Lecture Notes, week 10 Topology WS 2013/14 (Weiss)

8.1. The homotopy decomposition theorem: reductions

Here we reduce the proof of the homotopy decomposition theorem to the following lemmas.

Lemma 8.1. Let Z be a paracompact topological space, Y any topological space. Let $\beta: Z \times [0,1] \to Y$ be a mapping cycle. Write $\iota_0, \iota_1: Z \to Z \times [0,1]$ for the maps given by $\iota_0(z) = (z,0)$ and $\iota_1(z) = (z,1)$. If there exists a decomposition

$$\beta \circ \iota_0 = \beta_0^V + \beta_0^W$$

where β_0^V and β_0^W are mapping cycles from Z to V and W, respectively, then there exists a decomposition $\beta \circ \iota_1 = \beta_1^V + \beta_1^W$.

Lemma 8.2. In the situation of lemma 8.1, every element of Z has an open neighborhood U such that the restriction $\beta_{U \times [0,1]}$ of β to $U \times [0,1]$ admits a decomposition

$$\beta_{U \times [0,1]} = \beta_{U \times [0,1]}^V + \beta_{U \times [0,1]}^W$$

where $\beta_{U\times[0,1]}^V$ and $\beta_{U\times[0,1]}^W$ are mapping cycles from $U\times[0,1]$ to V and W, respectively.

Showing that lemma 8.2 implies lemma 8.1. In the situation of lemma 8.1, choose an open cover $(U_k)_{k\in\Lambda}$ such that the restriction $\beta_{[k]}$ of β to $U_k \times [0, 1]$ admits a decomposition

$$\beta_{[k]} = \beta^V_{[k]} + \beta^W_{[k]}$$
.

Such an open cover exists by lemma 8.2. Since Z is paracompact, there is no loss of generality in assuming that the open cover is locally finite. Moreover, there exists a partition of unity $(\varphi_k)_{k\in\Lambda}$ subordinate to the cover $(U_k)_{k\in\Lambda}$. Choose a total ordering of Λ . If Λ is finite, we can proceed as follows. We may assume that Λ is $\{1, 2, 3, \ldots, m\}$ for some m, with the standard ordering. For $k \in \{0, 1, \ldots, m\}$ let

$$f_k: Z \to Z \times [0, 1]$$

be the function $z \mapsto (z, \sum_{\ell=1}^{k} \varphi_{\ell})$. Then $f_0 = \iota_0$ and $f_m = \iota_1$ in the notation of lemma 8.1. By induction on k we define a decomposition

$$\beta \circ f_k = (\beta \circ f_k)^V + (\beta \circ f_k)^W$$
.

For k = 0 this decomposition (of $\beta \circ f_0 = \beta \circ \iota_0$) is already given to us. If we have constructed the decomposition for $\beta \circ f_{k-1}$, where $0 < k \le m$, we define it for $\beta \circ f_k$ in such a way that

$$(\beta \circ f_k)^{\mathrm{V}} = (\beta \circ f_{k-1})^{\mathrm{V}} + \beta_{[k]}^{\mathrm{V}} \circ f_k - \beta_{[k]}^{\mathrm{V}} \circ f_{k-1}$$

on $U_k\subset Z$ and $(\beta\circ f_k)^V=(\beta\circ f_{k-1})^V$ outside the support of $\phi_k.$ Similarly, define

$$(\beta \circ f_k)^W = (\beta \circ f_{k-1})^W + \beta_{[k]}^W \circ f_k - \beta_{[k]}^W \circ f_{k-1}$$

on U_k and $(\beta\circ f_k)^W=(\beta\circ f_{k-1})^W$ outside the support of $\phi_k.$ Then on U_k we have

$$(\beta \circ f_k)^V + (\beta \circ f_k)^W = \beta \circ f_{k-1} + \beta \circ f_k - \beta \circ f_{k-1} = \beta \circ f_k$$

and outside the support of φ_k we have

$$(\beta \circ f_k)^V + (\beta \circ f_k)^W = (\beta \circ f_{k-1})^V + (\beta \circ f_{k-1})^W = \beta \circ f_{k-1} = \beta \circ f_k .$$

Therefore $(\beta \circ f_k)^V + (\beta \circ f_k)^W = \beta \circ f_k$ as required. The case k = m is the decomposition of $\beta \circ \iota_1 = \beta \circ f_m$ that we are after.

