Lecture Notes, week 11 Topology WS 2013/14 (Weiss)

9.1. Vertex schemes and simplicial complexes

Definition 9.1. A vertex scheme consists of a set V and a subset \mathcal{S} of the power set $\mathcal{P}(\mathrm{V})$, subject to the following conditions: every $\mathrm{T} \in \mathcal{S}$ is finite and nonempty, every subset of V which has exactly one element belongs to \mathcal{S}, and if T^{\prime} is a nonempty subset of some $\mathrm{T} \in \mathcal{S}$, then $\mathrm{T}^{\prime} \in \mathcal{S}$.
The elements of V are called vertices (singular: vertex) of the vertex scheme. The elements of \mathcal{S} are called distinguished subsets of V .

Example 9.2. The following are examples of vertex schemes:
(i) Let $\mathrm{V}=\{1,2,3, \ldots, 10\}$. Define $\mathcal{S} \subset \mathcal{P}(\mathrm{V})$ so that the elements of \mathcal{S} are the following subsets of V : all the singletons, that is to say $\{1\},\{2\}, \ldots,\{10\}$, and $\{1,2\},\{2,3\}, \ldots,\{9,10\}$ as well as $\{10,1\}$.
(ii) Let $\mathrm{V}=\{1,2,3,4\}$ and define $\mathcal{S} \subset \mathcal{P}(\mathrm{V})$ so that the elements of \mathcal{S} are exactly the subsets of V which are nonempty and not equal to V .
(iii) Let V be any set and define \mathcal{S} so that the elements of \mathcal{S} are exactly the nonempty finite subsets of V .
(iv) Take a regular icosahedron. Let V be the set of its vertices (which has 12 elements). Define $\mathcal{S} \subset \mathcal{P}(\mathrm{V})$ in such a way that the elements of \mathcal{S} are all singletons, all doubletons which are connected by an edge, and all tripletons which make up a triangular face of the icosahedron. (There are twenty such tripletons, which is supposed to explain the name icosahedron.)

The simplicial complex determined by a vertex scheme $(\mathrm{V}, \mathcal{S})$ is a topological space $X=|V|_{s}$. We describe it first as a set. An element of X is a function $f: V \rightarrow[0,1]$ such that

$$
\sum_{v \in V} f(v)=1
$$

and the set $\{v \in \mathrm{~V} \mid \mathrm{f}(v)>0\}$ is an element of \mathcal{S}.
It should be clear that X is the union of certain subsets $\Delta(T)$, where $T \in$ S. Namely, $\Delta(T)$ consists of all the functions $f: V \rightarrow[0,1]$ for which $\sum_{v \in V} f(v)=1$ and $f(v)=0$ if $v \notin T$. The subsets $\Delta(T)$ of X are not always disjoint. Instead we have $\Delta(T) \cap \Delta\left(\mathrm{T}^{\prime}\right)=\Delta\left(\mathrm{T} \cap \mathrm{T}^{\prime}\right)$ if $\mathrm{T} \cap \mathrm{T}^{\prime}$ is nonempty; also, if $\mathrm{T} \subset \mathrm{T}^{\prime}$ then $\Delta(\mathrm{T}) \subset \Delta\left(\mathrm{T}^{\prime}\right)$.
The subsets $\Delta(\mathrm{T})$ of X, for $\mathrm{T} \in \mathcal{S}$, come equipped with a preferred topology. Namely, $\Delta(\mathrm{T})$ is (identified with) a subset of a finite dimensional real
vector space, the vector space of all functions from T to \mathbb{R}, and as such gets a subspace topology. (For example, $\Delta(\mathrm{T})$ is a single point if T has one element; it is homeomorphic to an edge or closed interval if T has two elements; it looks like a compact triangle if T has three elements; etc. We say that $\Delta(\mathrm{T})$ is a simplex of dimension m if T has cardinality $\mathrm{m}+1$.) These topologies are compatible in the following sense: if $\mathrm{T} \subset \mathrm{T}^{\prime}$, then the inclusion $\Delta(\mathrm{T}) \rightarrow \Delta\left(\mathrm{T}^{\prime}\right)$ makes a homeomorphism of $\Delta(\mathrm{T})$ with a subspace of $\Delta\left(\mathrm{T}^{\prime}\right)$. We decree that a subset W of X shall be open if and only if $W \cap \Delta(T)$ is open in $\Delta(T)$, for every T in \mathcal{S}. Equivalently, and perhaps more usefully: a map g from X to another topological space Y is continuous if and only if the restriction of g to $\Delta(T)$ is a continuous from $\Delta(T)$ to Y, for every $T \in \mathcal{S}$.
Example 9.3. The simplicial complex associated to the vertex scheme (i) in example 9.2 is homeomorphic to S^{1}. In (ii) and (iv) of example 9.2, the associated simplicial complex is homeomorphic to S^{2}.
Example 9.4. The simplicial complex associated to the vertex scheme (V, \mathcal{S}) where $V=\{1,2,3,4,5,6,7,8\}$ and

