Lecture Notes, week 10 Topology WS 2013/14 (Weiss)

8.1. The homotopy decomposition theorem: reductions

Here we reduce the proof of the homotopy decomposition theorem to the following lemmas.

Lemma 8.1. Let Z be a paracompact topological space, Y any topological space. Let $\beta: \mathbf{Z} \times[0,1] \rightarrow \mathrm{Y}$ be a mapping cycle. Write $\mathfrak{l}_{0}, \mathfrak{l}_{1}: \mathbf{Z} \rightarrow \mathbf{Z} \times[0,1]$ for the maps given by $\mathfrak{l}_{0}(z)=(z, 0)$ and $\mathfrak{l}_{1}(z)=(z, 1)$. If there exists a decomposition

$$
\beta \circ \mathfrak{l}_{0}=\beta_{0}^{V}+\beta_{0}^{W}
$$

where β_{0}^{V} and β_{0}^{W} are mapping cycles from Z to V and W , respectively, then there exists a decomposition $\beta \circ \iota_{1}=\beta_{1}^{V}+\beta_{1}^{W}$.

Lemma 8.2. In the situation of lemma 8.1, every element of Z has an open neighborhood U such that the restriction $\beta_{\mathrm{U} \times[0,1]}$ of β to $\mathrm{U} \times[0,1]$ admits a decomposition

$$
\beta_{\mathrm{u} \times[0,1]}=\beta_{\mathrm{U} \times[0,1]}^{\mathrm{V}}+\beta_{\mathrm{U} \times[0,1]}^{W}
$$

where $\beta_{\mathbf{U} \times[0,1]}^{\vee}$ and $\beta_{\mathbf{U} \times[0,1]}^{\mathbb{W}}$ are mapping cycles from $\mathrm{U} \times[0,1]$ to V and W , respectively.

Showing that lemma 8.2 implies lemma 8.1. In the situation of lemma 8.1, choose an open cover $\left(U_{k}\right)_{k \in \Lambda}$ such that the restriction $\beta_{[k]}$ of β to $U_{k} \times[0,1]$ admits a decomposition

$$
\beta_{[k]}=\beta_{[k]}^{V}+\beta_{[k]}^{W} .
$$

Such an open cover exists by lemma 8.2. Since Z is paracompact, there is no loss of generality in assuming that the open cover is locally finite. Moreover, there exists a partition of unity $\left(\varphi_{k}\right)_{k \in \Lambda}$ subordinate to the cover $\left(U_{k}\right)_{k \in \Lambda}$. Choose a total ordering of Λ. If Λ is finite, we can proceed as follows. We may assume that Λ is $\{1,2,3, \ldots, m\}$ for some m, with the standard ordering. For $k \in\{0,1, \ldots, m\}$ let

$$
f_{k}: Z \rightarrow Z \times[0,1]
$$

be the function $z \mapsto\left(z, \sum_{\ell=1}^{k} \varphi_{\ell}\right)$. Then $f_{0}=\iota_{0}$ and $f_{m}=\iota_{1}$ in the notation of lemma 8.1. By induction on k we define a decomposition

$$
\beta \circ f_{k}=\left(\beta \circ f_{k}\right)^{V}+\left(\beta \circ f_{k}\right)^{W}
$$

For $k=0$ this decomposition (of $\beta \circ f_{0}=\beta \circ \mathfrak{l}_{0}$) is already given to us. If we have constructed the decomposition for $\beta \circ f_{k-1}$, where $0<k \leq m$, we define it for $\beta \circ f_{k}$ in such a way that

$$
\left(\beta \circ f_{k}\right)^{V}=\left(\beta \circ f_{k-1}\right)^{V}+\beta_{[k]}^{V} \circ f_{k}-\beta_{[k]}^{V} \circ f_{k-1}
$$

on $U_{k} \subset Z$ and $\left(\beta \circ f_{k}\right)^{V}=\left(\beta \circ f_{k-1}\right)^{V}$ outside the support of φ_{k}. Similarly, define

