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9.1. Vertex schemes and simplicial complexes

Definition 9.1. A vertex scheme consists of a set V and a subset S of the
power set P(V) , subject to the following conditions: every T ∈ S is finite
and nonempty, every subset of V which has exactly one element belongs to
S , and if T ′ is a nonempty subset of some T ∈ S , then T ′ ∈ S .
The elements of V are called vertices (singular: vertex ) of the vertex scheme.
The elements of S are called distinguished subsets of V .

Example 9.2. The following are examples of vertex schemes:

(i) Let V = {1, 2, 3, . . . , 10} . Define S ⊂ P(V) so that the elements of
S are the following subsets of V : all the singletons, that is to say
{1}, {2}, . . . , {10} , and {1, 2} , {2, 3} , . . . , {9, 10} as well as {10, 1} .

(ii) Let V = {1, 2, 3, 4} and define S ⊂ P(V) so that the elements of S

are exactly the subsets of V which are nonempty and not equal to V .
(iii) Let V be any set and define S so that the elements of S are exactly

the nonempty finite subsets of V .
(iv) Take a regular icosahedron. Let V be the set of its vertices (which

has 12 elements). Define S ⊂ P(V) in such a way that the elements
of S are all singletons, all doubletons which are connected by an edge,
and all tripletons which make up a triangular face of the icosahedron.
(There are twenty such tripletons, which is supposed to explain the
name icosahedron.)

The simplicial complex determined by a vertex scheme (V, S) is a topo-
logical space X = |V |S . We describe it first as a set. An element of X is a
function f : V → [0, 1] such that∑

v∈V

f(v) = 1

and the set {v ∈ V | f(v) > 0} is an element of S .
It should be clear that X is the union of certain subsets ∆(T) , where T ∈
S . Namely, ∆(T) consists of all the functions f : V → [0, 1] for which∑

v∈V f(v) = 1 and f(v) = 0 if v /∈ T . The subsets ∆(T) of X are not
always disjoint. Instead we have ∆(T) ∩ ∆(T ′) = ∆(T ∩ T ′) if T ∩ T ′ is
nonempty; also, if T ⊂ T ′ then ∆(T) ⊂ ∆(T ′) .
The subsets ∆(T) of X , for T ∈ S , come equipped with a preferred topol-
ogy. Namely, ∆(T) is (identified with) a subset of a finite dimensional real
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vector space, the vector space of all functions from T to R , and as such
gets a subspace topology. (For example, ∆(T) is a single point if T has one
element; it is homeomorphic to an edge or closed interval if T has two ele-
ments; it looks like a compact triangle if T has three elements; etc. We say
that ∆(T) is a simplex of dimension m if T has cardinality m + 1 .) These
topologies are compatible in the following sense: if T ⊂ T ′ , then the inclusion
∆(T)→ ∆(T ′) makes a homeomorphism of ∆(T) with a subspace of ∆(T ′) .
We decree that a subset W of X shall be open if and only if W ∩ ∆(T) is
open in ∆(T) , for every T in S . Equivalently, and perhaps more usefully: a
map g from X to another topological space Y is continuous if and only if the
restriction of g to ∆(T) is a continuous from ∆(T) to Y , for every T ∈ S .

Example 9.3. The simplicial complex associated to the vertex scheme (i)
in example 9.2 is homeomorphic to S1 . In (ii) and (iv) of example 9.2, the
associated simplicial complex is homeomorphic to S2 .

Example 9.4. The simplicial complex associated to the vertex scheme (V, S)
where V = {1, 2, 3, 4, 5, 6, 7, 8} and

S =

{
{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {1, 3}, {2, 3}, {3, 4},
{3, 5}, {3, 6}, {4, 5}, {5, 6}, {5, 7}, {7, 8}, {3, 4, 5}, {3, 5, 6}

}
looks like this:

Lemma 9.5. The simplicial complex X = |V |S associated with a vertex
scheme (V, S) is a Hausdorff space.

Proof. Let f and g be distinct elements of X . Keep in mind that f and g
are functions from V to [0, 1] subject to certain conditions. Choose v0 ∈ V
such that f(v0) 6= g(v0) . Let ε = |f(v0) − g(v0)| . Let Uf be the set of all
h ∈ X such that |h(v0) − f(v0)| < ε/2 . Let Ug be the set of all h ∈ X such
that |h(v0) − g(v0)| < ε/2 . From the definition of the topology on X , the
sets Uf and Ug are open. They are also disjoint, for if h ∈ Uf ∩ Ug then
|f(v0)−g(v0)| ≤ |f(v0)−h(v0)|+ |h(v0)−g(v0)| < ε , contradiction. Therefore
f and g have disjoint neighborhoods in X . �
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Lemma 9.6. Let (V, S) be a vertex scheme and (W,T) a vertex sub-scheme,
that is, W ⊂ V and T ⊂ S∩P(W). Then the evident map ι : |W|T → |V |S is
a closed, continuous and injective map and therefore a homeomorphism onto
its image.

