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Lecture Notes, week 10
Topology WS 2013/14 (Weiss)

8.1. The homotopy decomposition theorem: reductions

Here we reduce the proof of the homotopy decomposition theorem to the
following lemmas.

Lemma 8.1. Let Z be a paracompact topological space, Y any topological
space. Let B: Zx[0,1] =Y be a mapping cycle. Write g, 41: Z — Z x [0, 1]
for the maps given by (z) = (z,0) and y(z) = (z,1). If there exists a
decomposition

Bot =Ry + By

where BY and BY are mapping cycles from Z to V and W, respectively,
then there exists a decomposition B oy = BY + B} .

Lemma 8.2. In the situation of lemma 8.1, every element of Z has an open
neighborhood U such that the restriction Buxp, of B to Wx [0,1] admits a
decomposition

v w
Buxio, = Buxo, + Buxpo,

where BXX[O’” and Bhvx[o’” are mapping cycles from U x [0,1] to V and W,
respectively.

Showing that lemma 8.2 implies lemma 8.1. In the situation of lemma 8.1,
choose an open cover (Uy)xea such that the restriction By of B to Uy x [0, 1]
admits a decomposition

B = By + Bl -

Such an open cover exists by lemma 8.2. Since Z is paracompact, there is no
loss of generality in assuming that the open cover is locally finite. Moreover,
there exists a partition of unity (@y)rea subordinate to the cover (Uy)xen .
Choose a total ordering of A. If A is finite, we can proceed as follows.
We may assume that A is {1,2,3,...,m} for some m, with the standard
ordering. For k € {0, 1,...,m} let

kaZ%ZX[O,”

be the function z — (z, Z];:] @¢). Then fy = 1y and f,, = ; in the notation
of lemma 8.1. By induction on k we define a decomposition

Bofu=(Bofi)+ (Bofi)V.
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For k = 0 this decomposition (of 3 o fy = 3 o 1) is already given to us. If
we have constructed the decomposition for (3 o fi_1, where 0 < k < m, we
define it for 3 o fi in such a way that

(Bofi)=(Bofiq) + B?l/d ofy — B?{d o fi_q

on Uy C Z and (Bofy)Y = (B ofi_y)V outside the support of ¢y. Similarly,
define

(B ofk)w = (B Ofkfl)w‘i‘ B% Ofk— ﬁ?{‘{/} Ofk,1

on Uy and (B o fi)" = (B o frq1)" outside the support of @y. Then on Uy
we have

(Bofi)+ (Bofi) =Pofig+pofi—PBofs=pof
and outside the support of @, we have
(Bofi)V+ (Bofi)" =(Bofig)+ (Bofi) =Bofrg=pofx.

Therefore (o fy)Y 4+ (B o i) = B o fx as required. The case k = m is the
decomposition of 3 oy = 3 o f,,, that we are after.

If A is not finite, we can proceed as follows. Choose z € Z and an open
neighborhood Q of z in Z such that the set

J={keAlQNUc#0}

is finite. Now ] is a finite set with a total ordering, and the ¢; where
j € ] constitute a partition of unity for Q, subordinate to the open cover
(We N Q)key of Q. Use this as above to find a decomposition of oy
restricted to Q, into summands which are mapping cycles from Q to V
and W, respectively. Do this for every z and open neighborhood Q. The
decompositions obtained match on overlaps, and so define a decomposition
of f o of the required sort. [l

Showing that lemma 8.1 implies the homotopy decomposition theorem. Given
X,Y and a mapping cycle y: X x [0,1] — Y, we look for a decomposition

v =vY+v"W where vV and yW are mapping cycles from X x [0,1] to V and

W respectively. There is an additional condition to be satisfied. Namely, vy

is zero on an open neighborhood U of (X x{0}) U (C x [0,1]) in X x [0, 1],

and we want v¥,y" to be zero on some (perhaps smaller) open neighbor-

hood U’ of (X x{0}) U (Cx[0,1]) in X x [0, 1].

Put Z = X x [0,1]. Since X was assumed to be paracompact, Z is also

paracompact; it is a general topology fact that the product of a paracompact

space with a compact Hausdorff space is paracompact. We have a map

h: Zx1[0,1] > Z
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defined by h((x,s),t)) = (x,st) for (x,t) € X x [0,1] = Z and t € [0, 1].
Now B :=+vy oh is a mapping cycle from Z x [0,1] to Y. In the notation of
lemma 8.1, we have

Bou=1, Pow=0.
There exists a decomposition By = By + By because we can take By = 0

and BY = 0. Therefore, by lemma 8.1, there exists a decomposition B oy =
BY + B}V, and we can write that in the form

y =B +B1.
This is a decomposition of the kind that we are looking for. Unfortunately
there is no reason to expect that BY, B} are zero on (X x{0}) U (Cx[0,1]),
or on a neighborhood of that in X x [0, 1].
But it is easy to construct a continuous map P: X x [0,1] — X x [0, 1]
such that P (X x [0,1]) is contained in the open set U specified above, and

such that 1 agrees with the identity on some open neighborhood U’ of
(X x{0}) U (Cx1[0,1]) in X x [0,1]. Then obviously U’ € U. Now let

YW=BY —(BYow), ¥V=p"—(B\ oW
Then vY +yW = (BY + BYY) — (BY + BY) o =y —y o . Furthermore
Y o is zero because vy is zero on U and the image of 1\ is contained in U.