$$
\left(\beta \circ f_{k}\right)^{W}=\left(\beta \circ f_{k-1}\right)^{W}+\beta_{[k]}^{W} \circ f_{k}-\beta_{[k]}^{W} \circ f_{k-1}
$$

on U_{k} and $\left(\beta \circ f_{k}\right)^{W}=\left(\beta \circ f_{k-1}\right)^{W}$ outside the support of φ_{k}. Then on U_{k} we have

$$
\left(\beta \circ f_{k}\right)^{V}+\left(\beta \circ f_{k}\right)^{W}=\beta \circ f_{k-1}+\beta \circ f_{k}-\beta \circ f_{k-1}=\beta \circ f_{k}
$$

and outside the support of φ_{k} we have

$$
\left(\beta \circ f_{k}\right)^{V}+\left(\beta \circ f_{k}\right)^{W}=\left(\beta \circ f_{k-1}\right)^{V}+\left(\beta \circ f_{k-1}\right)^{W}=\beta \circ f_{k-1}=\beta \circ f_{k} .
$$

Therefore $\left(\beta \circ f_{k}\right)^{V}+\left(\beta \circ f_{k}\right)^{W}=\beta \circ f_{k}$ as required. The case $k=m$ is the decomposition of $\beta \circ \mathfrak{l}_{1}=\beta \circ f_{m}$ that we are after.
If Λ is not finite, we can proceed as follows. Choose $z \in Z$ and an open neighborhood Q of z in Z such that the set

$$
\mathrm{J}=\left\{\mathrm{k} \in \Lambda \mid \mathrm{Q} \cap \mathrm{U}_{\mathrm{k}} \neq \emptyset\right\}
$$

is finite. Now J is a finite set with a total ordering, and the φ_{j} where $j \in J$ constitute a partition of unity for Q, subordinate to the open cover $\left(U_{k} \cap Q\right)_{k \in J}$ of Q. Use this as above to find a decomposition of $\beta \circ \mathfrak{l}_{1}$, restricted to Q , into summands which are mapping cycles from Q to V and W, respectively. Do this for every z and open neighborhood Q. The decompositions obtained match on overlaps, and so define a decomposition of $\beta \circ \iota_{1}$ of the required sort.

Showing that lemma 8.1 implies the homotopy decomposition theorem. Given X, Y and a mapping cycle $\gamma: \mathrm{X} \times[0,1] \rightarrow \mathrm{Y}$, we look for a decomposition $\gamma=\gamma^{V}+\gamma^{W}$ where γ^{V} and γ^{W} are mapping cycles from $\mathrm{X} \times[0,1]$ to V and W, respectively. There is an additional condition to be satisfied. Namely, γ is zero on an open neighborhood U of $(\mathrm{X} \times\{0\}) \cup(\mathrm{C} \times[0,1])$ in $\mathrm{X} \times[0,1]$, and we want γ^{V}, γ^{W} to be zero on some (perhaps smaller) open neighborhood U^{\prime} of $(\mathrm{X} \times\{0\}) \cup(\mathrm{C} \times[0,1])$ in $X \times[0,1]$.
Put $Z=X \times[0,1]$. Since X was assumed to be paracompact, Z is also paracompact; it is a general topology fact that the product of a paracompact space with a compact Hausdorff space is paracompact. We have a map

$$
h: Z \times[0,1] \rightarrow Z
$$

defined by $h((x, s), t))=(x, s t)$ for $(x, t) \in X \times[0,1]=Z$ and $t \in[0,1]$. Now $\beta:=\gamma \circ \mathrm{h}$ is a mapping cycle from $\mathrm{Z} \times[0,1]$ to Y . In the notation of lemma 8.1, we have

$$
\beta \circ \mathfrak{l}_{1}=\gamma, \quad \beta \circ \mathfrak{l}_{0} \equiv 0 .
$$

