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Lecture Notes, week 10
Topology WS 2013/14 (Weiss)

8.1. The homotopy decomposition theorem: reductions

Here we reduce the proof of the homotopy decomposition theorem to the
following lemmas.

Lemma 8.1. Let Z be a paracompact topological space, Y any topological
space. Let β : Z× [0, 1]→ Y be a mapping cycle. Write ι0, ι1 : Z→ Z× [0, 1]
for the maps given by ι0(z) = (z, 0) and ι1(z) = (z, 1). If there exists a
decomposition

β ◦ ι0 = βV0 + βW0
where βV0 and βW0 are mapping cycles from Z to V and W , respectively,
then there exists a decomposition β ◦ ι1 = βV1 + βW1 .

Lemma 8.2. In the situation of lemma 8.1, every element of Z has an open
neighborhood U such that the restriction βU×[0,1] of β to U× [0, 1] admits a
decomposition

βU×[0,1] = β
V
U×[0,1] + β

W
U×[0,1]

where βVU×[0,1] and βWU×[0,1] are mapping cycles from U× [0, 1] to V and W ,
respectively.

Showing that lemma 8.2 implies lemma 8.1. In the situation of lemma 8.1,
choose an open cover (Uk)k∈Λ such that the restriction β[k] of β to Uk×[0, 1]
admits a decomposition

β[k] = β
V
[k] + β

W
[k] .

Such an open cover exists by lemma 8.2. Since Z is paracompact, there is no
loss of generality in assuming that the open cover is locally finite. Moreover,
there exists a partition of unity (ϕk)k∈Λ subordinate to the cover (Uk)k∈Λ .
Choose a total ordering of Λ . If Λ is finite, we can proceed as follows.
We may assume that Λ is {1, 2, 3, . . . ,m} for some m , with the standard
ordering. For k ∈ {0, 1, . . . ,m} let

fk : Z→ Z× [0, 1]

be the function z 7→ (z,
∑k

`=1ϕ`) . Then f0 = ι0 and fm = ι1 in the notation
of lemma 8.1. By induction on k we define a decomposition

β ◦ fk = (β ◦ fk)V + (β ◦ fk)W .
1
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For k = 0 this decomposition (of β ◦ f0 = β ◦ ι0 ) is already given to us. If
we have constructed the decomposition for β ◦ fk−1 , where 0 < k ≤ m , we
define it for β ◦ fk in such a way that

(β ◦ fk)V = (β ◦ fk−1)V + βV[k] ◦ fk − βV[k] ◦ fk−1

on Uk ⊂ Z and (β ◦ fk)V = (β ◦ fk−1)V outside the support of ϕk . Similarly,
define

(β ◦ fk)W = (β ◦ fk−1)W + βW[k] ◦ fk − βW[k] ◦ fk−1
on Uk and (β ◦ fk)W = (β ◦ fk−1)W outside the support of ϕk . Then on Uk
we have

(β ◦ fk)V + (β ◦ fk)W = β ◦ fk−1 + β ◦ fk − β ◦ fk−1 = β ◦ fk
and outside the support of ϕk we have

(β ◦ fk)V + (β ◦ fk)W = (β ◦ fk−1)V + (β ◦ fk−1)W = β ◦ fk−1 = β ◦ fk .

Therefore (β ◦ fk)V + (β ◦ fk)W = β ◦ fk as required. The case k = m is the
decomposition of β ◦ ι1 = β ◦ fm that we are after.
If Λ is not finite, we can proceed as follows. Choose z ∈ Z and an open
neighborhood Q of z in Z such that the set

J = {k ∈ Λ | Q ∩Uk 6= ∅ }

is finite. Now J is a finite set with a total ordering, and the ϕj where
j ∈ J constitute a partition of unity for Q , subordinate to the open cover
(Uk ∩ Q)k∈J of Q . Use this as above to find a decomposition of β ◦ ι1 ,
restricted to Q , into summands which are mapping cycles from Q to V
and W , respectively. Do this for every z and open neighborhood Q . The
decompositions obtained match on overlaps, and so define a decomposition
of β ◦ ι1 of the required sort. �

Showing that lemma 8.1 implies the homotopy decomposition theorem. Given
X, Y and a mapping cycle γ : X × [0, 1] → Y , we look for a decomposition
γ = γV +γW where γV and γW are mapping cycles from X× [0, 1] to V and
W , respectively. There is an additional condition to be satisfied. Namely, γ
is zero on an open neighborhood U of (X× {0}) ∪ (C× [0, 1] ) in X× [0, 1] ,
and we want γV , γW to be zero on some (perhaps smaller) open neighbor-
hood U ′ of (X× {0}) ∪ (C× [0, 1] ) in X× [0, 1] .
Put Z = X × [0, 1] . Since X was assumed to be paracompact, Z is also
paracompact; it is a general topology fact that the product of a paracompact
space with a compact Hausdorff space is paracompact. We have a map

h : Z× [0, 1]→ Z
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defined by h((x, s), t)) = (x, st) for (x, t) ∈ X × [0, 1] = Z and t ∈ [0, 1] .
Now β := γ ◦ h is a mapping cycle from Z× [0, 1] to Y . In the notation of
lemma 8.1, we have

β ◦ ι1 = γ, β ◦ ι0 ≡ 0 .
There exists a decomposition β0 = βV0 + βW0 because we can take βV0 ≡ 0
and βW0 ≡ 0 . Therefore, by lemma 8.1, there exists a decomposition β◦ ι1 =
βV1 + β

W
1 , and we can write that in the form

γ = βV1 + β
W
1 .

This is a decomposition of the kind that we are looking for. Unfortunately
there is no reason to expect that βV1 , β

W
1 are zero on (X× {0}) ∪ (C× [0, 1] ) ,

or on a neighborhood of that in X× [0, 1] .
But it is easy to construct a continuous map ψ : X × [0, 1] → X × [0, 1]
such that ψ(X× [0, 1] ) is contained in the open set U specified above, and
such that ψ agrees with the identity on some open neighborhood U ′ of
(X× {0}) ∪ (C× [0, 1] ) in X× [0, 1] . Then obviously U ′ ⊂ U . Now let

γV = βV1 − (βV1 ◦ψ), γW = βW1 − (βW1 ◦ψ).
Then γV + γW = (βV1 + βW1 ) − (βV1 + βW1 ) ◦ ψ = γ − γ ◦ ψ . Furthermore
γ ◦ψ is zero because γ is zero on U and the image of ψ is contained in U .
So γV + γW = γ . Also γV and γW are zero on U ′ by construction, since ψ
agrees with the identity on U ′ . �

8.2. Local homotopy decomposition

Proof of lemma 8.2. Call an open subset P of Z× [0, 1] good if the mapping
cycle β|P from P to Y can be written as the sum of a mapping cycle from
P to V and a mapping cycle from P to W . The goal is to show that every
z ∈ Z has an open neighborhood U such that U× [0, 1] is good.
The proof is based on two observations.

• Every element of Z× [0, 1] admits a good open neighborhood.
• If U is open in Z and A,B are open subsets of [0, 1] which are also

intervals, and if U×A and U× B are both good, then U× (A ∪ B)
is good.

To prove the first observation, fix (z, t) ∈ Z × [0, 1] and choose an open
neighborhood Q of that in Z×[0, 1] such that β|Q can be written as a formal
linear combination, with coefficients in Z , of continuous maps from Q to Y .
Such a Q exists by the definition of mapping cycle. Making Q smaller if
necessary, we can arrange that each of the (finitely many) continuous maps
which appear in that formal linear combination is either a map from Q to
V or a map from Q to W . It follows immediately that Q is good.
In proving the second observation, we can easily reduce to a situation where
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A ∩ B contains an element t0 , where 0 < t0 < 1 , and A ∪ B is the union of
A∩ [0, t0] and B∩ [t0, 1] . Choose a continuous map ψ : B→ B∩A such that
ψ(s) = s for all s ∈ B∩ [0, t0] . Since P := U×A is good by assumption, we
can write

β|P = β
V,P + βW,P

where the summands in the right-hand side are mapping cycles from P to V
and from P to W , respectively. Similarly, letting Q := U× B we can write

β|Q = βV,Q + βW,Q .

