
04.02.2014

Lecture Notes, week 13 and 14
Topology WS 2013/14 (Weiss)

11.1. Homology of the geometric realization

Theorem 11.1. For every semi-simplicial set Y and every n ≥ 0, there is
an isomorphism of the n-th homology group of the chain complex C(Y) with
the n-th homology group of |Y|:

Hn(C(Y)) ∼= Hn(|Y|) .

This can be stated in a slightly more precise way: ... for every n ≥ 0 there
is a natural isomorphism

Hn(C(Y))
∼= // Hn(|Y|).

For this stronger form of the statement, we need to be aware that semi-
simplicial sets form a category and that the rule Y 7→ C(Y) is a functor. How
do semi-simplicial sets form a category? One of several definitions of semi-
simplicial set said that such a thing is a contravariant functor from a certain
category C (with objects [k] = {0, 1, . . . , k} for k ≥ 0 and with injective
order-preserving maps as morphisms) to the category of sets. Therefore it is
very reasonable to say that a morphism from one simplicial set X to another,
Y , is a natural transformation X ⇒ Y between such contravariant functors.
In detail, this means that a morphism α : X → Y is given by a sequence
(αk)k≥0 where each αk : Xk → Yk is a map (of sets). The maps αk are
together subject to a strong condition: for each order-preserving injective
map g : [k] −→ [`] the diagram

X`

g∗

��

α` // Y`

g∗

��
Xk

αk // Yk

is commutative, g∗α` = αkg
∗ . (It is enough to verify this when k = `− 1 , in

which case the custom is to write di for g∗ , where i is the element of [`] not
in the image ofg . Then the condition becomes diα` = α`−1di : X` → Y`−1 .)

How is the rule Y 7→ C(Y) a functor from the category of semi-simplicial
sets to the category of chain complexes? This is now clear: a morphism
α : X → Y of simplicial sets defines a chain map C(α) : C(X) → C(Y) given
by homomorphisms

C(αk) : C(X)k −→ C(Y)k
1
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defined by 〈x〉 7→ 〈αk(x)〉 , where 〈x〉 is the generator corresponding to an
element x ∈ Xk . The condition for a chain map, ∂k ◦ C(αk) = C(αk−1) ◦ ∂k ,
is satisfied because ∂k is defined in terms of the di , which α respects.

The naturality part of theorem 11.1 is important because it will help us to
prove the theorem. The proof occupies all of this section. We are going to
proceed by induction on skeletons.

Definition 11.2. The n-skeleton of a semi-simplicial set Y is the semi-
simplicial set Y≤n defined by

Y≤nk =

{
Yk if k ≤ n
∅ if k > n

and face operators Y≤n` → Y≤nk defined like the corresponding ones in Y if
k, ` ≤ n . (Thus Y≤n is a semi-simplicial subset of Y . For induction purposes
it is useful to allow n = −1 ; we define Y≤−1k = ∅ for all k .)

Lemma 11.3. Let X be a semi-simplicial subset of Y , so that Xn ⊂ Yn for
all n ≥ 0 and the face operators f∗ : Y` → Yk take X` to Xk . Then the
map |X| → |Y| induced by the inclusion X → Y has closed image and is a
homeomorphism onto its image (so that it can be viewed as the inclusion
of a closed subspace). In particular, |Y≤n| can be identified with a closed
subspace of |Y| .

Proof. It follows from lemma 9.2 for example that |X|→ |Y| is injective. The
image is a closed subspace of |Y| by the definition of the topology in |Y| . (This
is easier to see if we reformulate that definition as follows: a subset A of |Y|
is closed if its preimage under each of the characteristic maps cy : ∆

k → |Y|
is closed in ∆k , where y ∈ Yk . When A = |X| , the preimage of A under cy
is the union of some faces of ∆k . This is obviously a closed subset of ∆k .)
By the same reasoning, applied to |X| and to |Y| , we see that a subset of |X|
is closed if and only if its image in |Y| is closed. �

Lemma 11.4. Let X and Y be spaces, X compact Hausdorff. For any map-
ping cycle α from X to Y , there exists a compact subspace K ⊂ Y such that
α factors through K.

Proof. Choose a finite open cover (Ui)i=1,2,...,k of X such that α restricted
to any Ui can be written as a formal linear combination, with integer co-
efficients, of (finitely many) continuous maps:

∑
j aijfij where aij ∈ Z and

the fij : Ui → Y are continuous maps. Choose another finite open cover
(Vi)i=1,2,...,k of X such that the closure V̄i of Vi in X is contained in Ui .
(This is possible because X is compact Hausdorff.) Let K ⊂ Y be the union
of the finitely many compact sets fij(V̄i) . �
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Lemma 11.5. Let Y be a semi-simplicial set. For any compact subset K of
|Y|, there exists a finite semi-simplicial subset X of Y such that K ⊂ |X| ⊂ |Y|.

