Lecture Notes, week 11 Topology WS 2013/14 (Weiss)

9.1. Vertex schemes and simplicial complexes

Definition 9.1. A vertex scheme consists of a set V and a subset S of the power set $\mathcal{P}(V)$, subject to the following conditions: every $T \in S$ is finite and nonempty, every subset of V which has exactly one element belongs to S, and if T' is a nonempty subset of some $T \in S$, then $T' \in S$.

The elements of V are called *vertices* (singular: *vertex*) of the vertex scheme. The elements of S are called *distinguished subsets* of V.

Example 9.2. The following are examples of vertex schemes:

- (i) Let $V = \{1, 2, 3, \dots, 10\}$. Define $S \subset \mathcal{P}(V)$ so that the elements of S are the following subsets of V: all the singletons, that is to say $\{1\}, \{2\}, \dots, \{10\}$, and $\{1, 2\}, \{2, 3\}, \dots, \{9, 10\}$ as well as $\{10, 1\}$.
- (ii) Let $V = \{1, 2, 3, 4\}$ and define $S \subset \mathcal{P}(V)$ so that the elements of S are exactly the subsets of V which are nonempty and not equal to V.
- (iii) Let V be any set and define S so that the elements of S are exactly the nonempty finite subsets of V.
- (iv) Take a regular icosahedron. Let V be the set of its vertices (which has 12 elements). Define $S \subset \mathcal{P}(V)$ in such a way that the elements of S are all singletons, all doubletons which are connected by an edge, and all tripletons which make up a triangular face of the icosahedron. (There are twenty such tripletons, which is supposed to explain the name *icosahedron*.)

The simplicial complex determined by a vertex scheme (V, S) is a topological space $X = |V|_S$. We describe it first as a set. An element of X is a function $f: V \to [0, 1]$ such that

$$\sum_{\nu \in V} f(\nu) = 1$$

and the set $\{v \in V \mid f(v) > 0\}$ is an element of S.

It should be clear that X is the union of certain subsets $\Delta(T)$, where $T \in S$. Namely, $\Delta(T)$ consists of all the functions $f: V \to [0, 1]$ for which $\sum_{v \in V} f(v) = 1$ and f(v) = 0 if $v \notin T$. The subsets $\Delta(T)$ of X are not always disjoint. Instead we have $\Delta(T) \cap \Delta(T') = \Delta(T \cap T')$ if $T \cap T'$ is nonempty; also, if $T \subset T'$ then $\Delta(T) \subset \Delta(T')$.

The subsets $\Delta(T)$ of X, for $T \in S$, come equipped with a preferred topology. Namely, $\Delta(T)$ is (identified with) a subset of a finite dimensional real vector space, the vector space of all functions from T to \mathbb{R} , and as such gets a subspace topology. (For example, $\Delta(T)$ is a single point if T has one element; it is homeomorphic to an edge or closed interval if T has two elements; it looks like a compact triangle if T has three elements; etc. We say that $\Delta(T)$ is a *simplex* of dimension m if T has cardinality m + 1.) These topologies are compatible in the following sense: if $T \subset T'$, then the inclusion $\Delta(T) \rightarrow \Delta(T')$ makes a homeomorphism of $\Delta(T)$ with a subspace of $\Delta(T')$. We decree that a subset W of X shall be *open* if and only if $W \cap \Delta(T)$ is open in $\Delta(T)$, for every T in S. Equivalently, and perhaps more usefully: a map g from X to another topological space Y is continuous if and only if the restriction of g to $\Delta(T)$ is a continuous from $\Delta(T)$ to Y, for every $T \in S$.

Example 9.3. The simplicial complex associated to the vertex scheme (i) in example 9.2 is homeomorphic to S^1 . In (ii) and (iv) of example 9.2, the associated simplicial complex is homeomorphic to S^2 .

Example 9.4. The simplicial complex associated to the vertex scheme (V, S) where $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and

$$S = \left\{ \begin{array}{l} \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}, \{8\}, \{1,3\}, \{2,3\}, \{3,4\}, \\ \{3,5\}, \{3,6\}, \{4,5\}, \{5,6\}, \{5,7\}, \{7,8\}, \{3,4,5\}, \{3,5,6\} \end{array} \right\}$$

looks like this:

Lemma 9.5. The simplicial complex $X = |V|_{S}$ associated with a vertex scheme (V, S) is a Hausdorff space.