$$
\mathcal{S}=\left\{\begin{array}{l}
\{1\},\{2\},\{3\},\{4\},\{5\},\{6\},\{7\},\{8\},\{1,3\},\{2,3\},\{3,4\}, \\
\{3,5\},\{3,6\},\{4,5\},\{5,6\},\{5,7\},\{7,8\},\{3,4,5\},\{3,5,6\}
\end{array}\right\}
$$

looks like this:

Lemma 9.5. The simplicial complex $\mathrm{X}=|\mathrm{V}|_{s}$ associated with a vertex scheme $(\mathrm{V}, \mathcal{S})$ is a Hausdorff space.
Proof. Let f and g be distinct elements of X. Keep in mind that f and g are functions from V to $[0,1]$ subject to certain conditions. Choose $v_{0} \in \mathrm{~V}$ such that $\mathrm{f}\left(v_{0}\right) \neq \mathrm{g}\left(v_{0}\right)$. Let $\varepsilon=\left|\mathrm{f}\left(v_{0}\right)-\mathrm{g}\left(v_{0}\right)\right|$. Let U_{f} be the set of all $h \in X$ such that $\left|h\left(v_{0}\right)-f\left(v_{0}\right)\right|<\varepsilon / 2$. Let U_{g} be the set of all $h \in X$ such that $\left|h\left(v_{0}\right)-g\left(v_{0}\right)\right|<\varepsilon / 2$. From the definition of the topology on X, the sets U_{f} and U_{g} are open. They are also disjoint, for if $\mathrm{h} \in \mathrm{U}_{\mathrm{f}} \cap \mathrm{U}_{\mathrm{g}}$ then $\left|f\left(v_{0}\right)-g\left(v_{0}\right)\right| \leq\left|f\left(v_{0}\right)-h\left(v_{0}\right)\right|+\left|h\left(v_{0}\right)-g\left(v_{0}\right)\right|<\varepsilon$, contradiction. Therefore f and g have disjoint neighborhoods in X.

Lemma 9.6. Let $(\mathrm{V}, \mathcal{S})$ be a vertex scheme and $(\mathbf{W}, \mathcal{T})$ a vertex sub-scheme, that is, $\mathrm{W} \subset \mathrm{V}$ and $\mathcal{T} \subset \mathcal{S} \cap \mathcal{P}(\mathrm{W})$. Then the evident map $\mathrm{t}:|\mathrm{W}|_{\mathcal{T}} \rightarrow|\mathrm{V}|_{\mathcal{S}}$ is a closed, continuous and injective map and therefore a homeomorphism onto its image.

Proof. The map \mathfrak{l} is obtained by viewing functions from W to $[0,1]$ as functions from V to $[0,1]$ by defining the values on elements of $\mathrm{V} \backslash \mathrm{W}$ to be 0 . A subset A of $|V|_{\delta}$ is closed if and only if $A \cap \Delta(T)$ is closed for the standard topology on $\Delta(\mathrm{T})$, for every $\mathrm{T} \in \mathcal{S}$. Therefore, if \mathcal{A} is a closed subset of $|\mathrm{V}|_{\mathcal{S}}$, then $\mathfrak{l}^{-1}(\mathcal{A})$ is a closed subset of $|W|_{\mathcal{T}}$; and if C is a closed subset of $|W|_{s}$, then $t(C)$ is closed in $|V|_{s}$.