If Λ is not finite, we can proceed as follows. Choose $z \in Z$ and an open neighborhood Q of z in Z such that the set

$$\mathbf{J} = \{ \mathbf{k} \in \boldsymbol{\Lambda} \mid \mathbf{Q} \cap \mathbf{U}_{\mathbf{k}} \neq \emptyset \}$$

is finite. Now J is a finite set with a total ordering, and the φ_j where $j \in J$ constitute a partition of unity for Q, subordinate to the open cover $(U_k \cap Q)_{k \in J}$ of Q. Use this as above to find a decomposition of $\beta \circ \iota_1$, restricted to Q, into summands which are mapping cycles from Q to V and W, respectively. Do this for every z and open neighborhood Q. The decompositions obtained match on overlaps, and so define a decomposition of $\beta \circ \iota_1$ of the required sort.

Showing that lemma 8.1 implies the homotopy decomposition theorem. Given X, Y and a mapping cycle $\gamma: X \times [0,1] \to Y$, we look for a decomposition $\gamma = \gamma^{V} + \gamma^{W}$ where γ^{V} and γ^{W} are mapping cycles from $X \times [0,1]$ to V and W, respectively. There is an additional condition to be satisfied. Namely, γ is zero on an open neighborhood U of $(X \times \{0\}) \cup (C \times [0,1])$ in $X \times [0,1]$, and we want γ^{V}, γ^{W} to be zero on some (perhaps smaller) open neighborhood U' of $(X \times \{0\}) \cup (C \times [0,1])$.

Put $Z = X \times [0, 1]$. Since X was assumed to be paracompact, Z is also paracompact; it is a general topology fact that the product of a paracompact space with a compact Hausdorff space is paracompact. We have a map

h:
$$Z \times [0, 1] \rightarrow Z$$

defined by h((x, s), t)) = (x, st) for $(x, t) \in X \times [0, 1] = Z$ and $t \in [0, 1]$. Now $\beta := \gamma \circ h$ is a mapping cycle from $Z \times [0, 1]$ to Y. In the notation of lemma 8.1, we have

$$eta\circ\iota_1=\gamma,\qquadeta\circ\iota_0\equiv 0$$
 .

There exists a decomposition $\beta_0 = \beta_0^V + \beta_0^W$ because we can take $\beta_0^V \equiv 0$ and $\beta_0^W \equiv 0$. Therefore, by lemma 8.1, there exists a decomposition $\beta \circ \iota_1 = \beta_1^V + \beta_1^W$, and we can write that in the form

$$\gamma=eta_1^V+eta_1^W$$
 .

This is a decomposition of the kind that we are looking for. Unfortunately there is no reason to expect that β_1^V, β_1^W are zero on $(X \times \{0\}) \cup (C \times [0, 1])$, or on a neighborhood of that in $X \times [0, 1]$.

But it is easy to construct a continuous map $\psi: X \times [0,1] \to X \times [0,1]$ such that $\psi(X \times [0,1])$ is contained in the open set U specified above, and such that ψ agrees with the identity on some open neighborhood U' of $(X \times \{0\}) \cup (C \times [0,1])$ in $X \times [0,1]$. Then obviously U' \subset U. Now let

$$\gamma^V = \beta_1^V - (\beta_1^V \circ \psi), \qquad \gamma^W = \beta_1^W - (\beta_1^W \circ \psi).$$

Then $\gamma^{V} + \gamma^{W} = (\beta_{1}^{V} + \beta_{1}^{W}) - (\beta_{1}^{V} + \beta_{1}^{W}) \circ \psi = \gamma - \gamma \circ \psi$. Furthermore $\gamma \circ \psi$ is zero because γ is zero on U and the image of ψ is contained in U. So $\gamma^{V} + \gamma^{W} = \gamma$. Also γ^{V} and γ^{W} are zero on U' by construction, since ψ agrees with the identity on U'.

8.2. Local homotopy decomposition

Proof of lemma 8.2. Call an open subset P of $Z \times [0, 1]$ good if the mapping cycle $\beta_{|P}$ from P to Y can be written as the sum of a mapping cycle from P to V and a mapping cycle from P to W. The goal is to show that every $z \in Z$ has an open neighborhood U such that $U \times [0, 1]$ is good. The proof is based on two observations.