Proof. Suppose that K is not contained in any subspace of the form |X| ,
where X is a finite semi-simplicial subset of Y . Then it must be possible
to choose elements zj ∈ K for j = 1, 2, 3, 4, . . . (infinitely many) such that
zj has reduced presentation of the form cyj(u) , where the yj ∈ Ynj

are all
distinct (and cyj : ∆

nj → |Y| is the characteristic map associated with yj ,
and we are assuming that u ∈ ∆nj does not belong to the boundary). Let

Wi = |Y|r {zi, zi+1, . . . } .

By construction and by the definition of the topology in |Y| , the sets Wi are
open in |Y| . Clearly Wi ⊂ Wi+1 and

⋃
iWi = |Y| . Therefore the union of

all the sets Wi ∩ K is all of K . We have found an open covering of K which
does not have a finite subcover; contradiction. �

Corollary 11.6. For every element u of Hk(|Y|), there exists a finite semi-
simplicial subset X of Y such that u is in the image of the inclusion-induced
homomorphism Hk(|X|) → Hk(|Y|). Moreover, if X and X ′ are finite semi-
simplicial subsets of Y and v ∈ Hk(|X|), w ∈ Hk(|X ′|) have the same image
in Hk(|Y|), then there exists another finite semi-simplicial subset X ′′ of Y
such that X ⊂ X ′′ , X ′ ⊂ X ′′ and v,w have the same image in Hk(|X

′′|).

Proof. Given u ∈ Hk(|Y|) , represent it by a mapping cycle from Sk to |Y| .
By lemmas 11.4 and 11.5, that mapping cycle factors through |X| for some
finite semi-simplicial subset X of Y . This proves the first part. Now suppose
that v ∈ Hk(|X|) and w ∈ Hk(|X ′|) have the same image in Hk(|Y|) , for
finite semi-simplicial subsets X and X ′ of Y . Recall that Hk(|X|) can be
defined as the cokernel of [[?, |X|]] → [[Sk, |X|]] or alternatively as the kernel
of [[Sk, |X|]] → [[?, |X|]] , where the first homomorphism is induced by the
projection Sk → ? and the other is induced by the inclusion of the base
point in the sphere, ? → Sk . Here the second definition is more useful, so
we represent v by a mapping cycle α : Sk → |X| such that the composition of
α with ?→ Sk is homotopic to 0 as a mapping cycle. In the same way, we
represent w by a mapping cycle β : Sk → |X ′| such that the composition of
β with ?→ Sk is homotopic to 0 as a mapping cycle. Since v and w have
the same image in Hk(|Y|) , there exists a suitable homotopy, i.e., a mapping
cycle γ : Sk × [0, 1]→ |Y| which restricts to α on Sk × {0} ∼= Sk and to β on
Sk×{1} ∼= Sk . By lemma 11.4 and 11.5, that mapping cycle γ factors through
|X ′′| for some finite semi-simplicial subset X ′′ of Y , and we can enlarge X if
necessary to ensure X ′′ ⊃ X and X ′′ ⊃ X ′ . Then clearly v and w have the
same image in Hk(|X

′′|) . �
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Lemma 11.7. For every element u of Hk(|Y|), there exists n ≥ 0 such that
u is in the image of the inclusion-induced homomorphism from Hk(|Y

≤n|) to
Hk(|Y|). Moreover, if v ∈ Hk(|Y≤m|), w ∈ Hk(|Y≤n|) have the same image in
Hk(|Y|), then there exists ` ≥ m,n such that v and w have the same image
already in Hk(|Y

≤`|).

This can be deduced from corollary 11.6, or proved in the same way. —
Let’s now ask how H∗(|Y

≤n−1|) is related to H∗(|Y
≤n|) .

Lemma 11.8. The homomorphism

Hk(|Y
≤n−1|)→ Hk(|Y

≤n|)

induced by the inclusion of |Y≤n−1| in |Y≤n| is an isomorphism for k < n−1,
whereas Hk(|Y

≤n−1|) = 0 for k > n− 1. For k = n− 1 this homomorphism
is part of an exact sequence

0 −→ Hn(|Y
≤n|)

γn //
⊕
x∈Yn

Z βn // Hn−1(|Y
≤n−1|) // Hn−1(|Y

≤n|) // 0 .