There exists a decomposition $\beta_{0}=\beta_{0}^{V}+\beta_{0}^{W}$ because we can take $\beta_{0}^{V} \equiv 0$ and $\beta_{0}^{W} \equiv 0$. Therefore, by lemma 8.1, there exists a decomposition $\beta \circ \iota_{1}=$ $\beta_{1}^{V}+\beta_{1}^{W}$, and we can write that in the form

$$
\gamma=\beta_{1}^{V}+\beta_{1}^{W}
$$

This is a decomposition of the kind that we are looking for. Unfortunately there is no reason to expect that $\beta_{1}^{V}, \beta_{1}^{W}$ are zero on $(X \times\{0\}) \cup(C \times[0,1])$, or on a neighborhood of that in $X \times[0,1]$.
But it is easy to construct a continuous map $\psi: X \times[0,1] \rightarrow X \times[0,1]$ such that $\psi(X \times[0,1])$ is contained in the open set U specified above, and such that ψ agrees with the identity on some open neighborhood U^{\prime} of $(X \times\{0\}) \cup(C \times[0,1])$ in $X \times[0,1]$. Then obviously $\mathrm{U}^{\prime} \subset \mathrm{U}$. Now let

$$
\gamma^{V}=\beta_{1}^{V}-\left(\beta_{1}^{V} \circ \psi\right), \quad \gamma^{W}=\beta_{1}^{W}-\left(\beta_{1}^{W} \circ \psi\right)
$$

Then $\gamma^{V}+\gamma^{W}=\left(\beta_{1}^{V}+\beta_{1}^{W}\right)-\left(\beta_{1}^{V}+\beta_{1}^{W}\right) \circ \psi=\gamma-\gamma \circ \psi$. Furthermore $\gamma \circ \psi$ is zero because γ is zero on U and the image of ψ is contained in U . So $\gamma^{\vee}+\gamma^{W}=\gamma$. Also γ^{\vee} and γ^{W} are zero on U^{\prime} by construction, since ψ agrees with the identity on U^{\prime}.

8.2. Local homotopy decomposition

Proof of lemma 8.2. Call an open subset P of $\mathrm{Z} \times[0,1]$ good if the mapping cycle $\beta_{\mid \mathrm{P}}$ from P to Y can be written as the sum of a mapping cycle from P to V and a mapping cycle from P to W . The goal is to show that every $z \in Z$ has an open neighborhood U such that $U \times[0,1]$ is good. The proof is based on two observations.

- Every element of $Z \times[0,1]$ admits a good open neighborhood.
- If U is open in Z and A, B are open subsets of $[0,1]$ which are also intervals, and if $U \times A$ and $U \times B$ are both good, then $U \times(A \cup B)$ is good.
To prove the first observation, fix $(z, t) \in Z \times[0,1]$ and choose an open neighborhood Q of that in $Z \times[0,1]$ such that β_{Q} can be written as a formal linear combination, with coefficients in \mathbb{Z}, of continuous maps from Q to Y. Such a Q exists by the definition of mapping cycle. Making Q smaller if necessary, we can arrange that each of the (finitely many) continuous maps which appear in that formal linear combination is either a map from Q to V or a map from Q to W . It follows immediately that Q is good.
In proving the second observation, we can easily reduce to a situation where
$A \cap B$ contains an element t_{0}, where $0<t_{0}<1$, and $A \cup B$ is the union of $A \cap\left[0, t_{0}\right]$ and $B \cap\left[t_{0}, 1\right]$. Choose a continuous map $\psi: B \rightarrow B \cap A$ such that $\psi(s)=s$ for all $s \in B \cap\left[0, t_{0}\right]$. Since $P:=U \times A$ is good by assumption, we can write

$$
\beta_{\mid P}=\beta^{V, P}+\beta^{W, P}
$$

where the summands in the right-hand side are mapping cycles from P to V and from P to W, respectively. Similarly, letting $Q:=U \times B$ we can write

$$
\beta_{\mid Q}=\beta^{V, Q}+\beta^{W, Q} .
$$

Let $\varphi: Q \rightarrow P \cap Q$ be given by $\varphi(z, t)=(z, \psi(t))$. Define $\beta^{\mathrm{V}, \mathrm{P} \cup \mathrm{Q}}$, a mapping cycle from $\mathrm{P} \cup \mathrm{Q}$ to V , as follows:

$$
\beta^{V, P \cup Q}= \begin{cases}\beta^{V, P} & \text { on } P \cap\left(U \times\left[0, t_{0}[)\right.\right. \\ \beta^{V, Q}-\left(\beta^{V, Q} \circ \varphi\right)+\left(\beta^{V, P} \circ \varphi\right) & \text { on } Q .\end{cases}
$$