- Every element of $Z \times [0, 1]$ admits a good open neighborhood.
- If U is open in Z and A, B are open subsets of [0, 1] which are also intervals, and if $U \times A$ and $U \times B$ are both good, then $U \times (A \cup B)$ is good.

To prove the first observation, fix $(z, t) \in Z \times [0, 1]$ and choose an open neighborhood Q of that in $Z \times [0, 1]$ such that $\beta_{|Q}$ can be written as a formal linear combination, with coefficients in Z, of continuous maps from Q to Y. Such a Q exists by the definition of *mapping cycle*. Making Q smaller if necessary, we can arrange that each of the (finitely many) continuous maps which appear in that formal linear combination is either a map from Q to V or a map from Q to W. It follows immediately that Q is good.

In proving the second observation, we can easily reduce to a situation where

4

 $A \cap B$ contains an element t_0 , where $0 < t_0 < 1$, and $A \cup B$ is the union of $A \cap [0, t_0]$ and $B \cap [t_0, 1]$. Choose a continuous map $\psi \colon B \to B \cap A$ such that $\psi(s) = s$ for all $s \in B \cap [0, t_0]$. Since $P := U \times A$ is good by assumption, we can write

$$\beta_{|P} = \beta^{V,P} + \beta^{W,P}$$

where the summands in the right-hand side are mapping cycles from P to V and from P to W, respectively. Similarly, letting $Q := U \times B$ we can write

$$\beta_{|Q} = \beta^{V,Q} + \beta^{W,Q}$$

Let $\varphi: Q \to P \cap Q$ be given by $\varphi(z,t) = (z,\psi(t))$. Define $\beta^{V,P \cup Q}$, a mapping cycle from $P \cup Q$ to V, as follows:

$$\beta^{V,P\cup Q} = \left\{ \begin{array}{ll} \beta^{V,P} & \mathrm{on} \quad P \cap (U \times [0,t_0[\,) \\ \beta^{V,Q} - (\beta^{V,Q} \circ \phi) + (\beta^{V,P} \circ \phi) & \mathrm{on} \quad Q \, . \end{array} \right.$$

This is well defined because the two formulas agree on the intersection of Q and $U \times [0, t_0[$, where φ agrees with the identity. Similarly, define $\beta^{W, P \cup Q}$, a mapping cycle from $P \cup Q$ to W, as follows:

$$\beta^{W,P\cup Q} = \left\{ \begin{array}{ll} \beta^{W,P} & \mathrm{on} \quad P \cap (U \times [0,t_0[\,) \\ \beta^{W,Q} - (\beta^{W,Q} \circ \phi) + (\beta^{W,P} \circ \phi) & \mathrm{on} \quad Q \, . \end{array} \right.$$

An easy calculation shows that $\beta^{V,P\cup Q} + \beta^{W,P\cup Q} = \beta_{|P\cup Q}$. Therefore $P \cup Q = U \times (A \cup B)$ is good. The second observation is established.

Now fix $z_0 \in Z$. By the first of the observations, it is possible to choose for each $t \in [0, 1]$ a good open neighborhood Q_t of (z_0, t) in $Z \times [0, 1]$. By a little exercise, there exists an open neighborhood U of z_0 in Z and a small number $\delta = 1/n$ (where n is a positive integer) such that each of the open sets

$$\begin{aligned} \mathbf{U} \times [0, 2\delta[, \mathbf{U} \times] \mathbf{1}\delta, \mathbf{3}\delta[, \mathbf{U} \times] 2\delta, 4\delta[, \dots, \\ \mathbf{U} \times] \mathbf{1} - \mathbf{3}\delta, \mathbf{1} - \mathbf{1}\delta[, \mathbf{U} \times] \mathbf{1} - 2\delta, \mathbf{1}] \end{aligned}$$

in $Z \times [0,1]$ is contained in Q_t for some $t \in [0,1]$. Therefore these open sets $U \times [0,2\delta[, U \times] 1\delta, 3\delta[$ etc. are also good. By the second of the two observations, applied (n-2) times, their union, which is $U \times [0,1]$, is also good.

8.3. Relationship with fiber bundles

The proof of the homotopy decomposition theorem as given above has many surprising similarities with proofs in section 3 related to fiber bundles (theorem 3.4, corollaries 3.7 and 3.8., and improvements in section 3.4). I cannot resist the temptation to explain these similarities now, after the proof.