Proof. We can assume n ≥ 1 . Let W = |Y≤n| r |Y≤n−1| . In other words,
W consists of all points which can be written in the form cy(u) for some
y ∈ Yn (with characteristic map cy : ∆

n → |Y≤n| ) and some u ∈ ∆n whose
barycentric coordinates are all nonzero: u0, . . . , un > 0 . Let V be the subset
of |Y≤n| obtained by taking out all points of the form cy(b) where y ∈ Yn
and b ∈ ∆n is the barycenter, that is, b0 = b1 = · · · = bn = 1/(n + 1) .
Then V and W are open subsets and V ∪W = |Y≤n| .
Clearly W is homeomorphic to a disjoint union of copies of Rn , one copy
for each y ∈ Yn . Therefore clearly V ∩W (viewed as a subspace of W , if
you wish) is homeomorphic to a disjoint union of copies of Rn r {0} , and
consequently homotopy equivalent to a disjoint union of copies of Sn1 , one
copy for each y ∈ Yn . This means that we know the homology groups of W
and of V ∩W .
Regarding V , we show that the inclusion ι : |Y≤n−1| → V is a homotopy
equivalence. A map in the opposite direction, r : V → |Y≤n−1| , is given by
r(z) = z if r /∈ V ∩W and

r(cy(u)) 7→ cy(ρ(u))

where we assume y ∈ Yn and u ∈ ∆n not equal to the barycenter b , and
ρ(u) is the point in the boundary of ∆n where the straight line through b
and u meets the boundary. Then the composition r ◦ ι is the identity on
|Y≤n−1| , and ι ◦ r is homotopic to the identity on V .
Now we are in a good position to understand the Mayer-Vietoris sequence:

· · ·→ Hk(V ∩W)→ Hk(V)⊕Hk(W)→ Hk(V ∪W)→ Hk−1(V ∩W)→ · · ·
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Since V∩W is homotopy equivalent to a disjoint union of copies of Sn−1 , the
homology groups Hk(V ∩W) are nonzero only for k = n−1 and k = 0 . The
homology groups Hk(W) are nonzero only for k = 0 . It is routine to make
the following deduction from the exactness of the Mayer-Vietoris sequence:

The inclusion V → V ∪W induces an isomorphism

Hk(V)→ Hk(V ∪W)

when k < n − 1 . (This is trivially true when n = 1 . In the cases
n > 1 , the inclusion V ∩ W → W induces an isomorphism from
H0(V ∩W) to H0(W) , and this should be used, too.)

Exactness of the Mayer-Vietoris sequence also permits us to show by induc-
tion on n that

Hk(|Y
≤n|) = Hk(V ∪W) is zero for k > n .

Therefore, if n > 1 , the interesting part of the Mayer-Vietoris sequence
(where k is close to n) is an exact sequence

0→ Hn(V ∪W)→⊕
x∈Yn

Z→ Hn−1(V)→ Hn−1(V ∪W)→ 0

where the 0 on the right is justified as the kernel of the (injective) homo-
morphism Hn−2(V ∩W) → Hn−2(V) ⊕Hn−2(W) . If n = 1 we have instead
an exact sequence

0→ H1(V ∪W)→⊕
x∈Yn

(Z⊕ Z)→ H0(V)⊕
⊕
x∈Yn

Z→ H0(V ∪W)→ 0 .

Here the composite homomorphism⊕
x(Z⊕ Z) // H0(V)⊕

⊕
x Z

proj. //
⊕

x Z

is onto by inspection and its kernel is the antidiagonal
⊕

x Za , where Za ⊂
Z⊕ Z consists of all pairs of integers of the form (r,−r) . Therefore we can
remove some terms and obtain an exact sequence

0→ H1(V ∪W)→⊕
x∈Yn

Z→ H0(V)→ H0(V ∪W)→ 0

in the case n = 1 , too. Finally, using that V ∪W = |Y≤n| and V ' |Y≤n−1| ,
we have the exact sequence that we wanted. �

Corollary 11.9. The inclusion |Y≤n| → |Y| induces an isomorphism in Hk
for k < n, and a surjection for k = n.

Proof. We have a sequence of inclusion-induced homomorphisms

Hk(|Y
≤n|)→ Hk(|Y

≤n+1|)→ Hk(|Y
≤n+2|)→ · · ·
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If k < n , all homomorphisms in the sequence are isomorphisms by lemma 11.8.
Combine this with lemma 11.7 to deduce that Hk(|Y

≤n|)→ Hk(|Y|) is an iso-
morphism. If k = n , the first homomorphism in the sequence is surjective,
the others are isomorphisms. Again combine his with lemma 11.7 to deduce
that Hk(|Y

≤n|)→ Hk(|Y|) is surjective.

