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1.1 Topology of subsets of euclidean space

This section is for reference and revision.

Notation. We write x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) etc. for points in Rn. The euclidean
distance is defined by

d(x, y) = ‖y − x‖ =

(
n∑

i=1

(yi − xi)
2

)1/2

.

Let ε be a positive real number. The open ball of radius ε about x ∈ Rn is the set

B(x, ε) = {y ∈ R
n | ‖y − x‖ < ε} .

Definition 1.1.1 A subset U of Rn is open if, for every x ∈ U , there exists ε > 0 such that B(x, ε) ⊂ U .
A subset C of Rn is closed if its complement Rn r C is open.

Some examples: The empty set ∅ is open in Rn. Also, Rn itself is open in Rn. Any subset of Rn which
is a union of (possibly many) open subsets is open. Slightly less obvious: For any x ∈ Rn and ε > 0, the
open ball B(x, ε) is an open subset of Rn. (Prove it.) If U and V are open subsets of Rn, then U ∩ V is
open. (Prove it.)

Definition 1.1.2 Let X be a subset of Rn. A subset V of X is open in X if, for every x ∈ V , there
exists an ε > 0 such that B(x, ε) ∩X ⊂ V . A subset E of X is closed in X if its complement X r E is
open in X. Equivalently : V is open in X if there exists an open subset U of Rn such that V = X ∩ U ,
and E is closed in X if there exists a closed subset C of Rn such that E = X ∩ C.

Alternative terminology : Some people say open relative to X, closed relative to X.

Some examples: The empty set ∅ is open in X. Also, X itself is open in X. Any subset of X which is
a union of (possibly many) open subsets in X is open in X. Slightly less obvious: For any x ∈ Rn and
ε > 0, the set B(x, ε) ∩X is open in X. If U and V are open in X, then U ∩ V is open in X.

a
m.weiss@abdn.ac.uk
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Example 1.1.3 Here is a curious example of an open set in the unit interval [0, 1]. Choose a sequence
(ai)i=0,1,2,... of rational numbers such that every rational number appears in the sequence. Let εi = 2−i−3

and let U be the union of the open balls B(ai, εi) ⊂ R1 for i = 0, 1, 2, . . . . Let V = U ∩ [0, 1]. The set
V is remarkable for having the following three properties. It is open in [0, 1], it is dense in [0, 1] (i.e., for
every x ∈ [0, 1] there exists a sequence in V converging to x), and it has Lebesgue measure, i.e. length,
not greater than

∞∑

i=0

21−i−3 = 1/2.

The length estimate comes from the fact that each B(ai, εi) has length 2εi = 2−i−2.
(This example was bad news for the Riemann integration theory when it was discovered more than
hundred years ago. It can be deduced from the three stated properties of V that the indicator function
of V , the function f : [0, 1] → R defined by f(x) = 1 if x ∈ V and f(x) = 0 if x /∈ V , is not Riemann
integrable. But we need not go into that.)

Definition 1.1.4 Let X and Y be subsets of Rm and Rn , respectively. A map f : X → Y is continuous
at a ∈ X if, for every sequence (xi)i∈N in X converging to a, the sequence (f(xi))i∈N converges to f(a).
The map f is continuous if it is continuous at a for all a ∈ X.

Example 1.1.5 Let X = R r {0}, a subset of R. Let Y = R, also a subset of R. The map f : X → Y
defined by f(x) = 1 if x > 0 and f(x) = 0 if x < 0 is continuous.

Lemma 1.1.6 Let X and Y be subsets of Rm and Rn , respectively. A map f : X → Y is continuous
at a ∈ X if and only if, for every real number ε > 0, there exists a real number δ > 0 such that
d(f(x), f(a)) < ǫ for every x ∈ X such that d(x, a) < δ.

Theorem 1.1.7 A map f : X → Y , with X ⊂ Rm and Y ⊂ Rn , is continuous if and only if the
following holds: For every U open in Y , the pre-image f−1(U) is open in X.

Remarks. We emphasize that f−1(U) means: the set of all x ∈ X such that f(x) ∈ U . This is
(unfortunately) accepted and widely used notation. There is no assumption here that a map f−1 : Y → X
exists which is inverse to f .
If this theorem is new to you, prove it as an exercise. (But if you have taken a course in metric spaces
and/or topological spaces in the past, then you must have seen it there.)

Definition 1.1.8 Let X and Y be subsets of Rm and Rn , respectively. A continuous map f : X → Y
is a homeomorphism if there exists a continuous map g : Y → X such that g ◦ f = idX and f ◦ g = idY .
If such a homeomorphism exists, we say that X and Y are homeomorphic.

Example 1.1.9 Rm is homeomorphic to Rn if and only if m = n. One direction is trivial and half-way
through this course we should be able to prove the other direction, too ! On request, that is.

1.2 Calculus without coordinates

This section is also for reference and revision.

We assume that you are familiar with the concept of a vector space over the field of real numbers (or
indeed any other field). Every vector space V over R admits a basis, i.e., a subset S such that every
v ∈ V can be written in a unique way as a finite linear combination of elements of S. A basis for V is in
most cases not unique, but the number of elements (cardinality) which it has is well defined and is called
the dimension of V . It can be infinite.

Let V and W be real vector spaces. A map f : V → W is linear if it satisfies f(x + y) = f(x) + f(y)
for all x, y ∈ V , and f(ax) = af(x) for all x ∈ V and a ∈ R. In the case where V and W are finite
dimensional and come equipped with ordered bases, there is a standard way to describe any linear map
from V to W by a matrix of size n×m, where n = dim(W ) and m = dim(V ). Unordered bases are also
good enough, say S for V and T for W , provided you are happy to work with matrices which have one
row for each element of T and one column for each element of S.
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Matrix multiplication “corresponds” to composition of linear maps. If you are aware of this, cherish the
fact, if not, sort it out and/or ask appropriate questions.

That was enough of linear maps for a little while. Now we introduce differentiable maps as maps which
admit “good approximations” by linear maps.

Definition 1.2.1 Let U be an open set in Rm. A continuous map f : U → Rn is differentiable at a point
x ∈ U if there exists a linear map A : Rm → Rn such that

lim
y→0

f(x+ y)− f(x)−A(y)

‖y‖
= 0 .

In that case A is unique. We call it the (total) differential of f at x.
Notation: A = Df(x) or A = df(x) or A = f ′(x), and so on.

The point which we are trying to make here is that differentiating is all about making “linear approxi-
mations”. We want an approximation of the form

f(x+ y) ≈ f(x) +A(y)

with an error which is small compared to ‖y‖, provided ‖y‖ itself is sufficiently small. That is exactly
what the definition guarantees.
Note: the linear map A = f ′(x) can of course be described by an n × m matrix. This may be more
familiar to you as the matrix of partial derivatives, with entry ∂fi/∂xj (evaluated at the point x) in row
i and column j. But ... it is better to think linear map, not matrix.

Definition 1.2.2 Let K and L be finite dimensional normedb real vector spaces. Let U be an open
set in K. A continuous map f : U → L is differentiable at a point x ∈ U if there exists a linear map
A : K → L such that

lim
y→0

f(x+ y)− f(x)−A(y)

‖y‖
= 0 .

A very important point to observe here is that, when you have to decide whether f is differentiable at
x, it does not matter which norm functions on K and L you use. In particular, you may choose a vector
space basis for K and a vector space basis for L, and use the coresponding “euclidean” norms.
This definition generalises to the case where K and L are arbitrary (possibly infinite dimensional) Banach
spaces, i.e., normed real vector spaces which are complete for their norms.c

Example 1.2.3 Let K be the vector space of real ℓ× ℓ matrices. We have a continuous map

det : K −→ R .

Does it have a differential at Iℓ , the identity matrix ? If so, that differential, det′(Iℓ), must be a linear
map from K to R. Answer : the differential exists and it is the trace function,

tr : K → R

taking a matrix to the sum of its diagonal entries. To verify this, we should start by choosing a suitable
norm function on K. We can take: ‖C‖ = max{|cij |} for C ∈ K (remember that an element of K is a
square matrix). Now, to verify this formula det′(Iℓ) = tr , we only have to show that

det(I + C) ≈ det(I) + tr(C)

with an error which is small compared to ‖C‖ if ‖C‖ itself is small. That is very easy: develop the
determinant by any of your favourite methods and neglect all terms which involve more than one entry
from C. Then you should see the light. The neglected terms are at most equal to ‖C‖2, which is indeed
small compared to ‖C‖ if ‖C‖ itself is small.

Theorem 1.2.4 (Chain rule.) Let J,K,L be finite dimensional real vector spaces. Let U, V be open sets
in J,K respectively. Let g : U → V and f : V → L be continuous maps. If g is differentiable at x ∈ U
and f is differentiable at y = g(x) ∈ V , then f ◦ g is differentiable at x and we have

D(f ◦ g)(x) = D(f)(y) ◦D(g)(x) .

b i.e., equipped with a norm function. For the definition of a norm function on a vector space, see e.g. Dieudonné’s book
“Foundations of Analysis”

cA normed real vector space K is complete if every Cauchy sequence (xi)i=0,1,2,... in K converges to some x∞ ∈ K.
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1.3 Smooth k-dimensional manifolds in Rn

Let U and V be open subsets of Rm and Rn , respectively. A continuous map f : U → V is differentiable
if it is differentiable at every x ∈ U .

Terminology. When we say that a map f : U → V is smooth, we mean that it is infinitely many times
differentiable, i.e., all its partial derivatives of any order exist and are continuous. (Occasionally we
may also write or say differentiable when we mean smooth ... unintentional but hard to avoid.) The
following terminology is available where more precision is needed: a map f : U → V is Cr if all its partial
derivatives up to order r exist and are continuous. For example, C0 just means continuous, C1 means
continuously differentiable and C∞ means smooth.

Definition 1.3.1 Let U and V be open subsets of Rm and Rn , respectively. A smooth map f : U → V
is a diffeomorphism if there exists a smooth map g : V → U such that g ◦ f = idU and f ◦ g = idV . If
such a diffeomorphism exists, we say that U and V are diffeomorphic.

Let k and n be positive integers with k ≤ n. In definition 1.3.2 below we think of Rk as a subset of Rn ,

R
k = {(x1, x2, . . . , xn) ∈ R

n | xi = 0 if i > k} .

Definition 1.3.2 Let M be a subset of Rn. We say that M is a k-dimensional smooth manifold in Rn

if the following holds. For every x ∈ M there exist open sets U and V in Rn such that x ∈ V , and a
diffeomorphism ψ : U → V such that

ψ(U ∩ R
k) = V ∩M .

Example 1.3.3 Special case k = n: An n-dimensional smooth submanifold in Rn is the same thing as
an open subset of Rn. (Prove it.)

Example 1.3.4 Here we take k = n− 1. The unit sphere

Sn−1 = {x ∈ R
n |
∑

x2
i = 1}

is an (n− 1)-dimensional differentiable manifold in Rn. Proof : Fix x = (x1, . . . , xn) ∈ S
n. At least one

of the xi is nonzero. Without loss of (much) generality, xn > 0. We let U = V = {y ∈ Rn |
∑n−1
i=1 y

2
i < 1}

and we define ψ : U → V by

(y1, . . . , yn−1, yn) 7→
(
y1, . . . , yn−1, yn +

√

1−
∑n−1
i=1 y

2
i

)
.

Then x ∈ V , and ψ(U ∩ Rn−1) is precisely V ∩ Sn−1.

Example 1.3.5 Fix positive integers ℓ and r ≤ ℓ. A real ℓ × ℓ matrix can be thought of as a “vector”
with ℓ · ℓ coordinates. In this way, the real ℓ× ℓ matrices which have rank (also known as dimension of
the column space) equal to r form a subset W of Rℓ·ℓ. Let k = ℓ− r. We are going to show that W is a
differentiable manifold of dimension ℓ2 − k2 in Rℓ·ℓ.
So let x ∈W . We think of x as an ℓ×ℓ matrix with entries xij , and we also write x•i for the i-th column
of x when necessary. We can find exactly r linearly independent columns in x, not more. Without loss
of (much) generality, columns 1, 2, . . . , r of x are linearly independent and each of the remaining columns
is a linear combination of the first r columns. We choose an ℓ× k matrix z such that the square matrix

Qx =
[
x•1 x•2 · · · x•r z•1 z•2 · · · z•k

]

is invertible (i.e., its columns make up a basis for Rℓ). Let V ⊂ Rℓ·ℓ consist of all ℓ × ℓ matrices y such
that

Qy =
[
y•1 y•2 · · · y•r z•1 z•2 · · · z•k

]

is invertible. Then it is clear that x ∈ V , and it is not hard to see that V is open in Rℓ·ℓ. Put U = V
and define ψ : U → V by

ψ(y) =
[
y•1 y•2 · · · y•r y′•r+1 y′•r+2 · · · y′•r+k

]
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where y′ = Qy y . In words, the first r columns of ψ(y) are the first r columns of y, and the last k columns
of ψ(y) are the last k columns of Qy y. Note also that ψ is invertible. (If we know ψ(y), then we can find
Qy because that is equal to Qψ(y).)

We write Rℓ·ℓ−k·k ⊂ Rℓ·ℓ for the vector subspace of Rℓ·ℓ consisting of all ℓ × ℓ matrices c whose entries
cij are zero for i > r and j > r. It is easy to see that if y ∈ U ∩ Rℓ·ℓ−k·k, then ψ(y) ∈ V ∩W , and if
y /∈ Rℓ·ℓ−k·k, then ψ(y) /∈W . Therefore

ψ(U ∩ R
ℓ·ℓ−k·k) = V ∩W .

1.4 Inverse function theorem and applications

Theorem 1.4.1 (Inverse function theorem.) Let W be an open set in Rm, let ϕ : W → Rm be a smooth
map and let q ∈W . If the linear map Dϕ(q) : Rm → Rm is invertible, then there exists an open W ′ ⊂ Rm

with q ∈W ′ ⊂W such that ϕ(W ′) ⊂ Rm is open and the restriction ϕ|W ′ is a diffeomorphism from W ′

to ϕ(W ′).

As a motivation for the next theorem, let’s do an experiment with linear maps. Let f : U × V → W
be a linear map, where U , V and W are finite dimensional real vector spaces. Write f1 and f2 for the
restrictions of f to U × 0 and 0×V , respectively. Suppose that f2 : V →W is an isomorphism. How can
we solve the equation

f(x, y) = 0

where x ∈ U is “given” and y ∈ V is “sought” ? We can reason 0 = f(x, y) = f1(x)+ f2(y) which implies
f2(y) = −f1(x) and therefore y = f−1

2 (f1(x)). Finished.

Theorem 1.4.2 (Implicit function theorem.) Let U be an open set in Rk × Rℓ, let f : U → Rℓ be a
smooth map and let (p, q) ∈ U such that f(p, q) = 0. Write D1f(p, q) : Rk → Rℓ and D2f(p, q) : Rℓ → Rℓ

for the linear maps obtained by restricting Df(p, q) : Rk×Rℓ → Rℓ to the factors Rk and Rℓ, respectively.
If D2f(p, q) is invertible, then there exist an open ball Vp = B(p, δ) about p ∈ Rk and an open ball
Vq = B(q, ε) about q ∈ Rℓ such that the equation

f(x, y) = 0

has a unique solution y = g(x) in Vq for every x in Vp. The map g is smooth (if δ is sufficiently small).
Its differential at p is

Dg(p) = −D2f(p, q)−1 ◦D1f(p, q) .

It is easy to deduce the implicit function theorem from the inverse function theorem. Start with U , f
and (p, q) as in the hypotheses of the implicit function theorem. Put W = U and define

ϕ(x, y) = (x, f(x, y)) ∈ R
k × R

ℓ

for (x, y) ∈W . Apply the inverse function theorem to this ϕ. You get an open W ′ ⊂W with (p, q) ∈W ′

such that ϕ(W ′) is open, and ψ : ϕ(W ′) → W ′ inverse to ϕ|W ′. Then ψ(x, y) = (x, ψ2(x, y)) for some
smooth map ψ2 from ϕ(W ′) to Rℓ and all (x, y) ∈W ′. Now

f(x, y) = 0

⇔ ϕ(x, y) = (x, 0)

⇔ (x, y) = ψ(x, 0)

⇔ y = ψ2(x, 0) .

Therefore we must have g(x) = ψ2(x, 0) and this is also smooth enough. (The formula for the differential
Dg(p) is a consequence of the equation f(x, g(x)) = 0 and the chain rule.)

It is even easier to deduce the inverse function theorem from the implicit function theorem. Start with
a map ϕ : W → Rm as in the inverse function theorem, let U = Rm × W ⊂ Rm × Rm and define
f : U → Rm by f(x, y) = ϕ(y) − x. Apply the implicit function theorem to this U and f and the
point (p, q) = (ϕ(q), q). You get V open in Rm containing p = ϕ(q), and a smooth g : V → Rm with
f(x, g(x)) = 0, which means ϕ(g(x)) − x = 0, which means ϕ(g(x)) = x. So g is a right inverse for ϕ
(where it is defined). Repeating the argument with g instead of ϕ, you can also find a right inverse for g,
defined in a small open ball about q. (Then it is easy to show that this must agree with ϕ in a possibly
smaller open ball about p.)
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Corollary 1.4.3 Let W ⊂ Rm be open, let x ∈W , and let f : W → Rℓ be a smooth map. If f(x) = 0 and
the linear map Df(x) : Rm → Rℓ is surjective, then there exists an open set W ′ ⊂ Rm with x ∈W ′ ⊂W
such that W ′ ∩ f−1(0) is a smooth manifold in Rm, of dimension m− ℓ.

Proof Since Df(x) : Rm → Rℓ is surjective, it is easy to find a linear map u : Rm → Rk (with k = m−ℓ)
such that the map

y 7→ (u(y), Df(x)(y))

from Rm to Rk × Rℓ is an invertible (linear) map. Define ϕ : Rm → Rk × Rℓ by the formula

ϕ(y) = (u(y), f(y)) .

The differential of ϕ at x is precisely the map y 7→ (u(y), Df(x)(y)), so it is an invertible linear map
by assumption. We may apply the inverse function theorem and obtain an open W ′ ⊂ W containing x
so that ϕ(W ′) is open in Rk × Rl and ϕ|W ′ is a diffeomorphism from W ′ to ϕ(W ′). By construction,
ϕ|W ′ maps the set W ′ ∩ f−1(0) bijectively to ϕ(W ′) ∩ Rk. (Here, as before, we treat Rk as a subspace
of Rk × Rℓ.) �

Example 1.4.4 A real m ×m matrix A is orthogonal if ATA = Im , where AT denotes the transpose
matrix. This is equivalent to saying that the columns of A form an orthonormal basis of Rm (where
“ortho-” means that the columns are pairwise perpendicular, and “-normal” means that they all have
length one). The set of all orthogonal m × m matrices is denoted by O(m). The operation matrix
multiplication makes it into a group. In particular, if A,B ∈ O(m) then AB ∈ O(m).
From the definition, O(m) is a subset of the vector space J of all real m ×m-matrices (which you can
identify with Rm·m if you wish). We are going to show that O(m) is a smooth submanifold of J , of
dimension m(m− 1)/2.
Let L be the vector space of real symmetric m×m matrices. Let f : J → L be given by f(A) = ATA−Im.
Let’s note that O(m) = f−1(0). By corollary 1.4.3, if we can show that Df(A) : J → L is surjective
for every A ∈ O(m) = f−1(0), then we can be certain that O(m) is a smooth manifold in J , and its
dimension will be dim(J)− dim(L) = m(m− 1)/2. To find Df(A) for a fixed A, let’s try to find a linear
approximation

f(A+B) ≈ f(A) + Λ(B)

where Λ(B) = Df(A)(B) depends linearly on B. This has to work when B is small. Writing out the
left-hand side, we get

(AT +BT )(A+B)− Im = ATA− Im +ATB +BTA+BTB

= f(A) + (ATB +BTA) + negligible .

(Observe that BTB is indeed negligible when B is small. Compare example 1.2.3.) Therefore Λ(B) =
Df(A)(B) = ATB +BTA, and this does indeed depend linearly on B.
Now that we have a formula for Df(A), we can also show that Df(A) is surjective if f(A) = 0. Given
some C ∈ L (a symmetric matrix), we can find a matrix E ∈ J such that C = E + ET . Let B = AE.
We get

Df(A)(B) = ATB +BTA = ATAE + ETATA = E + ET = C .

(We have used ATA = id, which is equivalent to f(A) = 0.) Since C ∈ L was arbitrary, this shows that
Df(A) is surjective.

We often encounter smooth manifolds in euclidean space as solution sets of systems of equations, e.g.,
a system of polynomial equations as in example 1.4.4. The inverse function theorem and the implicit
function theorem can help us to show that these solution sets are actually manifolds (in euclidean space).
The next proposition is a consequence of the inverse function theorem which is specifically formulated
for this purpose.

Proposition 1.4.5 Let W ⊂ Rp be open and let f : W → Rq be a smooth map. Suppose that, for
every x ∈ f−1(0), there exist an open set Vx ⊂ Rp with x ∈ Vx ⊂ W , and a linear subspace Kx ⊂ Rq

complementary to the image of the linear map Df(x) : Rp → Rq, such that f(Vx) ∩Kx = {0}. Then for
every non-negative integer j ≤ m, the set

{x ∈ f−1(0) | rank(Df(x)) = j}

is a smooth manifold in Rp, of dimension p− j.
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Proof Fix x ∈ W with f(x) = 0. Let Lx = im(Df(x)) ⊂ Rq. Then we have Rq ∼= Lx × Kx. Write
v : Rq → Lx for the projection to the first factor, so that ker(v) = Kx. Now the composite linear map

Rp
Df(x)
−−−−→ Rq

v
−−−−→ Lx

is surjective. This is also the differential of the smooth map v◦f at x. By corollary 1.4.3, for a sufficiently
small open set W ′ ⊂W containing x, the set

W ′ ∩ (v ◦ f)−1(0)

is a smooth manifold in Rp , of dimension p−dim(Lx) = p− j. We may assume that W ′ ⊂ Vx. But then

W ′ ∩ (v ◦ f)−1(0) = W ′ ∩ f−1(0)

because y ∈W ′ and v(f(y)) = 0 implies f(y) ∈ f(Vx) ∩Kx, so that f(y) = 0 by our assumptions. �

Example 1.4.6 Here our goal is roughly the following. We fix strictly positive integers n and i ≤ n
and we want to make the set of all i-dimensional linear (vector-)subspaces of Rn into a smooth manifold.
In the next section we will achieve this “abstractly”, but here we have to think of a suitable ambient
euclidean space Rp (large p, presumably) and a way to “represent” each i-dimensional linear subspace of
Rn by a single point or vector in Rp.
This is not as hard as it looks. We observe that any i-dimensional linear subspace E ⊂ Rn determines an
orthogonal projection to that subspace E. We think of that as a linear map α : Rn → Rn whose image
is equal to E and whose kernel is equal to E⊥, the orthogonal complement of E in Rn. Two remarkable
equations satisfied by α are

α ◦ α = α

(idempotence) and
〈α(v), w〉 = 〈v, α(w)〉

for all v, w ∈ Rn (self-adjointness). The first equation means that α restricts to the identity on im(α)
and the second implies that ker(α) is perpendicular to the image space. Together, the two equations
express the fact that α is an orthogonal projection. If we describe α by an n × n matrix A , then the
first equation becomes A2 = A and the other turns into A = AT . Summing up, instead of saying set of
i-dimensional linear subspaces of Rn we now say set of real symmetric idempotent n×n-matrices of rank
i. That is a subset M of the real vector space J of symmetric n × n matrices. We can identify J with
Rp where p = n(n+ 1)/2. Now we want to show that M is a smooth submanifold in J . We are curious
what its dimension might be.
Define f : J → J by

f(B) = B2 −B

for B ∈ J . Then f−1(0) is the set of all orthogonal projections. Let’s try to apply proposition 1.4.5 to
this map f . Fix A ∈ M ⊂ f−1(0), so that A has rank i. Let E = im(A) ⊂ Rn and F = ker(A) ⊂ Rn so
that F = E⊥ in Rn. To find Df(A) : J → J we do the linear approximation thing:

f(A+B) = (A+B)2 − (A+B)

= f(A) +AB +BA+B2 −B

≈ f(A) + (AB +BA−B) + negligible

(where B2 is negligible provided B itself has small entries). Therefore Df(A) is the linear map

B 7→ AB +BA−B

from J to J . If we think of B as a “block matrix” of linear maps

B =

[
BEE BEF
BFE BFF

]

(with BEF = BFE)

where BFE for example means the composition

E
incl.
−−−−→ Rn

B
−−−−→ Rn

proj.
−−−−→ F ,
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then AB +BA−B takes the form [
BEE 0

0 −BFF

]

.

It follows immediately that the dimension of ker(Df(A)) is i(n−i) . An obvious choice of a complementary
linear subspace KA for im(Df(A)) in J is therefore as follows:

KA = {C ∈ J | CEE = 0 , CFF = 0 }.

Now let’s check that the condition of proposition 1.4.5 is satisfied for this choice of KA. If this is the
case, for arbitrary A ∈ M , then we know that M is a smooth manifold in J of dimension i(n − i) . We
need to show that if f(A) = 0 and f(A+ B) ∈ KA and B ∈ J is small enough, then f(A+ B) = 0. By
the calculation above we have

f(A+B) =

[
BEE 0

0 −BFF

]

+B2

(but now we must not neglect B2). Therefore f(A+B) ∈ KA holds if and only if

−BEE = B2
EE +BEFBFE , BFF = BFEBEF +B2

FF .

Assuming that B has small entries, we need to show that this forces f(A + B) = 0, which amounts to
showing that

BFEBEE +BFFBFE = 0 , BEEBEF +BEFBFF = 0 .

Gentle reader, do it !!!
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2.1 Charts, atlases and smooth maps

Definition 2.1.1 Let M be a set. A smooth atlas on M consists of a choice of non-negative integer m,
which is the “dimension” of the atlas, and a set A of charts. Each chart is an injective map ψ : U →M ,
where U is an open subset of Rm. There are several conditions to be satisfied:

• The atlas covers all of M . That is, for each z ∈M there exists a chart ψ : U →M in A such that
z ∈ ψ(U).

• Changes of charts are smooth. More precisely, if ψ1 : U1 → M and ψ2 : U2 → M are any distinct
charts in A, then

– the set ψ−1
1 (ψ2(U2)) is open in U1 and hence in Rm ,

– the set ψ−1
2 (ψ1(U1)) is open in U2 and hence in Rm ,

– the map ψ−1
1 (ψ2(U2)) −→ ψ−1

2 (ψ1(U1)) defined by x 7→ ψ−1
2 (ψ1(x)) is smooth (and conse-

quently continuous).

Remarks. The “change of chart” map ψ−1
1 (ψ2(U2))→ ψ−1

2 (ψ1(U1)) is actually a diffeomorphism. That’s
because the smoothness condition also holds for its inverse.

Example 2.1.2 Let M = R ∪ {∞}. The following two charts make up a smooth atlas A for M , of
dimension m = 1. Let U1 = R = U2, and put

ψ1 : U1 −→M , ψ1(x) = x
ψ2 : U2 −→M , ψ2(x) = x−1

(where x−1 = ∞ if x = 0). Then ψ−1
1 (ψ2(U2)) = ψ−1

2 (ψ1(U1)) = R r {0}, and the two change-of-chart
maps are given by the formula x 7→ x−1, which is clearly smooth. Both are maps from Rr{0} to Rr{0}.

Example 2.1.3 Let M = Rm ∪ {∞}. Let U1 = Rm = U2 and make a smooth atlas for M with the two
charts

ψ1 : U1 −→M , ψ1(x) = x
ψ2 : U2 −→M , ψ2(x) = ‖x‖−2x .

Then ψ−1
1 (ψ2(U2)) = ψ−1

2 (ψ1(U1)) = Rm r {0}. The two change-of-chart maps are given by the formula
x 7→ ‖x‖−2x, which is smooth.

a
m.weiss@abdn.ac.uk
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Example 2.1.4 Let M be the set of all lines through the origin in R3. We are going to make a smooth
atlas for M , of dimension m = 2, with three charts ψ1 : R2 → M , ψ2 : R2 → M and ψ3 : R2 → M . The
resulting smooth manifold is known as the projective plane, in symbols RP 2.
Let ψ1(x1, x2) be the line in R3 which passes through (1, x1, x2) ∈ R3 and the origin. Let ψ2(x1, x2) be
the line in R3 which passes through (x1, 1, x2) and the origin. Let ψ3(x1, x2) be the line which passes
through (x1, x2, 1) and the the origin. Note that ψ1(R

2) ∪ ψ2(R
2) ∪ ψ3(R

2) = M .
Let’s check that the change of charts from ψ1 to ψ2 is smooth (the other two cases are similar). We have
ψ−1

1 (ψ2(R
2)) = {x ∈ R2 | x1 6= 0}. The change of chart formula is

(x1, x2) 7→ (x−1
1 , x2x

−1
1 ) .

This is indeed a smooth map from {x ∈ R2 | x1 6= 0} to R2.

Example 2.1.5 Let M be a smooth manifold of dimension k in Rn. There is a preferred way to make a
smooth atlas for M , of dimension k. We start by looking for diffeomorphisms ϕ : U → V , where U and
V are open in Rn , with the property

ϕ(U ∩ R
k) = V ∩M .

Such a ϕ might be called an ambient chart for M . By definition 1.3.2, these are in good supply: for
every x ∈ M there exists an ambient chart ϕ : U → V for M such that x ∈ ϕ(U). Every ambient chart
ϕ : U → V for M determines an “honest” chart for M by restriction:

ϕ|U ∩ R
k : U ∩ R

k −→ V ∩M ⊂M .

Here U ∩ Rk is an open subset of Rk. Let A be the set of all the “honest” charts for M which can be
obtained from ambient charts for M by restriction. Then A is a smooth atlas for M . Let’s prove this.
We have already observed that the first condition for an atlas is satisfied: for every x ∈M there exists a
chart ψ in A such that x is in the image of ψ. To verify the second condition on smoothness of changes
of chart, we can assume that two ambient charts are given:

ϕ1 : U1 → V1 , ϕ2 : U2 → V2 ,

(where U1, U2, V1, V2 are open in Rn). By restriction, these determine two honest charts, U1∩Rk → V1∩M
and U2∩Rk → V2∩M . About these honest charts we have to show that ϕ−1

1 (V2∩M) is open in U1∩Rk ,
that ϕ−1

2 (V1 ∩M) is open in U2 ∩ Rk, and that the map

ϕ−1
1 (V2 ∩M) −→ ϕ−1

2 (V1 ∩M)

defined by x 7→ ϕ−1
2 (ϕ1(x)) is smooth. Both assertions follow from the fact that

ϕ−1
1 (V2 ∩M) = ϕ−1

1 (V2) ∩ R
k , ϕ−1

2 (V1 ∩M) = ϕ−1
2 (V1) ∩ R

k .

The definition and the digression which follow are slightly premature, but you should welcome them if
you were wondering what smooth atlases are “for”.

Definition 2.1.6 Let M be a set with a smooth atlas A of dimension m, and let N be a set with a
smooth atlas B of dimension n. A map

f : M → N

is considered smooth if, for every chart ϕ : U1 → M in A and every chart ψ : U2 → N in B , the set
ϕ−1(f−1(ψ(U2))) is open in U1 and the map

ϕ−1(f−1(ψ(U2))) −→ U2

defined by x 7→ ψ−1(f(ϕ(x))) is smooth.

Definition 2.1.7 Let M be a set with a smooth atlas A of dimension m, and let N be a set with a smooth
atlas B, also of dimension m. A smooth map f : M → N is a diffeomorphism if there exists a smooth
map g : N →M such that g ◦ f = idM and f ◦ g = idN .
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Remark. We have used the fact that a composition of two smooth maps (provided it is defined as a map
of sets) is again a smooth map. The proof is left to you.

Digression 2.1.8 Several important branches of mathematics are concerned with the exploration of a
particular category. A category, in the mathematical sense of the word, consists of a collection C of things
called the objects of C and, for any two of these objects, say X and Y , a set mor(X,Y ) whose elements
are called morphisms from X to Y . There is a specified composition rule which to every g ∈ mor(X,Y )
and every f ∈ mor(Y, Z) associates an element of mor(X,Z), usually denoted by f ◦ g. The composition
rule is associative (that’s a condition) and it has “units” (another condition). That is, for every object
X in C, there exists an element idX ∈ mor(X,X) such that f ◦ idX = f for every object Y in C and
f ∈ mor(X,Y ), and also idX ◦ g = g for every object W in C and g ∈ mor(W,X).
The most basic example is the category S of sets. Every set qualifies as an object of S. A morphism
from a set X to a set Y is (by definition) just an ordinary map from X to Y . The composition rule is
(by definition) ordinary composition of maps.
A more exciting example is the category G of groups. Every group qualifies as an object of G. A
morphism from a group G to a group H is a homomorphism from G to H. The composition rule is
ordinary composition of homomorphisms.
Yet another example is the category T of topological spaces. Whether or not you know what a topological
space is, you will understand that every topological space qualifies as an object of T . Whether or not
you know what a continuous map between topological spaces is, you will not be surprised to hear that a
morphism from a topological space X to a topological space Y is, by definition, a continuous map from
X to Y . The composition rule is ordinary composition of continuous maps.
In any category C, the concept of isomorphism has a meaning. A morphism f from X to Y in C is an
isomorphism if there exists a morphism g from Y to X in C such that f ◦ g = idY and g ◦ f = idX . In
that case the objects X and Y are said to be isomorphic. Finding ways to decide whether or not two
random objects of C are isomorphic tends to be one of the favourite activities for people who “explore”
the category C.
In many well-established categories other words are used for “isomorphism” and “isomorphic”. In the
category of topological spaces, for example, we say homeomorphism and homeomorphic. In the category
of sets, we say bijection and of the same cardinality.
Using definitions 2.1.1 and 2.1.6, we can produce another very interesting example of a category. In
this example, the objects are sets together with a smooth atlas. A morphism from one object (M,A) to
another object (N,B) is a smooth map in the sense of definition 2.1.6. The isomorphisms are precisely
the diffeomorphisms.
Except for some small changes which we will make in the next section, this category is the setting for a
branch of topology called differential topology.

Example 2.1.9 This is a mild generalization of example 2.1.4. Fix a positive integer n and let M be
the set of all lines through the origin in Rn+1. We are going to make a smooth atlas for M , of dimension
n, with n+ 1 charts ψi : Rn →M , where i = 1, 2, . . . , n+ 1. The resulting smooth manifold is known as
projective n-space, in symbols RPn.
Let ψ1(x1, x2, . . . , xn) be the line in Rn+1 which passes through the point (1, x1, x2, . . . , xn) and the origin.
Let ψ2(x1, x2, . . . , xn) be the line in Rn+1 which passes through the point (x1, 1, x2, . . . , xn) and the origin.
Let ψ3(x1, x2, . . . , xn) be the line in Rn+1 which passes through the the point (x1, x2, 1, x3, . . . , xn) and

the origin. And so on. Then
⋃n+1
i=1 ψi(R

n) = M .
To illustrate the smoothness check, let’s assume n = 10 and let’s look at the change of charts from ψ3 to
ψ8. We have ψ−1

3 (ψ8(R
n)) = {x ∈ R10 | x7 6= 0} and ψ−1

8 (ψ3(R
n)) = {x ∈ R10 | x3 6= 0}. The change of

chart formula is

(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) 7→ (
x1

x7
,
x2

x7
,

1

x7
,
x3

x7
,
x4

x7
,
x5

x7
,
x6

x7
,
x8

x7
,
x9

x7
,
x10

x7
) .

Example 2.1.10 We finish this section with another example which is a serious generalisation of exam-
ples 2.1.4 and 2.1.9. To appreciate it fully try to block out example 1.4.6 from your memory. We fix
positive integers p and m with p ≤ m. Let M be the set of p-dimensional linear subspaces of Rm. We
are going to construct a smooth atlas on M , of dimension p(m − p). The resulting smooth manifold is
known as the Grassmannian of p-planes in Rm. Suggested notation: Gp(R

m).
Let S be a subset of {1, 2, . . . ,m} with p elements. The set S determines a linear isomorphism CS from
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Rm to Rp × Rm−p which moves the coordinates corresponding to elements of S to the “front” and the
remaining ones to the “back”. (For example, if m = 10, p = 4 and S = {2, 6, 7, 9}, then the formula
for CS is (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) 7→ ((x2, x6, x7, x9), (x1, x3, x4, x5, x8, x10)) ∈ R4 × R6.) Let
hom(Rp,Rm−p) be the vector space of linear maps from Rp to Rm−p. You can identify it with the space
of (m − p) × p matrices, and therefore also with R(m−p)p if you wish. For f ∈ hom(Rp,Rm−p) let Γ(f)
be the graph of f , a linear subspace of Rp × Rm−p of dimension p. We now define

ψS : hom(Rp,Rm−p) −→M

by ψS(f) = C−1
S (Γ(f)).

Now it is being claimed that the charts ψS , as S runs through the subsets of {1, 2, 3, , . . . ,m} with p
elements, constitute a smooth atlas for M . Let us just verify the first condition, which requires that
every L ∈M be in the image of some ψS . Choose a vector space basis for L, necessarily with p elements.
Writing these p vectors as elements of Rm , you obtain an m× p matrix, say A. This has rank p because
it has p linearly independent columns. It will therefore also have p linearly independent rows. Make a
choice of p linearly independent rows in A. This amounts to choosing a subset S of {1, 2, 3, . . . ,m} with
S elements. Then the composition

L
incl.
−−−−→ Rm

CS−−−−→ Rp × Rm−p proj.
−−−−→ Rp

is a linear isomorphism. Therefore CS(L) = Γ(f) for some f ∈ hom(Rp,Rm−p), and so L = ψS(f).
The verification of the remaining conditions for a smooth atlas is left as an exercise.

2.2 Topological matters

The most fundamental concept in topology is the concept of a topological space. It was introduced
essentially as we use it today by Felix Hausdorff in 1914. (We are hoping that you are somewhat
familiar with it. If that is not the case, you should view this section as a crash course.) Hausdorff’s
goal in formulating the definition of a topological space was, presumably, to pin down and isolate the
information that we need to have in order to talk about continuity. He was a passionate set-theorist and
so it is not completely surprising that his concept of a topological space, and consequently his definition
of continuity, is free of numbers (such as epsilons and deltas). That is what makes it hard to grasp, but
that is also what makes it powerful.

For a set X, let P(X) be the power set of X, that is, the set whose elements are all the subsets of X.

Definition 2.2.1 A topological space consists of a set X and a subset O ⊂ P(X) with the following
properties.

• If V ∈ O and W ∈ O, then V ∪W ∈ O.

• For any subset U of O, the union
⋃

V ∈U V is an element of O.

• ∅ ∈ O and X ∈ O.

Terminology : A subset O of P(X) which satisfies these conditions is called a topology on X. Once a
topology O on X has been specified, we use the expressions open subset of X to mean any subset of X
which is an element of O, and closed subset of X for any subset C of X such that X r C is an element
of O.