Remark 9.7. The notion of a simplicial complex is old. Related vocabulary comes in many dialects. I have taken the expression vertex scheme from Dold's book Lectures on algebraic topology with only a small change (for me, $\emptyset \notin \mathcal{S}$). It is in my opinion a good choice of words, but the traditional expression for that appears to be abstract simplicial complex. Most authors agree that a simplicial complex (non-abstract) is a topological space with additional data. For me, a simplicial complex is a space of the form $|\mathrm{V}|_{\S}$ for some vertex scheme (V, \mathcal{S}); other authors prefer to write, in so many formulations, that a simplicial complex is a topological space X together with a homeomorphism $|\mathrm{V}|_{S} \rightarrow X$, for some vertex scheme $(\mathrm{V}, \mathcal{S})$.

9.2. Semi-simplicial sets and their geometric realizations

Semi-simplicial sets are closely related to vertex schemes. A semi-simplicial set has a geometric realization, which is a topological space; this is similar to the way in which a vertex scheme determines a simplicial complex.

Definition 9.8. A semi-simplicial set Y consists of a sequence of sets

$$
\left(Y_{0}, Y_{1}, Y_{2}, Y_{3}, \ldots\right)
$$

(each Y_{k} is a set) and, for each injective order-preserving map

$$
f:\{0,1,2, \ldots, k\} \longrightarrow\{0,1,2, \ldots, \ell\}
$$

where $k, \ell \geq 0$, a map $f^{*}: Y_{\ell} \rightarrow Y_{k}$. The maps f^{*} are called face operators and they are subject to conditions:

- if f is the identity map from $\{0,1,2, \ldots, k\}$ to $\{0,1,2, \ldots, k\}$ then f^{*} is the identity map from Y_{k} to Y_{k}.
- $(\mathrm{g} \circ \mathrm{f})^{*}=\mathrm{f}^{*} \circ \mathrm{~g}^{*}$ when $\mathrm{g} \circ \mathrm{f}$ is defined (so $\mathrm{f}:\{0,1, \ldots, \mathrm{k}\} \rightarrow\{0,1, \ldots, \ell\}$ and $\mathrm{g}:\{0,1, \ldots, \ell\} \rightarrow\{0,1, \ldots, \mathrm{~m}\})$.
Elements of Y_{k} are often called k-simplices of Y. If $x \in Y_{k}$ has the form $f^{*}(y)$ for some $y \in Y_{\ell}$, then we may say that x is a face of y corresponding to face operator f^{*}.

Remark 9.9. The definition of a semi-simplicial set can be reformulated in category language as follows. There is a category \mathcal{C} whose objects are the sets $[\mathfrak{n}]=\{0,1, \ldots, n\}$, where \mathfrak{n} can be any non-negative integer. A morphism in \mathcal{C} from $[m]$ to $[\mathrm{n}]$ is an order-preserving injective map from the set [m] to the set $[\mathrm{n}]$. Composition of morphisms is, by definition, composition of such order-preserving injective maps.
A semi-simplicial set is a contravariant functor Y from \mathcal{C} to the category of sets. We like to write Y_{n} instead of $Y([n])$. We like to write $f^{*}: Y_{n} \rightarrow Y_{m}$ instead of $Y(f): Y([n]) \rightarrow Y([m])$, for a morphism $f:[m] \rightarrow[n]$ in \mathcal{C}.
Nota bene: if you wish to define (invent) a semi-simplicial set Y, you need to invent sets $Y_{0}, Y_{1}, Y_{2}, \ldots$ (one set Y_{n} for each integer $n \geq 0$) and you need to invent maps $f^{*}: Y_{n} \rightarrow Y_{m}$, one for each order-preserving injective map $\mathrm{f}:[\mathrm{m}] \rightarrow[\mathrm{n}]$. Then you need to convince yourself that $(\mathrm{g} \circ \mathrm{f})^{*}=\mathrm{f}^{*} \circ \mathrm{~g}^{*}$ whenever $\mathrm{f}:[\mathrm{k}] \rightarrow[\ell]$ and $\mathrm{g}:[\ell] \rightarrow[\mathrm{m}]$ are order-preserving injective maps.

Example 9.10. Let $(\mathrm{V}, \mathcal{S})$ be a vertex scheme as in the preceding (sub)section. Choose a total ordering of V. From these data we can make a semi-simplicial set Y as follows.

