm{S}^{1} \rightarrow \mathrm{~S}^{1}$ are continuous maps which are homotopic, $\mathrm{f} \sim \mathrm{g}$, then they have the same degree.
Proof. Let h: $S^{1} \times[0,1] \rightarrow S^{1}$ be a homotopy from f to g. As usual let $h_{t}: S^{1} \rightarrow S^{1}$ be the map defined by $h_{t}(z)=h(z, t)$, for fixed $t \in[0,1]$. For
fixed $t \in[0,1]$ we can find $\delta>0$ such that $d\left(h_{t}(z), h_{s}(z)\right)<1 / 1000$ for all $z \in S^{1}$ and all s which satisfy $|s-t|<\delta$. Therefore $h_{s}(z)=g_{s}(z) \cdot h_{t}(z)$ for such s, where $g_{s}: S^{1} \rightarrow S^{1}$ is a map which satisfies $d\left(g_{s}(z), 1\right)<1 / 1000$ for all $z \in S^{1}$. Therefore $\operatorname{deg}\left(g_{s}\right)=0$ by the remarks above and so $\operatorname{deg}\left(h_{s}\right)=$ $\operatorname{deg}\left(g_{s}\right)+\operatorname{deg}\left(h_{t}\right)=\operatorname{deg}\left(h_{t}\right)$.
We have now shown that the the map $[0,1] \rightarrow \mathbb{Z}$ given by $t \mapsto \operatorname{deg}\left(h_{t}\right)$ is locally constant (equivalently, continuous as a map of metric spaces) and so it is constant (since $[0,1]$ is connected). In particular $\operatorname{deg}(f)=\operatorname{deg}\left(h_{0}\right)=$ $\operatorname{deg}\left(h_{1}\right)=\operatorname{deg}(g)$.
Lemma 1.19. If $\mathrm{f}, \mathrm{g}: \mathrm{S}^{1} \rightarrow \mathrm{~S}^{1}$ are continuous maps which have the same degree, then they are homotopic.
Proof. Certainly f is homotopic to a map which takes 1 to 1 and g is homotopic to a map which takes 1 to 1 (using complex notation, $1 \in S^{1} \subset$ $\mathbb{C})$. Therefore we can assume without loss of generality that $f(1)=1$ and $g(1)=1$.
Let $\varphi:[0,1] \rightarrow S^{1}$ and $\gamma:[0,1] \rightarrow S^{1}$ be defined by $\varphi(t)=f(p(t))$ and $\gamma(\mathrm{t})=\mathrm{g}(\mathrm{p}(\mathrm{t}))$. Construct $\tilde{\varphi}$ and $\tilde{\gamma}$ as in the lemma, using $\mathrm{a}=0$ in both cases, so that $\tilde{\varphi}(0)=0=\tilde{\gamma}(0)$. Then

$$
\tilde{\varphi}(1)=\operatorname{deg}(f)=\operatorname{deg}(g)=\tilde{\gamma}(1)
$$

Note that f can be recovered from $\tilde{\varphi}$ as follows. For $z \in S^{1}$ choose $t \in[0,1]$ such that $p(t)=z$. Then $f(z)=f(p(t))=\varphi(t)=p \tilde{\varphi}(t)$. If $z=1 \in S^{1}$, we can choose $t=0$ or $t=1$, but this ambiguity does not matter since $p \tilde{\varphi}(1)=p \tilde{\varphi}(0)$. Similarly, g can be recovered from $\tilde{\gamma}$. Therefore we can show that f is homotopic to g by showing that $\tilde{\varphi}$ is homotopic to $\tilde{\gamma}$ with endpoints fixed. In other words we need a continuous

$$
\mathrm{H}:[0,1] \times[0,1] \rightarrow \mathbb{R}
$$

where $H(s, 0)=\tilde{\varphi}(s), H(s, 1)=\tilde{\gamma}(s)$ and $H(0, t)=0$ for all $t \in[0,1]$ and $H(1, t)=\tilde{\varphi}(1)=\tilde{\gamma}(1)$ for all $t \in[0,1]$. This is easy to do: let $H(s, t)=$ $(1-\mathrm{t}) \tilde{\varphi}(\mathrm{s})+\mathrm{t} \tilde{\gamma}(\mathrm{s})$.

Summarizing, we have shown that the degree function gives us a well defined map from $\left[S^{1}, S^{1}\right]$ to \mathbb{Z}, and moreover, that this map is injective. It is not hard to show that this map is also surjective! Namely, for arbitrary $\ell \in \mathbb{Z}$ the map $f: S^{1} \rightarrow S^{1}$ given by $f(z)=z^{\ell}$ (complex notation) has $\operatorname{deg}(\mathbf{f})=\ell$. (Verify this.)
Corollary 1.20. The degree function is a bijection from $\left[\mathrm{S}^{1}, \mathrm{~S}^{1}\right]$ to \mathbb{Z}.