Example 2.2.2 Let (X, d) be a metric space. In detail, this means the following:

• X is a set and d is a map from X ×X to R ;

• d(x, y) ≥ 0 for all x, y ∈ X, and d(x, y) = 0 if and only if x = y ;

• d(x, y) = d(y, x) for all x, y ∈ X ;

• d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.
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The map d is then a metric on X. We interpret d(x, y) as the distance from x to y. For an x in X and
a real number ε > 0, we often write B(x, ε) = {y ∈ X | d(x, y) < ε}. This goes under the name open ball
of radius ε about x.
The metric d determines a set O = O(d) of subsets of X in the following way. A subset V of X is an
element of O if and only if, for every x ∈ V , there exists ε > 0 such that the set B(x, ε) (the open ball
of radius ε about x) is a subset of V .
Then it is easy to verify that O satisfies the conditions in 2.2.1 for a topology. We call O the topology
on X induced by the metric d.

Example 2.2.3 Let X be any set. One boring way of making a topology O on X is to let O = P(X).
This is the discrete topology onX. Another boring way of making a topologyO onX is to let O = {∅, X}.
This is the indiscrete topology on X.

Definition 2.2.4 Let (X,O) and (Y,W) be topological spaces (so X and Y are sets, O is a topology
on X and W is a topology on Y ). A map f : X → Y is continuous if, for every U ∈ W, the pre-image
f−1(U) is an element of O. (In other words: f is continuous if and only if the preimage under f of every
open subset of Y is an open subset of X.)

One important justification for this definition is that it “works” for metric spaces. If X is a set with a
metric d1 , and Y is a set with a metric d2 , and f : X → Y is a map, then the following are equivalent.

• The map f is continuous in the ε and δ sense.

• The map f is continuous in the sense of Hausdorff’s definition 2.2.4, with respect to the topology
O on X induced by the metric d1 (see example 2.2.2) and the topology W on Y induced by the
metric d2 .

The verification of this equivalence ... if you have not seen it, then you should do it as part of your crash
course in topology.

Definition 2.2.5 Let (X,O) be a topological space and let x ∈ X. A subset U of X is a neighborhood
of x if there exists an open subset V of X such that x ∈ V and V ⊂ U .

Definition 2.2.6 Let (X,O) and (Y,W) be topological spaces. Let x ∈ X. A map f : X → Y is
continuous at x if, for every neighbourhood U of f(x) in Y , the pre-image f−1(U) is a neighborhood of
x in X.

Lemma 2.2.7 Let (X,O) be a topological space. A subset U of X is open if and only if U is a neigh-
bourhood of x for each x ∈ U .

Proof Exercise. �

Lemma 2.2.8 Let (X,O) and (Y,W) be topological spaces. A map f : X → Y is continuous if and only
if it is continuous at every x ∈ X.

Proof Exercise. �

Remark. We have included definitions 2.2.5 and 2.2.6 because neighbourhood is a very useful concept.
But there is also a historical reason: Hausdorff emphasized the neighborhoods more than the open sets.

Hausdorff’s concept of a topological space is particularly useful for us because it turns out that a smooth
atlas on a set M determines a topology on M , without giving us a preferred metric on M which would
induce the topology.

Definition 2.2.9 Let M be a set with a smooth atlas A of dimensionm. The atlas determines a topology
O on the set M in the following way. A subset W of M is an element of O if and only if, for every chart
ϕ : U →M in A, the set ϕ−1(W ) is open in U . (Here U is open in Rm , etc.)

It is easy to verify that O satisfies the conditions for a topology.
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Lemma 2.2.10 Keep the notation of definition 2.2.9. Let ϕ : U → M be a chart in A. Then ϕ is an
open map, and so ϕ(U) is homeomorphic to U .

Proof Exercise. (A continuous map f : X → Y between topological spaces is open if, for every open
W ⊂ X, the image f(W ) is open in Y .) �

Lemma 2.2.11 Keeping the notation of definition 2.2.9, suppose that (Y,W) is any topological space.
A map f : M → Y is continuous (w.r.t. the topology O on M just defined, and the topology W on Y ) if
and only if, for every chart ϕ : U →M in A, the composition f ◦ ϕ is continuous.

Proof Suppose first that f is continuous as a map from (M,O) to (Y,W). Let W be an open set in
Y . Let ϕ : U → M be any chart in A. By definition of O, the map ϕ is continuous. Hence f ◦ ϕ is
continuous.
Suppose next that, for every chart ϕ : U →M in A, the map f ◦ ϕ is continuous. Let W be an open set
in Y . Then ϕ−1(f−1(W )) is open in U for every chart ϕ : U →M . Hence f−1(W ) is open in M by our
definition of O. Therefore f is continuous. �

Next we would like to test the topological spaces which we get from a smooth atlas on a set (as in
definition 2.2.9) for various properties, such as connectedness, compactness, the Hausdorff separation
property and “the second countability” property. Let’s first recall informally what these properties
mean.

A topological space (X,O) is connected if the only subsets of X which are both open and closed are
∅ and X itself. Equivalently, X is connected if every continuous map from X to a discrete space (see
example 2.2.3) is constant.

A topological space (X,O) is compact if, for every subset V of O with the property
⋃

V ∈V V = X , there
exists a finite subset U ⊂ V such that

⋃

V ∈U V = X. (A subset V of O with the property
⋃

V ∈V V = X
is an open covering of X.)

A topological space (X,O) has the Hausdorff separation property if, whenever x and y are distinct
elements of X, there exist open subsets U and V of X such that x ∈ U , y ∈ V and U ∩V = ∅. (Hausdorff
included this condition in his definition of a topological space. It was later deleted from the list of axioms,
presumably to legalise the “Zariski topologies” which arise in algebraic geometry.)

A topological space (X,O) satisfies the 2nd countability axiom if there exists a countable subset W ⊂ O
such that every U ∈ O can be written as a union of open sets from W (possibly many).

Lemma 2.2.12 Let M be a nonempty set with a smooth atlas A of dimension m. Suppose that, for
every chart ϕ : U → M in A, the open set U ⊂ Rm is nonempty and connected. Then the following are
equivalent:

(i) M is connected (with the topology O defined in 2.2.9)

(ii) it is impossible to decompose A into a disjoint union of nonempty subsets A0 and A1 such that, for
every chart ψ0 : U0 →M in A0 and ever chart ψ1 : U1 →M in A1 , the intersection ψ0(U0)∩ψ1(U1)
is empty.

Proof We show (ii)⇒(i) and leave the other direction as an exercise. Let f : M → X be a continuous
map, where X is a discrete space. Let x ∈ M . We try to decompose A as a disjoint union, A0 ∪ A1, as
follows. For every chart ϕ : U → M in A, the map f ◦ ϕ : U → X is continuous, hence constant, since
U is connected. If the constant value is equal to f(x), the chart belongs to A0, otherwise to A1. It is
clear that A0 is not empty, since every chart whose image contains x belongs to A0. But since we are
assuming (ii), it follows that A1 = ∅ and so A0 = A, and so f is constant. �

Lemma 2.2.13 Let M be a set with a smooth atlas A of dimension m. Suppose that A is finite, with
charts ϕi : Ui →M where i = 1, 2, 3, . . . , r. Then the following are equivalent:

(i) M is compact (with the topology O defined in 2.2.9)
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(ii) there exist compact subsets Ki ⊂ Ui such that

r⋃

i=1

ϕ(Ki) = M .

Proof We show (ii)⇒(i) and leave the other direction as an exercise. The map ϕ : Ui →M is continuous
and so ϕ(Ki) is compact in M (images of compact sets under continuous maps are compact). Therefore
⋃r
i=1 ϕ

−1(Ki) = M is compact (finite unions of compact sets are compact). �

Lemma 2.2.14 Let M be a set with a smooth atlas A of dimension m. Then the following are equivalent:

(i) M has the Hausdorff separation property (with the topology O defined in 2.2.9)

(ii) whenever ϕ0 : U0 → M and ϕ1 : U1 → M are charts in A, and z(0), z(1), z(2), . . . is a sequence in
ϕ−1

0 (ϕ1(U1)) ⊂ U0 converging to some point in U0 but not in ϕ−1
0 (ϕ1(U1)), then the sequence in U1

obtained by applying ϕ−1
1 ◦ ϕ0 to z(0), z(1), z(2), . . . “diverges” in U1 (has no accumulation point).

Proof We show (ii)⇒(i). Suppose for a contradiction that there are distinct points x and y in M which
do not have disjoint neighborhoods in M . Choose a chart ϕ : U → M and another chart ψ : V → M
such that x = ϕ(x′) and y = ψ(y′) for some x′ ∈ U and y′ ∈ V . Note that x′ is not in ϕ−1(ψ(V )) because
if it were we could choose disjoint neighborhoods of ψ−1(x) and ψ−1(y) in V , and transport them back
to M using ψ. For every ε ≥ 0 we have

ϕ(U ∩B(x′, ε)) ∩ ψ(V ∩B(y′, ε)) 6= ∅

because ϕ(U∩B(x′, ε)) is an open neighbourhood for x inM and ψ(V ∩B(y′, ε)) is an open neighbourhood
for y in M . Let εi = 2−i and choose

a(i) ∈ ϕ(U ∩B(x′, εi)) ∩ ψ(V ∩B(y′, εi))

for each integer i ≥ 0. Let z(i) = ϕ−1(a(i)) ∈ U . Then the sequence consisting of the z(i) converges
to x′ ∈ U , and the sequence consisting of the ψ(ϕ−1(z(i))) converges to y′ ∈ V . But according to our
assumptions the second sequence ought to diverge. �

Lemma 2.2.15 Let M be a set with a smooth atlas A of dimension m. If A is countable, then M
satisfies the 2nd countability axiom.

Proof This follows from the fact that every open subset of Rm satisfies the 2nd countability axiom. �

Example 2.2.16 Let us show that M in example 2.1.4 is connected, compact, has the Hausdorff sepa-
ration property and satisfies the 2nd countability axiom.
The atlas A has three charts ψi : R2 → M , where i = 1, 2, 3. Certainly R2 is connected and nonempty,
and we have ψ1(R

2)∩ψ2(R
2) 6= ∅, ψ2(R

2)∩ψ3(R
2) 6= ∅, ψ3(R

2)∩ψ1(R
2) 6= ∅. Therefore M is connected

by lemma 2.2.12.
Next, if ℓ ∈M is a line (through the origin in R3) and (x1, x2, x3) is a point on ℓ, distinct from the origin,
then we can choose i ∈ {1, 2, 3} so that |xi| is maximal. Then ψ−1

i (ℓ) is contained in the square

{(x1, x2) ∈ R
2 | max{|x1|, |x2|} ≤ 1}

which is a compact subset Ki of R2. Therefore we have

M =
3⋃

i=1

ψi(Ki)

and so M is compact by lemma 2.2.13.
Next we check that condition (ii) in lemma 2.2.14 is satisfied for the two charts ψ1 : R2 → M and
ψ2 : R2 → M together. (We ought to make the same check for ψ1 and ψ3 together, and also for ψ2 and
ψ3 together, but it is the same mechanism.) We have to imagine a sequence

z(0), z(1), z(2), . . .
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in R2 such that the first coordinates of all the z(i) are nonzero, but their limit as i tends to infinity is
zero, and furthermore the limit of their second coordinates as i tends to infinity exists (as a real number).
Then we apply the change of chart formula (x1, x2) 7→ (x−1

1 , x2x
−1
1 ) to each z(i) in the sequence. It is

clear that the resulting sequence in R2 will diverge because the second coordinates tend to infinity in
absolute value.
Finally it is obvious that lemma 2.2.15 applies, so M satisfies the 2nd countability axiom.

Example 2.2.17 Here is a simple example of a set M with a smooth atlas A such that the resulting
topology O on M fails to satisfy the Hausdorff separation condition. This is superficially rather similar
to example 2.1.2, but in reality it is drastically different.
Let M = R ∪ {∞}. The following two charts make up a smooth atlas A for M , of dimension m = 1 :

ψ1 : R −→M , ψ1(x) = x
ψ2 : R −→M , ψ2(x) = x if x 6= 0 and ψ2(0) =∞ .

Then ψ−1
1 (ψ2(R)) = ψ−1

2 (ψ1(R)) = R r {0}, and the two change-of-chart maps are given by the formula
x 7→ x, which is clearly smooth.
It is not possible to find two disjoint open sets in M containing, respectively, 0 and ∞.

We now return to definition 2.1.1 in order to complete the definition of an abstract smooth manifold.
Essentially, an abstract smooth manifold is a set M together with a smooth atlas, as in definition 2.1.1.
But is is customary to add two topological conditions:

the topological space (M,O), with the topology O determined by the atlas, as in definition 2.1.1,
has the Hausdorff property and satisfies the 2nd countability axiom.

Topologists also like to suppress the random features that come with the choice of a particular atlas. The
following definition helps with that.

Definition 2.2.18 Let M be a set. Two smooth atlases A and A′ on M , of the same dimension m, are
equivalent if A ∪A′ is also a smooth atlas.

(Another formulation of the same: the atlases A and A′ on M are equivalent if the identity map M →M
is smooth, both as a map from M with atlas A to M with atlas A′ , and as a map from M with atlas
A′ to M with atlas A. See definition 2.1.6. This alternative formulation makes it perhaps clearer that
the proposed relation of equivalence is in fact an equivalence relation. It also implies more directly that
equivalent atlases on M determine the same topology O on M .)

Definition 2.2.19 A smooth manifold of dimension m consists of a set M and an equivalence class of
smooth atlases of dimension m on M , such that the resulting topology on M satisfies the Hausdorff
separation axiom and the 2nd countability axiom.

Remark. We saw in example 2.1.5 that a smooth manifold M in Rn (definition 1.3.2), determines a
smooth atlas A on M . The resulting topology on M (definition 2.2.9) agrees with the subspace topology
(which in turn is induced by the usual metric, as in definition 1.1.2). It follows that this topology satisfies
the Hausdorff condition and the 2nd countability axiom.

Remark. Most of the examples of smooth manifolds listed earlier have names. Example 2.1.2 is (diffeo-
morphic to) S1, example 2.1.3 is (diffeomorphic to) the m-sphere Sm , example 2.1.4 is the real projective
plane RP 2, example 2.1.9 is the real projective space RPn and example 2.1.10 is the Grassmann manifold
Gr(p,m).

2.3 Open submanifolds and products

Example 2.3.1 Every open subset W of an (abstract) smooth manifold M of dimension m inherits the
structure of an abstract smooth manifold of the same dimension. Namely, choose one of the allowed atlases
for M , say A. Then every chart ψ : U → M (with U open in Rm) in A determines ψ|UW : UW → W
where UW = ψ−1(W ) ⊂ U . Here UW is open in U and hence in Rm, by our hypothesis on W . Therefore
we obtain a smooth atlas A|W on W made up of charts of the form ψ|UW : UW →W , with ψ : U →M
in A. The equivalence class of A|W depends only on the equivalence class of A.
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Example 2.3.2 Let M be a smooth manifold of dimension m and let N be a smooth manifold of
dimension n. Then M × N (the product set) comes with a preferred structure of smooth manifold of
dimension m+ n. The corresponding topology on M ×N is, as one might expect, the product topology
(determined by the topologies onM andN , respectively, which we already have thanks to definition 2.2.9).
Details: Choose one of the allowed atlases for M , say A, and choose one of the allowed atlases for N , say
B. For every chart ϕ : U1 →M in A and every chart ψ : U2 → N in B we obtain a map

U1 × U2 −→M ×N ; (x, y) 7→ (ϕ(x), ψ(y))

which can serve as one chart in an atlas on M ×N . The equivalence class of that atlas depends only on
the equivalence classes of A and B.

2.4 Group actions and orbit manifolds

We recall the notion of a group action. Let G be a group. We write 1 for the neutral element in G, and
g1g2 or g1 · g2 for the product of g1 and g2 in G.
An action of G on a set X is a map

α : G×X → X

such that α(1, x) = x for all x ∈ X, and α(g1, α(g2, x)) = α(g1g2, x) for all g1, g2 ∈ G and all x ∈ X. It
is customary to write gx instead of α(g, x).
Let per(X) be the group of permutations of X, that is, the group of all bijective maps from X to X, with
composition of maps as the binary operation. An action α of G on X determines a group homomorphism
G→ per(X) by the formula

g 7→ (x 7→ gx).

Conversely, a group homomorphism γ : G → per(X) determines an action of G on X by the formula
α(g, x) := γ(g)(x). In this way, actions of G on X correspond to group homomorphisms G→ per(X).
The orbits of an action (of G on X) are the equivalence classes of the relation “∼” on X defined by:
x ∼ y iff x = gy for some g ∈ G. We sometimes write X/G for the set of orbits.

Example 2.4.1 Let the multiplicative group C∗ of nonzero complex numbers act on the set of all nonzero
vectors in C2 by scalar multiplication. The set of orbits of this action is the set of 1-dimensional linear
subspaces of C2.

Definition 2.4.2 Let M be a smooth manifold of dimension m. Let G be a group. An action α of G
on M is smooth if, for every g ∈ G, the map from M to M defined by x 7→ gx = α(g, x) is smooth.

A smooth action of G on M determines a homomorphism from G to the diffeomorphism group of M ,
that is, the group consisting of all diffeomorphisms M →M .

Things get more complicated when the group G itself comes with the structure of a smooth manifold of
dimension > 0, like O(m) in example 1.4.4. For the moment we want avoid this situation, so that our
examples of groups tend to be “discrete”.

Example 2.4.3 The group with two elements 1 and t acts smoothly on the unit sphere Sn−1 ⊂ Rn

(example 1.3.4) by tx = −x for x ∈ Sn−1. This action is often called the antipodal action, as −x is the
“antipode” of x in Sn−1.

Example 2.4.4 Let H be any finite subgroup of the special orthogonal group SO(3), the group of
orthogonal 3× 3-matrices with determinant +1. Then H acts smoothly on SO(3) by “translation”, that
is, α(A,B) = AB for A ∈ H and B ∈ SO(3). The smooth manifold structure on SO(3) comes from
example 1.4.4.
There are some interesting finite subgroups of SO(3) associated with the platonic solids (tetrahedron,
cube, octahedron, dodecahedron, icosahedron). If we place one of these platonic solids in 3-space, with
(bary)center at the origin, then the group of matrices A ∈ SO(3) which map the solid to itself is a finite
subgroup H of SO(3). In the case of the icosahedron or the dodecahedron, it has 60 elements.
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Example 2.4.5 Fix an integer q > 1. Let G be the set of q-th roots of unity in C. This is a subset of C

with q elements, and we can write it as

G = {t0, t1, t2, . . . , tq−1}

where t = cos(2π/q) + i sin(2π/q). Under complex multiplication G turns into a group (which is cyclic,
with generator t). Now let S2n−1 be the unit sphere in the complex vector space Cn ,

S2n−1 = {z ∈ C
n |

n∑

r=1

|z|2 = 1}.

(Normally we say S2n−1 ⊂ R2n, but when you split each coordinate zr ∈ C of z ∈ Cn into its real and
imaginary part, you will see that it is much the same thing.) The group G acts smoothly on S2n−1 by

tr · (z1, z2, . . . , zn) = (trz1, t
rz2, . . . , t

rzn)

for z = (z1, z2, . . . , zn) ∈ S
2n−1 ⊂ Cn.

Example 2.4.6 Keeping the notation of the previous example, choose integers (ℓ2, ℓ3, . . . , ℓn), all rela-
tively prime to q. Then a smooth action of G on S2n−1 can be defined by

tr · (z1, z2, . . . , zn) = (trz1, t
rℓ2z2, t

rℓ3z3, . . . , t
rℓnzn) .

Let’s return to the general case of a group G acting smoothly on a smooth m-dimensional manifold M .
We add a technical assumption:

Every x in M admits a neighbourhood W such that gW ∩W = ∅ whenever g ∈ G, g 6= 1.
(A smooth action with these properties is called free and properly discontinuous.)

In these circumstances the set of orbits M/G has a preferred structure of smooth m-dimensional manifold.
This is not hard to understand. Choose one of the allowed atlases A for M . Let p : M → M/G be the
projection. For every x ∈ M choose an open neighborhood Wx of x in M such that gWx ∩ Wx = ∅
whenever g ∈ G, g 6= 1. Choose also a chart ϕx : Ux →M in the atlas A such that x ∈ ϕx(Ux). Making
the atlas larger, and making Ux and/or Wx smaller, we can assume ϕ(Ux) = Wx. Then the composition
ψx = p ◦ϕx is an injective map from Ux →M/G. Taking all the ψx together, we have a smooth atlas for
M/G. (Duplicate charts should be deleted.)

Lemma 2.4.7 In the above circumstances, the projection M →M/G is smooth and locally diffeomorphic.
That is, every x ∈ M admits an open neighborhood Wx such that p|Wx is a diffeomorphism from Wx to
its image p(Wx), an open set in M/G.

This is obvious from the construction.

Remark. The smooth actions described in examples 2.4.3, 2.4.4, 2.4.5 and 2.4.6 are all free and properly
discontinuous. The corresponding orbit manifolds M/G sometimes have “names”: in example 2.4.3 the
orbit manifold is projective (n − 1)-space which we have met before, in examples 2.4.5 and 2.4.6 it is
a lens space (please do not ask why). In the icosahedron case of example 2.4.4, the orbit manifold is
the Poincaré homology sphere, for reasons which will perhaps be revealed in a later chapter. (In any
case Poincaré was the first to think of this example, and it was important in the genesis of the Poincaré
conjecture which was solved just recently.)
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3.1 Tangent vectors

We begin by developing the idea of “velocity vectors” of particles moving about in smooth manifolds.

Definition 3.1.1 Let M be a smooth manifold of dimension k in Rn. Let ϕ : U → V be an ambient
chart, so that U and V are open in Rm , the map ϕ is a diffeomorphism, and ϕ(U ∩ Rk) = V ∩M . Let
y ∈ U and z = ϕ(y) ∈ M . The image of Rk ⊂ Rn under the linear isomorphism Dϕ(y) : Rn → Rn is
called the tangent space of M at z and denoted by TzM . It is a k-dimensional linear subspace of Rn.
Elements of TzM are called tangent vectors to M at z.

Remark. It does not matter which ambient chart ϕ : U → M with z ∈ ϕ(U) you use to determine the
linear subspace TzM ⊂ Rn. (Prove it.)

Example 3.1.2 Take M = Sn−1, the unit sphere in Rn. For z ∈ Sn−1, we have

TzS
n−1 = {v ∈ R

n |
k∑

j=1

zjvj = 0} .

Returning to the notation of definition 3.1.1, suppose that J ⊂ R is an open interval with 0 ∈ J and let
γ : J → Rn be a smooth curve such that γ(t) ∈ M for all t ∈ J , and γ(0) = z. Let’s write γ′(0) for the
velocity vector of γ at 0. (This is unfortunately not entirely consistent with section 1.2, where you were
told that γ′(0) is a linear map from R to Rn.)

Lemma 3.1.3 In this situation, γ′(0) ∈ TzM .

Proof For all t in a sufficiently short open interval J1 ⊂ J containing 0, we can write γ(t) = ϕ(β(t)).
Here ϕ : U → V is an ambient chart with z = ϕ(y) for some y ∈ U and β : J1 → U is a smooth curve in U .
Then β runs in U ∩Rk and so β′(0) ∈ Rk ⊂ Rn. Also, β(0) = y. By the chain rule, γ′(0) = Dϕ(y)(β′(0))
which belongs to Dϕ(y)(Rk) = TzM . �

Example 3.1.4 Let γ : J → Rn be a smooth curve (defined on an open interval J ⊂ R) such that
‖γ(t)‖ = 1 for all t ∈ [a, b]. Then by example 3.1.2 and lemma 3.1.3, the dot product γ′(t) · γ(t) is 0 for
all t ∈ [a, b]. Another proof of this fact: differentiate the equation γ(t) · γ(t) = 1.

a
m.weiss@abdn.ac.uk
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Next, we must try to imitate “all the above” for abstract smooth manifolds. So let M be an abstract
smooth manifold of dimension k. Let z ∈M .

Definition 3.1.5 A tangent vector to M at z is a rule v which to every chart ϕ : U →M (in any allowed
atlas for M) with z = ϕ(y) ∈ ϕ(U) assigns a vector vϕ ∈ Rk, subject to the condition

vψ = D(ψ−1 ◦ ϕ)(y)(vϕ).

(Here ψ : U ′ →M is another chart with z ∈ ψ(U ′) and D(ψ−1 ◦ ϕ)(y) is the differential of ψ−1 ◦ ϕ at y,
a linear isomorphism Rk → Rk.)

Remark. You can “construct” a tangent vector v to M at z by choosing some chart ϕ : U → M such
that z ∈ ϕ(U), say z = ϕ(y), and some vector in Rk to be called vϕ ∈ Rk. For all those other charts
ψ : U ′ →M with z ∈ ψ(U ′) , define vψ in terms of vϕ using that formula,

vψ = D(ψ−1 ◦ ϕ)(y)(vϕ).

Example 3.1.6 Let γ : J →M be a smooth curve, where J ⊂ R is an open interval containing 0. (See
definition 2.1.6.) Suppose that γ(0) = z. For every chart ϕ : U → M (in any allowed atlas for M) such
that z ∈ ϕ(U), let

vϕ = (ϕ−1 ◦ γ)′(0) .

Then it is easy to verify, using the chain rule, that vψ = D(ψ−1 ◦ ϕ)(y)(vϕ), assuming z = ϕ(y) and
ψ : U ′ →M is another chart etc. Therefore the assignment ϕ 7→ vϕ constitutes a tangent vector v to M
at z. We regard that as the velocity vector of γ at 0.

Proposition 3.1.7 The tangent vectors to M at z form a real vector space whose dimension is equal to
that of M . (This is the abstract tangent space to M at z, denoted by TzM .)

Proof Let v and w be tangent vectors to M at x. We define their sum by (v + w)ϕ = vϕ + wϕ. Scalar
multiplication with a real number c is defined by (cv)ϕ = c · vϕ . Hence the tangent vectors to M at
x form a real vector space. To show that this has dimension k = dim(M), we fix a particular chart
ϕ : U → M with x ∈ U . By “evaluating” a tangent vector to M at x on the chart ϕ, we obtain a
linear map from the vector space of all those tangent vectors to Rk. The map is bijective by the remark
following definition 3.1.5. It follows that the two vector spaces have the same dimension. �

Remark. In the case of a smooth manifold M in Rn, we now have two definitions of TzM for a point
z ∈M , because a smooth manifold in Rn is also an “abstract” smooth manifold according to 2.1.5. These
two definitions are related by a preferred linear isomorphism. (Unravel this.)

3.2 The tangent bundle

Proposition 3.2.1 Let M be a smooth manifold of dimension k in Rn. Then the set

TM = {(z, w) ∈ R
n × R

n | z ∈M , w ∈ TzM}

is a smooth manifold of dimension 2k in Rn×Rn. Note: this uses the definition 3.1.1 of TzM as a linear
subspace of Rn.

Proof Let ϕ : U → V be an ambient chart for M in Rn. So U and V are open subsets of Rm and ϕ is
a diffeomorphism from U to V , taking U ∩ Rk to V ∩M . Define Tϕ : U × Rn → V × Rn by

Tϕ(y, w) = (ϕ(y), Dϕ(y)(w))

where Dϕ(y) : Rn → Rn is the differential of ϕ at y, a linear isomorphism. We want to show that Tϕ is
an ambient chart for TM in Rn × Rn, with Tϕ(U × Rn) containing (obviously) all elements of TM of
the form (z, w), for z ∈ ϕ(U) and arbitrary w ∈ TxM .
The map Tϕ is a diffeomorphism, with smooth inverse defined by the formula

(y, v) 7→ (ϕ−1(y), D(ϕ−1)(y)(v)).
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For (y, v) ∈ U × Rn we have

Tϕ(y, v) ∈ TM ⇐⇒ y ∈ R
k, v ∈ R

k

so that Tϕ takes (U ×Rn)∩Rk ×Rk bijectively to (V ×Rn)∩ TM . Here we regard Rk ×Rk as a linear
subspace of Rn × Rn using the inclusion Rk → Rn on each factor. �

Proposition 3.2.2 Let M be a smooth manifold of dimension k. Then the set

TM = {(z, w) | z ∈M , w ∈ TzM}

comes with a preferred structure of smooth manifold of dimension 2k.

Proof We start by choosing an allowed smooth atlas A for M . Take a chart ϕ : U →M in A. So U is
open in Rk. Let

TU = U × R
k

and define Tϕ : TU → TM so that Tϕ(y, vϕ) = (z, v) for y ∈ U , z = ϕ(y) and v ∈ TzM . It is easy to
check that the maps Tϕ (as ϕ runs through the atlas A) make up an atlas for TM . �

Proposition 3.2.3 The projection map TM →M defined by (x, v) 7→ x is smooth.

Proof Take a chart ϕ : U → M for M and the corresponding chart Tϕ : TU → TM for TM (in the
notation of the proof of 3.2.2). Then the composition

TU U

Tϕ



y

x

ϕ

−1

Tϕ(TU)
proj.
−−−−→ ϕ(U)

agrees with the projection from TU = U ×Rk to U , which is certainly a smooth map (from an open set
in Rk × Rk to an open set in Rk). �

Remark. The projection map TM → M is called the tangent bundle of M . The proper expression for
TM is the total space of the tangent bundle of M . That is often shortened to the tangent bundle of M
(again).

Let now f : M → N be a smooth map, where dim(M) = m and dim(M) = n. Let x ∈ M . We will see
that f has a differential Df(x) at x, which is a linear map from TxM to Tf(x)N .
Choose a chart ϕ : U1 →M in an allowed atlas for M , with x ∈ ϕ(U1), and choose a chart ψ : U2 →M
in an allowed atlas for N , with f(x) ∈ ψ(U2). (So U1 is open in Rm, while U2 is open in Rn.) We define
Df(x) as the composition of the linear maps

TxM Tf(x)N

v 7→vϕ



y

x

(w 7→wψ)−1

Rm −−−−→ Rn

where the left-hand vertical arrow is the linear isomorphism TxM → Rm associated with the chart ϕ, the
right-hand vertical arrow is the inverse of the analogous isomorphism Tf(x)N → Rn associated with the
chart ψ, and the horizontal arrow is the differential of ψ−1 ◦ f ◦ϕ at ϕ−1(x). The chain rule implies that
Df(x) so defined is well defined, i.e., independent of the choice of charts ϕ and ψ.

Proposition 3.2.4 The map Tf : TM → TN defined by (x, v) 7→ (f(x), Df(x)(v)) is smooth in the
sense of definition 2.1.6.

Proof Let ϕ : U → M be a chart in an allowed smooth atlas for M and let ψ : V → M be a chart in
an allowed smooth atlas for N . Then Tϕ : TU → TM and Tψ : TV → N are typical charts for TM and
TN . Let W = ϕ−1(f−1(ψ(V ))), an open subset of U . Let g : W → V be defined by x 7→ ψ−1(f(ϕ(x))).
This is smooth by assumption on f . Then

(Tϕ)−1((Tf)−1((Tψ)(TV ))) = W × R
m = TW ,

which is an open subset of TU . The map TW → TV for which we have to establish smoothness is just
Tg : TW → TV , in a formula, Tg(y, v) = (g(y), Dg(y)(v)). This is certainly smooth. �
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4.1 Mechanical systems and their configuration spaces

In the description of a mechanical system obeying Newton’s laws of motion, a distinction is made between
the possible configurations of the system and the possible kinematical states of the system. To describe
a configuration of the system, at time t0 say, we need to know where all the particles in the system are
at time t0. To describe a kinematical state of the system at time t0, we need to know the positions and
the velocities of all the particles in the system at time t0. Knowledge of the configuration of the system
at time t0 is not enough to predict or reconstruct the configurations of the system at other times t. By
contrast, knowledge of the kinematical state of the system at time t0 is enough to predict and reconstruct
the kinematical states (and hence the configurations) of the system at all other times t, or at least for all
t in an open interval about t0 (in the case of “explosive” evolution of the system). This may be regarded
as an empirical truth, but mathematically speaking it is a consequence of the fact that Newton’s second
law of motion is a second order ODE, not a first order ODEs. In any case it indicates that the kinematical
states of the system are “more important” than the configurations.
The possible configurations of the system make up the configuration space and the possible kinematical
states make up what is called the phase space (or more precisely the velocity phase space). In most
examples the configuration space is a smooth m-dimensional manifold M , for some m. The phase space
is the TM . Therefore a study of some mechanical systems can give you a good feeling for what TM
means.

Example 4.1.1 A weightless rod of length 1 metre connects two massive particles of masses 1kg and 2kg,
respectively. Describe the possible motions of the rod in a gravitational field acting vertically downwards
at 9.81m/s2.

What is the configuration space of this system ? A configuration of the system is determined by the
positions of the two massive particles. These two positions are subject to a condition, that of having
distance 1 from each other. Therefore the configuration space is

{(x, y) ∈ R
3 × R

3 | ‖x− y‖ = 1}.

This is not just a subspace of R3 × R3 = R6, but in fact a smooth manifold of dimension 5 in R6.

A different but equally correct answer can be given. To describe a configuration of the system we need
to know the position of the particle of mass 1kg, and the unit vector which describes the direction of the
rod. Therefore the configuration space is

R
3 × S2 ⊂ R

3 × R
3

a
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where S2 ⊂ R3 is the unit sphere.

Example 4.1.2 A pendulum consists of a taut string of length 1m, one end of which is fixed at the origin
of R2, while the other end carries a bob of weight 1kg (and zero diameter). Gravity acts downwards at
the usual 9.81 m/s2. (Think of the x1 axis as “horizontal” and of the x2 axis as “vertical”.)

The configuration space is just S1 ⊂ R2.

Example 4.1.3 Similar to the previous example, but in addition the point where the pendulum is
suspended now has a mass of 5kg and is allowed to move freely along the x1 axis.

The configuration space is R1 × S1.

Example 4.1.4 Like example 4.1.2, but assume in addition that the taut string is suspended from a
point which undergoes a (forced) periodic motion along the x1 axis, so as to be sin(ωt) to the right of
the origin at time t (for a fixed ω > 0).

The configuration space is again S1.

Example 4.1.5 A stone flies through through the air under the influence of gravity. Assume that
gravity acts vertically downwards at 9.81m/s2, and that the stone consists of a homogeneous material
(i.e., the specific mass is constant in the stone). Describe the possible motions of the stone, neglecting
air resistance.

Here it is best to choose a coordinate system within the stone: origin at the centre of mass of the stone,
and some orthonormal basis, fixed relative to the stone. The possible positions of the stone are then
described by where the centre of mass is and by how those basis vectors (internal to the stone) are
positioned. Therefore the configuration space of the system is

R
3 × SO(3) .

We can think of that as a smooth 6-dimensional manifold in R3 × R9 = R12.

4.2 Lagrangian functions

One of the fastest and best ways of modelling a mechanical system mathematically is to determine its
configuration space, usually a smooth manifold M , and then to determine the Lagrangian function of the
system,

L : TM × R −→ R .

Here TM is of course the (total space of the) tangent bundle of M and the Lagrangian function typically
has the form “kinetic energy minus potential energy”. The factor R on the left is “time”, allowing for
the possibility that the expressions for the potential and kinetic energy depend on time. We shall see
many examples in a moment. The solution curves of the system, i.e., smooth maps γ : J → M (where
J ⊂ R is an open interval) which describe “physically realistic” evolutions of the system in time, are then
characterised by an extremal property which involves the function L. Namely, γ : J → M is a solution
curve if and only if it “minimises” the so-called action integral

∫
L(γ(t), γ′(t), t) dt. This is the content

of Hamilton’s principle of least action.
More precisely, we need to consider subintervals [a, b] ⊂ J with a and b not too far apart, and smooth
curves κ : [a, b]→M for which κ(a) = γ(a) and κ(b) = γ(b). On the “space” of such smooth curves κ we
define a function Φ by

Φ(κ) =

∫ b

a

L(κ(t), κ′(t), t) dt .

The function Φ turns out to be differentiable, in a sense which we need not make precise here. The correct
way to state the “minimising” condition on γ in the interval [a, b] is to say that the differential of Φ at
γ
∣
∣[a, b] has to be zero. (Remember that we usually minimise values of differentiable functions by looking

for critical points, i.e. for points where the differential of the function is zero.) A branch of mathematics
called variational calculus converts this condition on γ into second order differential equations for γ.
We will not be concerned with the variational calculus. Instead we will just determine the Lagrangian
functions attached to the mechanical systems listed in section 4.1 and discuss how the Lagrangian function
of a mechanical system can be understood in local coordinates, i.e., in charts.
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Example 4.2.1 In the case of example 4.1.1, the Lagrangian function is

L((x, y), (v, w), t) = 0.5(‖v‖2 + 2‖w‖2)− 9.81(x+ 2y) .

Here (x, y) is a point in the configuration manifold M = {(x, y) ∈ R3 × R3 | ‖x − y‖ = 1} and (v, w)
is a “velocity vector” in the tangent space T(x,y)M . The term 0.5(‖v‖2 + 2‖w‖2) is the kinetic energy,
whereas 9.81(x + 2y) is the potential energy. We are thinking in metre/kilogramm/second units. The
lagrangian function is time-independent.

Example 4.2.2 In the case of the planar pendulum, example 4.1.2 with configuration manifold S1 ⊂ R2,
the Lagrangian function is

L(x, v, t) = 0.5‖v‖2 − 9.81x2 .

Here x ∈ S1 ⊂ R2 with second (vertical) coordinate x2 , and v ∈ TxS
1 is a “velocity vector”. The

Lagrangian function is time-independent.

Example 4.2.3 For the wandering pendulum, example 4.1.3 with configuration manifold R1 × S1 in
R1 × R2, the Lagrangian function is

L(x, y, v, w, t) = 3v2 + 0.5‖w‖2 + vw1 − 9.81y2 .

Here x ∈ R1 and y ∈ S1 ⊂ R2 describe the configuration, while v ∈ R and w ∈ TyS
1 ⊂ R2 describe the

rate of change of x and y, respectively. The actual velocity of the pendulum bob is not w = (w1, w2),
but rather (w1 + v, w2). That is why the total kinetic energy is

5v2 + (w1 + v)2 + w2
2

2
=

6v2 + ‖w‖2 + 2vw1

2
.

The Lagrangian function is time-independent.

Example 4.2.4 For the forced pendulum, example 4.1.4 with configuration manifold S1 ⊂ R2, the
Lagrangian function is

L(y, w, t) = 0.5
(
‖w‖2 + 2εw1 cos(εt) + ε2 cos2(εt)

)
− 9.81y2 .

The Lagrangian function is time-dependent. The complicated expression for the kinetic energy comes
about in the following way. If the velocity vector of the bob relative to the configuration space S1 is
w = (w1, w2) ∈ R2 at time t, then the true velocity of the bob moving in R3 is (w1 + cos(εt), w2).

Example 4.2.5 For the stone, example 4.1.5, the Lagrangian function is

L((x,A), (v,B), t) = mass ·

(∫∫∫

stone

1

2 vol
‖B(w) + v‖2 dw1dw2dw3 − 9.81x3

)

.