Let ϕ : Q→ P∩Q be given by ϕ(z, t) = (z,ψ(t)) . Define βV,P∪Q , a mapping
cycle from P ∪Q to V , as follows:

βV,P∪Q =

{
βV,P on P ∩ (U× [0, t0[ )
βV,Q − (βV,Q ◦ϕ) + (βV,P ◦ϕ) on Q .

This is well defined because the two formulas agree on the intersection of Q
and U× [0, t0[ , where ϕ agrees with the identity. Similarly, define βW,P∪Q ,
a mapping cycle from P ∪Q to W , as follows:

βW,P∪Q =

{
βW,P on P ∩ (U× [0, t0[ )
βW,Q − (βW,Q ◦ϕ) + (βW,P ◦ϕ) on Q .

An easy calculation shows that βV,P∪Q+βW,P∪Q = β|P∪Q . Therefore P∪Q =
U× (A ∪ B) is good. The second observation is established.
Now fix z0 ∈ Z . By the first of the observations, it is possible to choose for
each t ∈ [0, 1] a good open neighborhood Qt of (z0, t) in Z × [0, 1] . By a
little exercise, there exists an open neighborhood U of z0 in Z and a small
number δ = 1/n (where n is a positive integer) such that each of the open
sets

U× [0, 2δ[ , U×]1δ, 3δ[ , U×]2δ, 4δ[ , . . . ,

U×]1− 3δ, 1− 1δ[ , U×]1− 2δ, 1]
in Z × [0, 1] is contained in Qt for some t ∈ [0, 1] . Therefore these open
sets U × [0, 2δ[ , U×]1δ, 3δ[ etc. are also good. By the second of the two
observations, applied (n − 2) times, their union, which is U× [0, 1] , is also
good. �

8.3. Relationship with fiber bundles

The proof of the homotopy decomposition theorem as given above has many
surprising similarities with proofs in section 3 related to fiber bundles (theo-
rem 3.4, corollaries 3.7 and 3.8., and improvements in section 3.4). I cannot
resist the temptation to explain these similarities now, after the proof.

Let E and B be topological spaces and let p : E→ B be a fiber bundle. We
need to be a little more precise by requiring that p : E→ B be a fiber bundle
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with fiber F , for a fixed topological space F . This is supposed to mean that
every fiber of p is homeomorphic to F in some way. (We learned in section
2 that every fiber bundle over a path connected space is a fiber bundle with
fiber F , for some F .) With this situation we can associate two presheaves T

and HF on B .

- For an open set U in B , let HF(U) be the group of homeomorphisms
h : U× F→ U× F respecting the projection to U .

- For open U in B let T(U) be the set of trivializations of the fiber
bundle E|U → U , that is, the set of all homeomorphisms p−1 → U×F
respecting the projections to U .

- An inclusion of open sets U0 ↪→ U1 in B induces maps

HF(U1)→ HF(U0), T(U1)→ sT(U0)

by restriction of homeomorphisms.

In fact it is clear that T and HF are sheaves. Clearly HF is a sheaf of groups,
that is, each set HF(U) comes with a group structure and the restriction maps
HF(U1)→ HF(U0) are group homomorphisms. By contrast T is not a sheaf
of groups in any obvious way. But there is an action of the group HF(U) on
the set T(U) given by

(h, g) 7→ h ◦ g
(composition of homeomorphisms, where h ∈ HF(U) and g ∈ T(U)). This
is compatible with restriction maps (reader, make this precise). Moreover:

(1) for any g ∈ T(U) , the map HF(U)→ T(U) given by h 7→ h ◦ g is a
bijection;