- Y_{n} is the set of all order-preserving injective maps β from $\{0,1, \ldots, n\}$ such that $\operatorname{im}(\beta) \in \mathcal{S}$. Note that for each $T \in \mathcal{S}$ of cardinality $n+1$, there is exactly one such β.
- For an order-preserving injective $\mathrm{f}:\{0,1, \ldots, \mathrm{~m}\} \rightarrow\{0,1, \ldots, n\}$ and $\beta \in Y_{n}$, define $f^{*}(\beta)=\beta \circ f \in Y_{m}$.

In order to warm up for geometric realization, we introduce a (covariant) functor from the category \mathcal{C} in remark 9.9 to the category of topological spaces. On objects, the functor is given by

$$
\{0,1,2, \ldots, m\} \mapsto \Delta^{\mathrm{m}}
$$

where Δ^{m} is the space of functions u from $\{0,1, \ldots, \mathfrak{m}\}$ to \mathbb{R} which satisfy the condition $\sum_{j=0}^{\mathfrak{m}} \mathfrak{u}(\mathfrak{j})=1$. (As usual we view this as a subspace of the finite-dimensional real vector space of all functions from $\{0,1, \ldots, n\}$ to \mathbb{R}. It is often convenient to think of $u \in \Delta^{n}$ as a vector, $\left(u_{0}, u_{1}, \ldots, u_{m}\right)$, where all coordinates are ≥ 0 and their sum is 1.) Here is a picture of Δ^{2} as a subspace of \mathbb{R}^{3} (with basis vectors e_{0}, e_{1}, e_{2}):

For a morphism f, meaning an order-preserving injective map

$$
f:\{0,1,2, \ldots, m\} \longrightarrow\{0,1,2, \ldots, n\}
$$

we want to see an induced map

$$
\mathrm{f}_{*}: \Delta^{\mathrm{m}} \rightarrow \Delta^{\mathrm{n}}
$$

This is easy: for $u=\left(u_{0}, u_{1}, \ldots, u_{m}\right) \in \Delta^{m}$ we define

$$
\mathrm{f}_{*}(u)=v=\left(v_{0}, v_{1}, \ldots, v_{\mathrm{n}}\right) \in \Delta^{n}
$$

where $v_{j}=u_{i}$ if $j=f(i)$ and $v_{j}=0$ if $j \notin \operatorname{im}(f)$.
(Keep the following informal conventions in mind. For a covariant functor G from a category \mathcal{A} to a category \mathcal{B}, and a morphism $\mathrm{f}: \mathrm{x} \rightarrow \mathrm{y}$ in \mathcal{A}, we often write $f_{*}: G(x) \rightarrow G(y)$ instead of $G(f): G(x) \rightarrow G(y)$. For a contravariant functor G from a category \mathcal{A} to a category \mathcal{B}, and a morphism $f: x \rightarrow y$ in \mathcal{A}, we often write $f^{*}: G(y) \rightarrow G(x)$ instead of $G(f): G(y) \rightarrow G(x)$.)

The geometric realization $|\mathrm{Y}|$ of a semi-simplicial set Y is a topological space defined as follows. Our goal is to have, for each $n \geq 0$ and $y \in Y_{n}$, a preferred continuous map

$$
c_{y}: \Delta^{n} \rightarrow|Y|
$$

(the characteristic map associated with the simplex $y \in Y_{n}$). These maps should match in the sense that whenever we have an injective order-preserving

$$
f:\{0,1, \ldots, m\} \rightarrow\{0,1, \ldots, n\}
$$

and $y \in Y_{n}$, so that $f^{*} y \in Y_{m}$, then the diagram

is commutative. There is a "most efficient" way to achieve this. As a set, let $|Y|$ be the set of all symbols $\bar{c}_{y}(u)$ where $y \in Y_{n}$ for some $n \geq 0$ and $u \in \Delta^{n}$, modulo the relations ${ }^{1}$

$$
\overline{\mathfrak{c}}_{y}\left(\mathrm{f}_{*}(\mathrm{u})\right) \sim \overline{\mathrm{c}}_{\mathrm{f}^{*} y}(\mathrm{u})
$$

(notation and assumptions as in that diagram). This ensures that we have maps $c_{y}: \Delta^{n} \rightarrow|Y|$ given in the best tautological manner by

$$
\mathrm{c}_{\mathrm{y}}(\mathrm{u}):=\text { equivalence class of } \overline{\mathrm{c}}_{\mathrm{y}}(\mathrm{u}) .
$$

Also, those little squares which we wanted to be commutative are now commutative because we enforced it. Finally, we say that a subset U of $|\mathrm{Y}|$ shall be open (definition coming) if and only if $c_{y}^{-1}(\mathrm{U})$ is open in Δ^{n} for each characteristic map $c_{y}: \Delta^{n} \rightarrow|\mathrm{Y}|$.