Proof. The map ι is obtained by viewing functions from W to [0, 1] as
functions from V to [0, 1] by defining the values on elements of V rW to
be 0 . A subset A of |V |S is closed if and only if A ∩ ∆(T) is closed for the
standard topology on ∆(T) , for every T ∈ S . Therefore, if A is a closed
subset of |V |S , then ι−1(A) is a closed subset of |W|T ; and if C is a closed
subset of |W|S , then ι(C) is closed in |V |S . �

Remark 9.7. The notion of a simplicial complex is old. Related vocabulary
comes in many dialects. I have taken the expression vertex scheme from
Dold’s book Lectures on algebraic topology with only a small change (for
me, ∅ /∈ S). It is in my opinion a good choice of words, but the traditional
expression for that appears to be abstract simplicial complex. Most authors
agree that a simplicial complex (non-abstract) is a topological space with
additional data. For me, a simplicial complex is a space of the form |V |S
for some vertex scheme (V, S) ; other authors prefer to write, in so many
formulations, that a simplicial complex is a topological space X together
with a homeomorphism |V |S → X , for some vertex scheme (V, S) .

9.2. Semi-simplicial sets and their geometric realizations

Semi-simplicial sets are closely related to vertex schemes. A semi-simplicial
set has a geometric realization, which is a topological space; this is similar to
the way in which a vertex scheme determines a simplicial complex.

Definition 9.8. A semi-simplicial set Y consists of a sequence of sets

(Y0, Y1, Y2, Y3, ...)

(each Yk is a set) and, for each injective order-preserving map

f : {0, 1, 2, . . . , k} −→ {0, 1, 2, . . . , `}

where k, ` ≥ 0 , a map f∗ : Y` → Yk . The maps f∗ are called face operators
and they are subject to conditions:

• if f is the identity map from {0, 1, 2, . . . , k} to {0, 1, 2, . . . , k} then f∗

is the identity map from Yk to Yk .
• (g◦f)∗ = f∗◦g∗ when g◦f is defined (so f : {0, 1, . . . , k}→ {0, 1, . . . , `}

and g : {0, 1, . . . , `}→ {0, 1, . . . ,m}).

Elements of Yk are often called k-simplices of Y . If x ∈ Yk has the form
f∗(y) for some y ∈ Y` , then we may say that x is a face of y corresponding
to face operator f∗ .
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Remark 9.9. The definition of a semi-simplicial set can be reformulated in
category language as follows. There is a category C whose objects are the sets
[n] = {0, 1, . . . , n} , where n can be any non-negative integer. A morphism
in C from [m] to [n] is an order-preserving injective map from the set [m]
to the set [n] . Composition of morphisms is, by definition, composition of
such order-preserving injective maps.
A semi-simplicial set is a contravariant functor Y from C to the category of
sets. We like to write Yn instead of Y([n]) . We like to write f∗ : Yn → Ym
instead of Y(f) : Y([n])→ Y([m]) , for a morphism f : [m]→ [n] in C .
Nota bene: if you wish to define (invent) a semi-simplicial set Y , you need to
invent sets Y0, Y1, Y2, . . . (one set Yn for each integer n ≥ 0) and you need
to invent maps f∗ : Yn → Ym , one for each order-preserving injective map
f : [m] → [n] . Then you need to convince yourself that (g ◦ f)∗ = f∗ ◦ g∗
whenever f : [k]→ [`] and g : [`]→ [m] are order-preserving injective maps.

Example 9.10. Let (V, S) be a vertex scheme as in the preceding (sub)section.
Choose a total ordering of V . From these data we can make a semi-simplicial
set Y as follows.

• Yn is the set of all order-preserving injective maps β from {0, 1, . . . , n}
such that im(β) ∈ S . Note that for each T ∈ S of cardinality n+ 1 ,
there is exactly one such β .
• For an order-preserving injective f : {0, 1, . . . ,m} → {0, 1, . . . , n} and
β ∈ Yn , define f∗(β) = β ◦ f ∈ Ym .

In order to warm up for geometric realization, we introduce a (covariant)
functor from the category C in remark 9.9 to the category of topological
spaces. On objects, the functor is given by

{0, 1, 2, . . . ,m} 7→ ∆m

where ∆m is the space of functions u from {0, 1, . . . ,m} to R which satisfy
the condition

∑m
j=0 u(j) = 1 . (As usual we view this as a subspace of the

finite-dimensional real vector space of all functions from {0, 1, . . . , n} to R .
It is often convenient to think of u ∈ ∆n as a vector, (u0, u1, . . . , um) , where
all coordinates are ≥ 0 and their sum is 1 .) Here is a picture of ∆2 as a
subspace of R3 (with basis vectors e0, e1, e2 ):



5

For a morphism f , meaning an order-preserving injective map

f : {0, 1, 2, . . . ,m} −→ {0, 1, 2, . . . , n},

we want to see an induced map

f∗ : ∆
m → ∆n.

This is easy: for u = (u0, u1, . . . , um) ∈ ∆m we define

f∗(u) = v = (v0, v1, . . . , vn) ∈ ∆n

where vj = ui if j = f(i) and vj = 0 if j /∈ im(f) .
(Keep the following informal conventions in mind. For a covariant functor G
from a category A to a category B , and a morphism f : x→ y in A , we often
write f∗ : G(x) → G(y) instead of G(f) : G(x) → G(y) . For a contravariant
functor G from a category A to a category B , and a morphism f : x→ y in
A , we often write f∗ : G(y)→ G(x) instead of G(f) : G(y)→ G(x) .)

The geometric realization |Y| of a semi-simplicial set Y is a topological
space defined as follows. Our goal is to have, for each n ≥ 0 and y ∈ Yn , a
preferred continuous map

cy : ∆
n → |Y|

(the characteristic map associated with the simplex y ∈ Yn ). These maps
should match in the sense that whenever we have an injective order-preserving

f : {0, 1, . . . ,m}→ {0, 1, . . . , n}
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and y ∈ Yn , so that f∗y ∈ Ym , then the diagram

∆n
cy // |Y|

∆m

f∗

OO

cf∗y // |Y|

=

OO

is commutative. There is a “most efficient” way to achieve this. As a set,
let |Y| be the set of all symbols c̄y(u) where y ∈ Yn for some n ≥ 0 and
u ∈ ∆n , modulo the relations1

c̄y(f∗(u)) ∼ c̄f∗y(u)

(notation and assumptions as in that diagram). This ensures that we have
maps cy : ∆

n → |Y| given in the best tautological manner by

cy(u) := equivalence class of c̄y(u) .

Also, those little squares which we wanted to be commutative are now com-
mutative because we enforced it. Finally, we say that a subset U of |Y| shall
be open (definition coming) if and only if c−1y (U) is open in ∆n for each
characteristic map cy : ∆

n → |Y| .

A slightly different way (shorter but possibly less intelligible) to say the
same thing is as follows:

|Y| :=

(∐
n≥0

Yn × ∆n
)/

∼

where ∼ is a certain equivalence relation on
∐

n Yn × ∆n . It is the smallest
equivalence relation which has (y, f∗(u)) equivalent to (f∗y, u) whenever
f : {0, 1, . . . ,m} → {0, 1, . . . , n} is injective order-preserving and y ∈ Yn ,
u ∈ ∆m . Note that, where it says Yn × ∆n , the set Yn is regarded as a
topological space with the discrete topology, so that Yn × ∆n has meaning;
we could also have written

∐
y∈Yn ∆

n instead of Yn × ∆n .
This new formula for |Y| emphasizes the fact that |Y| is a quotient space of
a topological disjoint union of many standard simplices ∆n (one simplex for
every pair (n, y) where y ∈ Yn ). Go ye forth and look up quotient space
or identification topology in your favorite book on point set topology.— To
match the second description of |Y| with the first one, let the element of |Y|
represented by (y, u) ∈ Yn×∆n in the second description correspond to the
element which we called cy(u) in the first description of |Y| .

1Modulo the relations is short for the following process: form the smallest equivalence
relation on the set of all those symbols c̄y(u) which contains the stated relation. Then
pass to the set of equivalence classes for that equivalence relation. That set of equivalence
classes is |Y| .
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Example 9.11. Fix an integer n ≥ 0 . We might like to invent a semi-
simplicial set Y such that |Y| is homeomorphic to ∆n . The easiest way to
achieve that is as follows. Define Yk to be the set of all order-preserving
injective maps from {0, 1, . . . , k} to {0, 1, . . . , n} . So Yk has

(
n+1
k+1

)
elements

(which implies Yk = ∅ if k > n). For an injective order-preserving map

g : {0, 1, . . . , k}→ {0, 1, . . . , `},

define the face operator g∗ : Y` → Yk by g∗(f) = f ◦ g . This makes sense
because f ∈ Y` is an order-preserving injective map from {0, 1, . . . , `} to
{0, 1, . . . , n} .
There is a unique element y ∈ Yn , corresponding to the identity map of
{0, 1, . . . , n} . It is an exercise to verify that the characteristic map cy : ∆

n →
|Y| is a homeomorphism.

Example 9.12. Up to relabeling there is a unique semi-simplicial set Y such
that Y0 has exactly one element, Y1 has exactly one element, and Yn = ∅ for
n > 1 . Then |Y| is homeomorphic to S1 . More precisely, let z ∈ Y1 be the
unique element; then the characteristic map

cz : ∆
1 −→ |Y|

is an identification map. (Translation: it is surjective and a subset of the
target is open in the target if and only if its preimage is open in the source.)
The only identification taking place is cz(a) = cz(b) , where a and b are the
two boundary points of ∆1 .