Proof. Let f and g be distinct elements of X. Keep in mind that f and g are functions from V to [0, 1] subject to certain conditions. Choose $v_0 \in V$ such that $f(v_0) \neq g(v_0)$. Let $\varepsilon = |f(v_0) - g(v_0)|$. Let U_f be the set of all $h \in X$ such that $|h(v_0) - f(v_0)| < \varepsilon/2$. Let U_g be the set of all $h \in X$ such that $|h(v_0) - g(v_0)| < \varepsilon/2$. From the definition of the topology on X, the sets U_f and U_g are open. They are also disjoint, for if $h \in U_f \cap U_g$ then $|f(v_0) - g(v_0)| \le |f(v_0) - h(v_0)| + |h(v_0) - g(v_0)| < \varepsilon$, contradiction. Therefore f and g have disjoint neighborhoods in X. □

Lemma 9.6. Let (V, S) be a vertex scheme and (W, T) a vertex sub-scheme, that is, $W \subset V$ and $T \subset S \cap \mathcal{P}(W)$. Then the evident map $\iota: |W|_T \to |V|_S$ is a closed, continuous and injective map and therefore a homeomorphism onto its image.

Proof. The map ι is obtained by viewing functions from W to [0,1] as functions from V to [0,1] by defining the values on elements of $V \setminus W$ to be 0. A subset A of $|V|_{S}$ is closed if and only if $A \cap \Delta(T)$ is closed for the standard topology on $\Delta(T)$, for every $T \in S$. Therefore, if A is a closed subset of $|V|_{S}$, then $\iota^{-1}(A)$ is a closed subset of $|W|_{T}$; and if C is a closed subset of $|W|_{S}$, then $\iota(C)$ is closed in $|V|_{S}$.

Remark 9.7. The notion of a simplicial complex is old. Related vocabulary comes in many dialects. I have taken the expression *vertex scheme* from Dold's book *Lectures on algebraic topology* with only a small change (for me, $\emptyset \notin S$). It is in my opinion a good choice of words, but the traditional expression for that appears to be *abstract simplicial complex*. Most authors agree that a *simplicial complex* (non-abstract) is a topological space with additional data. For me, a simplicial complex is a space of the form $|V|_S$ for some vertex scheme (V, S); other authors prefer to write, in so many formulations, that a simplicial complex is a topological space X together with a homeomorphism $|V|_S \to X$, for some vertex scheme (V, S).

9.2. Semi-simplicial sets and their geometric realizations

Semi-simplicial sets are closely related to vertex schemes. A semi-simplicial set has a *geometric realization*, which is a topological space; this is similar to the way in which a vertex scheme determines a simplicial complex.

Definition 9.8. A semi-simplicial set Y consists of a sequence of sets

$$(Y_0, Y_1, Y_2, Y_3, ...)$$

(each Y_k is a set) and, for each injective order-preserving map

$$f: \{0, 1, 2, \dots, k\} \longrightarrow \{0, 1, 2, \dots, \ell\}$$

where $k, \ell \ge 0$, a map $f^*: Y_\ell \to Y_k$. The maps f^* are called *face operators* and they are subject to conditions:

- if f is the identity map from $\{0, 1, 2, \dots, k\}$ to $\{0, 1, 2, \dots, k\}$ then f^{*} is the identity map from Y_k to Y_k .
- $(g \circ f)^* = f^* \circ g^*$ when $g \circ f$ is defined (so $f: \{0, 1, \dots, k\} \rightarrow \{0, 1, \dots, \ell\}$ and $g: \{0, 1, \dots, \ell\} \rightarrow \{0, 1, \dots, m\}$).

Elements of Y_k are often called k-simplices of Y. If $x \in Y_k$ has the form $f^*(y)$ for some $y \in Y_\ell$, then we may say that x is a *face* of y corresponding to face operator f^* .

Remark 9.9. The definition of a semi-simplicial set can be reformulated in category language as follows. There is a category \mathcal{C} whose objects are the sets $[n] = \{0, 1, \ldots, n\}$, where n can be any non-negative integer. A morphism in \mathcal{C} from [m] to [n] is an order-preserving injective map from the set [m] to the set [n]. Composition of morphisms is, by definition, composition of such order-preserving injective maps.