Here “mass” is the mass of the stone and “vol” is its volume. The data x ∈ R3 and A ∈ SO(3) describe
the whereabouts of the stone in configuration space. In particular, A is a 3 × 3-matrix or a linear map
from R3 to R3. The data v and B describe a tangent vector to R3 × SO(3) in R3 × R3·3. In particular
v ∈ R3 is a velocity vector for the centre of mass of the stone and B ∈ R3·3 is a tangent vector to SO(3) at
A ∈ SO(3), hence also a 3× 3 matrix or a linear map from R3 to R3. The expression B(w) + v describes
the resulting velocity vector of a point in the stone, where w = (w1, w2, w3) are the coordinates of that
point in the stone’s own coordinate system. (In the expression B(w), think of B as a linear map.) The
quotient mass/vol is the specific mass of the stone. Therefore

∫∫∫

stone

mass

2 vol
‖B(w) + v‖2 dw1dw2dw3

is the correct expression for the kinetic energy of the stone. More obviously, mass · 9.81x3 is the correct
expression for the potential energy of the stone. The Lagrangian function is time-independent.
Some simplifications can be made in the kinetic energy expression. We have

‖B(w) + v‖2 = ‖B(w)‖2 + 2B(w) · v + ‖v‖2 .
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When we integrate over the stone, the term 2B(w) · v contributes zero because

∫∫∫

stone

B(w) · v dw1dw2dw3 = B

(∫∫∫

stone

w dw1dw2dw3

)

· v = B(0) · v

because
∫∫∫

w dw1dw2dw3 is the centre of mass of the stone in the stone’s own coordinate system.
Therefore

∫∫∫
1

2 vol
‖B(w) + v‖2 dw1dw2dw3 =

∫∫∫
1

2 vol
‖B(w)‖2 dw1dw2dw3 +

1

2
‖v‖2 .

It is also useful to observe that ‖B(w)‖2 = ‖A−1B(w)‖2 because A−1 is an orthogonal matrix. The
advantage of that is that A−1B is now in the tangent space to SO(3) at A−1A = I3. So we get

L((x,A), (v,B), t) = mass ·

(∫∫∫

stone

1

2 vol
‖A−1B(w)‖2 dw1dw2dw3 +

1

2
‖v‖2 − 9.81x3

)

.

Not finished yet ! Let’s also observe that the complicated-looking integral expression is in fact a homo-
geneous quadratic polynomial (no constant terms, no linear terms) in the entries of A−1B. So we can
write it uniquely as Jstn(A−1B,A−1B) where

Jstn : TI3SO(3)× TI3SO(3) −→ R

is a symmetric bilinear map. This is often called the inertia tensor (of the stone). Then

L((x,A), (v,B), t) = mass ·
(
Jstn(A−1B,A−1B) +

1

2
‖v‖2 − 9.81x3

)
.

Choosing a basis for TI3SO(3) (with three elements), we also get a basis for the vector space of symmetric
bilinear maps TI3SO(3) × TI3SO(3) −→ R (with six elements). Then Jstn is given by six real numbers,
which depend on the shape of the stone and also on our choice of an orthonormal basis in the stone. These
six numbers are all we need to know about the stone in order to write down the Lagrangian function
(except for the constant factor “mass” which can be dropped anyway). Consequently these six numbers
also determine the way in which the stone moves.
It is an interesting exercise in linear algebra to show that for every stone there exists a rectangular brick,
also equipped with an internal orthonormal coordinate system (which need not be lined up with the faces
of the brick) such that Jstn = Jbrk. Then the stone and the brick move in the same way.

Hamilton’s principle of least action characterises the physically realistic evolutions of a mechanical system
in a way which is “local”. To be more precise, let M be the configuration space of the mechanical system,
a smooth manifold of dimension k in Rn. Let J ⊂ R be an open interval and let γ : J → M be a
smooth curve. To test whether γ describes a realistic evolution of the system, we divide J into many
short intervals of the form [a, b] and ask whether each restriction γ

∣
∣[a, b] “minimises” the action integral

∫ b

a

L(γ(t), γ′(t), t) dt

where L is the Lagrangian function of the system. (The word “minimises” must be interpreted generously,
as explained earlier.) We are free to make the intervals [a, b] quite short, and then we may also assume
that the curve γ

∣
∣[a, b] proceeds in an open subset of M which has the form V = ψ(U) for some chart

ψ : U → M in an allowed atlas for M . So we are no longer concerned with M and L : TM × R → R,
but rather with V = ψ(U) and the restriction of L to TV ×R. Furthermore it seems that, if V describes
a large portion of the configuration space, large enough for our purposes, then U does that just as well
and possibly even better. (Points in V ⊂ M ⊂ Rn would normally be described by n coordinates, but
points in U have k coordinates only.) We only have to use ψ−1 and ψ to pass from V to U . That would
mean that we are no longer interested in γ but rather in the curve β = ψ−1 ◦ γ in U , defined on the time
interval [a, b]. But how can we recover the action integral

∫ b

a

L(γ(t), γ′(t), t) dt
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from the curve β ? This is clear in theory because (γ(t), γ′(t)) ∈ TV and (β(t), β′(t)) ∈ TU correspond
to each other under the diffeomorphism

Tψ : TU −→ TV ; (y, v) 7→ (ψ(y), Dψ(y)(v)).

(See the proof of proposition 3.2.2, and note also that TU = U × Rk where k is the dimension of M .)
Therefore we have:

Proposition 4.2.6 Let β = ψ−1 ◦ γ on [a, b]. Then

∫ b

a

L(γ(t), γ′(t), t) dt =

∫ b

a

Lψ(β(t)), β′(t), t) dt

where Lψ(y, v, t) = L(ψ(y), Dψ(y)(v), t).

This means that Lψ : TU × R → R is the correct Lagrangian function that we should use to test the
curve ψ−1 ◦ γ : [a, b]→ U .
While that may be clear in theory it is easily forgotten in practice. Perhaps the most important conclusion
to draw is the following. Feel free to use any chart ψ : U →M you like for the configuration space M , as
long as it is in an allowed atlas. Do not feel free to use any chart you like for the phase space TM , even
if it is in an allowed atlas for TM . Only trust charts of the form Tψ : TU → TM determined by charts
ψ : U →M for the configuration space, were Tψ(y, v) = (ψ(y), Dψ(y)(v)).
Let’s look at a very simple example for illustration.

Example 4.2.7 In the case of the planar pendulum, example 4.1.2 with configuration manifold S1 ⊂ R2,
we can use a chart ψ : U 7→ S1 where U is the open interval from −3π/2 to π/2 and

ψ(θ) = (cos(θ), sin(θ)) ∈ S1 ⊂ R
2 .

Then the resulting Lagrangian function on U is

Lψ(θ, ω, t) = 0.5ω2 − 9.81 sin(θ)

where θ ∈ U and ω ∈ R. By contrast, if we use the chart ϕ : W → S1 where W is the open interval from
−1 to +1 and

ϕ(y) = (y,−
√

1− y2 ) ∈ S1 ⊂ R
2 ,

then the resulting Lagrangian function on W is

Lϕ(y, z, t) =
1

1− z2
+ 9.81

√

1− y2

where y ∈W and z ∈ R.
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5.1 The homotopy relation

Let X and Y be topological spaces. (If you wish, assume that X is a subspace of Rm and Y is a subspace
of Rn. Subspace means subset with the induced topology. Or if you wish, assume that X and Y are
metric spaces.) Let f and g be continuous maps from X to Y . Let [0, 1] be the unit interval with the
standard topology, a subspace of R.

Definition 5.1.1 A homotopy from f to g is a continuous map h : X×[0, 1]→ Y such that h(x, 0) = f(x)
and h(x, 1) = g(x) for all x ∈ X. If such a homotopy exists, we say that f and g are homotopic, and
write f ≃ g. We also sometimes write h : f ≃ g to indicate that h is a homotopy from f to g.

Remark 5.1.2 If you did assume X ⊂ Rm and Y ⊂ Rn, then you can also say X × [0, 1] ⊂ Rm+1 and
Y × [0, 1] ⊂ Rn+1. If you made the less restrictive assumption that X and Y are metric spaces, then you
should use the product metric on X × [0, 1] and Y × [0, 1], so that for example

d((x1, t1), (x2, t2)) := max{d(x1, x2), |t1 − t2| }

for x1, x2 ∈ X and t1, t2 ∈ [0, 1]. If you were happy with the assumption that X and Y are “just”
topological spaces, then you need to know the definition of product of two topological spaces in order to
make sense of X × [0, 1] and Y × [0, 1].

Remark 5.1.3 A homotopy h : X × [0, 1]→ Y from f : X → Y to g : X → Y can be seen as a “family”
of continuous maps

ht : X → Y ; ht(x) = h(x, t)

such that h0 = f and h1 = g. The important thing is that ht depends continuously on t ∈ [0, 1].

Think of a homotopy as a single ‘take’ in a film, with ht the position of the actors at time t, starting at
h0 = f and ending at h1 = g.

Y • •f(x) g(x)

ht(x)

a
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Example 5.1.4 Let f : Rn → Rn be the identity map. Let g : Rn → Rn be the map such that
g(x) = 0 ∈ Rn for all x ∈ Rn. Then f and g are homotopic. The map h : Rn × [0, 1] defined by
h(x, t) = tx is a homotopy from f to g.

Example 5.1.5 Let f : S1 → S1 be the identity map, f(z) = z. Let g : S1 → S1 be the antipodal map,
g(z) = −z. Then f and g are homotopic. Using complex number notation, we can define a homotopy by
h(z, t) = eπitz.

Example 5.1.6 Let f : S2 → S2 be the identity map, f(z) = z. Let g : S2 → S2 be the antipodal map,
g(z) = −z. Then f and g are not homotopic. We will prove this later in the course.

Example 5.1.7 Let f : S1 → S1 be the identity map, f(z) = z. Let g : S1 → S1 be the constant map
with value 1. Then f and g are not homotopic. We will prove this quite soon.

Proposition 5.1.8 “Homotopic” is an equivalence relation on the set of continuous maps from X to Y .

Proof Reflexive: For every continuous map f : X → Y define the constant homotopy h : X× [0, 1]→ Y
by h(x, t) = f(x).
Symmetric: Given a homotopy h : X × [0, 1] → Y from f : X → Y to g : X → Y , define the reverse
homotopy h̄ : X × [0, 1]→ Y by h̄(x, t) = h(x, 1− t). Then h̄ is a homotopy from g to f .
Transitive: Given continuous maps e, f, g : X → Y , a homotopy h from e to f and a homotopy k from f
to g, define the concatenation homotopy k ∗ h as follows:

(x, t) 7→

{

h(x, 2t) if 0 6 t 6 1/2

k(x, 2t− 1) if 1/2 6 t 6 1 .

•
k ∗ h(x, 0) = e(x)

h(x,−) at twice the speed
•

k ∗ h(x, 1/2) = f(x)

k(x,−) at twice the speed
•

k ∗ h(x, 1) = g(x)

Then k ∗ h is a homotopy from e to g. �

Definition 5.1.9 The equivalence classes of the above relation “homotopic” are called homotopy classes.
The homotopy class of a map f : X → Y is often denoted by [f ]. The set of homotopy classes of maps
from X to Y is often denoted by [X,Y ].

Proposition 5.1.10 Let X, Y and Z be topological spaces. Let f : X → Y and g : X → Y and
u : Y → Z and v : Y → Z be continuous maps. If f is homotopic to g and u is homotopic to v, then
u ◦ f : X → Z is homotopic to v ◦ g : X → Z.

Proof Let h : X× [0, 1]→ Y be a homotopy from f to g and let w : Y × [0, 1]→ Z be a homotopy from
u to v. Then u◦h is a homotopy from u◦f to u◦g and the map X×[0, 1]→ Z given by (x, t) 7→ w(g(x), t)
is a homotopy from u◦g to v ◦g. Because the homotopy relation is transitive, it follows that u◦f ≃ v ◦g.
�

Definition 5.1.11 Let X and Y be topological spaces. A (continuous) map f : X → Y is a homotopy
equivalence if there exists a map g : Y → X such that g ◦ f ≃ idX and f ◦ g ≃ idY .
We say that X is homotopy equivalent to Y if there exists a map f : X → Y which is a homotopy
equivalence.

Definition 5.1.12 If a topological space X is homotopy equivalent to a point, then we say that X is
contractible. This amounts to saying that the identity map X → X is homotopic to a constant map from
X to X.

Example 5.1.13 Rm is contractible, for any m ≥ 0.

Example 5.1.14 Rm r {0} is homotopy equivalent to Sn−1.

Example 5.1.15 The general linear group of Rm is homotopy equivalent to the orthogonal group O(m).
The Gram-Schmidt orthonormalisation process leads to an easy proof of that.
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Digression 5.1.16 For a total appreciation of proposition 5.1.10 and definition 5.1.11 you need to go
back to digression 2.1.8 and the definition of category given there.
We make a category HT as follows. As objects, we take all the (topological) spaces. As the set of
morphisms from a space X to a space Y , we take [X,Y ], the set of homotopy classes of (continuous)
maps from X to Y . The composition rule is defined by composing representatives of homotopy classes.
Proposition 5.1.10 guarantees that this is well defined.
You might be tempted to infer that homotopy equivalence is just another expression for isomorphism in
HT , and homotopy equivalent is just another expression for isomorphic in HT . Strictly speaking the
second of these inferences is correct but the first is not. Homotopy equivalence is a designation which is
normally applied to honest maps f : X → Y between spaces, not to homotopy classes of maps.
More about syntax: do not confuse homotopic and homotopy equivalent. “Homotopic” is a relation
between maps, “homotopy equivalent” is a relation between spaces.

5.2 Based maps, based homotopies and homotopy groups

Definition 5.2.1 A based space (also pointed space) is a topological space X with a choice of distin-
guished point in X, the base point. The distinguished point is often denoted by ∗ ∈ X.
Let X and Y be based spaces. A based map from X to Y is a (continuous) map f : X → Y such that
f(∗1) = ∗2 where ∗1 and ∗2 are the base points of X and Y , respectively.
Let f and g be based maps from X to Y . A based homotopy from f to g is a map

h : X × [0, 1]→ Y

such that h(x, 0) = f(x) and h(x, 1) = g(x) for all x ∈ X, and moreover h(∗, t) = ∗ for all t. In such a
case each map ht : X → Y defined by ht(x) = h(x, t) is of course a based map from X to Y .
If f and g are based maps from X to Y , and a based homotopy from f to g exists, then f and g are
based homotopic. “Based homotopic” is an equivalence relation on the set of all maps from X to Y . The
set of equivalence classes is denoted by [X,Y ]∗ .
We make a category HT∗ as follows. As objects, we take all based (topological) spaces. As the set of
morphisms from a based space X to a based space Y , we take [X,Y ]∗ , the set of homotopy classes of
based maps from X to Y . The composition rule is defined by composing representatives of homotopy
classes.

Definition 5.2.1 comes a little out of the blue. The deeper reason for considering based maps and based
homotopy classes of maps is that we can often perform interesting “algebraic” operations with them. The
following definition helps with that.

Definition 5.2.2 Let X and Y be based spaces, with base points ∗1 and ∗2 respectively. Suppose that
X and Y are disjoint as sets. Let ∼ be the equivalence relation on X ∪ Y which makes ∗1 equivalent to
∗2 while everybody else is equivalent only to himself/herself. Topologists write

X ∨ Y =
X ∪ Y

∼

for the set of equivalence classes of this equivalence relation. This becomes a topological space with the
quotient topology: a subset U of X ∨ Y is open iff U ∩X and U ∩ Y are open in X and Y , respectively.
(It is not quite correct to pretend that X ⊂ X ∨ Y and Y ⊂ X ∨ Y , but there are obvious injective maps
X → X ∨ Y and Y → X ∨ Y .) The space X ∨ Y is the wedge sum of X and Y .

Remark 5.2.3 If you are not happy with topological spaces, you can assume that X and Y are metric
spaces. Then you should use the following metric on X ∨ Y . The distance from a to b is dX(a, b) or
dY (a, b) if a, b are both in X or both in Y . Otherwise it is

dX(a, ∗1) + dY (∗2, b)

if a ∈ X and b ∈ Y , where ∗1 and ∗2 are the base points in X and Y .

Remark 5.2.4 If X and Y are not disjoint as sets, then you should fix that somehow, for example by
using X$ = X × {0} and Y $ = Y × {1} instead. In such a case most topologists would still write X ∨ Y
but they would mean X$ ∨ Y $.
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The topology on X∨Y is defined in such a way that a based map from X∨Y to another based space Z is
exactly the same thing as a pair (f, g) consisting of a based map f : X → Z and a based map g : Y → Z.
For the same reasons, a based homotopy class of based maps from X ∨ Y to Z is the same thing as a
pair, consisting of a based homotopy class of maps from X to Y and a based homotopy class of maps
from Y to Z. Writing this in a formulaic way we have

Lemma 5.2.5 The set [X ∨ Y,Z]∗ is in bijective correspondence with [X,Y ]∗ × [Y, Z]∗ by means of the
map which takes the homotopy class [k] of a based map k : X ∨ Y → Z to the pair with first component
[k|X] and second component [k|Y ].

Example 5.2.6 Let’s make S1 ⊂ C into a based space with base point 1. Let’s pretend we know that
[S1, S1]∗ is in bijection with Z (the integer m corresponds to the based homotopy class of the map
z 7→ zm). Then S1 ∨ S1 looks like a “figure eight” and you know from the above that there is a bijective
map

[S1 ∨ S1, S1]∗ −→ Z× Z

in such a way that the pair of integers (m,n) corresponds to the map S1∨S1 → S1 which equals z 7→ zm

on the first wedge summand S1 and z 7→ zn on the second wedge summand S1.

Remark 5.2.7 Lemma 5.2.5 has an interpretation in the language of categories. Let C be a category
and let a, b be objects of C. We say that the product of a and b in C exists if there exists an object c in
C and morphisms p1 : c→ a , p2 : c→ b such that the following is a bijection for every object y in C:

mor(y, c) 7→ mor(y, a)×mor(y, b)
f 7→ (p1 ◦ f, p2 ◦ f).

Notation:
c = aΠb .

Products will be familiar to you in many specific categories. They are usually called products in each of
the specific categories. The morphisms p1 and p2 are usually called projections (from the product to its
factors).
There is a “dual” notion of coproduct in a category. Let C be a category and let a, b be objects of C. We
say that the coproduct of a and b in C exists if there exists an object c in C and morphisms j1 : a → c ,
j2 : b→ c such that the following is a bijection for every object y in C:

mor(c, y) 7→ mor(a, y)×mor(b, y)
f 7→ (f ◦ j1, f ◦ j2).

Notation:
c = a∐ b .

Copoducts may also be familiar to you from many specific categories. In the category of sets, and in the
category of topological spaces, they are called disjoint unions. In the category of groups, they are called
free products. In the category of left modules over a fixed ring, they are called direct sums (and they
happen to agree with products).
What lemma 5.2.5 expresses is that X ∨ Y is the coproduct of X and Y in the category HT⋆. It is also
the coproduct of X and Y in T∗ , the category of based spaces and based maps.

Now we are in a position to make some very interesting algebraic structures out of certain homotopy sets
[X,Y ]∗. In the first example we choose X = S1 ⊂ C with base point 1 as usual. Let

κ : S1 → S1 ∨ S1

be the map given by

κ(z) = z2 in the

{
second wedge summand if z has imaginary part ≥ 0
first wedge summand if z has imaginary part < 0.

Then for any based space Y , we can define a “multiplication” on [S1, Y ]∗ by the following formula: given
[f ] ∈ [S1, Y ]∗ and [g] ∈ [S1, Y ]∗ , their product [f ] • [g] is the homotopy class of

(f ∨ g) ◦ κ .

Here f ∨ g denotes the map from S1 ∨S1 to Y which is equal to f on the first wedge summand and equal
to g on the second wedge summand.
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Theorem 5.2.8 This multiplication makes [S1, Y ]∗ into a group, called the fundamental group of Y and
denoted π1(Y ).

Proof This proof is actually a sketch which aims to show that the whole statement is much more a
statement about S1 than a statement about Y . We need the following facts about S1.

(i) Writing c : S1 → S1 for the constant based map, the compositions

S1 κ
−−−−→ S1 ∨ S1 id∨c

−−−−→ S1 , S1 κ
−−−−→ S1 ∨ S1 c∨id

−−−−→ S1

are based homotopic to the identity.

(ii) There exists a based map λ : S1 → S1 such that the compositions

S1 κ
−−−−→ S1 ∨ S1 id∨λ

−−−−→ S1 , S1 κ
−−−−→ S1 ∨ S1 λ∨id

−−−−→ S1

are based homotopic to the constant based map c.

(iii) The composition

S1 κ
−−−−→ S1 ∨ S1 κ∨id

−−−−→ (S1 ∨ S1) ∨ S1

is based homotopic to the composition

S1 κ
−−−−→ S1 ∨ S1 id∨κ

−−−−→ S1 ∨ (S1 ∨ S1)

These are easy to show. (For λ, take the map z 7→ z−1 from S1 → S1, in complex number notation.)
Turning to π1(Y ) = [S1, Y ]∗ now, we note that the constant based map cY : S1 → Y is a two-sided
neutral element for the • product. For example [f ] • [cY ] is the homotopy class of

(f ∨ cY ) ◦ κ = f ◦ (id ∨ c) ◦ κ ≃ f ◦ id = f .

Also, for any based map f : S1 → Y , the homotopy class of f ◦ λ is a right inverse for the • product to
[f ] because

(f ∨ (f ◦ λ)) ◦ κ = f ◦ (id ∨ λ) ◦ κ ≃ f ◦ c = cY .

For a similar reason, [f ◦λ] is left inverse to [f ]. The associativity of the • product in π1(Y ) follows from
(iii) because, for elements [e], [f ], [g] in π1(Y ), the element ([e] • [f ]) • [g] is the homotopy class of

(e ∨ f ∨ g) ◦ (κ ∨ id) ◦ κ ≃ (e ∨ f ∨ g) ◦ (id ∨ κ) ◦ κ

and it is therefore equal to [e] • ([f ] • [g]). �

Example 5.2.9 We shall see in the next few chapters that π1(S
1) is isomorphic to Z, while π1(S

n) is a
trivial group for n > 1. For the projective spaces we have π1(RP

n) ∼= Z/2 if n > 1.
Fundamental groups are important to knot theorists. A knot is a smooth 1 manifold in R3 which, as a
smooth manifold in its own right, is diffeomorphic to S1. (More precisely a knot is an equivalence class of
such things, two being equivalent if there is a diffeomorphism f : R3 → R3 taking one to the other, and
preferably with f(x) = x for all x with large enough ‖x‖.) The fundamental group of the complement of
a knot says a lot about the knot.

The next example is a generalization of the last one. We look at [X,Y ]⋆ taking X to be Sn ⊂ Rn+1 with
base point (1, 0, . . . , 0), assuming n > 0. We need a good map

κ : Sn → Sn ∨ Sn.

We give two descriptions of κ (they don’t describe exactly the same map, but they are in the same based
homotopy class). The first has the advantage of being explicit and the disadvantage of being rather fiddly.
Take some v ∈ Sn ⊂ Rn+1 and write it in the form

v = a · (x1, · · · , xn, 0) + b · (0, · · · , 0, 1)
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where a, b ∈ R with a2 + b2 = 1 and a ≥ 0 and x1, x2, · · · , xn ∈ R with
∑n
i=1 x

2
i = 1. Determine c, d ∈ R

such that c+ di = (a+ bi)2 ∈ C. Then put

κ(v) = c · (1, 0, · · · , 0)± d · (0, x1, · · · , xn),

where the whole expression is to be taken in the second wedge summand Sn if b ≥ 0, and in the first
wedge summand Sn if b ≤ 0. The sign ± is minus if b ≥ 0 and n is even, otherwise it is plus.
For the other description of κ, we need to make an “identification” of Sn with the space In/∂In. Here
I = [0, 1] is the unit interval, In is the n-dimensional unit cube and ∂In is its boundary, consisting of all
(t1, . . . , tn) for which at least one of the coordinates ti is 0 or 1. The notation In/∂In means that we are
taking a quotient space (all points in the boundary of the cube are declared to be the same point). A
subset of [0, 1]n/∂[0, 1]n is declared to be open iff its preimage in the cube [0, 1]n is open. You identify
Sn with In/∂In by choosing a homeomorphism between the two if you can (which should take the base
point (1, 0, . . . , 0) to the point in In/∂In represented by all points in ∂In.) That being done, we define

κ : In/∂In −→ (In/∂In) ∨ (In/∂In)

by the formula

κ((t1, . . . , tn)) =
(2t1, t2, . . . , tn) in second wedge summand if 2t1 < 1

(2t1 − 1, t2, . . . , tn) in first wedge summand if 2t≥1.

Using any of the two descriptions of κ, we can define a “multiplication” on [Sn, Y ]∗ by the following
formula: given [f ] ∈ [S1, Y ]∗ and [g] ∈ [S1, Y ]∗ , their product [f ] • [g] is the homotopy class of

(f ∨ g) ◦ κ .

Here f ∨ g denotes the map from S1 ∨S1 to Y which is equal to f on the first wedge summand and equal
to g on the second wedge summand.

Theorem 5.2.10 This multiplication makes [Sn, Y ]∗ into a group, called the n-th homotopy group of Y
and denoted πn(Y ).

Proof We need the following facts about Sn and κ.

(i) Writing c : Sn → Sn for the constant based map, the compositions

Sn
κ

−−−−→ Sn ∨ Sn
id∨c
−−−−→ Sn , Sn

κ
−−−−→ Sn ∨ Sn

c∨id
−−−−→ Sn

are based homotopic to the identity.

(ii) There exists a based map λ : Sn → Sn such that the compositions

Sn
κ

−−−−→ Sn ∨ Sn
id∨λ
−−−−→ Sn , Sn

κ
−−−−→ Sn ∨ Sn

λ∨id
−−−−→ Sn

are based homotopic to the constant based map c.

(iii) The composition

Sn
κ

−−−−→ Sn ∨ Sn
κ∨id
−−−−→ (Sn ∨ Sn) ∨ Sn

is based homotopic to the composition

Sn
κ

−−−−→ Sn ∨ Sn
id∨κ
−−−−→ Sn ∨ (Sn ∨ Sn)

These are easy to show using the In/∂In model for Sn. We can for example define λ by the formula
(t1, . . . , tn) 7→ (1 − t1, t2, . . . , tn). The remainder of the proof is formally identical with the end of the
proof of theorem 5.2.8. �

Theorem 5.2.11 For any based space Y and any n > 1, the homotopy group πn(Y ) is abelian.
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Proof It is enough to show that κ : Sn → Sn ∨ Sn is homotopic to τ ◦ κ, where τ : Sn ∨ Sn → Sn ∨ Sn

interchanges the wedge summands. (In other words τ(z) = zc where zc is the clone of z in the other
wedge summand.) This is left as an exercise. You may find the description of a homotopy from κ to
τ ◦ κ easier using the first (fiddly) description of κ. But it is also instructive to try it using the second
description. �

Example 5.2.12 Here is some info on πm(Sn), assuming n > 0.

(a) Isomorphic to Z if m = n.

(b) Trivial group (one element only) if m < n.

(c) Trivial group if m > n and n = 1.

(d) Not always trivial if m > n > 1. The first example is π3(S
2) which is isomorphic to Z. No “formula”

describing all abelian groups πm(Sn) with m > n > 1 is known. This is a major open problem in
homotopy theory. Even πm(S2) is not well understood for all m.

(e) Known to be a finite (abelian) group if m > n > 1, except in the cases where n is even and
m = 2n− 1. In those cases it has rank 1.

We will establish (a),(b),(c) soon, at least in outline.

Example 5.2.13 Take a “long knot” in R3. This is a smooth 1-dimensional manifold K in R3 which is
connected and agrees with the x-axis outside a bounded set of R3. Then πm(R3 rK) is a trivial group
for m > 1. This is a (corollary of a) deep theorem in 3-manifold topology.



SMSTC (2008/09)

Geometry and Topology

Lecture 6: Fundamental group and covering spaces

Michael Weiss, University of Aberdeena

www.smstc.ac.uk

Contents
6.1 Introduction: Invariantorama . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–1

6.2 Covering spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–4

6.3 The path lifting property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–5

6.4 Classification of covering spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 6–6

Books

Allen Hatcher’s downloadable book Algebraic Topology (see reference list on the SMSTC wiki) is an
excellent introduction to algebraic topology. Whenever possible A.R. has included a page reference to
the book, in the form [ATn].
A.R.’s own book Algebraic and geometric surgery

http : //www.maths.ed.ac.uk/ aar/books/surgery.pdf

describes the application of algebraic topology to the classification of manifolds. The reviews of founda-
tional material it includes might be found useful.

6.1 Introduction: Invariantorama

How does one recognize topological spaces, and distinguish between them? In the first instance, it is not
even clear whether the Euclidean spaces R,R2,R3, . . . are pairwise non-homeomorphic. Standard linear
algebra shows that they are all non-isomorphic as vector spaces. It follows that Rm is diffeomorphic to
Rn if and only if m = n, since every differential of a diffeomorphism is an isomorphism of vector spaces.
In 1878 Cantor constructed bijections R → Rn for n > 2, which however were not continuous. In 1890
Peano constructed continuous surjections R → Rn for n > 2, the ‘space-filling curves’. By analogy it
seemed possible, at that time, that there might exist continuous injective maps from Rn to Rm with
n > m. In 1910, Brouwer was able to show that this was not the case.

Algebraic topology deals with topological invariants of spaces, that is, functions I which associate to a
topological space X an object I(X) which may be either a number or an algebraic structure such as a
group. The essential requirement is that homeomorphic spaces X,Y have the same invariant J(X) =
J(Y ), where = means ‘isomorphic to’ for algebraic invariants. Thus if X,Y are such that J(X) 6= J(Y )
then X,Y are not homeomorphic. Here are some examples:

a
m.weiss@abdn.ac.uk
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• The dimension of a Euclidean space Rn, J(Rn) = n.

• The genus of an orientable surface Σ is an integer g(Σ) > 0 (1850’s). [AT51]

• The Betti numbers of X (1860’s). [AT130]

• The fundamental group π1(X) (Poincaré. 1895). [AT26]

• The homology groups H∗(X) (1920’s). [AT160]

• The cohomology ring H∗(X) (1930’s). [AT191]

• The higher homotopy groups π∗(X) (1930’s). [AT340]

Given a topological space X, the first thing one might ask about its topology is whether any two points
can be joined by a path: given x0, x1 ∈ X does there exist a continuous map α : I = [0, 1] → X from
α(0) = x0 ∈ X to α(1) = x1 ∈ X? Such a function is called a ‘path’ in X from x0 to x1. The relation
defined on X by x0 ∼ x1 if there exists a path from x0 to x1 is an equivalence relation. An equivalence
class is called a ‘path component’ of X, and the set of path components is denoted by π0(X). The number
of path-components in a space X

|π0(X)| ∈ {0, 1, 2, 3, . . . ,∞}

is perhaps the simplest topological invariant: if m 6= n a space with m path-components cannot be home-
omorphic to a space with n path-components. By definition, a space X is path-connected if |π0(X)| = 1,
i.e. if it is nonempty and for any x0, x1 ∈ X there exists a path from x0 to x1.

Regard S1 as the unit circle in the complex plane C. A ‘loop’ in a space X at a point x ∈ X is a
continuous map ω : S1 → X such that ω(1) = x ∈ X. The fundamental group π1(X,x) of X at x ∈ X is
defined geometrically to be the set of homotopy classes of loops ω : S1 → X at x, with the homotopies
{ωt | 0 6 t 6 1} required to be such that ωt(1) = x. If x is path-connected, then π1(X,x) is isomorphic
to π1(X, y) for all x, y ∈ X. Often we assume that X is based, with base point ⋆ . Then we write π1(X)
instead of π1(X, ⋆).

Here are the key properties of the fundamental group:

• A (continuous) based map f : X → Y induces a group homomorphism f∗ : π1(X) → π1(Y ) which
depends only on the based homotopy class of f .

• For any based space X the identity map from X to X induces the identity homomorphism from
π1(X) to π1(X).

• For any continuous based maps f : X → Y , g : Y → Z

(gf)∗ = g∗f∗ : π1(X)→ π1(Z) .

• If f : X → Y is a based map which is a homotopy equivalence then f∗ is an isomorphism. Thus two
path-connected spaces with non-isomorphic fundamental groups cannot be homotopy equivalent,
and a fortiori cannot be homeomorphic.

The isomorphism class of π1(X) is a topological invariant of a path-connected space X. A based space
X is ‘simply-connected’ if it is path-connected and π1(X) = {1}. This is equivalent to saying that X is
path-connected and every continuous map S1 → X is homotopic to a constant map.

In many cases it is actually possible to compute π1(X), and to use the fundamental group to make
interesting statements about topological spaces. Here are some examples:

• The Euclidean spaces Rn (n > 1) are all simply-connected, with π1(R
n) = {1}.

• The fundamental group of the circle S1 is an infinite cyclic group. [AT29]

• Every loop ω : S1 → C\{0} is homotopic to the map z 7→ zn for a unique n ∈ Z called the winding
number of ω. Cauchy’s theorem computes the winding number as a closed contour integral

1

2πi

∮

ω

dz

z
= n .
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• The n-sphere Sn has π1(S
n) = {1} for n > 2. [AT35]

• The n-dimensional projective space RPn has π1(RP
n) = Z/2 for n > 2. [AT74]

• The fundamental group of the closed orientable surface Mg of genus g > 0 has 2g generators and
one relation

π1(Mg) = {a1, b1, . . . , ag, bg | [a1, b1] . . . [ag, bg]}

with [a, b] = a−1b−1ab the commutator of a, b. In particular, M0 = S2 is the sphere, with π1(M0) =
{1}, and M1 = S1 × S1 is the torus with π1(M1) = Z⊕ Z, the free abelian group on 2 generators.
Since the groups π1(Mg) (g > 0) are all non-isomorphic, the surfaces Mg are non-homeomorphic.

[AT51]

• For a knot K ⊂ R3 we have π1(R
3 r K), a topological invariant of the knot. For example, if

K0 ⊂ R3 is the trivial knot and K1 ⊂ R3 is the trefoil knot then

π1(R
3

rK0) = Z , π1(R
3

rK1) = {a, b | aba = bab} [AT55]

These groups are not isomorphic (since one is abelian and the other one is not abelian), so that
K0,K1 are essentially distinct knots. In particular, this algebra shows that the trefoil cannot be
unknotted.

• Let L ⊂ R3 be a smooth 1-dimensional manifold diffeomorphic to a disjoint union of two copies of
S1 (we say that L is a link). Then π1(R

3 rL) is a topological invariant of the link. For example, if
L0 ⊂ S3 is the trivial link then π1(R

3 r L0) = Z ∗ Z is the free nonabelian group on 2 generators,
while if L1 ⊂ R3 is the simplest non-trivial link then π1(R

3 r L1) = Z⊕ Z. [AT24,47]

The Seifert-van Kampen Theorem states that the fundamental group of a union X = X1 ∪ X2 of
path-connected spaces X1, X2 , both open in X, and with the intersection Y = X1 ∩X2 path-connected,
is isomorphic to the amalgamated free product π1(X1) ∗π1(Y ) π1(X2). [AT43]

• Example: The figure 8 has π1(8) = Z ∗ Z. [AT40,77]

Every group G is the fundamental group G = π1(X) of some path-connected space X, and every group
morphism φ : G→ H is the induced morphism φ = f∗ of a continuous map f : X → Y with π1(X) = G,
π1(Y ) = H. [AT89]

A covering space of a space X is a continuous map p : Y → X such that for each x ∈ X there exist an open
subset U ⊆ X with x ∈ U , a set S (to be viewed as a discrete topological space) and a homeomorphism
ϕ : S × U → p−1(U) such that p(ϕ(a, u)) = u ∈ U for all a ∈ S and u ∈ U .

One of the simplest and best examples of a covering space is the map R→ S1 given by t 7→ e2πit, using
complex number notation.

Content of this chapter. Let X be a well-behaved path connected and based space. (It will be clarified
later what well-behaved means.) Our main result in this chapter is a correspondence between

• covering spaces of X

• sets with an action of π1(X).

Under this correspondence, covering spaces p : Y → X with simply-connected Y correspond to sets with
a free and transitive action of π1(Y ). It follows, broadly speaking, that if a covering space p : Y → X
with simply connected Y is known, then π1(X) can be determined from it.

The correspondence between covering spaces of X and sets with an action of π1(X) leads to an easy proof
of the Seifert-van Kampen theorem, at least in the cases where the spaces involved are well-behaved. This
will be formulated as an exercise, with appropriate instructions.
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6.2 Covering spaces

Definition 6.2.1 A covering space of a space X is a continuous map p : Y → X such that for each
x ∈ X there exist an open neighbourhood U of x in X, a set S (to be viewed as a topological space with
the discrete topology) and a homeomorphism ϕ : S × U → p−1(U) such that p(ϕ(a, u)) = u ∈ U for all
a ∈ S and u ∈ U .

A covering space p : Y → X is a “local homeomorphism”: for each y ∈ Y there exists an open neigh-
bourhood V of y in Y such that p|V as a map from V to p(V ) is a homeomorphism, and p(V ) ⊂ X is
an open subset. The converse is not true, i.e., some local homeomorphisms are not covering spaces. The
following example illustrates that.

Example 6.2.2 The map p : R→ S1 defined by p(t) = e2πit ∈ S1 ⊂ C is a covering projection.
Let W ⊂ R be a nonempty bounded open interval. Then p|W : W → S1 is not a covering projection,
although it is still a local homeomorphism.

Example 6.2.3 Let G be a (discrete) group acting freely and discontinuously on a space Y . We recall
what this means: every y ∈ Y admits a neighbourhood U in Y such that U ∩ gU = ∅ whenever g ∈ G is
not the neutral element. Let X = Y/G, the space of orbits. (A subset of X is open iff its preimage in Y
is open in Y .) Then the projection p : Y → X is a covering space.

Example 6.2.4 Let p : Y → X be a covering space. Let B be another space and let f : B → X be any
map. From this information we want to produce a covering space q : A→ B such that, for every b ∈ B,
the set q−1(b) is “identified” with the set p−1(f(b)). A good way to define A and q : A→ B is then

A = {(b, y) ∈ B × Y | f(b) = p(y) }

(with the subspace topology) and q(b, y) = b for (b, y) ∈ A. Now we want to to show: the projection
q : A→ B is also a covering space.
Let b ∈ B be given. Choose a neighbourhood U of f(b) ∈ X and a set S and a homeomorphism
ψ : S×U → p−1(U) such that p(ψ(s, u)) = u for all (s, u) ∈ S×U . Then V = f−1(U) is a neighbourhood
of b in B. We have a homeomorphism S × V → q−1(V ) given by (s, c) 7→ (c, ψ(s, f(c)). This completes
the proof.
In the above situation it is customary to write A = Y ×BX and to say that the covering space q : A→ B
is the pullback of the covering space p : Y → X along f : B → X.

Definition 6.2.5 A covering space p : Y → X is trivial if there exist a set S and a homeomorphism
ψ : S ×X → Y such that p(ψ(s, x)) = x for all (s, x) ∈ S ×X.

Lemma 6.2.6 Let p : Y → X be a covering space where X = In is a cube. Then p is trivial.