Let E and B be topological spaces and let $p: E \to B$ be a fiber bundle. We need to be a little more precise by requiring that $p: E \to B$ be a fiber bundle

with fiber F, for a fixed topological space F. This is supposed to mean that every fiber of p is homeomorphic to F in some way. (We learned in section 2 that every fiber bundle over a path connected space is a fiber bundle with fiber F, for some F.) With this situation we can associate two presheaves \mathcal{T} and \mathcal{H}_F on B.

- For an open set U in B, let $\mathcal{H}_F(U)$ be the group of homeomorphisms h: $U \times F \to U \times F$ respecting the projection to U.
- For open U in B let $\mathfrak{T}(U)$ be the set of trivializations of the fiber bundle $E_{|U} \to U,$ that is, the set of all homeomorphisms $p^{-1} \to U \times F$ respecting the projections to U.
- An inclusion of open sets $\, U_0 \hookrightarrow U_1 \, \operatorname{\,in\,} B \, \operatorname{\,induces\,} \operatorname{maps}$

$$\mathcal{H}_{\mathsf{F}}(\mathsf{U}_1) \to \mathcal{H}_{\mathsf{F}}(\mathsf{U}_0), \qquad \mathcal{T}(\mathsf{U}_1) \to s\mathsf{T}(\mathsf{U}_0)$$

by restriction of homeomorphisms.

In fact it is clear that \mathfrak{T} and \mathcal{H}_F are sheaves. Clearly \mathcal{H}_F is a sheaf of groups, that is, each set $\mathcal{H}_F(\mathfrak{U})$ comes with a group structure and the restriction maps $\mathcal{H}_F(\mathfrak{U}_1) \to \mathcal{H}_F(\mathfrak{U}_0)$ are group homomorphisms. By contrast \mathfrak{T} is not a sheaf of groups in any obvious way. But there is an *action* of the group $\mathcal{H}_F(\mathfrak{U})$ on the set $\mathfrak{T}(\mathfrak{U})$ given by

$$(\mathbf{h},\mathbf{g})\mapsto\mathbf{h}\circ\mathbf{g}$$

(composition of homeomorphisms, where $h \in \mathcal{H}_F(U)$ and $g \in \mathcal{T}(U)$). This is compatible with restriction maps (reader, make this precise). Moreover:

- (1) for any $g \in \mathfrak{T}(U)$, the map $\mathfrak{H}_F(U) \to \mathfrak{T}(U)$ given by $h \mapsto h \circ g$ is a bijection;
- (2) every $z \in B$ has an open neighborhood U such that $\mathfrak{T}(U) \neq \emptyset$.

(Of course, despite (1), it can happen that $\mathcal{T}(U)$ is empty for some open subsets U of B, for example, U = B.) The proof of (1) is easy and by inspection; (2) holds by the definition of *fiber bundle*. There are words and expressions to describe this situation: we can say that \mathcal{H}_F is a sheaf of groups on B and \mathcal{T} is an \mathcal{H}_F -torsor.

This reasoning shows that a fiber bundle on B with fiber F determines an \mathcal{H}_F -torsor on B. It is also true (and useful, and not very hard to prove, though it will not be explained here) that the process can be reversed: every \mathcal{H}_F -torsor on B determines a fiber bundle with fiber F on B. So it transpires that section 3 about fiber bundles could alternatively have been written in the language of sheaves (of sets or groups) and torsors. Note that we are often interested in questions like this one: is $\mathcal{T}(B)$ nonempty? This amounts to asking whether the fiber bundle \mathbf{p} is a trivial fiber bundle.

Remark 8.3. For the sake of honesty it should be pointed out that \mathcal{H}_{F} is a sheaf on *all topological spaces* simultaneously, and this would become

important if we really wanted to rewrite section 3 in sheaf language. In more detail:

- We can view \mathcal{H}_F as a contravariant functor from topological spaces to groups. Indeed, for a topological space X let $\mathcal{H}_F(X)$ be the group of homeomorphisms from $X \times F$ to $X \times F$ respecting the projection to X. A continuous map $X_0 \to X_1$ induces a map $\mathcal{H}_F(X_1) \to \mathcal{H}_F(X_0)$ which is a group homomorphism.
- If we evaluate this functor only on open subsets of a fixed space X, and on inclusion maps $U_0 \rightarrow U_1$ of open subsets of X, then the resulting presheaf on X is in fact a sheaf on X.