(2) every z ∈ B has an open neighborhood U such that T(U) 6= ∅ .
(Of course, despite (1), it can happen that T(U) is empty for some open
subsets U of B , for example, U = B .) The proof of (1) is easy and by
inspection; (2) holds by the definition of fiber bundle. There are words and
expressions to describe this situation: we can say that HF is a sheaf of groups
on B and T is an HF -torsor.
This reasoning shows that a fiber bundle on B with fiber F determines an
HF -torsor on B . It is also true (and useful, and not very hard to prove,
though it will not be explained here) that the process can be reversed: every
HF -torsor on B determines a fiber bundle with fiber F on B . So it transpires
that section 3 about fiber bundles could alternatively have been written in
the language of sheaves (of sets or groups) and torsors. Note that we are
often interested in questions like this one: is T(B) nonempty? This amounts
to asking whether the fiber bundle p is a trivial fiber bundle.

Remark 8.3. For the sake of honesty it should be pointed out that HF

is a sheaf on all topological spaces simultaneously, and this would become
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important if we really wanted to rewrite section 3 in sheaf language. In more
detail:

- We can view HF as a contravariant functor from topological spaces
to groups. Indeed, for a topological space X let HF(X) be the group
of homeomorphisms from X × F to X × F respecting the projection
to X . A continuous map X0 → X1 induces a map HF(X1)→ HF(X0)
which is a group homomorphism.

- If we evaluate this functor only on open subsets of a fixed space X ,
and on inclusion maps U0 → U1 of open subsets of X , then the
resulting presheaf on X is in fact a sheaf on X .

There are also words and expressions for this; to keep it short, I will just say
that HF is a big sheaf.

Now try to forget fiber bundles for a while. We return to the homotopy
decomposition theorem. Assume that Y = V ∪W as in the homotopy de-
composition theorem. Let Z be any topological space and fix α , a mapping
cycle from Z to Y . We introduce two presheaves F and G on Z .

- For an open set U in Z , let G(U) be the abelian group of mapping
cycles from U to V ∩W .

- For open U in Z let F(U) be the set of mapping cycles β from
U to V such that α|U − β is a mapping cycle from U to W . To
put it differently: an element β of F(U) is, or amounts to, a sum
decomposition

α|U = β+ (α|U − β)

where the two summands β and α|U −β are mapping cycles from U
to V and from U to W , respectively.

- An inclusion of open sets U0 ↪→ U1 in Z induces maps

G(U1)→ G(U0), F(U1)→ sF(U0)

by restriction of mapping cycles.

It is easy to see that F and G are sheaves, and G is even a sheaf of abelian
groups on Z . By contrast F is not in an obvious way a sheaf of abelian
groups. But there is an action of the group G(U) on the set F(U) given by

(λ, β) 7→ λ+ β .

(In this formula, λ ∈ G(U) and β ∈ F(U) ; then λ + β can be viewed as
a mapping cycle from U to V and it turns out to be an element of F(U) .)
Moreover:

(1) for any β ∈ F(U) , the map G(U) → F(U) given by λ 7→ λ + β is a
bijection;

(2) every z ∈ Z has an open neighborhood U such that F(U) 6= ∅ .
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(Of course it is quite possible, despite (1), that F(U) is empty for some open
subsets U of Z , for example, U = Z .) The proof of (1) is easy and by
inspection; the proof of (2) was given in a special case earlier, but it can be
repeated. Choose a neighborhood U of z such that α|U can be represented
by a formal linear combination, with integer coefficients, of continuous maps
from U to Y . Making U smaller if necessary, we can assume that each
of the (finitely many) continuous maps which appear in that formal linear
combination is either a map from U to V or a map from U to W . Then it
is clear that α|U can be written as a sum of two mapping cycles, one from U
to V and the other from U to W . So F(U) is nonempty.
So we see that G is a sheaf of abelian groups on Z and F is a G-torsor.
Again we are interested in questions like this one: is F(Z) nonempty? This
is equivalent to asking whether our fixed mapping cycle α from Z to Y can
be written as a sum of two mapping cycles, one from Z to V and one from Z
to W . And again, for the sake of honesty, it should be noted that G is a big
sheaf of abelian groups. (If we wanted to rewrite the proof of the homotopy
decomposition theorem in sheaf and torsor language, that would have to be
used.)