Proof By contradiction (sketch): View the cube X as a union of two bricks such as X0 = In−1 × [0, a]
and X1 = In−1 × [a, 1] where a = 1/2. The maps

p0 : Y0 → X0 , p1 : Y1 → X1

obtained by restricting p to Y0 = p−1(X0) and Y1 = p−1(X1) are still covering spaces. It is easy to see
that, if p is not trivial, then at least one of the covering spaces p0 and p1 must be nontrivial. Repeating
the process many times, we see that if p is indeed nontrivial, then there exists a subcube or sub-brick X$

in X, with sidelengths as small as we please, such that

p$ : Y$ → X$

(the restriction of p to p−1 of X$) is a nontrivial covering space. This is however in contradiction with
our assumption that p is a covering space. Namely, X does admit a (finite) open cover by open sets Uα
such that the restriction of p to p−1(Uα) is a trivial covering space with target Uα. The cube X$ , if it is
indeed small enough, will be contained in one of the Uα. �
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6.3 The path lifting property

Definition 6.3.1 Let p : Y → X be a covering space. A lift of a continuous map f : Z → X across p is
a continuous map f ♯ : Z → Y such that

p ◦ f ♯ = f .

Example 6.3.2 If Y = S ×X for a set S, and p : Y → X is the projection, then every map f : Z → X
admits a lift across p. We can choose some s ∈ S and define f ♯(z) = (s, f(z)) for all z ∈ Z.

Theorem 6.3.3 (Path lifting property) Let p : Y → X be a covering space. Let x0 ∈ X, y0 ∈ Y be
such that p(y0) = x0 ∈ X.

• Every path α : I → X with α(0) = x0 has a unique lift across p to a path α♯ : I → Y such that
α♯(0) = y0.

• For a family of paths αt : I → X with αt(0) = x0 , depending continuously on t ∈ [0, 1], the lifted
paths αt

♯ also depend continuously on t.

Proof For the first claim we form A = {(t, y) ∈ I × Y | α(t) = p(y) }. Then we have a projection
q : A → I and this is clearly a covering space, the pullback of p : Y → X along α. By lemma 6.2.6,
q : A → I is a trivial covering space. Therefore we can find β : I → A such that q ◦ β = idI and
β(0) = (0, y0) ∈ A. Then the path α♯ : I → Y defined by composing β : I → A with the projection
A → Y solves our lifting problem. The same argument shows that α♯ is unique. More precisely, α♯ and
β determine each other and it is clear that β is unique.
For the second claim, we can argue similarly, using I2 instead of I. Indeed the family of paths αt defines
a map I2 → X by the formula (t, s) 7→ αt(s) ∈ X. �

Corollary 6.3.4 Let p : Y → X be a covering space where X is based. Let S be the fiber of p over the
base point, S = p−1(⋆). The set S comes with a preferred action of the fundamental group π1(X).

Proof Take y ∈ S and g ∈ π1(X). We need to say what gy ∈ S should be. Choose a loop γ representing
the homotopy class g. More precisely, it will be convenient to view γ as a path, γ : I → X with
γ(0) = γ(1) = ⋆ . By the first part of theorem 6.3.3, there exists a unique path γ♯ : I → Y such that
γ♯(0) = y and p ◦ γ♯ = γ. For this path γ♯ we clearly have γ♯(1) ∈ S = p−1(⋆). We define

gy := γ♯(1) ∈ S .

By the second part of theorem 6.3.3, choosing another γ in the same homotopy class g ∈ π1(X) will give
the same result, so that gy is well defined. The conditions for an action are easily verified. �

Remark 6.3.5 Let’s make corollary 6.3.4 more precise using category language. What we have here is a
relationship between two categories, CX and Sπ where π is short for π1(X). The first of these categories,
CX , has as objects all the covering spaces

p : Y → X

with fixed target X. A morphism from p1 : Y → X to p2 : Y2 → X is, by definition, a (continuous) map
u : Y1 → Y2 such that p2 ◦ u = p1. The other category Sπ is simply the category of π-sets and π-maps (a
π-set is the same thing as a set with an action of π).
The “rule” F which we have formulated in the corollary associates to each object p : Y → X of CX an
object S = F(p : Y → X) = F(p) of Sπ , given by S = p−1(⋆) with the π-action described in the proof
of the corollary. It is also true, and straightforward to verify, that a morphism u in CX from p1 : Y1 → X
to p2 : Y2 → X determines by restriction of u a map from

F(p1 : Y1 → X) = S1 = p−1
1 (⋆)

to
F(p2 : Y2 → X) = S2 = p−1

2 (⋆).

This is a π-map. We denote it by F(u) : F(p1) → F(p2). Again it is easy to verify that when u, v are
composable morphisms in CX , so that u ◦ v is defined, then F(u) ◦ F(v) is also defined and agrees with
F(u ◦ v). Finally if u is an identity morphism in CX , then F(u) is also an identity morphism in Sπ.
Briefly, F is a kind of homomorphism between categories. The official name for that is functor. So the
rule described in the corollary is actually a functor F from CX to Sπ , where π = π1(X).
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Example 6.3.6 The above constructions show that π1(S
1) is not the trivial group. Consider the covering

space p : R→ S1 with p(t) = e2πit. By all the above, this determines a set S = p−1(1) = Z ⊂ R with an
action of π1(S

1). It is clear by inspection that the element [id] ∈ π1(S
1) acts nontrivially, taking n ∈ S

to n+ 1 ∈ S. Therefore [id] is not the neutral element of π1(S
1).

6.4 Classification of covering spaces

Now we wish to show that the functor F described in corollary 6.3.4 and remark 6.3.4 is as “bijective”
as can reasonably be expected. Some parts of this are easy and require only a mild hypothesis on X.
Some other parts are harder and require stronger hypotheses on X. In particular it is not always true
that there exists a covering space p : Y → X such that the action of π1(X) on F(p) = p−1(⋆) is free and
transitive. In the cases where it exists, Y is simply connected. We then say that p : Y → X is a universal
covering of X.

Lemma 6.4.1 Let X be a based and path-connected space. Let p1 : Y1 → X and p2 : Y2 → X be covering
spaces. If u : Y1 → Y2 and v : Y1 → Y2 are “morphisms” of covering spaces, and F(u) = F(v), then
u = v.

Proof Saying that u and v are morphisms means that p2 ◦ u = p1 and p2 ◦ v = p1. Saying that
F(u) = F(v) means that u(y) = v(y) for every y ∈ Y1 which has p1(y) equal to the base point. Choose
now an arbitrary z ∈ Y1. We need to show u(z) = v(z) ∈ Y2. We can choose a path ω : I → X from p1(z)
to ⋆ ∈ X. This path lifts uniquely to a path ω♯ : I → Y1 from z to some point y with p1(y) = ⋆ ∈ X. We
form u ◦ ω♯ : I → Y2 and v ◦ ω♯ : I → Y2. Both of these paths are lifts of ω across p2. Their endpoints
also agree because u(y) = v(y) because p1(y) = ⋆ ∈ X. Therefore by the unique path lifting property,
applied to the covering space p2 : Y2 → X, they are the same paths. In particular their starting points
u(z) and v(z) are the same. �

Lemma 6.4.2 Let p1 : Y1 → X and p2 : Y2 → X be covering spaces, where X is path-connected
and based. Write π = π1(X). Every π-map v from F(p1) = p−1

1 (⋆) to F(p2) = p−1
2 (⋆) extends to a

“morphism” v̄ : Y1 → Y2 (so that p2 ◦ u = p1).

Proof Let’s use the following notation. For a point y ∈ Y1 and a path λ : I → X starting at p1(y), we
write λy to mean the endpoint of the unique path λ♯ : I → Y1 which lifts λ and starts at y. This suggests
that paths λ in X act on some points y ∈ Y , which is exactly what we want to express. Also, let’s write
λ−1 for the reverse of λ, so that λ−1(t) = λ(1 − t). Also, let’s use the same kind of notation for points
y ∈ Y2 and paths in X starting at p2(y).
Given y ∈ Y1 with p1(y) = x ∈ X we define

v̄(y) = γ−1v(γy)

where γ : I → X is a path from x to the base point ⋆ ∈ X. Note that γy is an element of p−1
1 (⋆), so

that v(γy) ∈ Y2 is defined. Note also that p2(v̄(y)) = x = p1(y) so that v̄ appears to be a “morphism”
between covering spaces of X. But we still have to check that v̄(y) is well defined. As long as we are in
doubt, let’s write v̄γ(y) for v̄(y) as written above. Now suppose we replace γ by another path µ from x
to ⋆. Do we get v̄γ(y) = v̄µ(y) ?
Suppose first that µ is homotopic to γ “relative to start- and endpoints”, i.e., there exists a continuous
map h : I × I → X such that h(0, t) = γ(t), h(1, t) = µ(t) for all t, and h(t, 0) = x, h(t, 1) = ⋆ for all t.
The homotopy determines a path from uγ(y) to uµ(y) in the space p−1

2 (x). As that space is discrete, we
must have v̄γ(y) = v̄µ(y).
If µ is not homotopic to γ relative to start- and endpoints, then it will still be homotopic (relative to
start- and endpoints) to a concatenated path ω • γ where ω : I → X has ω(0) = ⋆ = ω(1). Then, using
the hypothesis that v is a π-map, we have

v̄µ(y) = γ−1ω−1v(ωγy) = γ−1ω−1ωv(γy) = γ−1v(γy) = v̄γ(y).

�

Proposition 6.4.3 Let X be a path-connected based space and p : Y → X a covering space. The
following are equivalent:
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(i) Y is simply connected;

(ii) the set S = p−1(⋆) is nonempty and the action of π1(X) on it defined in corollary 6.3.4 is free and
transitive.

In these circumstances we say that p : Y → X is a universal covering space.

Proof Suppose that (i) holds. We first show that S = p−1(⋆) is nonempty. As Y is nonempty, there
exists y ∈ Y . Choose a path in X from p(y) to ⋆. Lift it to a path in Y starting at y. This path will end
at some point in S = p−1(⋆). Hence S is nonempty.
Next, let y0, y1 ∈ Y with p(y0) = p(y1) = ⋆. Since Y is path-connected, there exists a path γ♯ : I → Y
with γ♯(0) = y0 and γ♯(1) = y1. Let γ = p ◦ γ♯ and let g = [γ] ∈ π1(X). Then gy0 = y1 by definition
of the action of π1(X) on S. As y0 and y1 were arbitrary elements of S, this shows that the action is
transitive.
Continuing with this notation, suppose we have some element f ∈ π1(X) represented by a path ϕ : I → X
with ϕ(0) = ⋆ = ϕ(1), and that fy0 = y1 = gy0. We need to show f = g to establish that the action
of π1(X) on S is free. Let ϕ♯ : I → Y be the unique path which lifts ϕ and has ϕ♯(0) = y0. By our
assumption fy0 = y1 we must have ϕ♯(1) = y1. Therefore the concatenation of ϕ♯ and the reverse of γ♯

is a loop in Y . By assumption on Y , it is homotopic to a constant loop. Therefore (compose with p) the
loop γ •ϕ−1 is nullhomotopic. Therefore gf−1 = 1 ∈ π1(X), so f = g. This shows that the action is free.
Altogether, we have shown that (i) implies (ii).
Now suppose that (ii) holds. Transitivity of the action immediately implies that Y is path-connected.
Choose some base point y0 in Y such that p(y0) = ⋆ ∈ X. Let γ♯ : I → Y be any path having
γ♯(0) = y0 = γ♯(1). Let γ = p ◦ γ♯ : I → X and g = [γ] ∈ π1(X). Then gy0 = y0 by definition of the
action of π1(X) on S = p−1(⋆). As the action is free, it follows that g = 1, so γ is homotopic (relative to
start- and endpoint) to the constant path at ⋆ ∈ X. Now we can use the second part of the “path-lifting
property”, theorem 6.3.3, to deduce that γ♯ is also homotopic relative to start- and endpoint to a path
which proceeds entirely in S = p−1(⋆). Such a path has to be constant since S is discrete. This shows
that γ♯ is the trivial element of π1(Y, y0). As γ♯ was arbitrary, the conclusion is that π1(Y, y0) is the
trivial group and so Y is simply connected. �

Lemma 6.4.4 If the path-connected based space X admits a universal covering space p : Y → X, then
every π1(X)-set is isomorphic to one of the form F(q) = q−1(⋆) for some covering space q : Z → X.

Proof (Sketch.) Let π = π1(X) and S = p−1(⋆) ⊂ Y . Choose a point y0 in S. We are assuming that
the action of π on S is free and transitive. So every point in S can be written in the form gy0 for a
unique g ∈ π. For h ∈ π let Th : S → S be the map defined by gy0 7→ (gh)y0 for gy0 ∈ S. This is clearly
a π-map. From lemma 6.4.2 we know that it extends uniquely to a “morphism”

T̄h : Y → Y

(so that p ◦ T̄h = T̄h). When h = 1 this is the identity map. When h 6= 1 we have T̄h(y) 6= y for all
y ∈ Y . (Sub-proof: if T̄h(y) = y for some y, choose a path in Y from y to some point gy0 in S, and use
uniqueness of path-lifting to conclude Th(gy0) = gy0, which means ghy0 = gy0, which implies gh = g
hence h = 1.) We also have

Th ◦ Tk = Tkh

and so T̄h ◦ T̄k = T̄kh. Therefore the formula

yh := T̄h(y) ∈ Y

defines a right action of the group π on the space Y . We know already that the action is free. It is easy
to show that it is free and properly discontinuous. (Explain.)
Now let K be any π-set (set with left action of π). Let

YK = Y ×π K

which means: space of orbits of the left action of π on Y ×K given by

g · (y, k) = (yg−1, gk) .
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There is a projection map q : YK → X taking the equivalence class of (y, k) to p(y). This projection map
is a covering space of X. Then q−1(⋆) = S ×π K can identified with K by the formula

class of (y0, k) 7→ k

and the action of π on q−1(⋆) defined by corollary 6.3.4 is given by

g · (class of (y0, k)) = class of (gy0, k) = class of (y0, gk)

so agrees with the prescribed action of π on K. �

Remark 6.4.5 Let X be a path-connected based space which admits a universal covering p : Y → X.
If you put lemmas 6.4.1 and 6.4.2 and 6.4.4 together, you will see that the functor F from CX to Sπ
described in corollary 6.3.4 and remark 6.3.4 is indeed as “bijective” as can be expected. Firstly, for any
covering spaces q1 : Z1 → X and q2 : Z2 → X , the map

mor(q1, q2)→ mor(F(q1),F(q2))

which describes what F does on morphisms is a bijection. Secondly, any object in the target category
Sπ is isomorphic to one of the form F(q), for some covering space q : Z → X.
A functor with these properties is called an equivalence of categories.

Now it remains to find conditions which ensure that X admits a universal covering space.

Definition 6.4.6 A path-connected space X is well-behaved if, for every y ∈ X and every neighbourhood
V of y, there exists a smaller neighbourhood U of y in X which is path-connected and such that the
homomorphism π1(U, y)→ π1(X, y) induced by the inclusion U → X is the trivial homomorphism.

Example 6.4.7 A popular example of a path-connected space which is not well-behaved is the Hawaiian
earring E. This is the union of all circles in R2 with center (0, k−1) and radius k−1 where k = 1, 2, 3, . . . .
Give it the subspace topology inherited from R2. The offending point in E is (0, 0), which we can take as
the base point of E. For every neighbourhood U of (0, 0) in E there exist elements of π1(U) which have
nontrivial image in π1(E). (You are already already qualified to show this using example 6.3.6.)
For another interesting example, take the same E ⊂ R2, view it as a subspace of R3 using the standard
inclusion R2 → R3, and draw all the straight line segments from points in E to the point (0, 0, 1) ∈ R3.
Let X be the union of these line segments. Then X is contractible. This space X is well-behaved.
Nevertheless, all sufficiently small neighbourhoods of y = (0, 0, 0) have a frightfully large fundamental
group.

Lemma 6.4.8 Let X be a path-connected well-behaved based space. Then X admits a universal covering
space p : Y → X.

Proof (This proof is both sketchy and fiddly. The most illuminating part is the definition of Y as a
set. Try to sort out for yourself how Y is a topological space, because that is the fiddly part.)
A point in Y shall be an equivalence class of pairs (x, γ) where x ∈ X and γ : I → X is a path from the
base point ⋆ to x. We consider two such pairs (x1, γ) and (x2, ω) to be equivalent iff x1 = x2 and the loop
obtained by first running through γ (from ⋆ to x1) and then running through ω in reverse (from x1 = x2

to ⋆) represents the trivial element of π1(X). This defines Y as a set. There is an obvious projection
map from Y to X, taking the equivalence class of (x, γ) to x ∈ X.
Next we wish to make Y into a topological space. It is intuitively clear how this should work. A point
of Y represented by a pair (x1, γ) as above is “close” to other points of Y represented by pairs (x2, ω)
where x2 is close to x1 in X and ω can be obtained by running first through γ and then through a short
path µ from x1 to x2. The difficult thing is to say exactly and in full generality what we mean by a short
path from x1 to x2. (In many specific examples it is not very difficult to say, for example when X is a
smooth manifold.) We will say it in full generality using the hypothesis that X is well-behaved.
So, given a point y1 in Y , represent it by a pair (x1, γ) as above:

y1 = class of (x1, γ) .
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Choose a path-connected neighbourhood U of x1 in X such that the inclusion U → X induces the trivial
homomorphism π1(U, x1) → π1(X,x1). Let us adopt the informal idea that any x2 ∈ U is close to x1 ,
and any path from x1 to x2 which proceeds in U is short. More to the point, we use this idea to construct
a map s : U → Y with the property s(x1) = y1. Namely, given x2 ∈ U choose a path µ from x1 to x2 in
U . Concatenate it with γ to obtain a path ω = µ • γ from ⋆ to x2. The equivalence class of (x2, ω) is by
definition s(x2) ∈ Y . It is well defined, i.e., independent of the choice of µ. (Explain.) We decree that
s(U) is a neighbourhood of y1. We decree more precisely that a subset of Y containing the point y1 is a
neighbourhood of y1 precisely if it contains s(U) for some choice of U as above. And of course we decree
that a subset of Y is open if it is a neighbourhood of all its elements. This defines a topology on Y .
The next thing to check is that the projection p : Y → X is a covering space. We omit this. It is more
tedious than hard.
In any case it is clear that the set S = p−1(⋆), also known as the fiber of p over the base point of X,
is identified with π1(X). We claim that under this identification, the action of π1(X) on S defined in
remark 6.3.4 is simply left translation. (Consequently it is free and transitive, and consequently p is a
universal covering space.)
In order to show this we must recall how the action of π1(X) on S was defined. Given y ∈ S and
g ∈ π1(X), we obtain gy ∈ S by choosing a path γ : I → X starting and ending at ⋆. Then we lift this
to a path γ♯ : I → Y starting at y. That path will end at gy ∈ S. — To implement these instructions
we start by making explicit what y is. It is of course an equivalence class, represented by a pair of the
form (⋆, ω) where ω : I → X is a path from ⋆ to ⋆. Under our correspondence S ∼= π1(X) the element
y will then correspond to w = [ω] ∈ π1(X). We also have g = [γ] ∈ π1(X). Using all this information,
we want to define γ♯ : I → Y starting at y and lifting γ. This is easy: for t ∈ I we define γ♯(t) to be
the equivalence class of (γ(t), γ[0,t] • ω) where γ[0,t] is the restriction of γ from [0, 1] to [0, t], suitably

reparametrised, and the bullet means concatenation. Now the endpoint of the path γ♯ is the equivalence
class of (⋆, γ • ω). That of course corresponds to gw ∈ π1(Y ), which is what we wanted to show. �
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7.1 Introduction

Throughout this lecture we shall only be concerned with smooth manifolds and smooth atlases.

In this lecture we study smooth maps f : M → N between manifolds.

In Lecture 1 a k-dimensional manifold Mk in Rn was defined (1.3.2) to be a subset M ⊆ Rn such
that for every x ∈ M there exist open sets U, V ⊆ Rn and a diffeomorphism ψ : U → V such that
ψ(U ∩ Rk) = V ∩M , with

R
k = {(x1, x2, . . . , xk, 0, . . . , 0) |xj ∈ R, 1 6 j 6 k} ⊂ R

n .

In particular, Mk is a k-dimensional submanifold of the n-dimensional manifold Rn. We shall call such
manifolds concrete.

In Lecture 2 a k-dimensional manifold Mk was defined (2.1.1, 2.2.19) to be a set M with an equivalence
class of k-dimensional atlases, such that the resulting topology O on M satisfies the Hausdorff separation
axiom and the 2nd countability axiom.

Example 2.1.5 showed that a concrete k-dimensional submanifold M ⊆ Rn has a canonical equivalence
class of k-dimensional atlases, so that it is a k-dimensional manifold.

Is every manifold M concrete? In other words, does there exist an embedding (= injective smooth map
with injective differentials)

f : M → R
n ; x 7→ (f1(x), f2(x), . . . , fn(x))

such that the given equivalence class of atlases on M coincides with the equivalence class M inherits from
Rn. The answer is yes, at least for compact M . The Whitney embedding theorem uses ‘partitions of
unity’ to prove that every compact k-dimensional manifold M admits functions f1, f2, . . . , fn : M → R

such that f = (f1, f2, . . . , fn) is an embedding, with n > k. (This is the principle of the CAT scan in
medicine: given enough shadows it is possible to reconstruct the body).

Books

[Br ] G. Bredon, Topology and geometry, Graduate Texts in Mathematics 139, Springer, 1993

a
m.weiss@abdn.ac.uk
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[GG ] M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in
Mathematics 14, Springer, 1973

[Mi ] J. Milnor, Topology from the differentiable view point, Princeton University Press.

7.2 Partitions of unity

Definition 7.2.1 Let X be a topological space.
(i) A covering of X is a set U of subsets of X such that

⋃

U∈U

U = X .

The covering is open if each U ∈ U is open in X.
(ii) A covering V of X is a refinement of another covering U of X if every V ∈ V is contained in some
U ∈ U .
(iii) A covering U of X is considered finite if U is a finite set. (NB: in such a case, the finitely many
elements of U are still subsets of X, and they can of course be infinite sets in their own right.)
(iv) X is compact if every open covering U of X admits a finite subcovering, i.e., there exists a finite
subset V ⊂ U such that V is still an open covering of X.
(v) A covering U of X is locally finite if every x ∈ X has a neighbourhood Wx in X such that the set
{U ∈ U | Wx ∩ Uα 6= ∅} is finite.
(vi) X is paracompact if for every open covering U of X there exists a locally finite open covering V which
is a refinement of U .

Remarks. (a) A covering in the sense of Definition 7.2.1 (i) is not the same as a covering space in the
sense of Definition 4.3.1.
(b) A subcovering of a covering is a refinement, but a refinement need not be a subcovering.
(c) In many books and papers you will find notation like ... open covering {Uα|α ∈ J} of X. Here J is a
set, and the author(s) is/are thinking of a map from J to the set of subsets of X, described by α 7→ Uα.

Example 7.2.2 (i) The set of all open subsets of X is an open covering of X.
(ii) A compact space is paracompact.
(iii) Metric spaces are paracompact. (This is hard to prove, but we shall not need this fact).

Definition 7.2.3 A topological space X is locally compact if for every x ∈ X there exist an open subset
U ⊆ X and a compact subset K ⊆ X such that x ∈ U ⊆ K.

Example 7.2.4 (i) Rn is locally compact.
(ii) A manifold is locally compact.

Lemma 7.2.5 A topological space which is Hausdorff, locally compact and 2nd countable is paracompact.

Proof Proposition 4.2 of [GG]. �

Corollary 7.2.6 (i) Every metric space is paracompact.
(ii) A manifold is Hausdorff, locally compact and 2nd countable, and hence paracompact.

Definition 7.2.7 (i) The support of a function f : X → R is

supp(f) = closure{x ∈ X | f(x) 6= 0} ⊆ X .

(ii) A partition of unity on a topological space X is a collection of continuous maps

ρα : X → R (α ∈ I)

such that

(a) every x ∈ X admits a neighbourhood Wx such that the set {α ∈ I | supp(ρα) ∩Wx 6= ∅} is finite;
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(b) ρα(x) > 0 for every α ∈ I, x ∈ X;

(c) For each x ∈ X we have
∑

α∈I

ρα(x) = 1 .

If X is a smooth manifold and each ρα is smooth, we speak of a smooth partition of unity on X.
(iii) A partition of unity (ρα) is subordinate to an open covering V of X if for every α ∈ I there exists
V ∈ V such that supp(ρα) ⊂ V .

Lemma 7.2.8 Let U be a locally finite covering of a topological space X. If X is “second countable”,
then U (as a set in its own right) is countable.

Proof “Second countable” means that there exists a countable basis {W1,W2,W3, . . . } for the topology
of X. Then every open subset V of X is the union of the Wi contained in V . We can assume Wi 6= ∅ for
i = 1, 2, 3, . . . , and we can assume U 6= ∅ for all U ∈ U . Let S be the set of all pairs (U, i) where U ∈ U
and i ∈ {1, 2, 3, 4, . . . }, subject to the condition U ⊃Wi. There is a forgetful map

S → {1, 2, 3, . . . } ; (U, i) 7→ i

which is finite-to-one. Therefore S is countable. There is also a surjective map S → U given by (U, i) 7→ U .
Therefore U is countable. �

Lemma 7.2.9 Let U be an open subset of Rk and let K ⊂ U be compact. There exists a smooth function
ρ : U → [0, 1] such that supp(ρ) ⊂ U is compact and ρ(x) > 0 for all x ∈ K.

We will use this without proof.

Theorem 7.2.10 Let M be a k-dimensional smooth manifold and let U be an open covering of M . Then
there exists a smooth partition of unity {ρβ |β ∈ J} subordinate to U . Moreover, if U is a locally finite
covering, every U ∈ U has compact closure in M and every U ∈ U is the image of a chartb ψU : VU →M
with VU open in Rk , then we can take J = U and arrange that supp(ρU ) ⊂ U for all U ∈ U .

Proof We start with the second part, so we assume that U is a locally finite covering, every U ∈ U has
compact closure in M , and every U ∈ U is the image of a chart ψU : VU → M , where VU is open in Rk.
By lemma 7.2.8, the covering U is countable. So we may suppose U = {U1, U2, U3, . . . }. Let

K1 = M r (U2 ∪ U3 ∪ U4 ∪ · · · ) .

This is a closed subset of X, contained in U1 , therefore also in the closure of U1 which is compact. Hence
K1 is compact. By lemma 7.2.9, we may choose a smooth function ψ1 : M → [0, 1] with compact support
such that, moreover, supp(ψ1) ⊂ U1 and ψ1(x) > 0 for all x ∈ K1. Let U ′

1 = {x ∈M | ψ1(x) > 0}.
We now continue with the locally finite open covering {U ′

1, U2, U3, . . . } of X. Let

K2 = M r (U ′
1 ∪ U3 ∪ U4 ∪ U5 ∪ · · · ) .

This is a closed subset of M , contained in U2 , therefore also in the closure of U2 which is compact. Hence
K2 is compact. By lemma 7.2.9, we may choose a smooth function ψ2 : M → [0, 1] with compact support
such that, moreover, supp(ψ2) ⊂ U2 and ψ2(x) > 0 for all x ∈ K2. Let U ′

2 = {x ∈M | ψ1(x) > 0}.
We now continue with the locally finite open covering {U ′

1, U
′
2, U3, U4, . . . } of X. Let

K3 = X r (U ′
1 ∪ U

′
2 ∪ U4 ∪ U5 ∪ · · · ) .

This is a closed subset of M , contained in U3 , therefore also in the closure of U3 which is compact. Hence
K3 is compact. By lemma 7.2.9, we may choose a smooth function ψ3 : M → [0, 1] with compact support
such that, moreover, supp(ψ3) ⊂ U3 and ψ3(x) > 0 for all x ∈ K3. Let U ′

3 = {x ∈M | ψ1(x) > 0}.
And so on! Eventually we have a whole sequence of smooth functions ψ1, ψ2, ψ3, . . . on M . Each
ψi has compact support, and supp(ψi) ⊂ Ui by construction. Also by construction, the open sets
U ′
i = {x ∈M | ψi(x) > 0} form an open covering of M . Therefore

∞∑

i=1

ψi(x) > 0

bIn some allowed atlas for M .
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for every x ∈M . Now let

ρi(x) =
ψi(x)

∑∞
i=1 ψi(x)

.

Then {ρ1, ρ2, ρ3, . . . } is a partition of unity subordinate to the covering U = {U1, U2, . . . } of M .
Now let’s look at the general case: U is just any open covering of M . It is easy to construct an open
covering V of M which refines U and is such that each V ∈ V has compact closure in M , and is the image
of some chart in some allowed smooth atlas for M . Then the paracompactness of M guarantees that we
can find a locally finite open coveringW of M which refines V. Clearly each W ∈ W has compact closure
in M , and is the image of some chart in some allowed smooth atlas for M . Therefore we can construct
(as above) a smooth partition of unity subordinate to W. This will also be subordinate to U . �

Corollary 7.2.11 A compact n-dimensional manifold M has a smooth partition of unity (ρβ)β∈J where
J is finite and each supp(ρβ) is contained in the image of a smooth chart ψβ : Vβ → M , with Vβ open
in Rn.

Proof Since M is compact, it has a finite atlas. �

7.3 The Whitney embedding theorem

Theorem 7.3.1 (Whitney, 1936) Any compact k-dimensional manifold M is diffeomorphic to a smooth
manifold in Rn for some n > k.

Proof (Sketch.) By Corollary 7.2.11 we have a partition of unity (ρi)i=1,2,3,...,s subordinate to a finite
covering {U1, U2, . . . , Us} of M , where each Ui is the image of a smooth chart ϕi : Vi →M , with Vi open
in Rk. We can assume supp(ρi) ⊂ Ui. For x ∈M let

ψi(x) = ρi(x) · ϕ
−1
i (x) ∈ R

k

if x is in the image of ϕi , and ψi(x) = 0 ∈ Rk otherwise. Then ψi : M → Rk is a smooth map for every
i ∈ {1, 2, 3, . . . , s}. We now define

f(x) = (ρ1(x), ψ1(x), ρ2(x), ψ2(x), . . . , ρs(x), ψs(x)) ∈ R× R
k × R× R

k × · · · × R× R
k = R

s(k+1)

for x ∈ M . Let’s show, at least in outline, that f(M) is a smooth manifold in Rs(k+1) and that f , as a
map from M to f(M), is a diffeomorphism.
We start by showing that f is injective. If x, y ∈M and f(x) = f(y), we can find i such that ρi(x) 6= 0.
Then also ρi(y) = ρi(x) 6= 0 and so x, y ∈ Ui. Furthermore

ϕ−1
i (x) =

ψi(x)

ρi(x)
=
ψi(y)

ρi(y)
= ϕ−1

i (y)

and by applying ϕi , we get x = y. So f is injective. The same argument shows that f has a continuous
inverse from f(M) to M , that is, if f(x) is “close” to f(y) then x is “close” to y.
Keeping x ∈M as above, and the fixed i with ρi(x) 6= 0, we can therefore choose an open neighborhood
W of f(x) ∈ R(k+1)s such that W ∩ f(M) = f(U ′

i) = f(ϕi(V
′
i )) where

U ′
i = {x ∈ Ui | ρi(x) > 0} , V ′

i = {z ∈ Vi | ρi(ϕi(z)) > 0} .

The smooth map

g : (t1, v1, t2, v2, . . . , ts, vs) 7→
vi
ti

from W to Rk has a smooth “right inverse” in the shape of f ◦ ϕi ; more precisely, g ◦ f ◦ ϕi|V
′
i is the

inclusion V ′
i → Rk. It followsc that f(ϕi(V

′
i )) = W ∩ f(M) is a smooth manifold in R(k+1)s. Then it

follows that f(M) is a smooth manifold in R(k+1)s. �

Remark 7.3.2 Whitney’s theorem has a stronger version: every compact k-dimensional manifold M
admits an embedding M ⊂ R2k. See [Br,p.91] for the modification of the proof of Theorem 7.3.1 required
to prove that there exists an embedding M ⊂ R2k+1.

cThis needs a bit of elaboration.



SMST C: Geometry and Topology 7–5

7.4 Sard’s Theorem

Let us start with some standard linear algebra. The kernel and image of a linear map f : V → W of
vector spaces are the subspaces

ker(f) = {v ∈ V | f(v) = 0 ∈W} ⊆ V , im(f) = {f(v) | v ∈ V } ⊆W .

The inverse image of any w ∈ im(f) is an affine space, of the form

U = f−1(w) = {u+ v | v ∈ ker(f)} ⊆ V

for any fixed u ∈ U . If f is surjective then

dim(U) = dim(V )− dim(W ) .

Roughly speaking, Sard’s Theorem states that for a smooth map f : M → N of manifolds with dim(M) <
dim(N) , the image f(M) ⊂ N is of measure 0, while if dim(M) > dim(N) there exists a subset Z ⊂ N
of measure zero such that for every y ∈ N\Z the inverse image L = f−1(y) ⊂ M is a submanifold of
dimension

dim(L) = dim(M)− dim(N) .

Definition 7.4.1 Let f : V →W be a linear map of finite-dimensional vector spaces.
(i) The rank of f is

rank(f) = dim(im(f)) .

(ii) The nullity of f is
nullity(f) = dim(ker(f)) .

The rank theorem states that rank(f) + nullity(f) = dim(V ).

By the multivariable Taylor theorem, a differentiable map f : Rm → Rn can be approximated at each
x ∈ Rm by the derivative linear map

Df(x) = (∂fj/∂xi) : TxR
m = R

m → Tf(x)R
n = R

n ,

in the sense that there exist an open neighbourhood U ⊆ Rm of x and a number K > 0 such that

‖f(x+ h)− (f(x) +Df(x)(h))‖ 6 K‖h‖2 (x+ h ∈ U) .

More generally, a smooth map f : M → N of manifolds can be approximated at any x ∈M by the linear
map Df(x) : TxM → TxN , working with charts at x ∈M and f(x) ∈ N .

Definition 7.4.2 Let f : M → N be a smooth map of manifolds.
(i) A point x ∈ M is a critical point of f if the linear map Df(x)) : TxM → Tf(x)N is not surjective.
Let C[f ] ⊂M be the set of critical points.
(ii) A point y ∈ N is a critical value of f if y ∈ f(C[f ]).
(iii) A point x ∈M is a regular point of f if x /∈ C[f ].
(iv) A point y ∈ N is a regular value of f if it is not a critical value, i.e. if y /∈ f(C[f ]).

Example 7.4.3 If dim(M) < dim(N), then every x ∈ M is a critical point of f and every element of
f(M) is a critical value of f . The regular values of f are precisely the elements of N r f(M).

The following is a rather obvious generalisation of smooth manifold in Rm.

Definition 7.4.4 Let M be a smooth m-dimensional manifold. Let ℓ ≤ m. A subset L ⊂M is a smooth
ℓ-dimensional submanifold of M if, for every z ∈ L, there exist an open set U ⊂ Rm and an open subset
V ⊂M containing z, and a diffeomorphism

ϕ : U → V

such that ϕ(U ∩ Rℓ) = V ∩ L.
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Example 7.4.5 Let m,n be positive integers with m < n. If you accept Rm ⊂ Rn, then you can
probably also accept RPm−1 ⊂ RPn−1. In that sense, RPm−1 is a smooth submanifold of RPn−1.

Theorem 7.4.6 If f : M → N is a smooth map of manifolds and y ∈ N is a regular value of f , then
L = f−1(y) ⊂M is a smooth submanifold of M . Its dimension is

dim(M)− dim(N)

if that number is positive; otherwise L is empty.

Proof The case where m = dim(M) is less than n = dim(N) is easy: if y is a regular value of f , then
L = f−1(y) is empty. In the case m ≥ n it may be assumed without loss of generality that M = Rm,
N = Rn. This case is given by Corollary 1.4.3. �

Example 7.4.7 (i) For any integers p, q > 0 with n = p+ q > 1 define the smooth map

f : R
n → R ; x = (x1, x2, . . . , xn) 7→

p
∑

i=1

(xi)
2 −

q
∑

j=1

(xp+j)
2 .

The derivative linear map

Df(x) = (2x1 . . . 2xp − 2xp+1 . . . − 2xn) : TxR
n = R

n → TxR = R

is surjective for x 6= 0 ∈ Rn, so
C[f ] = {0} .

The set of critical values is f(C[f ]) = {0} ⊂ R, and the set of regular values is R r {0}. For any
y 6= 0 ∈ R r {0} the inverse image L = f−1(y) ⊂ Rn is an (n− 1)-dimensional submanifold.
(ii) The element 1 ∈ R is a regular value for

f : R
n → R ; (x1, x2, . . . , xn) 7→ (x1)

2 + (x2)
2 + · · ·+ (xn)

2 ,

with Sn−1 = f−1(1) ⊂ Rn an (n− 1)-dimensional submanifold.

Where do regular values come from? By the following theorem, for any smooth map f : M → N the
probability of an element y ∈ N being a regular value of f is 99.99 . . .% :

Theorem 7.4.8 (Sard, 1942) The set f(C[f ]) of critical values of a smooth map f : M → N of smooth
manifolds has measure 0. (See the remark just below.)

Proof See pp. 34-36 of [GG]. Warning: [GG] use definitions of critical point, critical value etc., which
differ slightly from the ones used here when dim(M) < dim(N). �

Remark. A subset C of a smooth n-dimensional manifold N is said to have measure zero if, for every
chart ϕ : U → N in an allowed smooth atlas for N , the set ϕ−1(C) ⊂ U ⊂ Rn has Lebesgue measure
zero.

7.5 Transversality

Imagine three smooth manifolds M1,M2, N and two smooth maps f : M1 → N , g : M2 → N . Write
m1 = dim(M1), m2 = dim(M1), n = dim(N).

Definition 7.5.1 The maps f and g are transverse to each other, in symbols f ⋔ g, if for every x ∈M1

and y ∈M2 with f(x) = g(y) ∈ N , the linear map

TxM1 × TyM2 −→ Tf(x)N = Tg(y)N ; (v, w) 7→ Df(x)(v) +Dg(y)(w)

is surjective.
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Proposition 7.5.2 If f ⋔ g , then the set L = {(x, y) ∈M1×M2 | f(x) = g(y)} is a smooth submanifold
of M1 ×M2 , of dimension m1 +m2 − ℓ. For (x, y) ∈ L , the tangent space

T(x,y)L ⊂ T(x,y)(M1 ×M2) ∼= TxM1 × TyM2

is the linear subspace {(v, w) ∈ TxM1 × TyM2 | Df(x)(v) = Dg(y)(w) }.

Proof Exercise. �

Theorem 7.5.3 (a version of Thom’s transversality theorem, early 1950’s.) Let smooth manifolds
M1,M2, N and smooth maps f : M1 → N , g : M2 → N be given. Then there exist an integer q > 0, an
open subset U of Rq containing 0, a smooth map

F : M1 × U −→ N ,

and a subset of measure zero Z ⊂ U such that

• F (x, 0) = f(x) for all x ∈M1 ;

• for any a ∈ Rq r Z, the smooth map M1 → N given by x 7→ F (x, a) is transverse to g : M2 → N .

Remark. The maps fa : M1 → N given by x 7→ F (x, a), for fixed a ∈ Rk , should be regarded as “small
perturbations” of f , at least when a is close to 0. Each of these maps is (clearly) homotopic to f . In
particular, f0 = f .