There are also words and expressions for this; to keep it short, I will just say that \mathcal{H}_{F} is a *big sheaf*.

Now try to forget fiber bundles for a while. We return to the homotopy decomposition theorem. Assume that $Y = V \cup W$ as in the homotopy decomposition theorem. Let Z be any topological space and fix α , a mapping cycle from Z to Y. We introduce two presheaves \mathcal{F} and \mathcal{G} on Z.

- For an open set U in Z, let $\mathcal{G}(U)$ be the abelian group of mapping cycles from U to $V \cap W$.
- For open U in Z let $\mathcal{F}(U)$ be the set of mapping cycles β from U to V such that $\alpha_{|U}-\beta$ is a mapping cycle from U to W. To put it differently: an element β of $\mathcal{F}(U)$ is, or amounts to, a sum decomposition

$$\alpha_{|\mathcal{U}} = \beta + (\alpha_{|\mathcal{U}} - \beta)$$

where the two summands β and $\alpha_{|u} - \beta$ are mapping cycles from U to V and from U to W, respectively.

- An inclusion of open sets $U_0 \hookrightarrow U_1$ in Z induces maps

$$\mathfrak{G}(\mathfrak{U}_1) \to \mathfrak{G}(\mathfrak{U}_0), \qquad \mathfrak{F}(\mathfrak{U}_1) \to \mathfrak{sF}(\mathfrak{U}_0)$$

by restriction of mapping cycles.

It is easy to see that \mathcal{F} and \mathcal{G} are *sheaves*, and \mathcal{G} is even a sheaf of abelian groups on Z. By contrast \mathcal{F} is not in an obvious way a sheaf of abelian groups. But there is an *action* of the group $\mathcal{G}(\mathcal{U})$ on the set $\mathcal{F}(\mathcal{U})$ given by

$$(\lambda, \beta) \mapsto \lambda + \beta$$
.

(In this formula, $\lambda \in \mathfrak{G}(U)$ and $\beta \in \mathfrak{F}(U)$; then $\lambda + \beta$ can be viewed as a mapping cycle from U to V and it turns out to be an element of $\mathfrak{F}(U)$.) Moreover:

- (1) for any $\beta \in \mathcal{F}(U)$, the map $\mathcal{G}(U) \to \mathcal{F}(U)$ given by $\lambda \mapsto \lambda + \beta$ is a bijection;
- (2) every $z \in Z$ has an open neighborhood U such that $\mathcal{F}(U) \neq \emptyset$.

6

(Of course it is quite possible, despite (1), that $\mathcal{F}(\mathbf{U})$ is empty for some open subsets \mathbf{U} of \mathbf{Z} , for example, $\mathbf{U} = \mathbf{Z}$.) The proof of (1) is easy and by inspection; the proof of (2) was given in a special case earlier, but it can be repeated. Choose a neighborhood \mathbf{U} of \mathbf{z} such that $\alpha_{|\mathbf{U}|}$ can be represented by a formal linear combination, with integer coefficients, of continuous maps from \mathbf{U} to \mathbf{Y} . Making \mathbf{U} smaller if necessary, we can assume that each of the (finitely many) continuous maps which appear in that formal linear combination is either a map from \mathbf{U} to \mathbf{V} or a map from \mathbf{U} to \mathbf{W} . Then it is clear that $\alpha_{|\mathbf{U}|}$ can be written as a sum of two mapping cycles, one from \mathbf{U} to \mathbf{V} and the other from \mathbf{U} to \mathbf{W} . So $\mathcal{F}(\mathbf{U})$ is nonempty.

So we see that \mathcal{G} is a sheaf of abelian groups on Z and \mathcal{F} is a \mathcal{G} -torsor. Again we are interested in questions like this one: is $\mathcal{F}(Z)$ nonempty? This is equivalent to asking whether our fixed mapping cycle α from Z to Y can be written as a sum of two mapping cycles, one from Z to V and one from Zto W. And again, for the sake of honesty, it should be noted that \mathcal{G} is a big sheaf of abelian groups. (If we wanted to rewrite the proof of the homotopy decomposition theorem in sheaf and torsor language, that would have to be used.)