This is well defined because the two formulas agree on the intersection of Q and $\mathrm{U} \times\left[0, \mathrm{t}_{0}\left[\right.\right.$, where φ agrees with the identity. Similarly, define $\beta^{W, P \cup Q}$, a mapping cycle from $P \cup Q$ to W, as follows:

$$
\beta^{W, P \cup Q}= \begin{cases}\beta^{W, P} & \text { on } P \cap\left(U \times\left[0, \mathrm{t}_{0}[)\right.\right. \\ \beta^{W, Q}-\left(\beta^{W, Q} \circ \varphi\right)+\left(\beta^{W, P} \circ \varphi\right) & \text { on } \mathrm{Q} .\end{cases}
$$

An easy calculation shows that $\beta^{V, P \cup Q}+\beta^{W, P \cup Q}=\beta_{\mid P \cup Q}$. Therefore $P \cup Q=$ $U \times(A \cup B)$ is good. The second observation is established.
Now fix $z_{0} \in Z$. By the first of the observations, it is possible to choose for each $t \in[0,1]$ a good open neighborhood Q_{t} of $\left(z_{0}, t\right)$ in $Z \times[0,1]$. By a little exercise, there exists an open neighborhood U of z_{0} in Z and a small number $\delta=1 / \mathrm{n}$ (where n is a positive integer) such that each of the open sets

$$
\begin{gathered}
\mathrm{U} \times[0,2 \delta[, \quad \mathrm{U} \times] 1 \delta, 3 \delta[, \quad \mathrm{U} \times] 2 \delta, 4 \delta[, \quad \cdots, \\
\mathrm{U} \times] 1-3 \delta, 1-1 \delta[, \quad \mathrm{U} \times] 1-2 \delta, 1]
\end{gathered}
$$

in $Z \times[0,1]$ is contained in Q_{t} for some $t \in[0,1]$. Therefore these open sets $\mathrm{U} \times[0,2 \delta[, \mathrm{U} \times] 1 \delta, 3 \delta[$ etc. are also good. By the second of the two observations, applied $(n-2)$ times, their union, which is $U \times[0,1]$, is also good.

8.3. Relationship with fiber bundles

The proof of the homotopy decomposition theorem as given above has many surprising similarities with proofs in section 3 related to fiber bundles (theorem 3.4, corollaries 3.7 and 3.8., and improvements in section 3.4). I cannot resist the temptation to explain these similarities now, after the proof.

Let E and B be topological spaces and let $p: E \rightarrow B$ be a fiber bundle. We need to be a little more precise by requiring that $p: E \rightarrow B$ be a fiber bundle
with fiber F, for a fixed topological space F. This is supposed to mean that every fiber of p is homeomorphic to F in some way. (We learned in section 2 that every fiber bundle over a path connected space is a fiber bundle with fiber F, for some F.) With this situation we can associate two presheaves \mathcal{T} and \mathcal{H}_{F} on B .

- For an open set U in B , let $\mathcal{H}_{F}(\mathrm{U})$ be the group of homeomorphisms $h: \mathrm{U} \times \mathrm{F} \rightarrow \mathrm{U} \times \mathrm{F}$ respecting the projection to U .
- For open U in B let $\mathcal{T}(\mathrm{U})$ be the set of trivializations of the fiber bundle $\mathrm{E}_{\mid \mathrm{U}} \rightarrow \mathrm{U}$, that is, the set of all homeomorphisms $\mathrm{p}^{-1} \rightarrow \mathrm{U} \times \mathrm{F}$ respecting the projections to U .
- An inclusion of open sets $\mathrm{U}_{0} \hookrightarrow \mathrm{U}_{1}$ in B induces maps

$$
\mathcal{H}_{\mathrm{F}}\left(\mathrm{U}_{1}\right) \rightarrow \mathcal{H}_{\mathrm{F}}\left(\mathrm{U}_{0}\right), \quad \mathcal{T}\left(\mathrm{U}_{1}\right) \rightarrow \mathrm{sT}\left(\mathrm{U}_{0}\right)
$$

by restriction of homeomorphisms.
In fact it is clear that \mathcal{T} and \mathcal{H}_{F} are sheaves. Clearly \mathcal{H}_{F} is a sheaf of groups, that is, each set $\mathcal{H}_{\mathrm{F}}(\mathrm{U})$ comes with a group structure and the restriction maps $\mathcal{H}_{\mathrm{F}}\left(\mathrm{U}_{1}\right) \rightarrow \mathcal{H}_{\mathrm{F}}\left(\mathrm{U}_{0}\right)$ are group homomorphisms. By contrast \mathcal{T} is not a sheaf of groups in any obvious way. But there is an action of the group $\mathcal{H}_{\mathrm{F}}(\mathrm{U})$ on the set $\mathcal{T}(\mathrm{U})$ given by

$$
(h, g) \mapsto h \circ g
$$

(composition of homeomorphisms, where $h \in \mathcal{H}_{F}(U)$ and $g \in \mathcal{T}(U)$). This is compatible with restriction maps (reader, make this precise). Moreover:
(1) for any $g \in \mathcal{T}(\mathrm{U})$, the map $\mathcal{H}_{\mathrm{F}}(\mathrm{U}) \rightarrow \mathcal{T}(\mathrm{U})$ given by $\mathrm{h} \mapsto \mathrm{h} \circ \mathrm{g}$ is a bijection;
(2) every $z \in B$ has an open neighborhood U such that $\mathcal{T}(U) \neq \emptyset$.
(Of course, despite (1), it can happen that $\mathcal{T}(\mathbb{U})$ is empty for some open subsets U of B , for example, $\mathrm{U}=\mathrm{B}$.) The proof of (1) is easy and by inspection; (2) holds by the definition of fiber bundle. There are words and expressions to describe this situation: we can say that \mathcal{H}_{F} is a sheaf of groups on B and \mathcal{T} is an \mathcal{H}_{F}-torsor.
This reasoning shows that a fiber bundle on B with fiber F determines an \mathcal{H}_{F}-torsor on B . It is also true (and useful, and not very hard to prove, though it will not be explained here) that the process can be reversed: every \mathcal{H}_{F}-torsor on B determines a fiber bundle with fiber F on B. So it transpires that section 3 about fiber bundles could alternatively have been written in the language of sheaves (of sets or groups) and torsors. Note that we are often interested in questions like this one: is $\mathcal{T}(\mathrm{B})$ nonempty? This amounts to asking whether the fiber bundle p is a trivial fiber bundle.

Remark 8.3. For the sake of honesty it should be pointed out that \mathcal{H}_{F} is a sheaf on all topological spaces simultaneously, and this would become
important if we really wanted to rewrite section 3 in sheaf language. In more detail:

- We can view \mathcal{H}_{F} as a contravariant functor from topological spaces to groups. Indeed, for a topological space X let $\mathcal{H}_{F}(X)$ be the group of homeomorphisms from $X \times F$ to $X \times F$ respecting the projection to X. A continuous map $X_{0} \rightarrow X_{1}$ induces a map $\mathcal{H}_{F}\left(X_{1}\right) \rightarrow \mathcal{H}_{F}\left(X_{0}\right)$ which is a group homomorphism.
- If we evaluate this functor only on open subsets of a fixed space X, and on inclusion maps $\mathrm{U}_{0} \rightarrow \mathrm{U}_{1}$ of open subsets of X , then the resulting presheaf on X is in fact a sheaf on X.
There are also words and expressions for this; to keep it short, I will just say that \mathcal{H}_{F} is a big sheaf.

Now try to forget fiber bundles for a while. We return to the homotopy decomposition theorem. Assume that $\mathrm{Y}=\mathrm{V} \cup \mathrm{W}$ as in the homotopy decomposition theorem. Let Z be any topological space and fix α, a mapping cycle from Z to Y . We introduce two presheaves \mathcal{F} and \mathcal{G} on \mathbf{Z}.

- For an open set \mathbf{U} in \mathbf{Z}, let $\mathcal{G}(\mathbf{U})$ be the abelian group of mapping cycles from U to $\mathrm{V} \cap \mathrm{W}$.
- For open \mathbf{U} in \mathbf{Z} let $\mathcal{F}(\mathbf{U})$ be the set of mapping cycles β from U to V such that $\alpha_{\mid \mathrm{U}}-\beta$ is a mapping cycle from U to W . To put it differently: an element β of $\mathcal{F}(\mathbf{U})$ is, or amounts to, a sum decomposition

$$
\alpha_{\mid u}=\beta+\left(\alpha_{\mid u}-\beta\right)
$$

where the two summands β and $\alpha_{\mid u}-\beta$ are mapping cycles from U to V and from U to W , respectively.

- An inclusion of open sets $\mathrm{U}_{0} \hookrightarrow \mathrm{U}_{1}$ in Z induces maps

$$
\mathcal{G}\left(\mathrm{U}_{1}\right) \rightarrow \mathcal{G}\left(\mathrm{U}_{0}\right), \quad \mathcal{F}\left(\mathrm{U}_{1}\right) \rightarrow \mathrm{sF}\left(\mathrm{U}_{0}\right)
$$

by restriction of mapping cycles.
It is easy to see that \mathcal{F} and \mathcal{G} are sheaves, and \mathcal{G} is even a sheaf of abelian groups on Z . By contrast \mathcal{F} is not in an obvious way a sheaf of abelian groups. But there is an action of the group $\mathcal{G}(\mathrm{U})$ on the set $\mathcal{F}(\mathrm{U})$ given by

$$
(\lambda, \beta) \mapsto \lambda+\beta
$$

(In this formula, $\lambda \in \mathcal{G}(\mathrm{U})$ and $\beta \in \mathcal{F}(\mathrm{U})$; then $\lambda+\beta$ can be viewed as a mapping cycle from U to V and it turns out to be an element of $\mathcal{F}(\mathrm{U})$.) Moreover:
(1) for any $\beta \in \mathcal{F}(\mathbf{U})$, the map $\mathcal{G}(\mathbf{U}) \rightarrow \mathcal{F}(\mathbf{U})$ given by $\lambda \mapsto \lambda+\beta$ is a bijection;
(2) every $z \in Z$ has an open neighborhood U such that $\mathcal{F}(U) \neq \emptyset$.
(Of course it is quite possible, despite (1), that $\mathcal{F}(\mathbb{U})$ is empty for some open subsets U of Z , for example, $\mathrm{U}=\mathrm{Z}$.) The proof of (1) is easy and by inspection; the proof of (2) was given in a special case earlier, but it can be repeated. Choose a neighborhood U of z such that $\alpha_{\mid \mathrm{U}}$ can be represented by a formal linear combination, with integer coefficients, of continuous maps from U to Y . Making U smaller if necessary, we can assume that each of the (finitely many) continuous maps which appear in that formal linear combination is either a map from U to V or a map from U to W . Then it is clear that $\alpha_{\mid u}$ can be written as a sum of two mapping cycles, one from U to V and the other from U to W . So $\mathcal{F}(\mathrm{U})$ is nonempty.
So we see that \mathcal{G} is a sheaf of abelian groups on Z and \mathcal{F} is a \mathcal{G}-torsor. Again we are interested in questions like this one: is $\mathcal{F}(Z)$ nonempty? This is equivalent to asking whether our fixed mapping cycle α from Z to Y can be written as a sum of two mapping cycles, one from Z to V and one from Z to W. And again, for the sake of honesty, it should be noted that \mathcal{G} is a big sheaf of abelian groups. (If we wanted to rewrite the proof of the homotopy decomposition theorem in sheaf and torsor language, that would have to be used.)