Proof (Sketch.) We will cheat a little by assuming that N is compact. By theorem 7.3.1, we may then
also assume that N is a smooth manifold in Rq for some q (alias smooth submanifold of Rq). We choose
an open set V ⊂ Rq containing N , and a smooth map

r : V → N

such that r|N = idN . (Exercise: construct such a V and such a map r.) The linear map Dr(x) from
TxV to Tr(x)N is surjective if x ∈ N ⊂ V . Therefore, by making V smaller if necessary, we can arrange
that Dr(x) : TxV → Tp(x)N is surjective for all x ∈ N .
Next, choose an open neighbourhood U of 0 ∈ Rq such that the map M1×U → Rq given by the formula
(x, a) 7→ f(x) + a has image contained in V . Now define

F (x, a) = r(f(x) + a) ∈ N

for x ∈ M1 and a ∈ U . Then clearly F (x, 0) = r(f(x)) = f(x) for all x ∈ M1. Furthermore, the
differential of F at any point (x, a) ∈ M1 × U is a surjective linear map.d It follows (trivially) that
F : M1 × U → N is transverse to g : M2 → N . Therefore, by proposition 7.5.2, the set

L = {(x, a, y) ∈M1 × U ×M2 | F (x, a) = g(y)}

is a smooth submanifold of M1 ×U ×M2 , of dimension m1 + q+m2 − n. We have a smooth projection
map

p : L→ U

given by (x, a, y) 7→ a. Let Z ⊂ U be the set of critical values of p. Then Z has measure zero by Sard’s
theorem. It remains to show that, for a ∈ U r Z, the map

fa : M1 → N ; x 7→ F (x, a)

is transverse to g : M2 → N .
Suppose that we have x ∈ M1 and y ∈ M2 with fa(x) = g(y). Then (x, a, y) ∈ L and, moreover, since
a /∈ Z, we know that (x, a, y) is a regular point of the projection p : L→ U . Hence the dimension of

ker(Dp(x, a, y)) = T(x,a,y)L ∩ T(x,a,y)(M1 × {a} ×M2) ⊂ T(x,a,y)(M1 × U ×M2)

is equal to dim(L)− dim(U) = m1 +m2 − n. Now we can make an identification

T(x,a,y)(M1 × {a} ×M2) ∼= TxM1 × TyM2

and observe (using the formula for tangent spaces in proposition 7.5.2) that T(x,a,y)L ∩ (TxM1× TyM2)
is equal to {(v, w) ∈ TxM1 × TyM2 | Df

a(x)(v) = Dg(y)(w) }. Since that has dimension m1 +m2 − n,
the linear map (v, w) 7→ Dfa(x)(v) − Dg(y)(w) is surjective. Then (v, w) 7→ Dfa(x)(v) + Dg(y)(w) is
also surjective. �

dUse the chain rule, noting that F was defined as a composition of two smooth maps.
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The transversality theorem allows us to reach astonishing depths in differential topology for little work,
somewhat like Galois theory in algebra. It will not be the dominating idea in our course, because it
would take us too far from the metric and analytic aspects of geometry. This chapter at any rate is an
excursion into the world of transversality.

8.1 Orientations

Definition 8.1.1 Let V be an n-dimensional real vector space, n <∞. An orientation of V is a function
which for every linear isomorphism f : Rn → V selects a sign s(f) ∈ {−1,+1}, subject to the following
condition:

s(f) = s(g) · sign of det(f−1 ◦ g)

(where f, g : Rn → V are linear isomorphisms).

Lemma 8.1.2 Every finite dimensional real vector space has exactly two distinct orientations.

The proof is easy and you may find the result unremarkable. But it is worth noting that the lemma also
holds in the case of a 0-dimensional vector space. This will be quite important for us.

Definition 8.1.3 Let V1 and V2 be finite dimensional real vector spaces. A choice of orientations s1 and
s2 for V1 and V2 respectively determines an orientation s = s1 ⊕ s2 for V1 ⊕ V2 with the property

(s1 ⊕ s2)

(
f1

f2

)

= s(f1) · s(f2) .

This simple-minded construction leads to a few more of the same ilk.

Definition 8.1.4 Let V be an n-dimensional real vector space, W ⊂ V anm-dimensional linear subspace.
A choice of orientations for two of the three vector spaces V , W and V/W determines an orientation for
the third as follows. We choose a splitting

u : V/W → V

of the projection p : V → V/W , so that p ◦u = id. This allows us to identify V with W ⊕V/W . We now
determine the missing orientation so that the equation sV = sW ⊕ sV/W holds.

a
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Definition 8.1.5 Let V , W1 and W2 be finite dimensional real and let f : W1 → V , g : W2 → V be
linear maps. Suppose that the map

W1 ×W2 −→ V ; (w′, w′′) 7→ f(w′) + g(w′′)

is onto. Then any choice of orientations sV , s1 and s2 for V , W1 and W2 respectively determines an
orientation for the vector space

P = {(w′, w′′) ∈W1 ×W2 | f(w′) = g(w′′)}

as follows. We use s1 ⊕ s2 to orient W1 ×W2
∼= W1 ⊕W2. Now P ⊂ W1 ×W2 and we can identify V

with (W1 ×W2)/P using the map (w′, w′′) 7→ f(w′) − g(w′′) from W1 ×W2 to V . Then we apply the
previous definition.

Definition 8.1.6 An orientation of a smooth manifold M is a choice of orientations for each of the
tangent vector spaces TxM , depending continuously on x ∈M .

Lemma 8.1.7 Let M1 and M2 be smooth manifolds. A choice of orientations for M1 and M2 determines
an orientation of M1 ×M2.

Proof This follows from definition 8.1.3. Note that the order of the factors matters. More precisely, if
M1 and M2 are both odd-dimensional, then the diffeomorphism

M1 ×M2 →M2 ×M1 ; (x1, x2) 7→ (x2, x1)

reverses orientations. In all other cases, it preserves orientations. �

Lemma 8.1.8 Let N , M1 and M2 be oriented smooth manifolds. Let f : M1 → N and g : M2 → N be
smooth maps. Suppose that f is transverse to g. Then the smooth manifold

L = {(x1, x2) ∈M1 ×M2 | f(x1) = g(x2)}

has a preferred orientation.

Proof This follows from definition 8.1.5 and the description of the tangent spaces of L given in propo-
sition 7.5.2. �

8.2 Smooth manifolds with boundary

Write Rkup for k-dimensional “upper half-space”,

R
k
up = {(x1, . . . , xk) ∈ R

k | x1 ≥ 0}.

(For k = 0 let R0
up = R0.)

Definition 8.2.1 Let n and k be integers, n ≥ k ≥ 0. A subset M of Rn is a k-dimensional smooth
manifold with boundary in Rn if, for each x ∈M , there exists open subsets U and V of Rn , with x ∈ V ,
and a diffeomorphism

ϕ : U → V

such that ϕ(U ∩ Rkup) = V ∩M .

In the above circumstances, we call ϕ : U → V an ambient chart about x ∈ M , as usual. Suppose that,
for some ambient chart ϕ : U → V about x ∈M , we have

ϕ−1(x) ∈ {y ∈ U ∩ R
k
up | y1 = 0}.

Then the same will be true for any other ambient chart about the same x ∈ M . (That’s an exercise.)
We call such an x a boundary point of M . The set of all boundary points in M is a subset ∂M of M , the
boundary of M . Almost by definition, ∂M is a smooth manifold of dimension k−1 in Rn. The difference
M r ∂M is a smooth manifold of dimension k in Rn. (That’s another exercise, but an easy one.) The
boundary ∂M can of course be empty.b

bTherefore a smooth manifold in R
n is always a smooth manifold-with-boundary in R

n, but strictly speaking a smooth
manifold-with-boundary in R

n need not be a smooth manifold in R
n.
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Example 8.2.2 The disk Dn = {x ∈ Rn | ‖x‖ ≤ 1‖ } is an n-dimensional smooth manifold with
boundary in Rn. Its boundary is, of course, the sphere Sn−1 = {x ∈ Rn | ‖x‖ = 1‖ }.

Example 8.2.3 The compact Moebius strip M ⊂ R3 can be described as the image of the map

f : [0, π]× [−1, 1] −→ R
3 ; (α, t) 7→ ρ2α((2, 0, 0) + σα(t, 0, 0))

where σα is the rotation about the x2-axis by an angle α, and ρ2α is the rotation about the x3-axis by an
angle 2α. Note that f(0, t) = f(π,−t). In this description, the compact Moebius strip is a 2-dimensional
smooth submanifold with boundary in R3. Its boundary is diffeomorphic to S1.

Definition 8.2.4 Let M be a set. A smooth atlas with boundary for M consists of a choice of non-
negative integer m, which is the “dimension” of the atlas, and a set A of charts. Each chart is an
injective map ψ : U →M , where U is an open subset of Rmup. There are several conditions to be satisfied:

• The atlas covers all of M . That is, for each z ∈M there exists a chart ψ : U →M in A such that
z ∈ ψ(U).

• Changes of charts are smooth. More precisely, if ψ1 : U1 → M and ψ2 : U2 → M are any distinct
charts in A, then

– the set ψ−1
1 (ψ2(U2)) is open in U1 and hence in Rmup ,

– the set ψ−1
2 (ψ1(U1)) is open in U2 and hence in Rmup ,

– the map ψ−1
1 (ψ2(U2)) −→ ψ−1

2 (ψ1(U1)) defined by x 7→ ψ−1
2 (ψ1(x)) is smooth (and conse-

quently continuous).

Remarks. The “change of chart” map from U1|2 = ψ−1
1 (ψ2(U2)) to U2|1 = ψ−1

2 (ψ1(U1)) has a smooth
inverse, because the smoothness condition also holds for its inverse. It follows that the change of chart
map U1|2 → U2|1 takes U1|2 ∩ Rm−1 to U2|1 ∩ Rm−1, bijectively. (That’s the same old exercise ...)
Consequently we can say that x ∈M is a boundary point of M if for some (hence any) chart ψ : U →M
in A with x ∈ im(ψ), the element ψ−1(x) ∈ U belongs to {y ∈ U | y1 = 0}. We write ∂M for the set of
boundary points, so that ∂M ⊂M . For each ψ : U →M in A, the restriction

U ∩ {y ∈ R
m | y1 = 0} −→ ∂M

of ψ can be regarded as a typical chart in an (m− 1)-dimensional smooth atlas ∂A for the set ∂M .

Definition 8.2.5 A smooth m-dimensional manifold with boundary of consists of a set M and an equiv-
alence class of smooth m-dimensional atlases with boundary on M , such that the resulting topology on
M satisfies the Hausdorff separation axiom and the 2nd countability axiom.

Example 8.2.6 Let N be a smooth m-dimensional mfld, f : N → R a smooth map and suppose that
0 ∈ R is a regular value of f . Then

M = {x ∈ N | f(x) ≥ 0}

is a smooth m-dim’l manifold with boundary, ∂M = f−1(0). (To get charts, start with diffeomorphisms
ψ : U → V ⊂ N where U open in Rm and V open in N , and require f(ψ(x)) ≥ 0 if x1 ≥ 0, f(ψ(x)) ≤ 0
if x1 ≤ 0. Then use restrictions ψ|U ∩ Rmup.)

In the remainder of this (sub)section we describe somewhat informally how various concepts related to
smooth manifolds generalise to smooth manifolds with boundary.

• Let M be a smooth m-dimensional manifold with boundary. Let z ∈ M . A tangent vector to M at z
is a rule v which to every chart ϕ : U →M (in any allowed atlas for M) with z = ϕ(y) ∈ ϕ(U) assigns a
vector vϕ ∈ Rm, subject to the condition

vψ = D(ψ−1 ◦ ϕ)(y)(vϕ).

(Here ψ : U ′ →M is another chart with z ∈ ψ(U ′) and D(ψ−1 ◦ ϕ)(y) is the differential of ψ−1 ◦ ϕ at y,
a linear isomorphism Rm → Rm.)
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• The tangent vectors to M at z form an m-dimensional real vector space, which we denote by TzM . This
applies regardless of whether z ∈ ∂M or z /∈ ∂M . But if z ∈ ∂M , then we also have an (m−1)-dimensional
tangent space Tz∂M , and it is a good idea to think of that as a linear subspace of TzM :

Tz∂M ⊂ TzM .

For z ∈M r∂M , any v ∈ TzM can be thought of as the velocity of a smooth curve γ : J →M , where J
is an open interval in R containing 0, and γ(0) = z. For z ∈ ∂M , any v ∈ TzM r Tz∂M can be thought
of as ± the velocity of a smooth curve γ : L → M , where L is a half-open interval [0, a) and γ(0) = z.
(The sign, + or −, is determined by v and tells us whether v points “inwards” or “outwards”.)

• The (disjoint) union TM of all tangent spaces TzM has a preferred structure of smooth manifold with
boundary, of dimension 2m. In fact any of the allowed atlases A with boundary for M determines an
atlas for TM , made up of charts Tψ : TU → TM corresponding to charts ψ : U → M in A. Here TU
can be identified with U × Rm.

Definition 8.2.7 Let M be a smooth m-dimensional manifold with boundary. A subset L of M is a
neat ℓ-dimensional smooth submanifold (with boundary) of M if the following holds. For every x ∈ L
there exists a chart ϕ : U →M in some allowed atlas for M , with U open in Rmup and x ∈ ϕ(U), and

ϕ−1(L) = R
ℓ
up ∩ U .

Here we think of Rℓup as {y ∈ Rmup | yℓ+1 = yℓ+2 = · · · = ym = 0}.

Definition 8.2.8 An orientation of a smooth m-dimensional manifold with boundary M is a choice of
orientations for each of the vector spaces TxM , depending continuously on x ∈M .

Definition 8.2.9 An orientation of a smooth m-dimensional manifold with boundary M determines an
orientation of ∂M in the following way. Let x ∈ ∂M . Choose a vector u ∈ TxM r Tx∂M which points
“out” of M . This determines a linear isomorphism

j : R⊕ Tx∂M → TxM : t⊕ v 7→ tu+ v.

Therefore (see definition 8.1.3) every orientation s of Tx∂M determines an orientation sR ⊕ s of TxM ∼=
R ⊕ Tx∂M , and vice versa, with sR equal to the standard orientation of R. (This is an important
convention. If you need a mantra for memorization, try outward normal first, abbreviated ONF.)

Example 8.2.10 The interval [0, 1] is a smooth 1-dimensional manifold with boundary. It has a standard
orientation which we get by identifying each tangent space TxM with R. Then ∂[0, 1] = {0, 1}. If we
orient ∂[0, 1] following the instructions in definition 8.2.9, then the point 1 is positively oriented, while 0
is negatively oriented.

Example 8.2.11 The disk M = D2 ⊂ R2 is a smooth 2-dimensional manifold with boundary. It has
a standard orientation which we get by identifying each tangent space TxM with R2. The boundary
∂M is the circle S1. If we orient this following the instructions in definition 8.2.9, then S1 gets the
“counterclockwise” orientation.

Finally we describe a mild generalization of the transversality theorem 7.5.3 to a situation “with bound-
ary”. The proof is not very different from the one we have seen in the case without boundaries.

Theorem 8.2.12 Let smooth manifolds M1,M2, N and smooth maps f : M1 → N , g : M2 → N be
given. Assume that M1 and N have empty boundary, but allow M2 to have nonempty boundary. Then
there exist an integer q > 0, an open subset U of Rq containing 0, a smooth map

F : M1 × U −→ N ,

and a subset of measure zero Z ⊂ U such that

• F (x, 0) = f(x) for all x ∈M1 ;

• for any a ∈ Rq r Z, the smooth map M1 → N given by x 7→ fa(x) = F (x, a) is transverse to
g : M2 → N and also to the restriction g|∂M2.

In this situation L = {(x1, x2) ∈ M1 ×M2 | fa(x1) = g(x2) } is a smooth manifold with boundary
(actually a neat smooth submanifold of M1 × M2). We have n − ℓ = (n − m1) + (n − m2) where
n,m1,m2, ℓ are the dimensions of N , M1, M2 and L, respectively.
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8.3 The bordism relation

Definition 8.3.1 • An unoriented m-dimensional compact smooth manifold M (without boundary)
is said to be nullbordant if there exists an (m + 1)-dimensional compact smooth manifold with
boundary W such that ∂W is diffeomorphic to M .

• An oriented m-dimensional compact smooth manifold M (without boundary) is said to be oriented
nullbordant if there exists an oriented (m+1)-dimensional compact smooth manifold with boundary
W such that ∂W (with the orientation as in definition 8.2.9) admits an orientation preserving
diffeomorphism to M .

• Two unoriented m-dimensional compact smooth manifolds M0 and M1 (without boundary) are
bordant if M0 ∐M1 is nullbordant.

• Two oriented m-dimensional compact smooth manifolds M0 and M1 (without boundary) are ori-
ented bordant if −M0 ∐M1 is oriented nullbordant. Here −M0 is M0 with the opposite of the
specified orientation.

It is not very difficult to show that bordant and oriented bordant are equivalence relations. For symmetry,
if W is a nullbordism for M0∐M1, then it is also a nullbordism for M1∐M0. (In the oriented setting, use
−W ). For reflexivity, [0, 1]×M is a nullbordism of M ∐M in the unoriented setting (and a nullbordism
of −M ∐M in the oriented setting). Transitivity is admittedly a little more difficult to establish. For
example, in the unoriented setting, given a nullbordism W1 for M0∐M1 and another nullbordism W2 for
M1 ∐M2 , we would like to make a nullbordism W for M0 ∐M2 by making identifications f(x) ∼ g(x)
for x ∈M1, where

f : M0 ∐M1 → ∂W1 , g : M1 ∐M2 → ∂W2

are those diffeomorphisms which are given to us as part of the “nullbordism” data. Although it is clear
how W is a topological space, it is not so clear how it is a smooth manifold. The following collaring
lemma is needed:

Lemma 8.3.2 Let M be an m-dimensional smooth manifold with boundary. Then there exist an open
neighbourhood U of ∂M in M and a diffeomorphism ψ : ∂M × [0, 1[ → U , with ψ(x, 0) = x for x ∈ ∂M .

A proof of this can be found in the Bröcker-Jaenich book. It uses partitions of unity. We will not
reproduce it here.

The equivalence classes [...] of the bordism relation on n-dimensional (smooth, compact, unoriented,
without boundary) manifolds form an abelian group Nn with the operation

[M ] + [M ′] := [M ∐M ′] .

The neutral element of Nn is ∅, which we are allowed to regard as an n-dimensional smooth manifold for
any n ∈ Z. Let’s note that Nn is actually a vector space over Z/2 because 2[M ] = [M ∐M ] = [∅] because
M ∐M is always nullbordant. Moreover the product of manifolds induces a multiplication operation

Nm ×Nn −→ Nm+n

which makes N∗ = (Nn)n≥0 into a commutative graded ring or more precisely a graded algebra over the
field Z/2. It is fairly clear that N0

∼= Z/2 and it is tempting to think that Nn must be zero for all n > 0.
But this is not the case. In fact, making spectacularly good use of his transversality theorem, René Thom
was able to determine the structure of N⋆ in the mid 1950’s. His result was that N⋆ is a polynomial
algebra with generators xn of degree n, one such for each integer n > 0 which is not of the form 2i − 1.

For similar reasons, the equivalence classes of the bordism relation on n-dimensional (smooth, compact,
without boundary) oriented manifolds form an abelian group Ωn with the operation

[M ] + [M ′] := [M ∐M ′] .

The product of oriented manifolds induces a multiplication operation

Ωm × Ωn −→ Ωm+n
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which makes Ω∗ = (Ωn)n≥0 into a graded commutative ring. Note that “graded commutative” means

[M1] · [M2] = (−1)m1m2 [M2] · [M1]

wherem1 andm2 are the dimensions ofM1 andM2 , respectively. The structure of Ω∗ is more complicated
than that of N∗. It was determined in the late 1950s by several people, especially J.Milnor and C.T.C.Wall.
All we are going to use here is

Ω0
∼= Z

which is an interesting exercise.

8.4 Homotopy groups that everybody should know

Theorem 8.4.1 If n > m > 0 then πm(Sn) is trivial. If n = m > 0, then πm(Sn) ∼= Z.

An idea of the proof can be given in a few lines.

(i) We believe that every continuous based map Sm → Sn is homotopic to a smooth based map
Sm → Sn, and also that if two smooth based maps Sm → Sn are homotopic, then a smooth
homotopy relating them can be found.

(ii) We observe that a smooth map Sm → Sn which avoids the point c = (−1, 0, 0, . . . , 0) ∈ Sn

(the antipode of the base point) is based nullhomotopic. Therefore, given a smooth based map
f : Sm → Sn, we ask first of all: what is f−1(z) ?

(iii) Perturbing f slightly if necessary, we can assume that f is transverse to c (more precisely, that f
is transverse to the inclusion {c} → Sn). In that case, if m < n, the preimage f−1(c) must be
empty and therefore f is nullhomotopic. In the case m = n, the preimage f−1(c) is an oriented
0-dimensional compact smooth manifold. It represents an element in the bordism group Ω0

∼= Z.
This is well defined, i.e., depends only on the based homotopy class of f .

(iv) Therefore πm(Sn) is trivial for m < n. If m = n, we have a homomorphism πm(Sn) → Ω0. It is
clearly onto because the class [id] maps to a generator of Ω0

∼= Z. We hope that it is also injective.

Unfortunately injectivity of the homomorphism in (iv) is not obvious. We need to reinforce (ii) above.
This is done in the following lemma. Let X be a based compact Hausdorff space (compact metric space
if you prefer).

Lemma 8.4.2 Let f : X → Sn and g : X → Sn be based maps. If f−1(c) = g−1(c) and f |U = g|U for
some open neighbourhood U of f−1(c) in X, then f and g are based homotopic.

Proof The image under f of X r U is compact. Therefore we can find a neighbourhood V of c in Sn

such that f−1(V ) ⊂ U . Now it is easy to construct a based map q : Sn → Sn , based homotopic to the
identity, such that q takes the complement of V to the base point ⋆ ∈ Sn. Then q ◦ f = q ◦ g, so that
q ◦ f and q ◦ g are certainly homotopic. But then f ≃ g because q is homotopic to the identity. �

Proof of theorem 8.4.1. Let f : Sn → Sn be a based map. We are mostly interested in its homotopy
class. We may therefore assume that f is smooth and transverse to c. Then Z = f−1(c) is a finite set
which we can enumerate: Z = {z(1), z(2), . . . , z(r)}. We identify Sn with Rn ∪∞, letting the base point
⋆ correspond to∞ and c to the origin 0. For each z(i) ∈ Z we choose a little open cube Qi about z(i) and
a diffeomorphism ϕi : Qi → Rn such that ϕi agrees with f in a neighbourhood of z(i). This is possible
(details omitted though) by the inverse function theorem, because f has invertible differential at z(i).
Now we have a new continuous map

g : Sn = R
n ∪∞ −→ R

n ∪∞ = Sn

given by g|Qi = ϕi and g(x) = ∞ if x is not in any of the open cubes Qi. By lemma 8.4.2, the map
g is based homotopic to f . We now subject g to further homotopies, initially by moving the points of
Z around. If we move them so that they are lined up on the x1-axis, they will be ordered and we can
assume that our enumeration of them agrees with that ordering. Then we see that

[g] = [g1] • [g2] • · · · • [gr] ∈ πn(S
n)
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where gi : Sn ∪∞ → Sn ∪∞ is given by gi|Qi = ϕi and g(x) =∞ if x is not in Qi. Here we have used
the bullet symbol to describe the multiplication in the group πn(S

n).
Next we show that [gi] is equal to [id] if ϕi is orientation preserving. Choose some diffeomorphism
ψi : Qi → Rn such that ψi(x) = x− z(i) for all x in a small neighbourhood of the center of the cube Qi.
Then ζi = ϕi ◦ ψ

−1 : Rn → Rn is an orientation preserving diffeomorphism. The formula

(x, t) 7→

{
t−1ζi(tx) if t > 0
Dζi(0)(x) if t = 0

where x ∈ Rn and t ∈ [0, 1] describes, for every fixed t ∈ [0, 1], a diffeomorphism Rn → Rn , equal to ζi
when t = 1 and equal to the orientation preserving invertible linear map Dζi(0) : Rn → Rn when t = 0.
It follows that [gi] is equal to the homotopy class of the map fi : Rn ∪∞ → Rn ∪∞ given by

Dζi(0) ◦ ψi

on Qi and by x 7→ ∞ for x /∈ Qi. Next we choose a continuous family of invertible linear maps
At : Rn → Rn with t ∈ [0, 1] such that A0 = Dζi(0) and A1 = id. This is possible because the space of
invertible real n×n matrices with positive determinant is path-connected. Then we use this to conclude
that [fi] is equal to the homotopy class of the map given by ψi on Qi and by x 7→ ∞ for x /∈ Qi. Finally
we use lemma 8.4.2 to show that the latter homotopy class is equal to [id].
We can similarly show that [gi] is equal to [id]−1, the inverse of [id] in the group πn(S

n), in the case where
ϕi : Qi → Rn is orientation reversing. In that case we start by choosing a diffeomorphism ψi : Qi → Rn

such that ψi(x1, x2, . . . , xn) = (−x1, x2, . . . , xn)− z(i) for all x = (x1, . . . , xn) in a small neighbourhood
of the center of the cube Qi.
To sum up, we started with an arbitrary [f ] ∈ πn(S

n). We showed that it was equal to some [g], and that
was found to be equal to a product [g1] • [g2] • · · · • [gr], where each [gi] is either equal to [id] or to [id]−1.
The conclusion to be drawn from this is that πn(S

n) is a cyclic group, with [id] as generator. It follows
that our homomorphism πn(S

n)→ Ω0
∼= Z is injective, because we know already that it is nonzero. �

Definition 8.4.3 LetM andN be smooth compact manifolds (without boundary) of the same dimension
n, both oriented and both path-connected. Let f : M → N be any smooth map. The degree of f is an
integer defined as follows. Choose a regular value c ∈ N of f . Then f−1(c) is an oriented 0-dimensional
compact smooth manifold, representing an element of Ω0

∼= Z. This element is the degree of f . It is well
defined, i.e., independent of the choice of a regular value c for f . (Prove this.) It also depends only on
the homotopy class of f .

We have implicitly used this concept of degree of a map in proving theorem 8.4.1. Thus, homotopy classes
of maps Sn → Sn are classified by their degree, which can be any integer. Although we calculated strictly
speaking πn(S

n) = [Sn, Sn]⋆, the set of based homotopy classes of based maps, we have also determined
[Sn, Sn], the set of homotopy classes of unbased maps. In fact it is easy to see that the forgetful map
[Sn Sn]⋆ → [Sn, Sn] is onto. But the degree function is defined on [Sn, Sn], so that the forgetful map has
to be injective, too.

8.5 The Euler number of the tangent bundle

Let M be an oriented smooth n-dimensional manifold, compact and without boundary. The Euler
number of the tangent bundle TM of M is defined as follows. Let ζ : M → TM be the standard
inclusion, ζ(x) = 0x ∈ TxM ⊂ TM . Choose another smooth map ξ : M → TM homotopic to ζ and
transverse to ζ. Then

L = {(x1, x2) ∈M ×M | ζ(x1) = ξ(x2) }

is a 0-dimensional oriented compact (smooth) manifold. As such it defines an element in the oriented
bordism group Ω0

∼= Z.

Definition 8.5.1 That number is the Euler number of TM . We sometimes denote it by χ(M).

The Euler number of TM is well defined for the following reason. Suppose that ξ1 : M → TM and
ξ2 : M → TM are both homotopic to ζ and transverse to ζ. Then we have

Li = { (x1, x2) ∈M ×M | ζ(x1) = ξi(x2) }
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for i = 1, 2. We must find an oriented bordism from L1 to L2 to show that the two represent the same
element in Ω0. To do so we choose a homotopy h : M × [0, 1] → TM from ξ1 to ξ2. We can assume,
after a suitable “perturbation”, that it is smooth and transverse to ζ. (Here we use a little more than
we have stated in chapter 7.5.3, because we need a perturbation which does not perturb h on M × {0}
or on M × {1}.) Then

K = { (x1, x2, t) ∈M ×M × [0, 1] | ζ(x1) = h(x2, t) }

is an oriented compact 1-dimensional smooth manifold, and its oriented boundary is clearly diffeomorphic
to −L1 ∐ L2. So K is a bordism from L1 to L2.

Remark 8.5.2 We have used the fact that an orientation of M determines an orientation of TM . But
in fact the manifold TM always has a preferred orientation, even when M is not orientable. Think about
that.

Remark 8.5.3 Typically we construct maps ξ : M → TM homotopic to ζ, and sometimes transverse
to ζ, by choosing a smooth tangent vector field on M . A smooth tangent vector field on M is a map
ξ : M → TM such that p ◦ ξ = idM , where p : TM → M is the projection. What this means is that
ξ selects, at every point x ∈ M , a tangent vector ξ(x) ∈ TxM which can be imagined as the velocity of
some “fluid” or some gaseous substance moving about in the manifold. In such a case the points x ∈M
where ξ(x) = ζ(x) are the points where ξ(x) is the zero vector, i.e., the points where the vector field is
“stationary”. These points are important to us because we count them (with appropriate multiplicities)
to get χ(M). In particular, if M admits a smooth tangent vector field which is nowhere zero, then
χ(M) = 0.

Proposition 8.5.4 χ(Sn) =

{
2 if n is even
0 if n is odd.

Proof Think of Sn as a submanifold of Rn+1, so that TSn becomes a submanifold of R2n+2. Define a
vector field ξ : Sn → TSn as follows: ξ(x) is the orthogonal projection of (0, 0, . . . , 0, 1) ∈ Rn+1 to the
tangent space TxS

n ⊂ Rn+1. This translates into

ξ(x) = (x1, . . . , xn, xn+1,−xn+1x1, . . . ,−xn+1xn, 1− xn+1xn+1) ∈ R
2n+2 .

There are two points x ∈ Sn where ξ(x) = ζ(x): they are x = (0, . . . , 0, 1) and x = (0, . . . , 0,−1). The
differential of ξ at these points is the linearisation of the above formula for ξ(x), that is

v = (v1, . . . , vn, 0) 7→ (v1, . . . , vn, 0,−v1, . . . ,−vn, 0)

for x = (0, . . . , 0, 1) and
v = (v1, . . . , vn, 0) 7→ (v1, . . . , vn, 0, v1, . . . , vn, 0)

for x = (0, . . . , 0,−1). The tangent space of TSn at ξ(x) = ζ(x) for these x is the linear space of all
w ∈ R2n+2 with wn+1 = 0 = w2n+2. The image of the differential Dζ(x) is the linear space of all
w ∈ R2n+2 with wi = 0 for i = n + 1, . . . , 2n + 2. It follows from all the above that ξ is transverse to ζ
and that the point x = (0, . . . , 0,−1) contributes +1 to the Euler number count, while x = (0, . . . , 0, 1)
contributes (−1)n. �

Corollary 8.5.5 (Hairy ball theorem.) For even n, every smooth tangent vector field ξ on Sn vanishes
somewhere, i.e., there exists x ∈ Sn such that ξ(x) = 0 ∈ TxM .

Proof If ξ(x) is everywhere nonzero, then ξ : M → TM is certainly transverse to ζ : M → TM . There
are no x ∈ Sn with ξ(x) = ζ(x) and so χ(Sn) = 0. This contradicts our calculation above. �

Now let’s produce some generalisations. For a start, it turns out that χ(M) can be defined even when
M is not orientable. A cheap way to do so is to use the orientation covering p : N → M . This is a
two-sheeted covering space, defined so that the two points of N lying above some x ∈ M are the two
possible orientations of the vector space TxM . If y ∈ N projects to x ∈ M , then Dp(y) : TyN → TxM
is a linear isomorphism which we can use as an “identification”, and so each tangent space TyN has a
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tautological orientation (because y knows which of the two possible orientations it is). Therefore N is an
oriented manifold. We now define

χ(M) =
χ(N)

2

with the provisional justification that N looks twice as big as M . But there is a better justification, and
this will also show us that χ(M) is an integer.
We have ζM : M → TM (subscript added on for bookkeeping purposes) and we can certainly choose
another smooth map ξM : M → TM homotopic to ζM and transverse to ζM . Let uM : M × [0, 1]→ TM
be a homotopy from ζM to ξM . By the unique path lifting property, applied to the paths t 7→ u(x, t) for
fixed x ∈M , the homotopy uM “lifts” uniquely to a homotopy

uN : N × [0, 1]→ TN

from ζN : N → TN to another smooth map ξN : N → TN . Now ξN is transverse to ζN and we can use
it to calculate χ(N). It is clear that every x ∈M where ζM (x) = ξM (x) gives rise to two points y1, y2 in
N where ζN agrees with ξN . Moreover (perhaps less clear) these two points have the same orientation,
either both positive or both negative. So χ(N) is even, and we can actually say that every x ∈M where
ζM (x) = ξM (x) acquires a well defined orientation alias sign, either plus or minus. The Euler number
χ(M) is then the total number of these points, counted with their signs. This counting convention does
of course rely on a choice of homotopy u from ζM to ξM . (End of better justification.)

Example 8.5.6 Let n be even. Then χ(RPn) = 1. This follows immediately from our calculation of
χ(Sn) and the fact that the orientation covering of RPn can be identified with the standard double
covering map Sn → RPn.

For another generalisation, suppose that M is a smooth compact n-dimensional manifold with boundary.
We have the standard inclusion ζ : M → TM as before, ζ(x) = 0x ∈ TxM ⊂ TM . Let p : TM → M be
the projection.

• Choose an outward normal vector field ν along ∂M ; in other words choose for every x ∈ ∂M a
vector ν(x) ∈ TxM which is not in the linear subspace Tx∂M and points to the “outside” of M .
This ν(x) is of course required to depend continuously and smoothly on x ∈ ∂N . The existence of
such a normal field ν is guaranteed by the collaring lemma 8.3.2.

• Now choose another smooth map ξ : M → TM , homotopic to ζ and transverse to ζ. More precisely
a homotopy h : M × [0, 1] from ζ to ξ must be selected such that h(x, t) = tν(x) whenever x is in
∂M . It is also a good idea to arrange p(ξ(x)) /∈ ∂M whenever x /∈ ∂M .

• Then L = { (x1, x2) ∈ M ×M | ζ(x1) = ξ(x2) } is a 0-dimensional oriented compact (smooth)
manifold, contained in M ×M but disjoint from ∂M ×M ∪ M × ∂M . As such, L defines an
element in the oriented bordism group Ω0

∼= Z. (The orientation of L is easier to understand in the
case where M is oriented.)

Definition 8.5.7 That integer is the Euler number of TM . We sometimes denote it by χ(M).

Example 8.5.8 For all n ≥ 0, we have χ(Dn) = 1. To calculate this we can use the smooth vector field
ξ on Dn given by ξ(x) = x. Note that this is indeed “outward normal” at points x ∈ ∂Dn = Sn−1, as
required. The vector field has one stationary point which is x = 0. This contributes +1 to the Euler
number count. There are no other contributions.

There is an obvious alternative to definition 8.5.7. Instead of choosing an outward normal vector field
along ∂M , we can choose an inward normal vector field along ∂M , and proceed from there. The resulting
alternative to χ(M) will be denoted (here) by χ̄(M). It does not always agree with χ(M). Instead we
have

Proposition 8.5.9 χ̄(M) = χ(M)− χ(∂M).
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Proof (Sketch.) It is enough to consider the orientable case. By the collaring lemma 8.3.2, we can find
an open neighbourhood U of ∂M in M and a diffeomorphism ψ : ∂M × [0, 1[ → U such that ψ(x, 0) = x
for x ∈ ∂M . We choose some c with 0 < c < 1 and put

Kc = ψ(∂M × [0, c]).

Let Mc be the closure of M r Kc in M . Then Mc is diffeomorphic to M and Kc is diffeomorphic to
∂M × [0, c]. The intersection Kc ∩Mc in M is equal to ∂Mc.
Now we choose

ξ1 : ∂M → T∂M
ξ2 : [0, c] → T [0, c]
ξ3 : Mc → TMc

which are “perturbations” of the standard inclusion maps (zero sections)

ζ1 : ∂M → T∂M
ζ2 : [0, c] → T [0, c]
ζ3 : Mc → TMc

and which are transverse to the latter. More precisely we construct ξ2 following the instructions which
apply when we need to determine χ̄([0, c]). We construct ξ1 and ξ3 following the instructions which apply
when we need to determine χ(∂M) and χ(Mc), respectively. Then we have a map

∂M × [0, c] −→ T∂M × T [0, c] ; (x, t) 7→ (ξ2(x), ξ1(t))

which we can also regard as a map ξ4 : Kc → TKc and which we can use to calculate χ̄(Kc). With a
little extra care, this map agrees with ξ3 : Mc → TMc on the intersection Kc ∩Mc = ∂Mc. (The key
observation here is that a tangent vector at some x ∈ ∂Mc points “out” of Mc precisely if it points “into”
Kc.) So the union of ξ4 and ξ3 is a map ξ5 : M → TM . If we use this to determine χ̄(M), then we find

χ̄(M) = χ̄(Kc) + χ(Mc) = χ(∂M) · χ̄([0, c]) + χ(M)

which simplifies to χ(M)− χ(∂M) because χ̄([0, c]) = −1. �

Remark 8.5.10 Our use of the notation χ(M) for the Euler number of TM is dreadfully premature.
The number χ(M) has a more fundamental and official definition, and with that comes another name
for it, Euler characteristic of M . The agreement between Euler characteristic of M and Euler number of
the tangent bundle of M is a nontrivial theorem.



SMSTC (2008/09)

Geometry and Topology

Lecture 9: Differential forms in coordinates

Michael Weiss, University of Aberdeena

www.smstc.ac.uk

Contents
9.1 Exterior algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–1

9.2 Differential forms on open subsets of R
n . . . . . . . . . . . . . . . . . . . . . 9–5

9.3 Integration of differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . 9–7

9.1 Exterior algebra

Exterior algebra is the brainchild of the “polymath” Hermann Grassmann (1809-1877) who received little
recognition for it during his lifetime. It is a theory of volumes and measurement which generalises the
folklore relationship between volumes and determinants. Let that be our starting point.

Theorem 9.1.1 Let v(1), v(2), . . . , v(n) ∈ Rn. The n-dimensional volume of the “parallelepipede”

P (v(1), v(2), . . . , v(n)) =

{
n∑

i=1

tiv
(i)

∣
∣
∣
∣
t1, t2, . . . , tn ∈ [0, 1]

}

is equal to the absolute value of the determinant of the n× n matrix
(
v
(i)
j

)
.

Proof It has been observed (by Paul Halmos ?) that this theorem is often used, but rarely proved.
An obvious difficulty in proving it is that a sound definition of n-dimensional volume is required before
anything can be proved. Rather than developing measure theory, let’s assume that we have a definition
of volume (for parallelepipedes at least) which satisfies the following properties.

• If v(1), v(2), . . . , v(n) are pairwise orthogonal, then the volume of P (v(1), v(2), . . . , v(n)) is

‖v(1)‖ · ‖v(2)‖ · ‖v(3)‖ · · · ‖v(n)‖ ;

• The volume of P (v(1), v(2), . . . , v(n)) does not change if one of the v(i) is replaced by v(i) +w where
w is a linear combination of the v(j) for j 6= i. (This is just “Cavalieri’s principle”: volume doesn’t
change under shears.)