A semi-simplicial set is a contravariant functor Y from \mathcal{C} to the category of sets. We like to write Y_n instead of Y([n]). We like to write $f^*: Y_n \to Y_m$ instead of $Y(f): Y([n]) \to Y([m])$, for a morphism $f: [m] \to [n]$ in \mathcal{C} .

Nota bene: if you wish to define (invent) a semi-simplicial set Y, you need to invent sets Y_0, Y_1, Y_2, \ldots (one set Y_n for each integer $n \ge 0$) and you need to invent maps $f^* \colon Y_n \to Y_m$, one for each order-preserving injective map $f \colon [m] \to [n]$. Then you need to convince yourself that $(g \circ f)^* = f^* \circ g^*$ whenever $f \colon [k] \to [\ell]$ and $g \colon [\ell] \to [m]$ are order-preserving injective maps.

Example 9.10. Let (V, S) be a vertex scheme as in the preceding (sub)section. Choose a total ordering of V. From these data we can make a semi-simplicial set Y as follows.

- Y_n is the set of all order-preserving injective maps β from $\{0, 1, ..., n\}$ such that $im(\beta) \in S$. Note that for each $T \in S$ of cardinality n + 1, there is exactly one such β .
- For an order-preserving injective $f \colon \{0, 1, \ldots, m\} \to \{0, 1, \ldots, n\}$ and $\beta \in Y_n$, define $f^*(\beta) = \beta \circ f \in Y_m$.

In order to warm up for geometric realization, we introduce a (covariant) functor from the category \mathcal{C} in remark 9.9 to the category of topological spaces. On objects, the functor is given by

$$\{0, 1, 2, \ldots, m\} \mapsto \Delta^{\mathfrak{m}}$$

where $\Delta^{\mathfrak{m}}$ is the space of functions \mathfrak{u} from $\{0, 1, \ldots, \mathfrak{m}\}$ to \mathbb{R} which satisfy the condition $\sum_{j=0}^{\mathfrak{m}} \mathfrak{u}(j) = 1$. (As usual we view this as a subspace of the finite-dimensional real vector space of all functions from $\{0, 1, \ldots, \mathfrak{n}\}$ to \mathbb{R} . It is often convenient to think of $\mathfrak{u} \in \Delta^{\mathfrak{n}}$ as a vector, $(\mathfrak{u}_0, \mathfrak{u}_1, \ldots, \mathfrak{u}_{\mathfrak{m}})$, where all coordinates are ≥ 0 and their sum is 1.) Here is a picture of Δ^2 as a subspace of \mathbb{R}^3 (with basis vectors $\mathfrak{e}_0, \mathfrak{e}_1, \mathfrak{e}_2$):

For a morphism f, meaning an order-preserving injective map

$$f: \{0, 1, 2, \ldots, m\} \longrightarrow \{0, 1, 2, \ldots, n\},\$$

we want to see an induced map

$$f_*: \Delta^m \to \Delta^n$$
.

This is easy: for $u = (u_0, u_1, \dots, u_m) \in \Delta^m$ we define

$$f_*(\mathfrak{u}) = \mathfrak{v} = (\mathfrak{v}_0, \mathfrak{v}_1, \dots, \mathfrak{v}_n) \in \Delta^n$$

where $v_j = u_i$ if j = f(i) and $v_j = 0$ if $j \notin im(f)$.

(Keep the following informal conventions in mind. For a covariant functor G from a category \mathcal{A} to a category \mathcal{B} , and a morphism $f: x \to y$ in \mathcal{A} , we often write $f_*: G(x) \to G(y)$ instead of $G(f): G(x) \to G(y)$. For a contravariant functor G from a category \mathcal{A} to a category \mathcal{B} , and a morphism $f: x \to y$ in \mathcal{A} , we often write $f^*: G(y) \to G(x)$ instead of $G(f): G(y) \to G(x)$.)