Corollary 11.10. Hk(Y) ∼= Hk(D(Y)) where D(Y) is the chain complex
defined as follows:

D(Y)n = C(Y)n =
⊕
x∈Yn

Z

for n ≥ 0 and the differential D(Y)n → D(Y)n−1 is γn−1 ◦ βn with notation
as in lemma 11.8.

(We take the view that γ0 is defined and is an isomorphism from H0(|Y
≤0|)

to
⊕

y∈Y0 Z . This is in good agreement with lemma 11.8. Note also that

(γn−1 ◦ βn) ◦ (γn ◦ βn+1) = 0
because already βn ◦ γn is zero, as can be seen in lemma 11.8. Therefore
D(Y) is indeed a chain complex.)

Proof. From lemma 11.8 we obtain

Hn(|Y|) ∼= Hn(|Y
≤n+1|) ∼=

Hn(|Y
≤n|)

im(βn+1)
∼=
a ker(βn)

im(γn ◦ βn+1)
=b ker(γn−1 ◦ βn)

im(γn ◦ βn+1)
if n > 0 . The isomorphism with superscript a is obtained by using the
injective homomorphism γn to identify Hn(|Y

≤n|) with the subgroup ker(βn)
of

⊕
y∈Yn Z . The equality with superscript b is based on the observation that

γn−1 is injective. For n = 0 we get

H0(|Y|) ∼= H0(|Y
≤1|) ∼=

H0(|Y
≤0|)

im(β1)
∼=
a

⊕
y∈Y0 Z

im(γ0 ◦ β1)
which is again exactly what we want. �

To finish the proof of theorem 11.1 we need to show that the chain com-
plexes D(Y) and C(Y) are the same, or at least isomorphic. We already
have C(Y)n = D(Y)n by construction. It would be wonderful to know that
the boundary homomorphism γn−1 ◦ βn : D(Y)n → D(Y)n−1 agrees with the
boundary homomorphism C(Y)n → C(Y)n−1 from the definition of the chain
complex C(Y) .

Lemma 11.11. These two boundary homomorphisms agree up to a sign; in
other words

(γn−1 ◦ βn)〈x〉 = ±
n∑
i=0

(−1)i〈dix〉
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for x ∈ Yn with corresponding basis element 〈x〉 ∈ D(Y)n . The sign ±
depends on n, but not on Y or x ∈ Yn .

Proof. We begin with the important observation that the construction of
γn−1 ◦ βn was natural. To be more explicit, a morphism f : X → Y of semi-
simplicial sets determines (for any fixed n ≥ 0) a homomorphism from D(X)n
to D(Y)n given by 〈x〉 7→ 〈f(x)〉 for x ∈ Xn , and the resulting diagram

(11.12) D(X)n

��

γn−1◦βn // D(X)n−1

��
D(Y)n

γn−1◦βn // D(Y)n−1

is commutative. (So Y 7→ D(Y)n and Y 7→ D(Y)n−1 are functors, rather
obviously, and now γn−1 ◦βn is claimed to be a natural transformation from
one to the other.) The reason for this is that

• f : X→ Y determines a map |f≤k| : |X≤k|→ |Y≤k| for every k ;
• the preimages under the map |f≤k| of certain open subsets V = VY,k

and W = WY,k of |Y≤k| which we used to set up a Mayer-Vietoris
sequence and so to construct βk and γk are precisely VX,k and WX,k ,
open subsets of |X≤k| .

Therefore naturality of the Mayer-Vietoris sequence applies, and we get the
commutativity of (11.12). — It follows almost immediately that it suffices
to prove our formula

(γn−1 ◦ βn)〈x〉 = ±
n∑
i=0

(−1)i〈dix〉

in the very special case where Y = ∆n and x is the unique element in Yn .
(Recall that Y = ∆n is defined in such a way that Yk for k ≥ 0 is the set
of monotone injective maps from {0, 1, . . . , k} to {0, 1, . . . , n} and boundary
operators are given by composition. We have |∆n| ∼= ∆n .) Indeed, if Z is any
other semi-simplicial set and x ′ ∈ Zn and we wish to know what γn−1 ◦ βn
does to 〈x ′〉 , then we observe that there is precisely one morphism

Y = ∆n −→ Z

which takes the unique x ∈ Yn to x ′ ∈ Zn . So we know what γn−1 ◦βn does
to 〈x ′〉 if we know what it does to 〈x〉 , by the commutativity of (11.12).
Having made the observation, we proceed by induction on n . The case
n = 1 is the induction start. It is not completely trivial. There are exactly
two distinct morphisms ∆0 → ∆1 of semi-simplicial sets. We know that
they induce the same homomorphism H0(|∆

0|) → H0(|∆
1|) . It follows with
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lemma 11.8 that they induce the same homomorphism

H0(D(∆0)) −→ H0(D(∆1)).

Therefore 〈d0x〉− 〈d1x〉 represents zero in H0(D(∆1)) , and so it must be in
the image of

γ0 ◦ β1 : D(∆1)1 ∼= Z −→ D(∆1))0 = Z⊕ Z .

That can only happen if the generator 〈x〉 of D(∆1)1 = Z is taken to

±( 〈d0x〉− 〈d1x〉 )
by γ0 ◦ β1 . This takes care of the case n = 1 .
For the induction step we assume n > 1 . The inductive assumption tells us
what γn−2 ◦ βn−1 : D(∆n)n−1 → D(∆n)n−2 is, up to sign. It follows by direct
computation that the element

n∑
i=0

(−1)i〈dix〉 ∈ D(∆n)n−1

is in the kernel of γn−2 ◦ βn−1 . Therefore it is in the image of γn−1 ◦ βn ,
since Hn−1(D(∆n)) ∼= Hn−1(|∆

n|) = 0 by lemma 11.8. But this can only
happen if the generator 〈x〉 of D(∆n)n = Z is taken to ±(

∑n
i=0(−1)

i〈dix〉)
by γn−1 ◦ βn . �

Proof of theorem 11.1. Write ∂n for the differentials in C(Y) , and ∂ ′n =
γn−1◦βn for the differentials in D(Y) . By lemma 11.11, we have ∂ ′n = an ·∂n
where an ∈ {−1,+1} . This is meaningful because D(Y)n = C(Y)n for all n .
An isomorphism u of chain complexes from C(Y) to D(Y) can be defined
by u0 = id : C(Y)0 → D(Y)0 and un = anan−1 · · ·a2a1 · id : C(Y)n → D(Y)n
for n > 0 . �

Remark. The undetermined sign in lemma 11.11 is slightly annoying. It can
be determined with more work (to me, more annoying). Without a doubt
it is also possible to re-set some basic definitions in such a way that the
undetermined sign turns out to be always + . There are a few places where
we had a choice of sign: notably in defining the boundary operator of the
Mayer-Vietoris sequence, but also in choosing the order of V and W in the
proof of lemma 11.8.

11.2. Semi-simplicial sets and the foundations of homology theory

There is a construction (a functor) which to a topological space X associates
a semi-simplicial set SX . This is quite important in the more standard treat-
ments of homology theory, even though in some of those standard treatments
it does not appear explicitly.
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Definition 11.13. The semi-simplicial set SX has

SXn = set of continuous maps from ∆n to X

for n ≥ 0 . Face operators are given by composition. More precisely, if

f : {0, 1, . . . ,m}→ {0, 1, . . . , n}

is monotone injective, and σ ∈ SXn , meaning that σ : ∆n → X is a con-
tinuous map, then we let f∗σ := σ ◦ f∗ ∈ SXm , where f∗ : ∆

m → ∆n is the
“linear” map determined by f .

In most cases SX is huge. For example, if X = S1 , then clearly each of the
sets SXn is uncountable. But for every X there is a comparison map

κ : |SX| −→ X .

It is defined in such a way that for every σ ∈ SXn , the composition of
characteristic map cσ : ∆n → |SX| with κ : |SX| → X agrees with the map
σ : ∆n → X itself. In many cases the map κ : |SX| → X is a homotopy
equivalence. (It is not a homotopy equivalence in all cases because there are
topological spaces which are not at all homotopy equivalent to the geomet-
ric realization of any semi-simplicial set. In fact this is the only source of
trouble. If X is homotopy equivalent to the geometric realization of some
semi-simplicial set, then κ : |SX| → X is a homotopy equivalence. But the
proof will not be given here.)
Even though κ : |SX|→ X is not a homotopy equivalence in all cases, it can
be shown that the homomorphism Hn(|SX|)→ Hn(X) induced by κ is always
an isomorphism, for all n ≥ 0 . (That proof will not be given here either.)
Therefore

Hn(X) ∼= Hn(|SX|) ∼= Hn(C(SX))

using theorem 11.1. The right-hand expression, Hn(C(SX)) , is the definition
of the n-th homology group of X given in many standard treatments. This
means that chain complexes and their homology are prominent from the
very beginning in those treatments. The standard simplices and the maps
f∗ : ∆

m → ∆n are also prominent from the start. Semi-simplicial sets need
not make an explicit appearance, because it is easy to describe the chain
complex C(SX) is without explaining what a semi-simplicial set is.