Assuming these properties, let’s show by induction on k that the theorem holds if v(1), . . . , v(n−k) are
pairwise orthogonal. In the case k = 0, the volume of P (v(1), v(2), . . . , v(n)) is

‖v(1)‖ · ‖v(2)‖ · ‖v(3)‖ · · · ‖v(n)‖

by one of our axioms. The determinant of
(
v
(i)
j

)
is

‖v(1)‖ · ‖v(2)‖ · ‖v(3)‖ · · · ‖v(n)‖ · det
(
w

(i)
j

)

a
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where w(i) = v(i)/‖v(i)‖. (We can assume that the v(i) are all nonzero, otherwise there is nothing to
prove.) Therefore it only remains, in this case, to show that

det(A) = ±1 , where A =
(
w

(i)
j

)
.

But A is an orthogonal matrix, ATA = In, so that (det(A))2 = det(AT ) det(A) = det(In) = 1.
Fixing k ≥ 0 now, and assuming that the theorem holds whenever v(1), . . . , v(n−k) are pairwise orthogonal,
we must deal with the case where only v(1), . . . , v(n−k−1) are pairwise orthogonal. In such a case we can
make a replacement

v(n−k)  v(n−k) + w

where w is a suitable linear combination of v(1), . . . , v(n−k−1), and v(n−k) + w is orthogonal to v(i) for
i = 1, 2, . . . , n− k − 1. That will not change the volume (by the Cavalieri axiom) and it will not change
the determinant. This completes the induction step. �

Suppose that V is an arbitrary n-dimensional real vector space. One way to associate something like a
volume (Grassmann might have said extent) to a list of n vectors

v(1), v(2), . . . , v(n) ∈ V

is to choose, once and for all, a linear map f : V → Rn. Then we have the extent function

(
v(1), v(2), . . . , v(n)

)
7→ det

(
f(v(i))j

)
.

Grassmann was also interested in associating an “extent” to a list of only k vectors

v(1), v(2), . . . , v(k) ∈ V

where k ≤ n. Here an obvious way to proceed is to choose, once and for all, a linear map g : V → Rk.
Then we have the extent function

(
v(1), v(2), . . . , v(k)

)
7→ det

(
g(v(i))j

)
.

The right-hand side is, up to sign, the volume of the parallelepipede P
(
g(v(1)), g(v(2)), . . . , g(v(k))

)
in Rk.

However, as Grassmann observed, more general extent functions can be obtained by choosing, once and
for all, several linear maps g1, g2, . . . , gq : V → Rk, which leads to

(
v(1), v(2), . . . , v(k)

)
7→

q
∑

α=1

det
(
gα(v(i))j

)
.

Such functions are nowadays called, less romantically, alternating k-forms on V . Let’s develop their
properties in abstracto.

Definition 9.1.2 Let V be an n-dimensional real vector space, n < ∞. For an integer k > 0, an
alternating k-form on V is a map

ω : V × V × · · · × V
︸ ︷︷ ︸

k factors

−→ R

with the following properties: ω is R-linear in each of the k variables when the remaining variables are
kept fixed, and

ω(v(1), v(2), . . . , v(k)) = 0

when v(r) = v(s) for some r 6= s.
The alternating k-forms on V form a real vector space denoted by altk(V ). For k = 0 we set alt0(V ) = R.

Example 9.1.3 Let t 7→ At be a continuous curve in hom(V,Rk), where t ∈ [0, 1]. Define

ω(v(1), v(2), . . . , v(k)) =

∫ 1

0

det
(
(At(v

(i)))j
)
dt .

Then ω is an alternating k-form on V .
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Lemma 9.1.4 Let ω ∈ altk(V ) and let σ be a permutation of {1, 2, 3, . . . , k}. Then

ω(v(1), v(2), . . . , v(k)) = sign(σ) · ω(v(σ(1)), v(σ(2)), . . . , v(σ(k))) .

Proof Every permutation of {1, 2, . . . , k} is a product of transpositions, i.e., permutations which in-
terchange just two of the numbers 1, 2, . . . , k. It is therefore enough to prove the formula when σ is a
transposition, say the transposition interchanging r and s where r < s. In that case sign(σ) = −1. Let

u(i) =

{
v(i) when i 6= r, s
v(r) + v(s) otherwise.

Then
ω(u(1), u(1), . . . , u(k)) = 0

because u(r) = u(s). Expand ω(u(1), u(1), . . . , u(k)) as a sum of four terms, using linearity of ω in the slots
number r and s. Two of these terms are zero because they have identical inputs in slots number r and
s. Deleting these leaves us with the equation

ω(v(1), v(2), . . . , v(k)) + ω(v(σ(1)), v(σ(2)), . . . , v(σ(k))) = 0.

�

Corollary 9.1.5 Let n = dim(V ). The dimension of altk(V ) is
(
n
k

)
. In particular altn(V ) has dimension

1, and for k > n we have altk(V ) = 0.

Proof Choose an ordered basis v(1), v(2), . . . , v(n) for V . Let ω ∈ altk(V ). Using the multilinearity of ω
and the previous lemma, it is easy to see that ω is determined by its values

ω(v(g(1)), v(g(2)), . . . , v(g(k)))

where g : {1, 2, 3, . . . , k} → {1, 2, 3, . . . , n} runs through all order-preserving injective maps. These values
can also be prescribed arbitrarily and independently in R. Therefore altk(V ) has a vector space basis with
one element for each order-preserving injective map from {1, 2, 3, . . . , k} to {1, 2, 3, . . . , n}. The number
of such maps is equal to

(
n
k

)
. �

Remark. It is useful to have an explicit formula for the basis elements in altk(V ), depending of course
on a choice of a basis for V . Each order-preserving injective map g : {1, 2, 3, . . . , k} → {1, 2, 3, . . . , n}
determines a linear map

Ag : V → R
k

given by extracting the coordinates, w.r.t that basis of V , numbered g(1), g(2), . . . , g(k). The basis
element of altk(V ) corresponding to g is the alternating k-form given by

(w(1), w(2), . . . , w(k)) 7→ det
(
(Ag(w

(i)))j
)
.

where the w(i) are arbitrary elements of V .

The next topic is a “product” altk(V )× altℓ(V )→ altk+ℓ(V ).

Definition 9.1.6 A permutation σ of the set {1, 2, . . . , k+ ℓ} is a (k, ℓ)-shuffle if it preserves the natural
order of the elements 1, 2, 3, . . . k and the natural order of the elements k + 1, k + 2, . . . , k + ℓ, that is,
σ(1) < σ(2) < · · · < σ(k) and σ(k + 1) < σ(k + 2) < · · · < σ(k + ℓ). Let

shuf(k, ℓ)

be the set of these shuffles. It is a subset of per(k + ℓ), the group of permutations of {1, 2, . . . , k + ℓ}.
The number of (k, ℓ)-shuffles is

(
k+ℓ
k

)
.

Sometimes it is useful to note that every element of per(k + ℓ) can be uniquely written in the form σλ,
where σ is a (k, ℓ)-shuffle and λ ∈ per(k) × per(ℓ) ⊂ per(k + ℓ). Here we think of per(k) × per(ℓ) as a
subgroup of per(k + ℓ), the subgroup consisting of the permutations which permute the first k elements
among themselves (and consequently also permute the last ℓ elements among themselves).
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Definition 9.1.7 Let ω1 ∈ altk(V ) and ω2 ∈ altℓ(V ). Their wedge product ω1∧ω2 ∈ altk+ℓ(V ) is defined
(for k, ℓ > 0) by the formula

(ω1 ∧ ω2)(u
(1), u(2), . . . , u(k+ℓ))

=
∑

σ∈ shuf(k,ℓ)

sign(σ) · ω1(u
(σ(1)), . . . , u(σ(k))) · ω2(u

(σ(k+1)), . . . , u(σ(k+ℓ))).

If k = 0, then ω1 is a number c ∈ R and ω1 ∧ ω2 is defined to be cω2. Similarly, if ℓ = 0, then ω2 is a
number c and ω1 ∧ ω2 is defined to be cω1.

Example 9.1.8 Let A : V → Rk and B : V → Rℓ be linear maps. Associated with these we have an
alternating k-form ωA and an alternating ℓ-form ωB , defined by

ωA(u(1), u(2), . . . , u(k)) = det
(
(A(u(i)))j

)

ωB(u(1), u(2), . . . , u(ℓ)) = det
(
(B(u(i)))j

)
.

Then (ωA ∧ ωB)(u(1), u(2), . . . , u(k+ℓ)) = det
(
(C(u(i)))j

)
where C : V → Rk+ℓ is the linear map defined

by v 7→ (A(v), B(v)) ∈ Rk × Rℓ ∼= Rk+ℓ.

Lemma 9.1.9 The wedge product is bilinear, associative and has 1 ∈ alt0(V ) as a multiplicative unit. It
is also “graded” commutative, i.e., for ω1 ∈ altk(V ) and ω2 ∈ altℓ(V ) we have

ω1 ∧ ω2 = (−1)kℓω2 ∧ ω1 .

Proof Bilinearity is obvious from the definition. For the “graded commutative” property, the definition
of the wedge product implies that

(ω1 ∧ ω2)(u
(1), u(2), . . . , u(k+ℓ)) = (ω2 ∧ ω1)(u

(τ(1)), u(τ(2)), . . . , u(τ(k+ℓ)))

where τ ∈ shuf(k, ℓ) is the shuffle which moves the first k elements to the back end. Now we can use
lemma 9.1.4 and the observation that sign(τ) = (−1)kℓ.
To prove associativity, let ω1 ∈ altk(V ), ω2 ∈ altℓ(V ), ω3 ∈ altm(V ). We can assume k, ℓ,m > 0. Looking
at the summands making up (ω1 ∧ω2)∧ω3 and ω1 ∧ (ω2 ∧ω3), it is clearly enough to produce a bijection

b : shuf(k, ℓ)× shuf(k + ℓ,m) −→ shuf(k, ℓ+m)× shuf(ℓ,m)

preserving signs, so that if b(σ, τ) = (µ, λ) then sign(σ)sign(τ) = sign(µ)sign(λ). But this is easy because
both shuf(k, ℓ)× shuf(k+ ℓ,m) and shuf(k, ℓ+m)× shuf(ℓ,m) are identified with shuf(k, ℓ,m), the set
of permutations ζ of {1, 2, 3, . . . , k + ℓ+m} which satisfy

ζ(1) < ζ(2) < · · · < ζ(k) ,
ζ(k + 1) < ζ(k + 2) < · · · < ζ(k + ℓ) ,
ζ(k + ℓ+ 1) < ζ(k + ℓ+ 2) < · · · < ζ(k + ℓ+m).

�

Example 9.1.10 Let V = Rn. Let qi : Rn → R be the linear projection which singles out the i-th
coordinate. Then qi ∈ alt1(V ) for i = 1, 2, . . . , n. By (the proof of) corollary 9.1.5 , the vector space
altk(V ) has a basis consisting of all expressions

qi1 ∧ qi2 ∧ · · · ∧ qik

where i1, i2, . . . , ik are distinct elements of {1, 2, . . . , n} listed in their natural order. To multiply such
basis elements (in dimensions k and ℓ, say), use associativity for wedge products and the relations

qi ∧ qj = −qj ∧ qi ,

in particular qi ∧ qi = 0, which are special cases of the graded commutativity.
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Definition 9.1.11 Returning to the case of an arbitrary finite dimensional real vector space V , we shall
often write alt∗(V ) for the collection of the vector spaces altk(V ) where k ∈ N = {0, 1, 2, . . . }. This is
viewed as a graded ring with the wedge product (more precisely, a graded algebra over R, to express the
fact that the real numbers act by scalar multiplication in every dimension). Occasionally the asterisk is
also used as a placeholder for a k that wants to remain anonymous.
In general, a graded ring is a collection of abelian groups Ri where i ∈ Z or i ∈ N, together with
multiplication maps Ri × Rj → Ri+j satisfying appropriate distributive and associativity laws, and a
neutral element for the multiplication, 1 ∈ R0. If all theRi are vector spaces over R, and the multiplication
maps are bilinear, then we speak of a graded algebra over R.

Example 9.1.12 Let V and W be finite dimensional real vector spaces. Any linear map g : V → W
determines a homomorphism of graded rings, g∗ : alt∗(W )→ alt∗(V ), by

(g∗ω)(v(1), . . . , v(k)) = ω(g(v(1)), . . . , g(v(k)))

for ω ∈ altk(W ) and arbitrary v(1), . . . , v(k) in V .

Remark. As this example illustrates, the asterisk ∗ has, unfortunately, many uses. Apart from being
used as an “unspecified dimension” indicator, it is often used to indicate that one map is “induced”
(determined) by another map. For example g : V → W determines/induces a map alt∗(W ) → alt∗(V )
which we denote by g∗. In cases like this, we use the subscript position for the asterisk if arrow directions
are preserved and the superscript position if arrow directions are reversed. (In our case g∗ is a map from
altk(W ) → altk(V ), which justifies the choice of the superscript position for the asterisk. We saw other
examples in earlier chapters: a map f : X → Y of pointed spaces induces f∗ : π1(X)→ π1(Y ), preserving
arrow directions.)

9.2 Differential forms on open subsets of Rn

Definition 9.2.1 Let U be open in Rn. A differential k-form on U is a smooth map U → altk(Rn). The
set of all differential k-forms on U is denoted by Ωk(U).

Remark. For a differential k-form ω on U and a point x ∈ U , the value ω(x) ∈ altk(Rn) will almost
always be regarded as an alternating k-form on the tangent space of U at x. The tangent space happens
to be identified with Rn.

Example 9.2.2 A differential 0-form on U is just a smooth function from U to R.

Example 9.2.3 Let f : U → R be a smooth function. This determines a smooth map

df : U → alt1(Rn)

whose value at x ∈ U is df(x), the differential of f at x. (Instead of df(x) we also wrote Df(x) in earlier
chapters. At any rate df(x) is a linear map from Rn to R.) We can now write

df ∈ Ω1(U) .

Important special cases: In the case where f is the function x 7→ xi which extracts the i-th coordinate,
we write dxi for df . (The person who long ago introduced this notation probably felt that xi is a very
good name for the function x 7→ xi. Discuss.)

The differential forms on U make up a graded ring Ω∗(U) which is again graded commutative. In more
detail, there are multiplication maps Ωk(U)×Ωℓ(U)→ Ωk+ℓ(U) taking (ω1, ω2) to ω1 ∧ω2. Here ω1 ∧ω2

is of course defined pointwise,

(ω1 ∧ ω2)(x) = ω1(x) ∧ ω2(x) ∈ altk+ℓ(Rn)

for x ∈ U . In particular, starting with the differential 1-forms dxi and using the multiplication, we can
construct more differential forms such as

dxi1 ∧ dxi2 ∧ . . . dxik ∈ Ωk(U)

where i1, i2, . . . , ik ∈ {1, 2, . . . , n}.
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Definition 9.2.4 For a smooth function g : U → R and ω ∈ Ωk(U), we define gω ∈ Ωk(U) by

(gω)(x) = g(x)ω(x) ∈ altk(Rn) ,

using the vector space structure on altk(Rn). (This is strictly speaking exactly the same thing as g ∧ ω,
once we admit that g ∈ Ω0(U). But the custom is to write gω, not g ∧ ω.)

Lemma 9.2.5 Every ω ∈ Ωk(U) can be written uniquely in the form
∑

1≤i1<i2<···<ik≤n

g i1,i2,...,ik dxi1 ∧ dxi2 ∧ . . . dxik

where the gi1,i2,...,ik are smooth functions from U to R.

Proof For y ∈ U , the element ω(y) ∈ altk(U) can be written uniquely as a linear combination of terms

qi1 ∧ qi2 ∧ . . . qik

(in the notation of example 9.1.10). Let g i1,i2,...,ik(y) be the coefficient of qi1 ∧ qi2 ∧ . . . qik in that linear
combination. Note that qi = dxi(y). �

Example 9.2.6 Let f : U → R be smooth. Let us see how df ∈ Ω1(U) can be (uniquely) written in the
form given by lemma 9.2.5,

df = g1dx1 + g2dx2 + · · ·+ gndxn ,

for appropriate smooth functions gi on U which we have to determine. This is not hard:

df =

n∑

i=1

∂f

∂xi
dxi

and so gi = ∂f/∂xi.
At this point we can also see that there are “usually” many elements in Ω1(U) which are not of the form
df for any f ∈ Ω0(U). For simplicity, suppose n = 2 and U 6= ∅. If we have ω ∈ Ω1(U), we can write it
uniquely as g1dx1 + g2dx2. If ω = df , then by the above we must have g1 = ∂f/∂x1 and g2 = ∂f/∂x2

and consequently
∂g1
∂x2

=
∂g2
∂x1

by the symmetry property of second derivatives. (That’s a condition which you will remember if you have
been exposed to “conservative systems” in elementary mechanics). The condition is clearly not satisfied
for all choices of g1 and g2.

Definition 9.2.7 Let f : U → V be a smooth map, where U is open in Rm and V is open in Rn. We
define f∗ : Ω∗(V )→ Ω∗(U) by

(f∗ω)(x) = (Df(x))∗ω(f(x))

for ω ∈ Ωk(V ), x ∈ U and consequently f(x) ∈ V .

This is rather convoluted, so let’s unravel it. We start with ω ∈ Ωk(V ) and we want to describe f∗ω in
Ωk(U). We take some x ∈ U and try to say what (f∗ω)(x) ∈ altk(Rm) should be. The remark just after
definition 9.2.1 is foremost in our mind(s). We remember therefore that f has a differential at x, which is
a linear map Df(x) : Rm → Rn, but in reality, a linear map from the tangent space TxU to the tangent
space Tf(x)V . Now we also remember example 9.1.12 and conclude that Df(x) : Rm → Rn determines a
homomorphism of graded rings,

(Df(x))∗ : alt∗(Rn)→ alt∗(Rm) .

We apply this to ω(f(x)) ∈ altk(Rn). The “output” is an element of altk(Rm) which we call (f∗ω)(x).
That constitutes the definition of f∗ω. But if you find this too lofty, then you might like the formula

(f∗ω)(x)(u(1), . . . , u(k)) = ω(f(x))(Ju(1), . . . , Ju(k))

where J =
(
∂fi/∂xj

)
is the Jacobi matrix of f at x. Note: an element ω of Ω0(V ) is simply a smooth

function on V , and f∗ω ∈ Ω0(U) is just ω ◦ f . (That should be a special case of all the above, but if you
cannot agree to that, take it as the definition of f∗ω for ω ∈ Ω0(V ).)
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9.3 Integration of differential forms

Let U be an open set in Rn and let ω ∈ Ωn(U). Suppose for simplicity that ω has compact support.b By
lemma 9.2.5, we can write

ω = f · dx1 ∧ dx2 ∧ · · · ∧ dxn

for a unique smooth function f : U → R with compact support.c

Definition 9.3.1 The integral
∫

U
ω =

∫

U
f ·dx1∧dx2∧ · · ·∧dxn is defined to be the (Riemann) integral

∫

U

f(x) dx1dx2 . . . dxn .

Remark. There is a danger of confusion here which is easiest to illustrate when n = 2. The definition

∫

U

f dx1 ∧ dx2 =

∫

U

f(x) dx1dx2

implies that
∫

U
f dx2 ∧ dx1 = −

∫

U
f(x) dx2dx1. The reason is that dx2 ∧ dx1 = −dx1 ∧ dx2 whereas

∫

U
f(x) dx1dx2 =

∫

U
f(x) dx2dx1 by definition of the Riemann integral.

In the remainder of this section we shall struggle to extend the first-year calculus “substitution rule” to
higher dimensions, i.e. to the setting of definition 9.3.1. In a fairly general formulation, the substitution
rule says that given a smooth function g : [a, b]→ R and a smooth function f : R→ R, we have

∫ g(b)

g(a)

f(x) dx =

∫ b

a

f(g(x)) · g′(x) dx .

To generate some ideas, let’s note that if we write the left-hand side integrand as a differential 1-form,
namely ω = f dx ∈ Ω1(R), then the right-hand side integrand turns into g∗ω, rather pleasantly. (See
definition 9.2.7, then you will see it.) So we may write the 1-dimensional substitution rule in the form

∫

g(J)

ω = ±

∫

J

g∗ω

where J = [a, b] and ω ∈ Ω1(R). The ± is a “minus” sign if g(a) > g(b), otherwise it is a “plus” sign.
In generalising this to higher dimensions, let us concentrate for now on the case where the substitution is
reversible. In the 1-dimensional “model” case, that would mean that g is a diffeomorphism from [a, b] = J
to g(J). Then it is enough to have f (or ω = f dx) defined on g(J).
To be prepared for sign issues, let’s observe that a diffeomorphism g : U → V between connected open
sets in Rn will either have det(Dg(x)) > 0 for all x ∈ U , or det(Dg(x)) < 0 for all x ∈ U . In the first
case, we say that g is orientation preserving, in the second case, that it is orientation-reversing.

Theorem 9.3.2 Let U and V be connected open sets in Rn. Let g : U → V be a diffeomorphism and let
ω be a differential n-form on V with compact support. Then

∫

V

ω = ±

∫

U

g∗ω .

The sign is “+” if g is orientation preserving, and “−” if g is orientation-reversing.

Remark. This is equivalent to the statement

∫

V

f(x) dx1dx2 . . . dxn =

∫

U

f(g(x)) · |det(Dg(x))| dx1dx2 . . . dxn

for a smooth function f : V → R with compact support. Smoothness of f is not essential ; in the proof
below we only use that f is continuous.

bThe support of ω is the closure in U of the set {x ∈ U | ω(x) 6= 0}.
cThe support of f is the closure in U of the set {x ∈ U | f(x) 6= 0}.
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Proof We can write ω = f ·dx1∧dx2∧· · ·∧dxn , so that
∫

V
ω =

∫

V
f(x) dx1 · · · dxn. Choose a compact

K ⊂ U such that f ◦ g is zero outside K. Choose ε > 0. Find δ > 0 such that B(x, 2δ) ⊂ U for every
x ∈ K and

‖g(x+ v)− g(x)−Dg(x)(v)‖ < ε‖v‖ (∗)

whenever x ∈ K and v ∈ Rn, ‖v‖ ≤ δ. This is possible by the mean value theorem.d Making δ smaller
still if necessary, we can also arrange that

|f(g(x+ v))− f(g(x))| < ε (∗∗)

whenever x ∈ K and ‖v‖ ≤ δ. This is possible because continuous functions are uniformly continuous on
compact sets. Now imagine a compact cube L inside U , for example

L = { p+ v | v1, . . . , vn ∈ [0, δ] }

where p is some point in K ⊂ U . Then by the above inequality (∗), the region g(L) ⊂ V differs
only very little from the parallelepipede (Dg(p))(L), in the sense that g(L) contains a slightly smaller
parallelepipede and is contained in a slightly larger paralellepipede. Better still, if we use (∗∗) also, we
see that the integral of f over g(L) differs from f(g(p)) · vol(Dg(p)(L)) = f(g(p)) · |det(Dg(p))| · δn only
by a small amount. That is,

∣
∣
∣
∣

∫

g(L)

f(x) dx1 · · · dxn − f(g(p)) · |det(Dg(p))| · δn
∣
∣
∣
∣
≤ s · ε · δn (∗∗∗)

for some constant s > 0 depending only on g and f . (Finding such an s is an exercise for you.) This
being done, choose a collection of little compact cubes Lj of sidelength δ, like L above, enough to cover
K. More precisely, each cube Lj should have one vertex pj in K, which implies Lj ⊂ U , and we want
K ⊂

⋃

j Lj , and the cubes should not intersect except in faces of dimension < n. Then we have

∫

V

f(x) dx1 · · · dxn =
∑

j

∫

g(Lj)

f(x) dx1 · · · dxn

because the union
⋃

j g(Lj) contains all points where f is not zero.e Therefore by (∗∗∗),

∣
∣
∣
∣

∫

V

f(x) dx1 · · · dxn −
∑

j

f(g(pj)) · |det(Dg(pj))| · δ
n

∣
∣
∣
∣
≤ s · ε

∑

j

δn .

Now let ε and δ tend to 0. Then the expression

∑

j

f(g(pj)) · |det(Dg(pj))| · δ
n

converges to the Riemann integral

∫

U

f(g(x)) · |det(Dg(x))| dx1 · · · dxn .

Meanwhile
∑

j δ
n remains bounded (because the union of the cubes Lj is always contained in a subset

of U whose diameter is at most the diameter of K plus 2δ). Therefore s · ε
∑

j δ
n tends to 0. Therefore

we have ∫

V

f(x) dx1 · · · dxn =

∫

U

f(g(x)) · |det(Dg(x))| dx1 · · · dxn

which translates into

∫

V

ω = ±

∫

U

g∗ω. �

d If the inequality is violated, then |gi(x+v)− gi(x)−Dgi(x)(v)| > (ε/n)‖v‖ for some i ∈ {1, 2, . . . , n}, some x and some
v. By the mean value theorem applied to the function t 7→ gi(x + tv), there exists t ∈ [0, 1] such that gi(x + v) − gi(x) =
Dgi(x + tv)(v). Then we conclude Dgi(x + tv)(v) − Dgi(x)(v) > (ε/n)‖v‖ for the same t. But thanks to the continuity of
the first derivatives of gi, we can make δ so small that this will not happen. Note ‖tv‖ ≤ δ by assumption.

eThis is not as obvious as it appears at first because of the possible overlaps. Let ∂Lj be the boundary of Lj . We need
to know that g(∂Lj) has measure zero. This follows from Sard’s theorem, e.g., because ∂Lj is a union of finitely many
smooth submanifolds of R

n of dimension < n.
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Remark. The “compact support” assumption in theorem 9.3.2 can often be weakened. For example, if
ω = f dx1∧ . . . dxn where f ≥ 0 and

∫

V
f(x) dx1dx2 . . . dxn <∞ (but f does not have compact support),

then the equation
∫

U
g∗ω =

∫

V
ω still holds. To prove this, choose a nondecreasing sequence of non-

negative smooth functions from V to R with compact support, converging uniformly to f on compact
subsets of V .

Example 9.3.3 We calculate ∫

x∈R
2

x2>1

‖x‖−4 dx1dx2 .

Let’s write C instead of R2 when that seems helpful. For example the region of integration, U , consists
of all complex numbers with imaginary part > 1. Let V ⊂ C consist of all complex numbers having
modulus < 1. There is a well-known diffeomorphism

g : U → V ; z 7→
z − 2i

z

(in complex number notation). The derivative, in the complex number sense, is g′(z) = 2iz−2, which
implies that

det(Dg(x)) = 4‖x‖−4

in the real number sense, where x = (x1, x2) ∈ R2 corresponds to z = x1 + ix2 ∈ C. Therefore

∫

U

‖x‖−4 dx1dx2 =

∫

U

1

4
|det(Dg(x))| dx1dx2 =

∫

V

1

4
dx1dx2 =

π

4
.

Remark. Let ω be a differential k-form on an open set U ⊂ Rn. If k < n, we cannot “integrate” ω on U
to obtain a number. But we can still use ω to produce numbers from smooth maps f : W → U where W
is open in Rk. For example, if f∗ω has compact support, then

∫

W
f∗ω is defined. Moreover, if f(W ) is a

connected smooth manifold in Rn and f induces a diffeomorphism W → f(W ), then |
∫

W
f∗ω| depends

only on f(W ), not directly on W and f . This follows directly from theorem 9.3.2.



SMSTC (2008/09)

Geometry and Topology

Lecture 10: Differential forms on smooth manifolds

Michael Weiss, University of Aberdeena

www.smstc.ac.uk

Contents
10.1 The exterior derivative in coordinates . . . . . . . . . . . . . . . . . . . . . . 10–1

10.2 Differential forms on smooth manifolds . . . . . . . . . . . . . . . . . . . . . 10–3

10.3 DeRham cohomology of smooth manifolds . . . . . . . . . . . . . . . . . . . 10–6

10.4 Homotopy invariance of deRham cohomology . . . . . . . . . . . . . . . . . 10–7

10.1 The exterior derivative in coordinates

Theorem 10.1.1 Let U be open in Rn. There exist unique R-linear maps dk : Ωk(U)→ Ωk+1(U), where
k = 0, 1, 2, 3, . . . , such that the following holds.

(i) d0 agrees with d of example 9.2.3

(ii) dk+1 ◦ dk = 0 for all k

(iii) for ω ∈ Ωk(U) and λ ∈ Ωℓ(U) we have dk+ℓ(ω ∧ λ) = dk(ω) ∧ λ + (−1)kω ∧ dℓ(λ).

Proof We prove uniqueness first, i.e., we assume that maps dk with these properties exist and try to
nail them down. Let ω ∈ Ωk(U). As in lemma 9.2.5, there are unique functions g i1,i2,...,ik such that

ω =
∑

1≤i1<i2<···<ik≤n

g i1,i2,...,ik ∧ d0xi1 ∧ d0xi2 ∧ · · · ∧ d0xik

The first “∧” in each term translates into “ordinary multiplication”, and we have written d0 for d in
accordance with rule (i). By linearity and rule (iii), we must have

dk(ω) =
∑

1≤i1<i2<···<ik≤n

d0g i1,i2,...,ik ∧ (d0xi1 ∧ d0xi2 ∧ · · · ∧ d0xik)

+
∑

1≤i1<i2<···<ik≤n

g i1,i2,...,ik ∧ dk(d0xi1 ∧ d0xi2 ∧ · · · ∧ d0xik).

Rules (iii) and (ii) can now be used to show that

dk(d0xi1 ∧ d0xi2 ∧ · · · ∧ d0xik) = 0 .

Therefore the only possible definition of dk for k > 0 is

dk(ω) =
∑

1≤i1<i2<···<ik≤n

d0g i1,i2,...,ik ∧ (d0xi1 ∧ d0xi2 ∧ · · · ∧ d0xik)

=
∑

1≤i1<i2<···<ik≤n

dg i1,i2,...,ik ∧ (dxi1 ∧ dxi2 ∧ · · · ∧ dxik).

a
m.weiss@abdn.ac.uk
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This takes care of uniqueness. Now for existence: If we use this formula to define dk, and rule (i) to
define d0, then we need not worry about rule (i). For rule (ii), it is enough (by linearity) to consider the
case where

ω = g dxi1 ∧ dxi2 ∧ · · · ∧ dxik = g ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik

for some smooth function g : U → R. Then

dk(ω) = dg ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik =

n∑

r=1

∂g

∂xr
dxr ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik

(using example 9.2.3). Repeating this argument gives

dk+1(dk(ω)) =

n∑

r,s=1

∂2g

∂xs∂xr
dxs ∧ dxr ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik .

This expression is zero because dxs∧dxr = −dxr∧dxs and second partial derivatives of smooth functions
have certain symmetry properties.
For the verification of rule (iii), we can assume

ω = f ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik , λ = g ∧ dxj1 ∧ dxj2 ∧ · · · ∧ dxjk .

The verification then boils down rather quickly to showing that d(f · g) = g · df + f · dg. But this is the
ordinary product rule for derivatives. �

Definition 10.1.2 Standard usage has d instead of dk, as in d : Ωk(U) → Ωk+1(U). Terminology: d is
the exterior derivative.

Example 10.1.3 Take n = 3, so U open in R3. After some translation work, we shall see that the maps
d : Ωk(U)→ Ωk+1(U) turn into grad when k = 0, curl when k = 1 and div when k = 2.
From lemma 9.2.5 we get the following identifications:

Ω0(U) = set of smooth maps U → R

Ω1(U) = set of smooth vector fields on U
Ω2(U) = set of smooth vector fields on U
Ω3(U) = set of smooth maps U → R.

To be quite precise, a smooth vector field v = (v1, v2, v3) on U determines a differential 1-form

v1dx1 + v2dx2 + v3dx3

on U , and also a differential 2-form

v1 dx2 ∧ dx3 − v2 dx1 ∧ dx3 + v3 dx1 ∧ dx2 .

(Note the minus sign.) Similarly, a smooth map g : U → R determines a differential 3-form

g dx1 ∧ dx2 ∧ dx3 .

These correspondences are all bijective by lemma 9.2.5, despite the unexpected minus sign. For f ∈ Ω0(U)
the differential 1-form

df =
3∑

i=1

(∂f/∂xi)dxi

in Ω1(U) corresponds to the vector field (∂f/∂x1, ∂f/∂x2, ∂f/∂x3) = grad(f). For a vector field v =
(v1, v2, v3) on U , corresponding to v1dx1 + v2dx2 + v3dx3 in Ω1(U), we obtain

d(v1dx1 + v2dx2 + v3dx3) =
3∑

i=1

3∑

j=1

((∂vi/∂xj) dxj) ∧ dxi

= (∂v3/∂x2 − ∂v2/∂x3) dx2 ∧ dx3

+(∂v3/∂x1 − ∂v1/∂x3) dx1 ∧ dx3

+(∂v2/∂x1 − ∂v1/∂x2) dx1 ∧ dx2
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in Ω2(U), which corresponds to the vector field

(∂v3/∂x2 − ∂v2/∂x3, − ∂v3/∂x1 + ∂v1/∂x3, ∂v2/∂x1 − ∂v1/∂x2) = curl(v) .

For a vector field v = (v1, v2, v3) on U , corresponding to v1 dx2 ∧ dx3 − v2 dx1 ∧ dx3 + v3 dx1 ∧ dx2 in
Ω2(U), we have

d(v1 dx2 ∧ dx3 − v2 dx1 ∧ dx3 + v3 dx1 ∧ dx2) =

3∑

i=1

(∂vi/∂xi) dx1 ∧ dx2 ∧ dx3

in Ω3(U), which corresponds to the function
∑3
i=1(∂vi)/∂xi) = div(v).

Proposition 10.1.4 Let f : U → V be a smooth map, where U is open in Rm and V is open in Rn.
Then d(f∗(ω)) = f∗(dω) for every ω ∈ Ω∗(V ).

Proof We start with a special case. If ω ∈ Ω0(V ), then ω is a smooth function from V to R and
f∗ω = ω ◦ f by definition of f∗. Therefore d(f∗(ω)) = d(ω ◦ f), so that d(ω ◦ f)(x) for x ∈ U is the
differential of ω ◦ f at x. By the chain rule, this is equal to the composition of dω(f(x)) with Df(x), the
differential of f at x. But that was also the definition of f∗(dω)(x). Therefore d(f∗(ω)) = f∗(dω) in the
case where ω ∈ Ω0(V ).
The general case follows from the special case above. Using lemma 9.2.5 we may suppose that

ω = g dxi1 ∧ dxi2 ∧ · · · ∧ dxik = g ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik

for some g ∈ Ω0(V ). Then dω = dg ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik and so

f∗(dω) = f∗(dg ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik)

= f∗(dg) ∧ f∗(dxi1) ∧ f
∗(dxi2) ∧ . . . f

∗(dxik)

= d(f∗g) ∧ d(f∗xi1) ∧ d(f
∗xi2) ∧ · · · ∧ d(f

∗xik)

= d(f∗g ∧ d(f∗xi1) ∧ d(f
∗xi2) ∧ · · · ∧ d(f

∗xik))

= d(f∗g ∧ f∗(dxi1) ∧ f
∗(dxi2) ∧ . . . f

∗(dxik))

= d(f∗ω) .

(Here you really have to believe that xi is the name of a function from V to R, otherwise f∗dxi has no
meaning.) �

10.2 Differential forms on smooth manifolds

The definition of a differential form on a smooth manifold is suggested by the remark following defini-
tion 9.2.1 and by definition 9.2.7. We start with a rough formulation and discuss the details afterwards:

Definition 10.2.1 Let M be a smooth manifold of dimension m. A differential k-form on M is a smooth
map ω which for every x ∈M selects an element ω(x) ∈ altk(TxM).

Question. What does the expression smooth map mean in this context ?

Answer 1. A map should first of all have a source and a target. In our case the source of ω is clearly M
and the target appears to be the (disjoint) union

⋃

x∈M

altk(TxM) =: altk(TM).

But since ω is required to be a smooth map, a structure of smooth manifold on altk(TM) is needed. We
can produce this by imitating the proof of proposition 3.2.2. Let ϕ : U → M be a chart for M , with U
open in Rm. Then we obtain a map

ϕ! : altk(TU) −→ altk(TM)
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which identifies altk(TyU) for y ∈ U with altk(Tf(y)M), using the differential Dϕ(y) : TyU → Tf(y)M , a
linear isomorphism. We note that TyU is identified with Rm , for every y ∈ U , and so

altk(TU) = U × altk(Rm).

This is an open set in the vector space Rm × altk(Rm). It is then easy to show that the maps ϕ! make
up a smooth atlas for altk(TM).

Answer 2. It is not important to specify what the target of the “map” ω should be, since we understand
perfectly well that ω selects an element ω(x) ∈ altk(TxM) for every x ∈M . But we need to decide what
the word smooth should mean. Suppose that ϕ : U →M is a chart for M , with U open in Rm. Then for
every y ∈ U we obtain an element ϕ∗(ω)(y) in altk(Rm) = altk(TyU) , the element corresponding to

ω(ϕ(y)) ∈ altk(Tϕ(y)M)

under the linear isomorphism Dϕ(y) : Rm → Tϕ(y)M . (See example 9.1.12.) The obvious smoothness
condition to impose on ω is that the map

y 7→ ϕ∗(ω)(y)

from U to altk(Rm) so defined be a smooth map. That should hold for every chart ϕ : U → M in
a smooth atlas for M . It is easy to verify that only the equivalence class of the atlas matters. (See
definition 2.2.18.)

Remark. The two answers are equivalent in the sense that they lead to the same concept of differential k-
form on a smooth manifold M . If you prefer answer 1, you may need to remind yourself that a differential
k-form ω on M is not just any smooth map from M to altk(TM). We require that ω(x) ∈ altk(TxM)
for all x ∈M .

Definition 10.2.2 The vector space of all differential k-forms on M is denoted by Ωk(M). Together,
the vector spaces Ωk(M) for k ≥ 0 form a graded ring Ω∗(M) with the wedge product, defined by
(ω ∧ λ)(x) = ω(x) ∧ λ(x) for ω ∈ Ωk(M), λ ∈ Ωℓ(M) and x ∈M .
A smooth map f : M → N induces a graded ring homomorphism f∗ : Ω∗(N)→ Ω∗(M) by

(f∗ω)(x)(u1, . . . , uk) = ω(y)(v1, . . . , vk)

where ω ∈ Ωk(N) and x ∈ M and y = f(x) and vi = Df(x)(ui) for i = 1, 2, . . . , k. Here Df(x) is the
differential of f at x, a linear map TxM → TyN .

The following “algebraic” lemma will help us to generalise theorem 10.1.1 to the manifold setting. It is
useful in many other situations.

Lemma 10.2.3 Let U be open in Rm. Every ω ∈ Ωk(U) with compact support is a (finite) sum of
elements of the form p ∧ dq1 ∧ dq2 ∧ · · · ∧ dqk where p, q1, . . . , qk ∈ Ω0(U) also have compact support.