The geometric realization |Y| of a semi-simplicial set Y is a topological space defined as follows. Our goal is to have, for each $n\geq 0$ and $y\in Y_n$, a preferred continuous map

$$c_{u}: \Delta^{n} \to |Y|$$

(the *characteristic map* associated with the simplex $y \in Y_n$). These maps should match in the sense that whenever we have an injective order-preserving

$$f: \{0, 1, \ldots, m\} \rightarrow \{0, 1, \ldots, n\}$$

and $y \in Y_n$, so that $f^*y \in Y_m$, then the diagram

$$\begin{array}{c} \Delta^{n} \xrightarrow{c_{y}} |Y| \\ \uparrow \\ f_{*} \\ \Delta^{m} \xrightarrow{c_{f^{*}y}} |Y| \end{array}$$

is commutative. There is a "most efficient" way to achieve this. As a set, let |Y| be the set of all symbols $\bar{c}_y(u)$ where $y \in Y_n$ for some $n \ge 0$ and $u \in \Delta^n$, modulo the relations¹

$$\bar{c}_{u}(f_{*}(u)) \sim \bar{c}_{f^{*}u}(u)$$

(notation and assumptions as in that diagram). This ensures that we have maps $c_{\mathfrak{y}} \colon \Delta^n \to |Y|$ given in the best tautological manner by

 $c_u(u) :=$ equivalence class of $\bar{c}_u(u)$.

Also, those little squares which we wanted to be commutative are now commutative because we enforced it. Finally, we say that a subset U of |Y| shall be *open* (definition coming) if and only if $c_y^{-1}(U)$ is open in Δ^n for each characteristic map $c_u : \Delta^n \to |Y|$.

A slightly different way (shorter but possibly less intelligible) to say the same thing is as follows:

$$|Y| := \left(\coprod_{n \ge 0} Y_n \times \Delta^n \right) \Big/ \sim$$

where ~ is a certain equivalence relation on $\coprod_n Y_n \times \Delta^n$. It is the smallest equivalence relation which has $(y,f_*(u))$ equivalent to (f^*y,u) whenever $f\colon \{0,1,\ldots,m\} \to \{0,1,\ldots,n\}$ is injective order-preserving and $y \in Y_n$, $u \in \Delta^m$. Note that, where it says $Y_n \times \Delta^n$, the set Y_n is regarded as a topological space with the discrete topology, so that $Y_n \times \Delta^n$ has meaning; we could also have written $\coprod_{u \in Y_n} \Delta^n$ instead of $Y_n \times \Delta^n$.

This new formula for |Y| emphasizes the fact that |Y| is a *quotient space* of a topological disjoint union of many standard simplices Δ^n (one simplex for every pair (n, y) where $y \in Y_n$). Go ye forth and look up *quotient space* or *identification topology* in your favorite book on point set topology.— To match the second description of |Y| with the first one, let the element of |Y|represented by $(y, u) \in Y_n \times \Delta^n$ in the second description correspond to the element which we called $c_u(u)$ in the first description of |Y|.

 $\mathbf{6}$

¹*Modulo the relations* is short for the following process: form the smallest equivalence relation on the set of all those symbols $\bar{c}_{y}(u)$ which contains the stated relation. Then pass to the set of equivalence classes for that equivalence relation. That set of equivalence classes is |Y|.

Example 9.11. Fix an integer $n \ge 0$. We might like to invent a semisimplicial set Y such that |Y| is homeomorphic to Δ^n . The easiest way to achieve that is as follows. Define Y_k to be the set of all order-preserving injective maps from $\{0, 1, \ldots, k\}$ to $\{0, 1, \ldots, n\}$. So Y_k has $\binom{n+1}{k+1}$ elements (which implies $Y_k = \emptyset$ if k > n). For an injective order-preserving map

$$g: \{0, 1, \ldots, k\} \rightarrow \{0, 1, \ldots, \ell\},\$$

define the face operator $g^* \colon Y_\ell \to Y_k$ by $g^*(f) = f \circ g$. This makes sense because $f \in Y_\ell$ is an order-preserving injective map from $\{0, 1, \ldots, \ell\}$ to $\{0, 1, \ldots, n\}$.

There is a unique element $y \in Y_n$, corresponding to the identity map of $\{0, 1, \ldots, n\}$. It is an exercise to verify that the characteristic map $c_y \colon \Delta^n \to |Y|$ is a homeomorphism.

Example 9.12. Up to relabeling there is a unique semi-simplicial set Y such that Y_0 has exactly one element, Y_1 has exactly one element, and $Y_n = \emptyset$ for n > 1. Then |Y| is homeomorphic to S^1 . More precisely, let $z \in Y_1$ be the unique element; then the characteristic map

$$c_z \colon \Delta^1 \longrightarrow |Y|$$

is an identification map. (Translation: it is surjective and a subset of the target is open in the target if and only if its preimage is open in the source.) The only identification taking place is $c_z(a) = c_z(b)$, where a and b are the two boundary points of Δ^1 .