A slightly different way (shorter but possibly less intelligible) to say the same thing is as follows:

$$
|Y|:=\left(\coprod_{n \geq 0} Y_{n} \times \Delta^{n}\right) / \sim
$$

where \sim is a certain equivalence relation on $\coprod_{n} Y_{n} \times \Delta^{n}$. It is the smallest equivalence relation which has ($y, f_{*}(u)$) equivalent to ($\left.f^{*} y, u\right)$ whenever $f:\{0,1, \ldots, m\} \rightarrow\{0,1, \ldots, n\}$ is injective order-preserving and $y \in Y_{n}$, $u \in \Delta^{m}$. Note that, where it says $Y_{n} \times \Delta^{n}$, the set Y_{n} is regarded as a topological space with the discrete topology, so that $Y_{n} \times \Delta^{n}$ has meaning; we could also have written $\coprod_{y \in Y_{n}} \Delta^{n}$ instead of $Y_{n} \times \Delta^{n}$.
This new formula for $|\mathrm{Y}|$ emphasizes the fact that $|\mathrm{Y}|$ is a quotient space of a topological disjoint union of many standard simplices Δ^{n} (one simplex for every pair (n, y) where $\left.\mathrm{y} \in \mathrm{Y}_{\mathrm{n}}\right)$. Go ye forth and look up quotient space or identification topology in your favorite book on point set topology.- To match the second description of $|\mathrm{Y}|$ with the first one, let the element of $|\mathrm{Y}|$ represented by $(y, u) \in Y_{n} \times \Delta^{n}$ in the second description correspond to the element which we called $c_{y}(u)$ in the first description of $|\mathrm{Y}|$.

[^0]Example 9.11. Fix an integer $n \geq 0$. We might like to invent a semisimplicial set Y such that $|\mathrm{Y}|$ is homeomorphic to Δ^{n}. The easiest way to achieve that is as follows. Define Y_{k} to be the set of all order-preserving injective maps from $\{0,1, \ldots, k\}$ to $\{0,1, \ldots, n\}$. So Y_{k} has $\binom{n+1}{k+1}$ elements (which implies $Y_{k}=\emptyset$ if $k>n$). For an injective order-preserving map

$$
g:\{0,1, \ldots, k\} \rightarrow\{0,1, \ldots, \ell\}
$$

define the face operator $g^{*}: Y_{\ell} \rightarrow Y_{k}$ by $g^{*}(f)=f \circ g$. This makes sense because $f \in Y_{\ell}$ is an order-preserving injective map from $\{0,1, \ldots, \ell\}$ to $\{0,1, \ldots, n\}$.
There is a unique element $y \in Y_{n}$, corresponding to the identity map of $\{0,1, \ldots, n\}$. It is an exercise to verify that the characteristic map $c_{y}: \Delta^{n} \rightarrow$ $|\mathrm{Y}|$ is a homeomorphism.

Example 9.12. Up to relabeling there is a unique semi-simplicial set Y such that Y_{0} has exactly one element, Y_{1} has exactly one element, and $Y_{n}=\emptyset$ for $n>1$. Then $|Y|$ is homeomorphic to S^{1}. More precisely, let $z \in Y_{1}$ be the unique element; then the characteristic map

$$
\mathrm{c}_{z}: \Delta^{1} \longrightarrow|\mathrm{Y}|
$$

is an identification map. (Translation: it is surjective and a subset of the target is open in the target if and only if its preimage is open in the source.) The only identification taking place is $c_{z}(a)=c_{z}(b)$, where a and b are the two boundary points of Δ^{1}.

[^0]: ${ }^{1}$ Modulo the relations is short for the following process: form the smallest equivalence relation on the set of all those symbols $\bar{c}_{y}(u)$ which contains the stated relation. Then pass to the set of equivalence classes for that equivalence relation. That set of equivalence classes is $|\mathrm{Y}|$.