Proof By lemma 9.2.5, we can write ω as a sum of elements of the form p∧ dq1 ∧ dq2 ∧ · · · ∧ dqk where
p, q1, . . . , qk ∈ Ω0(U), and the support of p is contained in the support of ω. We chooseb an f ∈ Ω0(U)
which has compact support and such that f ≡ 1 on the support of ω. Then ω is a sum of elements of the
form p ∧ d(fq1) ∧ d(fq2) ∧ · · · ∧ d(fqk) and here p, fq1, . . . fqk all have compact support. �

Theorem 10.2.4 There exist unique R-linear maps dk : Ωk(M) → Ωk+1(M), where k = 0, 1, 2, 3, . . . ,
such that the following holds.

(i) d0(ω) is the derivative of ω, for ω ∈ Ω0(M)

(ii) dk+1 ◦ dk = 0 for all k

(iii) for ω ∈ Ωk(M) and λ ∈ Ωℓ(M) we have dk+ℓ(ω ∧ λ) = dk(ω) ∧ λ + (−1)kω ∧ dℓ(λ).

bFor some instructions on how to choose, try the notes for lecture 9, heading partitions of unity.
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Proof We start with the existence part this time. Fix ω ∈ Ωk(M). Choose a smooth chart ϕ : U →M
with U open in Rm. We want to define dk : Ωk(M)→ Ωk+1(M) in such a way that the diagram of maps

Ωk(M)
ϕ∗

−−−−→ Ωk(U)


ydk



ydk

Ωk+1(M)
ϕ∗

−−−−→ Ωk+1(U)

is commutative, i.e., such that dk ◦ ϕ
∗ = ϕ∗ ◦ dk. Note that the right-hand side dk in the diagram

is already defined thanks to theorem 10.1.1. The commutativity requirement determines (dkω)(y) for
every y ∈ ϕ(U), because knowing (ϕ∗(dkω))(x) for x ∈ U amounts to knowing (dkω)(y) for y = ϕ(x).
(These two correspond to each other under the isomorphism altk(TyM) → altk(Rm) determined by the
differential of ϕ at x, a linear isomorphism Rm → TyM .) We need to ensure that this provisional
definition of (dkω)(y) is unambiguous, i.e., does not depend on the choice of a smooth chart ϕ(U)→M
with y ∈ ϕ(U). Fortunately that follows from the chain rule and proposition 10.1.4, specialised to the
case of a diffeomorphism between two open sets in Rm (for us, a “change of chart” diffeomorphism).
To prove uniqueness, we start with ω ∈ Ωk(M) and y ∈ M . Let ψ : U → M be a smooth chart for M
such that y ∈ ψ(U). Let V = ψ(U). Choose a smooth function g : M → R with compact support in
V , and such that g ≡ 1 in a neighborhood of y ∈ V . Then gω also has compact support contained in
V . We lose no information on gω by viewing it as a differential k-form on V with compact support. By
lemma 10.2.3, that differential k-form on V can be written as a sum of elements of the form

p ∧ dq1 ∧ dq2 ∧ · · · ∧ dqk

where p, q1, . . . , qk ∈ Ω0(V ) all have compact support in V . We can and we shall view p, q1, . . . , qk as
elements of Ω0(M) with compact suppport contained in V . Then we have

g ∧ ω = p ∧ dq1 ∧ dq2 ∧ · · · ∧ dqk ,

an equation in the graded ring Ω∗(M). Here dqi ∈ Ω1(M) for i = 1, 2, . . . , k is just the derivative of qi.
Then we must have

dk(g ∧ ω) = dp ∧ dq1 ∧ dq2 ∧ · · · ∧ dqr

by rules (ii) and (iii), and again dp = d0p is the derivative of p in accordance with rule (i). But
dk(g ∧ ω) = d0g ∧ ω + g ∧ dkω by rule (iii). This agrees with dkω in a neighbourhood of y, since
d0g = dg ≡ 0 in a neighborhood of y. Therefore

dkω ≡ dp ∧ dq1 ∧ dq2 ∧ · · · ∧ dqr

in a neighborhood of y, and this is enough to determine (dkω)(y). �

Definition 10.2.5 Once again, it is customary to write d instead of dk, as in d : Ωk(M) → Ωk+1(M).
Terminology: d is the exterior derivative or sometimes the coboundary operator.

Proposition 10.2.6 Let f : M → N be a smooth map between smooth manifolds. Then the graded ring
homomorphism f∗ : Ω∗(N) → Ω∗(M) “commutes” with the exterior derivative, d(f∗(ω)) = f∗(dω) for
every ω ∈ Ω∗(N).

Proof Let ϕ : U → M be a chart with x ∈ ϕ(U) and let ψ : V → N be a chart with f(x) ∈ ψ(V ).
We can assume that f(ϕ(U)) ⊂ V . Then we have the following commutative square of rings and ring
homomorphisms:

Ω∗(N)
f∗

−−−−→ Ω∗(M)

ψ∗



y



yϕ

∗

Ω∗(V ) −−−−→ Ω∗(U)

The two vertical ones commute with d and the lower horizontal one, induced by the map x 7→ ψ−1(f(ϕ(x)))
also does, by proposition 10.1.4. It follows immediately that d(f∗(ω))(y) = f∗(dω)(y) for ω ∈ Ω∗(N) and
every y ∈ ϕ(U). �
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10.3 DeRham cohomology of smooth manifolds

Definition 10.3.1 A cochain complex C∗ is a sequence of abelian groups Ck for k ∈ Z, together with
group homomorphisms

· · ·
d−3

−−−−→ C−2 d−2

−−−−→ C−1 d−1

−−−−→ C0 d0−−−−→ C1 d1−−−−→ C2 d2−−−−→ · · ·

such that dk+1 ◦ dk = 0 for all k ∈ Z. The homomorphisms dk are more commonly denoted by the
single letter d. Together they constitute the “coboundary operator” of C∗. Elements in ker(dk) are called
cocycles and elements in im(dk+1) are called coboundaries. The k-th cohomology group of the cochain
complex C∗ is the abelian group

Hk(C∗) = ker(dk)/im(dk−1) .

Definition 10.3.2 For a smooth manifold M there is the cochain complex Ω∗(M) with the coboundary
operator defined and characterised in theorem 10.2.4

Ω0(M)
d

−−−−→ Ω1(M)
d

−−−−→ Ω2(M)
d

−−−−→ · · ·

The “missing” negative terms, Ωk(M) for k < 0, should be defined as 0. The cohomology groups of this
cochain complex are the de Rham cohomology groups of M . We abbreviate

Hk(Ω∗(M)) = Hk
dR(M) = Hk(M)

depending on the level of precision required. Here each Ωk(M), in addition to being an abelian group,
comes with a structure of real vector space and the coboundary operator is R-linear. It follows immediately
that the abelian groups Hk

dR(M) are also real vector spaces.

The deRham cohomology groups H∗
dR(M) are important algebraic “manifestations” of the topological

complexity of the manifold M . Our main business in this chapter and the next few chapters is to develop
tools for calculating these vector spaces (e.g., determining their dimensions).

Example 10.3.3 Let M be a point, M = pt. This is a 0-dimensional smooth manifold. Clearly Ω0(pt) =
R and Ωk(pt) = 0 for k 6= 0, so that H0

dR(pt) = R and Hk
dR(pt) = 0 for k 6= 0.

Example 10.3.4 Let M = S be a finite or countably infinite set. This is again a 0-dimensional smooth
manifold. Then Ω0(S) = RS (the vector space of all maps from S to R) and Ωk(S) = 0 for k 6= 0.
Therefore H0

dR(S) = RS and Hk
dR(S) = 0 for k 6= 0.

Example 10.3.5 Let M = R. By lemma 9.2.5, we can identify both Ω0(R) and Ω1(R) with the vector
space of smooth functions from R to R. Indeed, a smooth function f : R → R is an element of Ω0(R)
and also determines an element f dx of Ω1(R). In these terms, the differential Ω0(R) → Ω1(R) is given
by the derivative, f 7→ f ′. That is, a smooth function f has df = f ′ · dx, which incidentally “confirms”
the dubious notation df/dx for f ′. It follows that

d : Ω0(R)→ Ω1(R)

is surjective (because smooth functions can be integrated) but not injective (because all constant functions
have derivative 0). The kernel is 1-dimensional, and is identified with R. Therefore

H0
dR(R) ∼= R

while all other deRham cohomology groups of R are zero.

Example 10.3.6 A slightly more exciting example is M = S1. To unravel this we can use the map
p : R→ S1 defined by p(x) = (cosx, sinx). The induced map

p∗ : Ω∗(S1)→ Ω∗(R)

is easily seen to be injective. The image of p∗ : Ω0(S1) → Ω0(R) consists of the smooth functions
f : R → R which are periodic with 2π as a period. The image of p∗ : Ω1(S1) → Ω1(R) consists of the
differential 1-forms f dx where f is again periodic with 2π as a period. Therefore both Ω0(S1) and Ω1(S1)
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can be identified with the vector space of smooth functions f : R→ R which satisfy f(x+2π) = f(x) for
all x ∈ R. In these terms, the differential Ω0(S1) → Ω1(S1) is given by the derivative, f 7→ f ′. It is not
surjective. The point is that a periodic function f : R→ R need not have a periodic (indefinite) integral.
More precisely, if f : R → R is smooth with 2π as a period, then the indefinite integral

∫
f(x) dx will

have 2π as a period if and only if
∫ 2π

0

f(x) dx = 0 .

Therefore the quotient of Ω1(S1) by the image of d : Ω0(S1) → Ω1(S1) has dimension 1, and is again
identified with R. The kernel of d : Ω0(S1)→ Ω1(S1) is also identified with R, as in the previous example.
Therefore

H0
dR(S1) ∼= R , H1

dR(S1) ∼= R

while all other deRham cohomology groups of S1 are zero.

Example 10.3.7 For any smooth manifold M , the group H0
dR(M) is the kernel of d : Ω0(M)→ Ω1(M).

This kernel clearly consists of all the smooth functions M → R which have zero (total) derivative, i.e.,
which are constant on every connected component of M . The connected components of M agree with
the path components of M . (That’s an interesting exercise for you.) Therefore we may write

H0
dR(M) ∼= R

π0(M).

10.4 Homotopy invariance of deRham cohomology

Definition 10.4.1 Let C∗ and D∗ be cochain complexes. A cochain map f : C∗ → D∗ is a sequence of
homomorphisms fk : Ck → Dk such that d ◦ fk = fk−1 ◦ d for all k ∈ Z. Such a cochain map f induces
homomorphisms

Hk(C∗)→ Hk(D∗)

for every k, by the rule [x] 7→ [f(x)].

Remark. The definition of the induced maps Hk(C∗) → Hk(D∗) calls for some explanations. We write
[x] ∈ Hk(C∗). We mean x ∈ Ck with d(x) = 0 and we use the square brackets to indicate the coset
x+im(d : Ck−1 → Ck). Then we have to show, first of all, that d(f(x)) = 0, so that [f(x)] is a meaningful
element of Hk(D∗). This is correct because d(f(x)) = f(d(x)) = f(0) = 0, by assumption on f . Next
we have to show that [f(x)] is well defined as a function of [x]. Indeed, if we change x to x+ d(y) where
y ∈ Ck−1, then f(x + d(y)) = f(x) + f(d(y)) = f(x) + d(f(y)), by our assumption on f again. Hence
[f(x+ d(y))] = [f(x)] ∈ Hk(D∗).

Example 10.4.2 Let f : M → N be a smooth map. Then f∗ : Ω∗(N) → Ω∗(M) is a cochain map by
proposition 10.2.6. It induces therefore

f∗ : Hk
dR(N)→ Hk

dR(M)

Here we still write f∗, although for consistency we should probably write something like (f∗)∗ . The
“reversal of arrow direction” happens in passing from the map M → N to the induced map of chain
complexes Ω∗(N)→ Ω∗(M).

Definition 10.4.3 Let C∗ and D∗ be cochain complexes. Let f, g : C∗ → D∗ be two cochain maps. A
cochain homotopy h from f to g is a sequence of homomorphisms hk : Ck → Dk−1 such that

d ◦ hk + hk+1 ◦ d = gk − fk

for all k ∈ Z. If such a cochain homotopy exists, we say that f and g are (cochain) homotopic. If in
addition f = 0, so that d ◦ hk + hk+1 ◦ d = gk for all k, then we say that g is (cochain) nullhomotopic.

Lemma 10.4.4 Let f, g : C∗ → D∗ be two cochain maps. Suppose that they are cochain homotopic.
Then for every k ∈ Z, the homomorphisms Hk(C∗)→ Hk(D∗) induced by f and g are the same.
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Proof Fix [x] ∈ Hk(C∗), represented by x ∈ Ck with dx = 0. Then

[g(x)]− [f(x)] = [g(x)− f(x)] = [dhk(x) + hk+1(dx)] = [dhk(x)] = 0 ∈ Hk(D∗).

�

Cochain homotopies are algebraic counterparts of homotopies between maps (between spaces), as the
following discussion illustrates.

Let M be a smooth manifold. We will play around with some interesting operatorsc on Ω∗(M ×R). For
s ∈ R there is the shift operator as : Ω∗(M × R) → Ω∗(M × R) defined by (asω)(x, t) = ω(x, t + s) for
ω ∈ Ω∗(M × R) and (x, t) ∈M × R. There is the operator b : Ω∗(M × R)→ Ω∗−1(M × R) defined by

(bω)(x, t)(v1, v2, . . . , vk−1) = ω(x, t)(1R, v1, v2, . . . , vk−1)

for ω ∈ Ωk(M ×R), where 1R ∈ T(x,s)(M ×R) is the velocity 1 vector in the R direction and v1, . . . vk−1

are arbitrary elements of T(x,s)(M × R).

Lemma 10.4.5 In this situation, d ◦ b+ b ◦ d =
d

dt

∣
∣
∣
∣
t=0

at = lim
t→0

at − a0

t
.

Proof For a fixed ω in Ωk(M × R), we have to show

d(bω) + b(dω) = lim
t→0

atω − a0ω

t
.

This has to be established at every (x, t) in M × R. We can therefore work in local coordinates near
(x, t). So there is no loss of generality in assuming that M is an open set in Rm. We write x1, . . . , xm
for the coordinates in M and t for the “time” coordinate. By lemma 9.2.5 and linearity, we may assume
that either

ω = f dxi1 ∧ dxi2 ∧ · · · ∧ dxik (type 1)

with 1 ≤ i1 < i2 < . . . ik ≤ m, or

ω = f dt ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik−1
(type 2)

with 1 ≤ i1 < i2 < . . . ik−1 ≤ m. In both cases f is a smooth function from M × R to R. In the type 1
situation, writing λ for dxi1 ∧ dxi2 ∧ · · · ∧ dxik , we get bω = 0 and

b(dω) = b(df ∧ λ) = b
(

(∂f/∂t) dt ∧ λ +
∑m
j=1(∂f/∂xj) dxj ∧ λ

)

= (∂f/∂t) λ

so that d(bω) + b(dω) is (d/dt)|t=0 at(ω). In the type 2 situation, writing λ for dxi1 ∧ dxi2 ∧ · · · ∧ dxik−1
,

we get

b(dω) = b(df ∧ dt ∧ λ) = b
(
∑m
j=1(∂f/∂xj) dxj ∧ dt ∧ λ

)

= −
∑m
j=1(∂f/∂xj) dxj ∧ λ

whereas
d(bω) = d

(
fλ
)

=
∑m
j=1(∂f/∂xj) dxj ∧ λ + (∂f/∂t) dt ∧ λ .

Therefore, again, b(dω) + d(bω) = (d/dt)|t=0 at(ω). �

Corollary 10.4.6 For s ∈ R let bs = b ◦ as , in the notation of lemma 10.4.5. Then

d ◦ bs + bs ◦ d =
d

dt

∣
∣
∣
∣
t=s

at(ω) .

Proof It is easy to verify that as ◦ d = d ◦ as. Therefore

d ◦ bs + bs ◦ d = d ◦ (b ◦ as) + (b ◦ as) ◦ d = (d ◦ b+ b ◦ d) ◦ as =
d

dt

∣
∣
∣
∣
t=0

at(ω) ◦ as =
d

dt

∣
∣
∣
∣
t=s

at(ω) .

The last equation is a consequence of as+t = as ◦ at (for all s, t ∈ R). �

cOperator is an informal word for a map from a set to itself.
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Corollary 10.4.7 Let B =

∫ 1

0

bt dt , in the notation of corollary 10.4.6. Then

d ◦B +B ◦ d = a1 − a0 .

Proof It is easy to see that d ◦B =

∫ 1

0

d ◦ bt dt. Therefore

d ◦B +B ◦ d =

∫ 1

0

d ◦ bs + bs ◦ d ds =

∫ 1

0

(
d

dt

∣
∣
∣
∣
t=s

at

)

ds = a1 − a0 .

�

In the “cochain homotopy” language, we can restate this last corollary by saying that B is a cochain
homotopy from a0 = id to a1. Unravelling the construction of B, we have

B : Ω∗(M × R) −→ Ω∗−1(M × R)

(Bω)(x, t)(v1, v2, . . . , vk−1) =

∫ 1

0

ω(x, t+ s)(1R, v1, v2, . . . , vk−1) ds

for ω ∈ Ωk(M ×R) and elements v1, v2, . . . , vk−1 in the tangent space T(x,t)(M ×R), which we also view
as elements of T(x,t+s)(M × R).

Theorem 10.4.8 Let M and N be smooth manifolds. If two smooth maps f, g : M → N are homotopic,
then they induce the same homomorphism from H∗

dR(N) to H∗
dR(M).

Proof The following fact will be used without proof: If f and g are homotopic, then there exists a
smooth map h : M ×R→ N such that h(x, 0) = f(x) and h(x, 1) = g(x) for all x ∈M . The emphasis is
on smooth. It is always easy to extend a continuous map M×[0, 1]→ N to a continuous map M×R→ N .
Assume therefore that we have a smooth h : M ×R→ N such that h(x, 0) = f(x) and h(x, 1) = g(x) for
all x ∈M . Define e : M →M × R by e(x) = (x, 0). The composition

Ω∗(N)
h∗

−−−−→ Ω∗(M × R)
a∗0−−−−→ Ω∗(M × R)

e∗
−−−−→ Ω∗(M)

is f∗ : Ω∗(N)→ Ω∗(M). The composition

Ω∗(N)
h∗

−−−−→ Ω∗(M × R)
a∗1−−−−→ Ω∗(M × R)

e∗
−−−−→ Ω∗(M)

is g∗ : Ω∗(N)→ Ω∗(M). The two are cochain homotopic by means of the composition

Ω∗(N)
h∗

−−−−→ Ω∗(M × R)
B

−−−−→ Ω∗−1(M × R)
e∗

−−−−→ Ω∗−1(M)

where B comes from corollary 10.4.7. An explicit formula for this cochain homotopy (let’s call it h$) is

h$ω(x)(v1, . . . , vk−1) =

∫ 1

0

(h∗ω)(x, s)(1R, v1, . . . , vk−1) ds

where ω ∈ Ωk(N) and h$ω ∈ Ωk−1(M) and x ∈ M and v1, . . . , vk−1 ∈ TxM . It is not easy to prove
directly from this formula that d ◦ h$ + h$ ◦ d = g∗ − f∗, but you are very welcome to try. �

Remarks on history. The method that we have used to prove theorem 10.4.8 appears to have been
developed in essence by Vito Volterra (1889). It was formulated and used in a special case, the case
where M = N = Rm, the map f is the identity and g is the constant map x 7→ 0. The homotopy h was
h(x, t) = tx for x ∈ Rm and t ∈ [0, 1] or, more generally t ∈ R. The result in this special case is usually
called the Poincaré lemma. It is true that Poincaré stated it without proof some years before Volterra
proved it.

Corollary 10.4.9 Let M and N be smooth manifolds. If M is homotopy equivalent to N , then Hk
dR(M)

is isomorphic to Hk
dR(N), for every k ∈ Z.
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Proof Every continuous map M → N is homotopic to a smooth map M → N . (We will use this
without proof.) Therefore, assuming that M and N are homotopy equivalent, we can find smooth maps
f : M → N and g : N → M such that g ◦ f is homotopic to the identity idM and f ◦ g is homotopic to
the identity idN . Then we have f∗ : H∗(N)→ H∗(M) and g∗ : H∗(M)→ H∗(N). The composition

H∗(N)
f∗

−−−−→ H∗(M)
g∗

−−−−→ H∗(N)

agrees with the map induced by f ◦ g : N → N (by inspection). Therefore it must be the identity map
of H∗(N) by theorem 10.4.8, as f ◦ g ≃ idN . Similarly the composition

H∗(M)
f∗

−−−−→ H∗(N)
g∗

−−−−→ H∗(M)

is the identity of H∗(M). �

Corollary 10.4.10 Hk
dR(Rn) ∼= 0 for all k 6= 0, and H0

dR(Rn) = 0.

Proof The manifolds Rn and pt are homotopy equivalent. �
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11.1 Short exact sequences and long exact sequences

Definition 11.1.1 Let C,D,E be cochain complexes (definition 10.3.1) and let f : C → D, g : D → E
be cochain maps (definition 10.4.1). We say that

C
f

−−−−→ D
g

−−−−→ E

is a short exact sequence of cochain complexes if fk : Ck → Dk is injective, gk : Dk → Ek is surjective
and ker(gk) = im(fk) , for all k ∈ Z.

Our chief example is the following:

Example 11.1.2 Let M be a smooth manifold, V and W open subsets of M such that V ∪W = M .
Write jV : V → M and jW : W → M and eV : V ∩W → V and eW : V ∩W → W for the various
inclusion maps. Then we have chain maps

Ω∗M

0
@j

∗
V

j∗W

1
A

// Ω∗V ⊕ Ω∗W

�
e∗V −e∗W

�
// Ω∗(V ∩W ) .

These chain maps form a short exact sequence. Writing g for the right-hand map and f for the left-hand
map, it is indeed clear that ker(g) = im(f) and that f is injective. To prove that g is surjective, we
choose a partition of unity (chapter 5) subordinate to the open covering {V,W} of M . This consists of
two smooth functions ϕV : M → [0, 1] and ϕW : M → [0, 1] with support in V and W , respectively, such
that ϕV (x) + ϕW (x) = 1 for all x ∈ M . Now if λ ∈ Ωk(V ∩W ), then −ϕV · λ ∈ Ωk(V ∩W ) extends to
an element in Ωk(W ) which is zero outside V , and ϕW · λ ∈ Ωk(V ∩W ) extends to an element in Ωk(V )
which is zero outside W . Therefore λ = ϕV · λ+ ϕW · λ is in the image of g.

Definition 11.1.3 Keeping the notation and assumptions of definition 11.1.1, we define a homomorphism

∂ : Hk(E) −→ Hk+1(C)

by ∂[z] = [f−1(dz′)] , where z′ ∈ Dk is selected so that g(z′) = z.

a
m.weiss@abdn.ac.uk

11–1
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Comments. In the formula for ∂[z] we are assuming that z ∈ Ek is a cocycle, which means dz = 0. The
corresponding cohomology class is denoted by [z]. We select z′ ∈ Dk with g(z′) = z. Such a z′ exists
because g is surjective. Then we have dz′ ∈ ker(g) because

g(dz′) = d(g(z′)) = dz = 0 .

Therefore dz′ is in the image of f , so that f−1(dz′) ∈ Ck+1 exists. Note the following:

• f−1(dz′) is a cocycle. Indeed by injectivity of f , it is enough to show that dz′ is a cocycle, but that
follows from d ◦ d = 0.

• Every choice of z′ with g(z′) = z gives the same class [f−1(dz′)] ∈ Hk+1(C). Indeed, two choices
of z′ differ by some element in Dk which is in ker(g) and so has the form f(y) for some y ∈ Ck.
Then the two versions of f−1(dz′) differ by dy, so they define the same cohomology class.

Example 11.1.4 In the setting of example 11.1.2, the operator

∂ : Hk
dR(V ∩W ) −→ Hk+1

dR (M)

is given by [λ] 7→ [ω] where ω|W = d(ϕV λ) and ω|V = −d(ϕWλ). Prove it.

Theorem 11.1.5 Let C
f

// D
g

// E be a short exact sequence of cochain complexes. Then the
sequence of cohomology groups and homomorphisms

· · ·
∂

−−−−→ Hk(C)
f∗

−−−−→ Hk(D)
g∗

−−−−→ Hk(E)
∂

−−−−→ Hk+1(C)
f∗

−−−−→ Hk+1(E)
g∗

−−−−→ · · ·

is exact, i.e., the kernel of each homomorphism in the sequence agrees with the image of the previous
homomorphism.

Proof Exactness at Hk(D): It is clear that g∗ ◦ f∗ = 0 because g ◦ f = 0. If z ∈ Dk is a cocycle
and g∗[z] = 0, then ∃ y ∈ Ek−1 with dy = g(z). Choose y′ ∈ Dk−1 with g(y′) = y. Then z − dy′ is in
ker(g) = im(f) since g(z − dy′) = g(z) − d(g(y′)) = g(z) − dy = 0. Therefore [z] = [z − dy′] is in the
image of f∗ : Hk(C)→ Hk(D).
Exactness at Hk(E): It follows directly from the definition of ∂ that ∂ ◦ g∗ = 0. Suppose that z ∈ Ek is
a cocycle with ∂[z] = 0. Choose z′ ∈ Dk such that g(z′) = z. Then [f−1(dz′)] = ∂[z] = 0, so ∃y ∈ Ck

with dy = f−1(dz′), which means f(dy) = d(f(y)) = dz′. So z′ − f(y) ∈ Dk is a cocycle. Clearly
g∗[z

′ − f(y)] = [z].
Exactness at Hk+1(C): It follows directly from the definition of ∂ that f∗ ◦∂ = 0. Suppose that z ∈ Ck+1

is a cocycle with f∗[z] = 0. Then f(z) = dy for some y ∈ Dk. Then d(g(y)) = g(dy) = g(f(z)) = 0.
Hence [g(y)] ∈ Hk(D) is defined. We have ∂[g(y)] = [f−1(dy)] = [z]. �

Terminology. The sequence of cohomology groups in theorem 11.1.5 is called the long exact sequence
(LES) of cohomology groups associated with the short exact sequence of cochain complexes C → D → E.

Remark. If the cochain complexes C,D,E are cochain complexes of real vector spaces, with R-linear
differentials, then the long exact sequence of cohomology groups is in fact a long exact sequence of real
vector spaces and R-linear maps.

Example 11.1.6 In the situation of example 11.1.2, theorem 11.1.5 delivers what is called the long
exact Mayer-Vietoris sequence of the open covering {V,W} of M : a long exact sequence of deRham
cohomology groups

· · ·
∂

−−−−→ Hk
dR(M)

a
−−−−→ Hk

dR(V )⊕Hk
dR(W )

b
−−−−→ Hk

dR(V ∩W )
∂

−−−−→ Hk+1
dR (M)

a
−−−−→ · · ·

where a =

(
j∗V
j∗W

)

and b =
(
e∗V −e∗W

)
.

11.2 De Rham cohomology of spheres

Theorem 11.2.1 The deRham cohomology groups of Sn (for n > 0) are

Hk
dR(Sn) ∼=







R if k = n
R if k = 0
0 otherwise.
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Proof We proceed by induction on n. The induction beginning is the case n = 1 which we have already
dealt with in example 10.3.6. For the induction step, suppose that n > 1. We use the Mayer-Vietoris
sequence for Sn and the open covering {V,W} with V = Snr{p} and W = Snr{q} where p, q ∈ Sn are
the north and south pole, respectively. We will also use the homotopy invariance of deRham cohomology,
theorem 10.4.8 and its corollary 10.4.9. This gives us

Hk
dR(V ) ∼= Hk

dR(W ) ∼=

{
R if k = 0
0 otherwise

because V and W are homotopy equivalent to a point, and

Hk
dR(V ∩W ) ∼=







R if k = n− 1
R if k = 0
0 otherwise.

by the induction hypothesis, since V ∩W is homotopy equivalent to Sn−1. Furthermore it is clear what
the inclusion maps V ∩W → V and V ∩W → W induce in deRham cohomology: an isomorphism in
H0

dR and (necessarily) the zero map in Hk
dR for all k 6= 0. Thus the homomorphism

Hk
dR(V )⊕Hk

dR(W )
b

−−−−→ Hk
dR(V ∩W )

from the Mayer-Vietoris sequence takes the form

R⊕ R
(1 −1)
−−−−−−→ R

when k = 0, and

0 −−−−→ R

when k = n − 1. In all other cases, its source and target are both zero. Therefore the exactness of the
Mayer-Vietoris sequence implies that H0

dR(Sn) ∼= R and Hn
dR(Sn) ∼= R, while Hk

dR(Sn) = 0 for all other
k ∈ Z. �

Theorem 11.2.2 Let f : Sn → Sn be the antipodal map. Then f∗ : Hn
dR(Sn)→ Hn

dR(Sn) is multiplica-
tion by (−1)n+1.

Proof We proceed by induction again. For the induction beginning, we take n = 1. The antipodal
map f : S1 → S1 is homotopic to the identity, so that f∗ : H1

dR(S1) → H1
dR(S1) has to be the identity,

too. For the induction step, we use the setup and notation from the previous proof. Exactness of the
Mayer-Vietoris sequence for Sn and the open covering {V,W} shows that

∂ : Hn−1
dR (V ∩W )→ Hn

dR(Sn)

is an isomorphism. The diagram

Hn−1
dR (V ∩W )

∂
−−−−→ Hn

dR(Sn)

f∗



y f∗



y

Hn−1
dR (V ∩W )

∂
−−−−→ Hn

dR(Sn)

is “meaningful” because f takes V ∩W to V ∩W . But the diagram is not commutative (i.e., it is not
true that f∗ ◦ ∂ equals ∂ ◦ f∗). The reason is that f interchanges V and W , and it does matter in the
Mayer-Vietoris sequence which of the two comes first. Therefore we have instead

f∗ ◦ ∂ = −∂ ◦ f∗

in the above square. By the inductive hypothesis, the f∗ in the left-hand column of the square is multi-
plication by (−1)n, and therefore the f∗ in the right-hand column of the square must be multiplication
by (−1)n+1. �
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11.3 The usual applications

The results in this section can also be obtained using transversality arguments and the definition of
“degree” as in chapter 8.

Theorem 11.3.1 (Brouwer’s fixed point theorem, smooth version). Let f : Rn → Rn be a smooth map
such that sup

x∈Rn

‖f(x)‖ <∞. Then f has a fixed point, i.e., there exists y ∈ Rn such that f(y) = y.

Proof Suppose for a contradiction that f does not have a fixed point. Choose c > 0 such that ‖f(x)‖ ≤ c
for all x ∈ Rn. Let S be the sphere of radius c about the origin in Rn. For x ∈ Rn , let g(x) be the point
where the ray (half-line) from f(x) to x intersects S. Then g is a smooth map from Rn to S, and we
have g|S = idS . Summarising, we have

S
j

−−−−→ Rn
g

−−−−→ S

where j is the inclusion, g ◦ j = idS . Therefore we get

Hn−1
dR (S)

j∗

←−−−− Hn−1
dR (Rn)

g∗

←−−−− Hn−1
dR (S)

with j∗ ◦ g∗ = (g ◦ j)∗ = id. Thus the vector space Hn−1
dR (S) is isomorphic to a direct summand of the

vector space Hn−1(Rn). But from our calculations above, we know that this is not true. If n > 1 we have
Hn−1(Rn) = 0, while Hn−1(S) is nonzero. If n = 1 we have Hn−1(Rn) = R, while Hn−1(S) = R⊕R. �

Remark. The standard formulation of Brouwer’s fixed point theorem is as follows: Every continuous map
f : Dn → Dn has a fixed point. Here Dn = {x ∈ Rn | ‖x‖ ≤ 1}. The standard proof of the standard
formulation is very much like the proof just given, but it uses a version of cohomology which is better
attuned to continuous (rather than smooth) maps.

Let f : Sn → Sn be a smooth map, n > 0. The induced linear map f∗ : Hn
dR(Sn) → Hn

dR(Sn) is
multiplication by some number nf ∈ R, since Hn

dR(Sn) is isomorphic to R.

Definition 11.3.2 The number nf is the degree of f .

Remark. It turns out that this definition of degree, for a map Sn → Sn, agrees with the definition of
degree given in section 8.4. (In particular nf is always an integer.) We are not in a good position to
prove this right now, but will return to the matter in the next chapter.

Remark. The degree nf of f : Sn → Sn is clearly an invariant of the homotopy class of f .

Example 11.3.3 According to theorem 11.2.2, the degree of the antipodal map Sn → Sn is (−1)n+1.

Lemma 11.3.4 Let f : Sn → Sn be a smooth map. If f(x) 6= x for all x ∈ Sn , then f is smoothly
homotopic to the antipodal map. If f(x) 6= −x for all x ∈ Sn, then f is smoothly homotopic to the
identity map.

Proof Let g : Sn → Sn be the antipodal map, g(x) = −x for all x. Assuming that f(x) 6= x for all
x, we show that f is (smoothly) homotopic to g. We think of Sn as the unit sphere in Rn+1, with the
usual notion of distance. We can make a homotopy (ht : Sn → Sn)t∈[0,1] from f to g by “sliding” along
the unique minimal geodesic arc from f(x) to g(x), for every x ∈ Sn. In other words, ht(x) ∈ Sn is
situated t · 100 percent of the way from f(x) to g(x) along the minimal geodesic arc from f(x) to g(x).
(The important thing here is that f(x) and g(x) are not “antipodes” of each other, by our assumptions.
Therefore that minimal geodesic arc is unique.)
Next, assume f(x) 6= −x for all x ∈ Sn. Then, for every x, there is a unique minimal geodesic from x to
f(x), and we can use that to make a homotopy from the identity map to f . �

Corollary 11.3.5 (Hairy ball theorem). Let ξ be a smooth tangent vector field (explanations follow) on
Sn. If ξ(z) 6= 0 for every z ∈ Sn, then n is odd.
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Comments. In general, a smooth tangent vector field on a smooth manifold M is a smooth map ζ from
M to TM such that p ◦ ζ = idM , where p : TM →M is the usual projection. In the case where M is a
smooth manifold in Ri for some i, we have a simpler definition: a smooth tangent vector field on M is a
smooth map

ξ : M → R
i

such that ξ(z) ∈ TzM ⊂ Ri for each z ∈ M . In the case where M = Sn ⊂ Rn+1, this boils down to a
smooth map ξ : Sn → Rn+1 such that ξ(z) ⊥ z , for all z ∈ Sn.

Proof Define f : Sn → Sn by f(x) = ξ(x)/‖ξ(x)‖. Clearly f(x) 6= x and f(x) 6= −x for all x ∈ Sn, since
f(x) is always perpendicular to x. Therefore f is homotopic to the antipodal map, and also homotopic
to the identity. It follows that the antipodal map is homotopic to the identity. Hence the antipodal map
has degree +1. Therefore by theorem 11.2.2, n is odd. �

11.4 A finiteness theorem

Theorem 11.4.1 Let M be a smooth manifold, V open in M . Let j : V →M be the inclusion. If there
exists a compact K ⊂M containing V , then the image of j∗ : H∗

dR(M) −→ H∗
dR(V ) is finite dimensional.

Proof To begin with we assume that M is an open subset of some euclidean space Rn. We can find
finitely many open “rectangles” W1,W2, . . . ,Wr where

Wi =
n∏

ℓ=1

Uiℓ ⊂ R
n

for suitable open intervals Uiℓ ⊂ R, such that

K ⊂
r⋃

i=1

Wi ⊂M .

(This uses the compactness of K.) It is enough to show that H∗
dR(
⋃

iWi) is finite dimensional, because
j : V → M is a composition of inclusions V →

⋃

iWi → M and therefore j∗ from H∗
dR(M) to H∗

dR(V )
can be written as a composition

H∗
dR(M) −→ H∗

dR(
⋃

i

Wi) −→ H∗
dR(V ) .

In fact the dimension of H∗
dR(
⋃

iWi) is at most 2r − 1, as we will now show by induction on r. Let

W =
r⋃

i=1

Wr , W ′ =
r−1⋃

i=1

Wi , W ′′ = Wr .

The total dimension of H∗
dR(W ′) is at most 2r−1 − 1 by inductive hypothesis and the total dimension of

H∗
dR(W ′′) is clearly 1. The total dimension of H∗

dR(W ′ ∩W ′′) is also at most 2r−1− 1, because W ′ ∩W ′′

is a union of r − 1 rectangles Wi ∩Wr (with i = 1, 2, . . . , r − 1). Now the Mayer-Vietoris long exact
sequence

· · ·
∂ // Hk

dR(W ) // Hk
dR(W ′)⊕Hk

dR(W ′′) // Hk
dR(W ′ ∩W ′′)

∂ // Hk+1
dR (W ) // · · ·

reveals that the total dimension of H∗
dR(W ) is at most equal to the sum of the total dimensions of

H∗
dR(W ′), H∗

dR(W ′′) and H∗
dR(W ′ ∩W ′′). But that sum, according to the estimates above, is not greater

than 2r−1 − 1 + 2r−1 − 1 + 1 = 2r − 1.
Next we must look at the general case where M is an arbitrary smooth manifold, not necessarily an open
subset of Rn. We start by choosing finitely many open subsets W1,W2, . . . ,Wr (recycled names) of M
such that each Wi is diffeomorphic to an open subset of Rn and

K ⊂
⋃

i

Wi .
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(We can do so because K is compact.) We now proceed by induction on r. If r = 1, then V ⊂ K ⊂ W1

and since W1 is diffeomorphic to an open subset of euclidean space, we know from the first part of the
(ongoing) proof that the inclusion-induced map from H∗

dR(W1) to H∗
dR(V ) has finite dimensional image.

A fortiori, the inclusion-induced map from H∗
dR(M) to H∗

dR(V ) has finite dimensional image. In the case
r > 1 we introduce abbreviations

W =
r⋃

i=1

Wi , W ′ =
r−1⋃

i=1

Wi , W ′′ = Wr .

We choose open V ′, V ′′ and compact K ′,K ′′ in M such that V = V ′ ∪ V ′′ and K = K ′′ ∪ K ′′ and
V ′ ⊂ K ′ ⊂ W ′ and V ′′ ⊂ K ′′ ⊂ W ′′. [This can be done as follows: For the open covering of W by
the two open sets W ′ and W ′′, , choose a subordinate partition of unity, consisting of smooth maps
ϕ′, ϕ′′ : W → [0, 1]. See chapter 5 for details. Let K ′ = K ∩ supp(ϕ′) and let K ′′ = K ∩ supp(ϕ′′). Let
V ′ be the interior of V ∩K ′ and let V ′′ be the interior of V ∩K ′′.] The two Mayer-Vietoris sequences
for W = W ′ ∪W ′′ and V = V ′ ∪ V ′′ arrange themselves nicely in a commutative diagramb

· · ·
∂ // Hk

dR(W ) //

��

Hk
dR(W ′)⊕Hk

dR(W ′′) //

u

��

Hk
dR(W ′ ∩W ′′)

∂ //

v

��

Hk+1
dR (W ) //

��

· · ·

· · ·
∂ // Hk

dR(V ) // Hk
dR(V ′)⊕Hk

dR(V ′′) // Hk
dR(V ′ ∩ V ′′)

∂ // Hk+1
dR (V ) // · · ·

By our inductive assumptions, the arrows labelled u and v have finite-dimensional images (for all k ∈ Z,
and of course the images are zero if k < 0 or k > n). [More precisely, V ′ ⊂ K ′ ⊂ W ′ where W ′

is covered by r − 1 open sets W1, . . . ,Wr−1 which are diffeomorphic to open subsets of Rn. Similarly
V ′ ∩ V ′′ ⊂ K ′ ∩K ′′ ⊂W ′ ∩W ′′ where W ′ ∩W ′′ is covered by r − 1 open sets Wr ∩W1, . . . ,Wr ∩Wr−1

which are diffeomorphic to open subsets of Rn. The case of V ′′ ⊂ K ′′ ⊂ W ′′ is easier, since W ′′ itself is
diffeomorphic to an open subset of Rn.] The exactness of the two rows in the diagram now implies that
the unlabelled vertical arrows in the diagram also have a finite-dimensional image. A fortiori,

j∗ : Hk
dR(M)→ Hk

dR(V )

has finite-dimensional image for all k ∈ Z, because V ⊂W ⊂M . �

Corollary 11.4.2 Let M be a compact smooth manifold. Then H∗
dR(M) is finite dimensional.