So vV +vW =v. Also vV and yv" are zero on U’ by construction, since s
agrees with the identity on U’. O

8.2. Local homotopy decomposition

Proof of lemma 8.2. Call an open subset P of Z x [0,1] good if the mapping
cycle Bjp from P to Y can be written as the sum of a mapping cycle from
P to V and a mapping cycle from P to W. The goal is to show that every
z € Z has an open neighborhood U such that U x [0, 1] is good.

The proof is based on two observations.

e Every element of Z x [0, 1] admits a good open neighborhood.

e If U is open in Z and A, B are open subsets of [0, 1] which are also
intervals, and if U x A and U x B are both good, then U x (A UB)
is good.

To prove the first observation, fix (z,t) € Z x [0,1] and choose an open
neighborhood Q of that in Z x [0, 1] such that o can be written as a formal
linear combination, with coefficients in Z, of continuous maps from Q to Y.
Such a Q exists by the definition of mapping cycle. Making Q smaller if
necessary, we can arrange that each of the (finitely many) continuous maps
which appear in that formal linear combination is either a map from Q to
V or a map from Q to W. It follows immediately that Q is good.

In proving the second observation, we can easily reduce to a situation where
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A N B contains an element ty, where 0 <ty < 1, and A UB is the union of
ANI0,ty] and BN [ty, 1]. Choose a continuous map P: B — BN A such that
P(s) =s for all s € BN[0,ty]. Since P:= U x A is good by assumption, we
can write

Bp = p¥F 4+ M
where the summands in the right-hand side are mapping cycles from P to V
and from P to W, respectively. Similarly, letting Q := U x B we can write

B\Q — BV’Q 4 BW’Q .

Let @: Q — PNQ be given by @(z,t) = (z,(t)). Define %Y, a mapping
cycle from PUQ to V, as follows:

BYPUQ :{ pYP on PN (U x[0,t0])
BYR— (B Ro @)+ (B¥ o) on Q.

This is well defined because the two formulas agree on the intersection of Q
and U x [0, to[, where ¢ agrees with the identity. Similarly, define pW-PYQ,
a mapping cycle from PU Q to W, as follows:

BWPUQ:{ BVV’P on Pﬂ(Ux [O,to[)
YR — (BN o @)+ (BM o) on Q.

An easy calculation shows that BYYR 4 pWPIQ = B, 5. Therefore PUQ =
U x (A UB) is good. The second observation is established.

Now fix zy € Z. By the first of the observations, it is possible to choose for
each t € [0,1] a good open neighborhood Q of (zg,t) in Z x [0,1]. By a
little exercise, there exists an open neighborhood U of z, in Z and a small
number & = 1/n (where n is a positive integer) such that each of the open
sets

U x [0,26[, Ux]16,308[, Ux]25,48[, ...,
Ux]1T—35,1—18[, Ux]1—25,1]
in Z x [0,1] is contained in Q; for some t € [0,1]. Therefore these open
sets U x [0,28[, Ux]18,38[ etc. are also good. By the second of the two

observations, applied (n — 2) times, their union, which is U x [0, 1], is also
good. O

8.3. Relationship with fiber bundles

The proof of the homotopy decomposition theorem as given above has many
surprising similarities with proofs in section 3 related to fiber bundles (theo-
rem 3.4, corollaries 3.7 and 3.8., and improvements in section 3.4). I cannot
resist the temptation to explain these similarities now, after the proof.

Let E and B be topological spaces and let p: E — B be a fiber bundle. We
need to be a little more precise by requiring that p: E — B be a fiber bundle
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with fiber F, for a fixed topological space F. This is supposed to mean that
every fiber of p is homeomorphic to F in some way. (We learned in section
2 that every fiber bundle over a path connected space is a fiber bundle with
fiber F, for some F.) With this situation we can associate two presheaves T
and Hf on B.

- For an open set U in B, let Hr(U) be the group of homeomorphisms
h: U x F— U x F respecting the projection to U.

- For open U in B let T(U) be the set of trivializations of the fiber
bundle Eyy — U, that is, the set of all homeomorphisms p~' — U x F
respecting the projections to U.

- An inclusion of open sets Uy < U; in B induces maps

He(UWy) — FHe(Uo), T(UWy) — sT(Uyp)

by restriction of homeomorphisms.

In fact it is clear that T and Hf are sheaves. Clearly Hy is a sheaf of groups,
that is, each set Hy(U) comes with a group structure and the restriction maps
He(Uy) = He(Up) are group homomorphisms. By contrast T is not a sheaf
of groups in any obvious way. But there is an action of the group Hg(U) on
the set T(U) given by

(h,g) = hog

(composition of homeomorphisms, where h € Hg(U) and g € T(U)). This
is compatible with restriction maps (reader, make this precise). Moreover:
(1) for any g € T(U), the map H¢(U) — T(U) given by h— hog is a
bijection;
(2) every z € B has an open neighborhood U such that T(U) # 0.
(Of course, despite (1), it can happen that T(U) is empty for some open
subsets U of B, for example, U = B.) The proof of (1) is easy and by
inspection; (2) holds by the definition of fiber bundle. There are words and
expressions to describe this situation: we can say that JHy is a sheaf of groups
on B and T is an Hy-torsor.
This reasoning shows that a fiber bundle on B with fiber F determines an
He-torsor on B. It is also true (and useful, and not very hard to prove,
though it will not be explained here) that the process can be reversed: every
He-torsor on B determines a fiber bundle with fiber F on B. So it transpires
that section 3 about fiber bundles could alternatively have been written in
the language of sheaves (of sets or groups) and torsors. Note that we are
often interested in questions like this one: is T(B) nonempty? This amounts
to asking whether the fiber bundle p is a trivial fiber bundle.

Remark 8.3. For the sake of honesty it should be pointed out that Hg
is a sheaf on all topological spaces simultaneously, and this would become
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important if we really wanted to rewrite section 3 in sheaf language. In more
detail:

- We can view Hf as a contravariant functor from topological spaces
to groups. Indeed, for a topological space X let Hg(X) be the group
of homeomorphisms from X x F to X x F respecting the projection
to X. A continuous map Xy — Xj induces a map Hr(X;) — FHi(Xo)
which is a group homomorphism.

- If we evaluate this functor only on open subsets of a fixed space X,
and on inclusion maps Uy — U; of open subsets of X, then the
resulting presheaf on X is in fact a sheaf on X.

There are also words and expressions for this; to keep it short, I will just say
that Hr is a big sheaf.

Now try to forget fiber bundles for a while. We return to the homotopy
decomposition theorem. Assume that Y = VU W as in the homotopy de-
composition theorem. Let Z be any topological space and fix «, a mapping
cycle from Z to Y. We introduce two presheaves F and G on Z.

- For an open set U in Z, let §G(U) be the abelian group of mapping
cycles from U to VN'W.

- For open U in Z let F(U) be the set of mapping cycles f from
U to V such that oy — 3 is a mapping cycle from U to W. To
put it differently: an element 3 of F(U) is, or amounts to, a sum
decomposition

xu =B+ (oxu —B)
where the two summands 3 and oy — 3 are mapping cycles from U

to V and from U to W, respectively.
- An inclusion of open sets Uy — U; in Z induces maps

S(Wy) = S(Wo)y,  F(Uy) — sF(Uy)
by restriction of mapping cycles.

It is easy to see that F and G are sheaves, and G is even a sheaf of abelian
groups on Z. By contrast F is not in an obvious way a sheaf of abelian
groups. But there is an action of the group G(U) on the set F(U) given by

AB)—A+PB.
(In this formula, A € G(U) and B € F(U); then A+  can be viewed as

a mapping cycle from U to V and it turns out to be an element of F(U).)
Moreover:
(1) for any B € F(U), the map G(U) — F(U) given by A — A+ is a
bijection;
(2) every z € Z has an open neighborhood U such that F(U) # (.
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(Of course it is quite possible, despite (1), that F(U) is empty for some open
subsets U of Z, for example, U = Z.) The proof of (1) is easy and by
inspection; the proof of (2) was given in a special case earlier, but it can be
repeated. Choose a neighborhood U of z such that oy can be represented
by a formal linear combination, with integer coefficients, of continuous maps
from U to Y. Making U smaller if necessary, we can assume that each
of the (finitely many) continuous maps which appear in that formal linear
combination is either a map from U to V or a map from U to W. Then it
is clear that oyy can be written as a sum of two mapping cycles, one from U
to V and the other from U to W. So F(U) is nonempty.

So we see that G is a sheaf of abelian groups on Z and F is a G-torsor.
Again we are interested in questions like this one: is F(Z) nonempty? This
is equivalent to asking whether our fixed mapping cycle « from Z to Y can
be written as a sum of two mapping cycles, one from Z to V and one from Z
to W. And again, for the sake of honesty, it should be noted that G is a big
sheaf of abelian groups. (If we wanted to rewrite the proof of the homotopy
decomposition theorem in sheaf and torsor language, that would have to be
used.)