Proof Take V = K = M in the previous theorem. �

bA diagram of sets and maps is commutative if any two compositions f1 ◦ f2 ◦ · · · ◦ fk and g1 ◦ g2 ◦ · · · ◦ gℓ of arrows in
the diagram which start at the same place (set) in the diagram and end at the same place (set) in the diagram are equal.
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12.1 Oriented smooth manifolds and integration of forms

We had a glimpse of oriented manifolds in definition 8.1.6, in connection with the notion of degree.
Another place where orientations appeared was in theorem 9.3.2 on integration by substitution. The
time has come for a more thorough treatment.

Definition 12.1.1 Let M be a smooth n-dimensional manifold, n > 0, with (representative) atlas A.
We say that A is an oriented atlas if, for any two charts ϕ : U →M and ψ : V →M in A, and arbitrary
x ∈ U with ϕ(x) ∈ im(ψ), the differential of ψ−1 ◦ ϕ at x has positive determinant.

(Unravelling: U and V are open in Rn and the differential of ψ−1 ◦ ϕ at x is an invertible linear map
Rn → Rn. As such it will automatically have a nonzero determinant.)

Lemma 12.1.2 An oriented atlas for M determines an orientation for M .

Proof For z ∈M , choose a chart ϕ : U →M in the oriented atlas such that z = ϕ(x) for some x ∈ U .
The differential of ϕ at x is a linear isomorphism Rn → TzM , and so provides an ordered basis for TzM .
This ordered basis depends of course on the choice of a chart ϕ and x with ϕ(x) = z, but the orientation
of TzM which it determines does not. Indeed if ψ : V →M is another chart from that oriented atlas and
y ∈ V is such that ψ(y) = z, then the differential of ψ−1 ◦ ϕ at x is orientation preserving and so the
orientations of TzM determined by Dϕ(x) and Dψ(y) are the same. �

Lemma 12.1.3 For n > 0, any orientation of a smooth n-dimensional manifold M can be “realised” by
an oriented atlas for M (in the specified equivalence class of smooth atlases).

Proof It is easy to make an atlas A for M (in the specified equivalence class) having only charts
ϕ : U → M where U is connected. If ϕ : U → M is such a chart, then the differentials of ϕ at points
of U will either be all orientation-preserving, or all orientation-reversing. Accordingly, we say that ϕ is
orientation-preserving or orientation-reversing. We make a new atlas A′ by

• keeping all the orientation-preserving charts in A

a
m.weiss@abdn.ac.uk

12–1
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• replacing each orientation-reversing chart ϕ : U →M by ϕ ◦ ρ : U ′ →M where

U ′ = {(x1, x2, . . . , xn) | (−x1, x2, . . . , xn) ∈ U}

and ρ : U ′ → U is given by ρ(x1, x2, . . . , xn) = (−x1, x2, . . . , xn).

The new atlas A′ is oriented. The orientation on M which it determines according to lemma 12.1.2 is
clearly the “given” orientation of M . �

Let M be a smooth oriented n-dimensional manifold. Let ω ∈ Ωn(M) be a differential n-form with
compact support. We come to a definition of ∫

M

ω

generalising definition 9.3.1. Choose an allowed oriented atlas A for M , compatible with the given
orientation. Choose a smooth partition of unity {ρj | j ∈ J} on M and, for each j ∈ J , a chart
ϕj : Uj →M in A such that the support of ρj is contained in im(ϕj). We try

∫

M

ω :=
∑

j∈J

∫

Uj

ϕ∗
j (ρj · ω) .

Each term in the sum on the right-hand side is already defined (9.3.1). Let’s also note that the sum has
only finitely many nonzero terms. (Since ω has compact support, ρj · ω can only be nonzero for finitely
many j.) A provisional “excuse” for this provisional definition is that we have good reasons to expect

∫

M

ω =
∑

j∈J

∫

M

ρj · ω

(additivity property of the integral), and furthermore

∫

M

ρj · ω =

∫

ϕj(Uj)

ρj · ω

because ρj · ω has support in ϕj(Uj), and finally

∫

ϕj(Uj)

ρj · ω =

∫

Uj

ϕ∗
j (ρj · ω)

because we ought to believe in “integration by substitution”, as seen in theorem 9.3.2. See also defini-
tion 10.2.2 if the meaning of ϕ∗

j is not clear.

Lemma 12.1.4
∫

M
ω is well defined (by means of the boxed equation).

Proof Suppose that we have to choices of oriented (allowed) atlas A and B for M , two partitions of
unity {ρj | j ∈ J} and {ζk | k ∈ K}, and choices of charts ϕj : Uj → M in A for all j ∈ J , and
ψk : Vk → M in B for all k ∈ K, such that supp(ρj) ⊂ im(ϕj) and supp(ζk) ⊂ im(ψk) for all j and k.
Then we have to show

∑

j∈J

∫

Uj

ϕ∗
j (ρj · ω) =

∑

k∈K

∫

Vk

ψ∗
k(ζk · ω) .

To that end we introduce another partition of unity

{ρj · ζk | (i, k) ∈ J ×K} .
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We have supp(ρj · ηk) ⊂ im(ϕj) ∩ im(ψk). Now we can write

∑

j∈J

∫

Uj

ϕ∗
j (ρj · ω)

=
∑

j∈J

∑

k∈K

∫

Uj

ϕ∗
j (ρj · ζk · ω)

=
∑

j∈J

∑

k∈K

∫

Uj∩ϕ
−1

j (ψk(Vk))

ϕ∗
j (ρj · ζk · ω)

=
∑

k∈K

∑

j∈J

∫

Vk∩ψ
−1

k
(ϕj(Uj))

ψ∗
k(ρj · ζk · ω) (using theorem 9.3.2)

=
∑

k∈K

∑

j∈J

∫

Vk

ψ∗
k(ρj · ζk · ω)

=
∑

k∈K

∫

Vk

ψ∗
k(ζk · ω).

�

Sometimes we use the (boxed) definition of
∫

M
ω also when ω does not have compact support. Whether

that is meaningful, well-defined etc. must be decided on a case-by-case basis.

Example 12.1.5 Let M be a (nonempty) smooth k-dimensional manifold in Rn , where k > 0. Suppose
that M is also oriented as a smooth manifold in its own right. Let’s define a “preferred” element
ω ∈ Ωk(M) in the following way. For x ∈M and v(1), v(2), . . . , v(k) in TxM put

ω(x)(v(1), v(2), . . . , v(k)) = ±
√

det(ATA) where A = (v
(i)
j ) .

The sign is positive if the list v(1), v(2), . . . , v(k) is an oriented basis of TxM and negative if it is a non-
oriented basis. If v(1), v(2), . . . , v(k) are linearly dependent, then det(ATA) = 0 and the sign is not an
issue.
It is well-known that the square root of det(ATA) is the k-dimensional volume of the k-dimensional
parallel-epipedon in Rn spanned by the vectors v(1), v(2), . . . , v(k). Therefore the number

∫

M

ω

defined by the boxed formula above is what you should regard as the k-dimensional volume of M . It
is well-defined. All the summands in the formula will be positive, but some may be infinite and even if
they are not, the sum may be infinite. But if M is compact and nonempty, then

∫

M
ω is a positive real

number.
Let’s note in passing that ω(x) 6= 0 for any x ∈ M . In general, a differential k-form λ on a smooth
k-dimensional manifold which has λ(x) 6= 0 for all x is called a volume form. So the above ω ∈ Ωk(M)
is an example of a volume form.

Example 12.1.6 We calculate the 2-dimensional volume (also known as area) of the unit sphere S2 ⊂ R3.
The purpose of this exercise is to illustrate the definitions just given. It is very far from being “smart”.
Let’s choose an orientation first by declaring that two linearly independent tangent vectors v(1), v(2) at
y ∈ S2 form an oriented basis iff the list y, v(1), v(2) (in that order) is an oriented basis of R3. Next,
let’s observe that the area of S2 is equal to the area of S2 r {P} where P = (0, 0,−1) is the south pole.
The advantage of working with S2 r {P} is that we can get away with a single chart, e.g., the inverse of
stereographic projection. Therefore let

ψ : R
2 → S2

r {P}

be defined by

ψ(x) =
1

‖x‖2 + 1
(2x1, 2x2, 1− ‖x‖

2)
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for x = (x1, x2) ∈ R2. That is a diffeomorphism. It is also orientation-preserving for the above choice of
orientation of S2. We have the standard volume (=area) form ω on S2 , as defined in example 12.1.5.
What we need to calculate now is

∫

S2

ω =

∫

S2r{P}

ω =

∫

R2

ψ∗ω .

The main challenge here is clearly to find out what ψ∗ω is, and that boils down mostly to finding out
what the differentials of ψ look like. I seem to get

∂ψ

∂x1
=

−2x1

(‖x‖2 + 1)2
(2x1, 2x2, 1− ‖x‖

2) +
1

‖x‖2 + 1
(2, 0,−2x1)

∂ψ

∂x2
=

−2x2

(‖x‖2 + 1)2
(2x1, 2x2, 1− ‖x‖

2) +
1

‖x‖2 + 1
(0, 2,−2x2) .

Suppose now that x2 = 0. Then it is easy to check that these two vectors (for fixed x1) are perpendicular
to each other. A semi-tedious calculation shows that they both have the same length

2

‖x‖2 + 1

so that the area of the parallelogram (square) which they span is

4

(‖x‖2 + 1)2
.

In the general case, when x2 is arbitrary, a symmetry argument (using the fact that ψ has rotational
symmetry) shows that the area of the parallelogram spanned by the vectors

∂ψ

∂x1
,
∂ψ

∂x2
∈ R

3

depends only on ‖x‖. Therefore we know what it is and we get

ψ∗ω = g · dx1 ∧ dx2 ∈ Ω2(R2)

where g(x) =
4

(‖x‖2 + 1)2
. It follows that

∫

R2

ψ∗ω =

∫

R2

4

(‖x‖2 + 1)2
dx1dx2 .

Conversion to polar coordinates shows that this is equal to

4π

∫ ∞

0

2x

(x2 + 1)2
dx = 4π

∫ ∞

1

1

u2
du = 4π .

In the case of a 0-dimensional smooth oriented manifold M , a 0-dimensional oriented atlas may not exist,
or perhaps we should agree that the concept has no clear meaning. In any case we need an entirely new
definition of ∫

M

ω

for a differential 0-form with compact support on M . Here it is.

Definition 12.1.7 Let M be a 0-dimensional smooth oriented manifold and let ω be a differential 0-form
on M with compact support. Then we let

∫

M

ω =
∑

x∈M

ε(x)ω(x)

where ε(x) is +1 or −1 depending on whether the orientation of M is positive or negative at x. (Although
M can be an infinite set, the sum has only finitely many nonzero terms because we assumed that ω has
compact support.)



SMST C: Geometry and Topology 12–5

Let’s conclude with an important observation: integration of differential forms is invariant under orien-
tation preserving diffeomorphisms. So if M and N are smooth oriented m-manifolds, and f : M → N is
an orientation-preserving diffeomorphism, and ω ∈ Ωm(N) has compact support, then

∫

M

f∗ω =

∫

N

ω .

This generalises the “integration-by-substitution” formula, theorem 9.3.2, and it also follows from that
same formula (and the definitions).

12.2 Stokes’ theorem

A special case of Stokes’ theorem states that
∫

M

dω = 0

for a smooth oriented m-dimensional manifold M and a differential form ω ∈ Ωm−1(M) with compact
support. In order to state Stokes’ theorem in full generality, we need to allow differential forms on
manifolds with boundary.

The definition of a differential k-form on a smooth m-dimensional manifold M with boundary, by analogy
with definition 10.2.1, is now rather obvious. We therefore have

Ω∗(M) ,

a graded ring (with the wedge product), and the exterior derivative d : Ω∗(M) → Ω∗+1(M) , satisfying
d ◦ d = 0 and d(ω ∧ λ) = dω ∧ λ+ (−1)kω ∧ dλ by construction, for all ω ∈ Ωk(M) and λ ∈ Ωℓ(M). We
also have as before the deRham cohomology groups

Hk
dR(M) =

ker(d : Ωk(M)→ Ωk+1(M))

im(d : Ωk−1(M)→ Ωk(M))
.

The main results of chapters 7 and 8 (homotopy invariance, long exact Mayer-Vietoris sequence) carry
over without difficulty to the case of a smooth manifold with boundary.

Theorem 12.2.1 Let M be a smooth oriented m-dimensional manifold with boundary, m > 0. Let ∂M
have the orientation induced from M . Let ω be a differential (m− 1)-form on M with compact support.
Write e : ∂M →M for the inclusion. Then

∫

∂M

e∗ω =

∫

M

dω .

Proof To keep notation under control, we will write
∫

∂M
ω for

∫

∂M
e∗ω , and so on.

Step 1. We assume M = Rmup , so that ∂M = Rm−1. (Let’s continue to write M and ∂M .) If M has
the standard orientation, and m is odd, then ∂M also inherits the standard orientation from M . If m is
even, then ∂M gets the non-standard orientation.
We know from lemma 9.2.5 that

ω =
m∑

i=1

gi · λi

where λi is the wedge product (taken in the natural ordering) of the dxj for j ∈ {1, 2, 3, . . . ,m} with
j 6= i , and the gi are smooth functions (with compact support) on M . Therefore

dω =
∑

i

dgi ∧ λi .

We can calculate directly
∫

∂M

ω =

∫

∂M

gm · λm = (−1)m−1

∫

∂M

gm dx1dx2 · · · dxm−1 ,
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while
∫

M

dω =
∑

i

∫

M

dgi ∧ λi

= (−1)i−1
∑

i

∫

M

(∂gi/∂xi) dx1 ∧ dx2 ∧ · · · ∧ dxm

=
∑

i

(−1)i−1

∫

M

(∂gi/∂xi) dx1dx2 · · · dxm .

By the fundamental theorem of calculus, and by Fubini’s theorem, and because the gi have compact
support, only one of the summands in the last sum has a chance to be nonzero. That one has the value

(−1)m−1

∫

∂M

gm dx1dx2 · · · dxm−1 .

Step 2. Here M is an open set in Rmup , and ∂M = M ∩ Rm−1. This case reduces easily to the previous
one: since ω has compact support in M , it can be extended to a differential (m− 1)-form on Rmup by the
declaration ω(x) = 0 for x ∈ Rmup rM .

Step 3. This is the general case. We choose a smooth partition of unity {ρj | j ∈ J} on M such that
every ρj has support contained in the image of some chart ψj : Uj →M in some atlas for M . Here Uj is
open in Rmup. We start with the observation

∑

j

dρj · ω = (
∑

j

dρj) · ω = d(
∑

j

ρj) · ω = 0 .

It follows that
dω =

∑

j∈J

ρj · dω =
∑

j∈J

(ρj · dω + dρj · ω) =
∑

j∈J

d(ρj · ω) .

Therefore ∫

M

dω =
∑

j

∫

M

d(ρj · ω) =
∑

j

∫

Uj

ψ∗
j (d(ρj · ω)) =

∑

j

∫

Uj

d(ψ∗
j (ρj · ω)) .

By step 2 of the proof, we have

∑

j

∫

Uj

d(ψ∗
j (ρj · ω)) =

∑

j

∫

∂Uj

ψ∗
j (ρj · ω) .

In the right-hand side of the last equation, we may replace ψj and ρj by appropriate restrictions to ∂M
without making any difference, and so

∑

j

∫

∂Uj

ψ∗
j (ρj · ω) =

∫

∂M

ω

from the definition of
∫

∂M
ω. Putting the equations together, we obtain

∫

M

dω =

∫

∂M

ω .

�

12.3 Degrees of maps and integration of forms

In chapter 8, we saw a definition of the degree of a smooth map f from Sn to itself. This relied on Sard’s
theorem and (some) transversality. Let us take a different approach here using integration of differential
forms.

A smooth map f : Sn → Sn (where n > 0) induces a linear map f∗ : Hn
dR(Sn) → Hn

dR(Sn). Since
Hn

dR(Sn) is a 1-dimensional real vector space (chapter 11), this linear map is given by multiplication with
a real number af .
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Definition 12.3.1 The number af ∈ R is the degree of f .

(That definition of degree competes with the chapter 8 definition, but let’s try to forget about chapter 8
for the moment.)

By Stokes’ theorem, integration of differential n-forms gives a well-defined map

Hn
dR(Sn) −→ R ; [ω] 7→

∫

Sn
ω .

Here ω ∈ Ωn(Sn) is a differential n-form, with dω = 0 automatically. The reason for well-defined is that
if ω, λ ∈ Ωn(Sn) represent the same deRham cohomology class, then

ω = λ+ dψ

for some ψ ∈ Ωn−1(Sn). Consequently

∫

Sn
ω =

∫

Sn
λ+ dψ =

∫

Sn
λ+

∫

Sn
dψ =

∫

Sn
λ

where the last equality uses Stokes.
The integration map Hn

dR(Sn) −→ R is nonzero (hence a linear isomorphism) because we have “volume
forms” on Sn , as in example 12.1.6. Therefore definition 12.3.1 can be reformulated as follows.

Definition 12.3.2 For smooth f : Sn → Sn , there exists a unique number af ∈ R such that

∫

Sn
f∗ω = af ·

∫

Sn
ω

holds for every ω ∈ Ωn(Sn). This number af is the degree of f .

These “new” definitions of the degree of f : Sn → Sn make it very clear that the degree is a smooth
homotopy invariant, but they do not tell us that the degree is always an integer. That is a good excuse
for trying to make the connection with the chapter 8 definition of degree, after all.

Suppose therefore that f : Sn → Sn is smooth and has P ∈ Sn as a regular value. Without loss of
generality, P is the north pole. Choose a small open ball U about P in Sn. By the inverse function
theorem, f−1(U) is a disjoint union of finitely many connected open sets Vi , each of which is mapped
diffeomorphically to U by f (if U is small enough). Let ǫi = ±1, depending on the orientation behaviour
of f |Vi. Then the “chapter 5” degree of f is

∑

i ǫi .
Now choose a map g : Sn → Sn which

• is smoothly homotopic to the identity

• maps U diffeomorphically (and preserving orientation) to Sn rQ , where Q is the south pole

• maps the entire complement of U to the south pole Q.

Let f1 = g ◦ f . By construction, f−1
1 (Sn rQ) is the disjoint union of the open sets Vi , each of which is

mapped diffeomorphically to Sn rQ by f1. All points of Sn which are not in any of the Vi are mapped
to the south pole Q by f1. Therefore

∫

Sn
f∗1ω =

∑

i

∫

Vi

f∗1ω =
∑

i

(

ǫi

∫

SnrQ

ω

)

=
∑

i

(

ǫi

∫

Sn
ω

)

=

(
∑

i

ǫi

)
∫

Sn
ω .

This tells us that af1 equals
∑

i ǫi , which is the degree of f in the chapter 5 sense. But f1 is smoothly
homotopic to f , so that af = af1 and consequently

af =
∑

i

ǫi .
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13.1 Ring structure on deRham cohomology

Definition 13.1.1 For a smooth manifold M , with or without boundary, there is a graded ring structure
on H∗

dR(M) defined as follows:
[ω] · [λ] = [ω ∧ λ] .

Here ω ∈ Ωk(M) and λ ∈ Ωℓ(M), with dω = 0 and dλ = 0, so that [ω] ∈ Hk
dR(M) and [λ] ∈ Hℓ

dR(M).

The product is well defined thanks to the formula

d(γ ∧ σ) = dγ ∧ σ ± γ ∧ dσ

which we have from the definition of the exterior derivative d. In more detail, suppose that ω, ω′ ∈ Ωk(M)
satisfy dω = 0 = dω′ and [ω] = [ω′] ∈ Hk

dR(M). Then ω′ = ω + dψ for some ψ ∈ Ωk−1(M) and so, for
any λ ∈ Ωℓ(M) we have

ω′ ∧ λ = (ω + dψ) ∧ λ = ω ∧ λ+ dψ ∧ λ = ω ∧ λ+ d(ψ ∧ λ)∓ ψ ∧ dλ .

It follows that, if dλ = 0, then ω′ ∧ λ = ω ∧ λ+ d(ψ ∧ λ) and so

[ω′ ∧ λ] = [ω ∧ λ] ∈ Hk+ℓ
dR (M) .

That proves one half of “well defined” and the other half is similar.
The product is also bilinear, associative and graded commutative. This follows directly from the properties
of the wedge product. To emphasize the bilinearity we can say that the graded ring H∗

dR(M) is a graded
algebra over R. (That simply means that the underlying graded abelian group comes with a structure
of graded vector space over R, and the product is bilinear.) Moreover the ring H∗

dR(M) has a unit,
1 ∈ H0

dR(M), represented by the constant function with value 1 on M .

Example 13.1.2 Let M and N be compact oriented smooth manifolds, of dimensions m and n, re-
spectively, both without boundary. Let ω ∈ Ωm(M) and λ ∈ Ωn(N). Let p1 : M × N → M and
p2 : M ×N → N be the projections. Then we have, almost from the definitions,

∫

M×N

(p∗1ω ∧ p
∗
2λ) =

∫

M

ω ·

∫

N

λ .

a
m.weiss@abdn.ac.uk
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Therefore, if
∫

M
ω 6= 0 and

∫

N
λ 6= 0, then

∫

M×N
(p∗1ω ∧ p

∗
2λ) 6= 0 and so [p∗1ω] · [p∗2λ] 6= 0 by Stokes’

theorem. Examples of ω and λ with
∫

M
ω 6= 0 and

∫

N
λ 6= 0 can easily be constructed as volume forms.

See examples 12.1.5 and 12.1.6.

13.2 Products and integration of forms

The most basic formulation of Poincaré duality is for a compact smooth oriented m-dimensional manifold
M without boundary. It is a statement about the graded ring or graded algebra H∗

dR(M) together with
the homomorphism

I : Hm
dR(M)→ R ; I( [ω] ) =

∫

M

ω .

Before stating it, let’s introduce some vocabulary related to bilinear maps.

Definition 13.2.1 Let V and W be real vector spaces over R. A bilinear map g : V × W → R is
nonsingular on the left if the linear map

V → homR(W,R)

defined by v 7→ (w 7→ g(v, w)) is a linear isomorphism. Similarly, g is nonsingular on the right if the
linear map W → homR(V,R) defined by w 7→ (v 7→ g(v, w)) is a linear isomorphism.

If, in the preceding definition, V and W are both finite dimensional, then nonsingular on the left forces
nonsingular on the right and vice versa. Then we say simply that g is nonsingular. Also, in the case
where V and W are finite dimensional, we can choose ordered bases for V and W , respectively, and so
express the bilinear map g : V ×W → R as a matrix. It is easy to show that g is nonsingular if and only
if that matrix is a square matrix (i.e., number of columns equal to number of rows) and its determinant
is nonzero.

In these terms, the statement of Poincaré duality in the compact-without-boundary case is as follows.

Corollary 13.2.2 (of theorem 13.2.3 below:) For a compact smooth oriented m-dimensional manifold
M without boundary, and any k ∈ Z, the bilinear map Hk

dR(M)×Hm−k
dR (M)→ R defined by

( [ω], [λ] ) 7→ I( [ω] · [λ] )

is nonsingular.

Two remarks: I( [ω] · [λ] ) means
∫

M
ω∧λ , and the word nonsingular does not require a “left” or “right”

specifier because of corollary 11.4.2.

Even if we were only interested in compact manifolds without boundary, we would obviously want to see
a proof. It must be admitted that such a proof could involve something like an induction on the number
of charts needed to make an atlas for M . Since the charts have the form V → M where V is open
in a euclidean space, and typically noncompact, it is hard to avoid noncompact manifolds altogether.
Furthermore, if we have to deal with noncompact manifolds, then we also have to be prepared to deal
with infinite dimensional vector spaces. For example, it is easy to produce an open set U ⊂ R such that
H0

dR(U) is infinite dimensional, or an open set V ⊂ R2 such that H1
dR(V ) is infinite dimensional.

Suppose therefore that M is any smooth oriented m-dimensional manifold M without boundary. Let
Ω∗
c(M) ⊂ Ω∗(M) be the cochain subcomplex consisting of the differential forms with compact support

(i.e., those which are zero outside some compact subset of M). Write

Hk
dR,c(M) =

ker(d : Ωkc (M)→ Ωk+1
c (M))

im(d : Ωk−1
c (M)→ Ωkc (M))

for the k-th cohomology group of Ω∗
c(M). The wedge product of an arbitrary differential k-form on M

with a compactly supported differential ℓ-form on M is a compactly supported differential (k + ℓ)-form
on M . Therefore we have a product

Hk
dR(M)×Hℓ

dR,c(M) −→ Hk+ℓ
dR,c(M).
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This has the usual/expected associativity and bilinearity properties. Also, the element 1 ∈ H0
dR(M) is

a “neutral element” for the multiplication. Note that there is no such thing as 1 ∈ H0
dR,c(M) if M is

noncompact, because then the support of the function 1 on M is not compact, being all of M .

From Stokes’ theorem we know that there is a well defined linear map

I : Hm
dR,c(M)→ R ; [ω] 7→

∫

M

ω .

Now we have the vocabulary to formulate a Poincaré duality statement in the noncompact case.

Theorem 13.2.3 For a smooth oriented m-dimensional manifold M without boundary, and any k ∈ Z,
the bilinear map Hk

dR(M)×Hm−k
dR,c (M)→ R defined by

( [ω], [λ] ) 7→ I( [ω] · [λ] )

is nonsingular on the left.

The rest of this chapter is all about the proof of theorem 13.2.3.

13.3 Poincaré duality: formal aspects of the proof

The proof of theorem 13.2.3 uses a form of induction which has an induction beginning and two types of
induction steps. Let’s set up the induction mechanism here and leave the details for the next subsection.

For the formulation of the “induction beginning”, recall from chapter 8 that an open “rectangle” in Rm

is a product
∏m
i=1 Ui where each Ui is an open interval in R.

Lemma 13.3.1 The Poincaré duality statement 13.2.3 holds for any open rectangle M in Rm.

As promised, we postpone the proof.— Next, there is a fairly obvious induction step:

Lemma 13.3.2 Suppose that M is a smooth oriented m-dimensional manifold without boundary, and
that M = V ∪W where V and W are open in M . If the Poincaré duality statement 13.2.3 holds for V ,
W and V ∩W , then it holds for M = V ∪W .

We postpone the proof.— Then there is another little induction step, designed specifically to deal with
infinite unions. The agreeable surprise here is that we only need to deal with infinite disjoint unions.

Lemma 13.3.3 Suppose that M is a smooth oriented m-dimensional manifold without boundary, and
that M is a disjoint union

∐∞
i=1Mi . If the Poincaré duality statement 13.2.3 holds for each Mi , then

it holds for M .

We postpone the proof.

Proof of the Poincaré duality theorem 13.2.3 modulo lemmas 13.3.1, 13.3.2 and 13.3.3:
Step 1. The Poincaré duality theorem holds for an open rectangle M in Rm by lemma 13.3.1.
Step 2. The Poincaré duality theorem holds for any open subset M of Rm which is a union of finitely
many open rectangles. This follows from step 1 and lemma 13.3.2 by induction. (For the details of the
induction, take the proof of theorem 11.4.1 as a model.)
Step 3. The Poincaré duality theorem holds for any open subset M ⊂ Rm. For the proof, note that it is
always possible to write M = M1 ∪M2, where

• M1 is a disjoint union of open sets M1,α (possibly infinitely many), where each M1,α is a finite
union of open rectangles ;

• M2 is also a disjoint union of open sets M2,α (possibly infinitely many), where each M2,α is a finite
union of open rectangles.
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By step 2, we know that the Poincaré duality theorem holds for each M1,α and for each M2,β and also
for M1,α ∩M2,β . By lemma 13.3.3, the Poincaré duality theorem will then also hold for M1 and M2 and
M1 ∩M2. Therefore, by lemma 13.3.2, it holds for M = M1 ∪M2.
Step 4. The Poincaré duality theorem holds for any smooth oriented manifold M which admits an atlas
with only finitely many charts. This follows from step 3 and lemma 13.3.2 by induction on the number
of charts.
Step 5. Any smooth oriented manifold M can be written in the form M = M1 ∪M2 where

• M1 is a disjoint union of open sets M1,α (possibly infinitely many), where each M1,α admits an
atlas with only finitely many charts ;

• M2 is also a disjoint union of open sets M2,α (possibly infinitely many), where each M2,α admits
an atlas with only finitely many charts.

By step 4, we know that the Poincaré duality theorem holds for each M1,α and for each M2,β and also
for M1,α ∩M2,β . By lemma 13.3.3, the Poincaré duality theorem will then also hold for M1 and M2 and
M1 ∩M2. Therefore, by lemma 13.3.2, it holds for M = M1 ∪M2. �

13.4 Mayer-Vietoris sequence in the compact support setting

The following theorem is important in its own right, but it is also an ingredient in the proof of lemma 13.3.2.

Theorem 13.4.1 Let M be a smooth compact manifold, M = V ∪W where V and W are open in M .
Write i : V →M , j : W →M and e : V ∩W → V , f : V ∩W →W for the various inclusions. There is
a long exact “Mayer-Vietoris” sequence in compactly supported deRham cohomology

· · · Hk
dR,c(M)oo Hk

dR,c(V )⊕Hk
dR,c(W )

aoo Hk
dR,c(V ∩W )

boo Hk−1
dR,c(M)

∂oo · · ·
aoo

where a =
(
i∗ j∗

)
and b =

(
e∗
−f∗

)

.

Proof The construction is in some formal ways very similar to that of the Mayer-Vietoris sequence of
example 11.1.6. The main difference is that here the arrows point in the oppposite direction to what we
see in example 11.1.6. To explain that, let us look at the inclusion i : V → M for example, and what it
does to differential forms. Restriction of differential forms determines a map

i∗ : Ω∗(M)→ Ω∗(V )

but there is no similar restriction map Ω∗
c(M) → Ω∗

c(V ) because the restriction to V of a compactly
supported differential form on M need not have compact support in V . To make up for that we have an
“inclusion” map

i∗ : Ω∗
c(V ) −→ Ω∗

c(M)

given by extending compactly supported differential forms on V trivially to M . So if ω ∈ Ωkc (V ) has
compact support K ⊂ V , then i∗ω ∈ Ωkc (M) still has the same support K, and that is still compact.
We now proceed by setting up a diagram of cochain complexes

Ω∗
c(M) Ω∗

c(V )⊕ Ω∗
c(W )

aoo Ω∗
c(V ∩W )

boo

where

a =
(
i∗ j∗

)
, b =

(
e∗
−f∗

)

.

Then we only have to show that the diagram is short exact, and use theorem 11.1.5. It is clear that b
is injective and that ker(a) = im(b). Surjectivity of a follows from a partition-of-unity argument as in
example 11.1.2. �

Remark 13.4.2 The operator
∂ : Hk−1

dR,c(M) −→ Hk
dR,c(V ∩W )

is given by [λ] 7→ [ω] where ω = d(ϕV λ) = −d(ϕWλ), for a partition of unity {ϕV , ϕW } subordinate to
the open cover {V,W} of M . Prove it.
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13.5 Poincaré duality: details of the proof

The proofs of the three lemmas 13.3.1, 13.3.2 and 13.3.3 are all quite illuminating and each contains a
new message.

Proof of lemma 13.3.1:
An open rectangle in Rm is either empty or diffeomorphic to Rm, so we may suppose M = Rm. Fix
P ∈ Sm. There is a short exact sequence of cochain complexes

Ω∗
c(R

m)→ Ω∗(Sm)→ Ω∗
germ(Sm) .

The cochain map on the left is obtained by identifying Rm with Sm r P , and extending compactly
supported differential forms on Sm r P to all of Sm in the only possible way (choosing the value 0 at
P for the extension). The germ subscript in the cochain complex on the right means that we work with
equivalence classes of differential forms on Sm, two being equivalent if they agree on a neighbourhood of
P . (The equivalence classes are called germs.) From the short exact sequence of chain complexes, we get
a long exact sequence of cohomology groups. From the long exact sequence of cohomology groups, we
see that it might be a good idea to show that the k-th cohomology of Ω∗

germ(Sm) is

∼=

{
R if k = 0
0 if k 6= 0 .

The case k = 0 is easy. For k > 0, suppose given ω ∈ Ωk(Sm) with dω = 0 as a germ. Then dω|U is
actually zero for a small open ball U about P . So ω|U = dψ for some ψ ∈ Ωk−1(U), because Hk

dR(U) = 0.
Using e.g. partitions of unity, construct ϕ ∈ Ωk−1(Sm) which agrees with ψ as a germ. Then ω = dϕ as
germs, showing that the cohomology class of the germ of ω is 0.
We have now shown that the cohomology of Ωkgerm(Sm) is as claimed, linearly isomorphic to R if k = 0
and 0 for all other k. It follows from the long exact sequence that

Hk
dR,c(R

m) ∼=

{
R if k = m
0 if k 6= m .

In fact it follows from the long exact sequence that the inclusion-induced map Hm
dR,c(R

m)→ Hm(Sm) is
an isomorphism. Since that map respects integration, we find that

I : Hm
dR,c(R

m) −→ R

is also an isomorphism. Together with the statement Hk
dR,c(R

m) = 0 for k 6= m and what we know about
H∗

dR(Rm) ∼= H∗
dR(point), this amounts to a proof of Poincaré duality for the manifold Rm. �

Lemma 13.5.1 (The “five” lemma): Suppose that, in a commutative diagram of abelian groups and
homomorphisms

· · · // Ak //

fk

��

Bk //

gk

��

Ck //

hk

��

Ak+1 //

fk+1

��

Bk+1 //

hk+1

��

· · ·

· · · // Dk // Ek // F k // Dk+1 // Ek+1 // · · ·

the rows are exact (kernel of each homomorphism equals image of preceding homomorphism) and the
vertical arrows gk and hk are isomorphisms for all k ∈ Z. Then the arrows fk are isomorphisms for all
k ∈ Z.

Proof Exercise. �

Proof of lemma 13.3.2.
We introduce the abbreviations

Ak = Hk
dR(M) , Am−k = Hk

dR,c(M) ,

Bk = Hk
dR(V )⊕Hk

dR(W ) , Bm−k = Hk
dR,c(V )⊕Hk

dR,c(W ) ,

Ck = Hk
dR(V ∩W ) , Cm−k = Hk

dR(V ∩W ).
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Let’s also use a “bullet” (rather than a star) for dual spaces, for example A•
m−k = homR(Am−k,R). The

Poincaré duality statement that we want to prove for M can be reformulated as follows: a certain linear
map Ak → A•

k given by

[ω] 7→

(

[λ] 7→

∫

M

ω ∧ λ

)

,

for [ω] ∈ Ak and [λ] ∈ Ak, is an isomorphism. We are assuming that the analogous maps Bk → B•
k and

Ck → C•
k are isomorphisms.

These linear maps Ak → A•
k etc. can be arranged in a diagram of vector spaces and linear maps

· · · // Ak //

fk

��

Bk //

gk

��

Ck //

hk

��

Ak+1 //

fk+1

��

Bk+1 //

hk+1

��

· · ·

· · · // A•
k

// B•
k

// C•
k

// A•
k+1

// B•
k+1

// · · ·

The top row is the long exact sequence from example 11.1.6. The bottom row is what we get from the
long exact sequence of theorem 13.4.1 by inflicting homR(—,R). The diagram has exact rows and all
arrows gk and hk are isomorphisms. Let us now show that the diagram is almost commutative, that
is to say, commutative except for a sign deviation in some places. Then we can use the five lemma,
lemma 13.5.1, to conclude that all arrows fk are isomorphisms. (The sign deviation does not make the
five lemma less applicable.)
Commutativity of the diagram is obvious where the squares involving fk and gk and the squares involving
gk and hk are concerned. For the squares involving hk and fk+1 , the almost-commutativity amounts to
the statement

I( ∂[ω] · [λ] ) = ±I( [ω] · ∂[λ] )

where [ω] ∈ Ck = Hk
dR(V ∩W ) and [λ] ∈ Ak+1 = Hm−k−1

dR,c (M) and the sign ± should only depend on
m and k. The definition of ∂ involves, in both cases, a partition of unity {ϕV , ϕW } subordinate to the
open cover {V,W} of M . Using remark 13.4.2 and example 11.1.4, we get

I( ∂[ω] · [λ] ) =

∫

M

d(ϕV · ω) ∧ λ ,

I( [ω] · ∂[λ] ) =

∫

V ∩W

ω ∧ d(ϕV · λ) .

We have d(ϕV · ω)∧ λ = dϕV ∧ ω ∧ λ = (−1)kω ∧ dϕV ∧ λ = ±ω ∧ d(ϕV · λ) because dω = 0 and dλ = 0.
Therefore

I( ∂[ω] · [λ] ) = (−1)kI( [ω] · ∂[λ] ).

�

Lemma 13.5.2 For i = 1, 2, 3, . . . , suppose given real vector spaces Ai and Bi and a bilinear map
gi : Ai ×Bi → R. If gi is nonsingular on the left for i = 1, 2, 3, . . . , then the bilinear map

g :

(
∞∏

i=1

Ai

)

×

(
∞⊕

i=1

Bi

)

−→ R

defined by g((ai)i≥1, (bi)i≥1) =
∑∞
i=1 gi(ai, bi) is also nonsingular on the left.

Proof Exercise. �

Proof of lemma 13.3.3.
A differential k-form ω on M =

∐

iMi is determined by its restrictions ω(i) = ω|Mi , which can be
prescribed arbitrarily. A compactly supported differential (m − k)-form λ on M is determined by its
restrictions λ(i) = λ|Mi , which can be prescribed almost arbitrarily, subject only to the conditions that
each λ(i) has compact support and that λ(i) is zero for all but finitely many i. Therefore

Hk
dR(M) ∼=

∞∏

i=1

Hk
dR(Mi) , Hm−k

dR,c (M) ∼=

∞⊕

i=1

Hm−k
dR,c (Mi) .
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Also, for ω ∈ Ωk(M) and λ ∈ Ωm−k
c (M) we have

I( [ω] · [λ] ) =

∫

M

ω ∧ λ =
∞∑

i=1

∫

Mi

ω(i) ∧ λ(i) =
∞∑

i=1

I( [ω(i)] · [λ(i)] ).

So we are in a position to apply lemma 13.5.2, taking Hk
dR(Mi) for Ai and Hm−k

dR,c (Mi) for Bi. �


