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Abstract. For a compact (2n + 1)-dimensional smooth manifold, let µM :

BDiff∂(D2n+1) → BDiff(M) be the map that is defined by extending diffeo-
morphisms on an embedded disc by the identity.

By a classical result of Farrell and Hsiang, the rational homotopy groups
and the rational homology of BDiff∂(D2n+1) are known in the concordance

stable range.

We prove two results on the behavior of the map µM in the concordance
stable range. Firstly, it is injective on rational homotopy groups, and secondly,

it is trivial on rational homology, if M contains sufficiently many embedded

copies of Sn × Sn+1 \ int(D2n+1). We also show that µM is generally not
injective on homotopy groups outside the stable range.

The homotopical statement is probably not new and follows from the theory

of smooth torsion invariants. The noninjectivity outside the stable range is
based on recent work by Krannich and Randal-Williams. The homological

statement relies on work by Botvinnik and Perlmutter on diffeomorphism of

odd-dimensional manifolds.

1. Introduction

For a smooth compact manifold M with boundary, we denote by Diff(M) the
topological group of diffeomorphisms of M and by Diff∂(M) ⊂ Diff(M) the sub-
group of those diffeomorphisms which agree with the identity near ∂M . A cele-
brated classical result by Farrell-Hsiang [10] states that

πk(BDiff∂(D2n+1))⊗Q ∼=

{
Q k ≡ 0 (mod 4)

0 k 6≡ 0 (mod 4)
(1.1)

in a range of degrees which was originally given by k < 2n+1
6 − 6; but (1.1) holds

more generally if k ≤ φQ(D2n), where φQ(D2n) is the rational concordance stable
range for D2n which we briefly recall.

For a compact smooth manifold M , let

C(M) := Diff(M × [0, 1],M × {0} ∪ ∂M × [0, 1])

denote the concordance diffeomorphism group of M , and let σ+ : C(M)→ C(M ×
[0, 1]) be the (positive) suspension map defined in e.g. [16, §6.2]. Define φ(M) to
be the largest integer k so that the maps σ+ : C(M × [0, 1]m)→ C(M × [0, 1]m+1),
m ≥ 0, are all k-connected. Similarly, one defines φQ(M) ≥ φ(M) using rational
connectivity instead of connectivity (this makes sense if dim(M) ≥ 6 as π0(C(M))
is abelian in that case, by [14, Lemma 1.1]).
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Igusa’s stability theorem [15, p.6] states that

φ(Md) ≥ min(
d− 7

2
,
d− 4

3
). (1.2)

Recent work by Krannich and Randal-Williams [21] gives the optimal range in
which (1.1) holds. Corollary B of [21] shows that

φQ(Dd) = d− 4 if d ≥ 10, (1.3)

and hence (1.1) holds if k ≤ 2n − 4, provided that n ≥ 5, and Theorem A of [21]
improves this slightly to k ≤ 2n− 3, again for n ≥ 5. These results slightly exceed
[23, Corollary B].

For an arbitrary smooth compact and nonempty manifold M of dimension 2n+1,
choose an embedding D2n+1 → int(M). Extending diffeomorphisms by the identity
gives a gluing map

µ∂M : Diff∂(D2n+1)→ Diff∂(M);

we may also consider the composition

µM : Diff∂(D2n+1)
µ∂M→ Diff∂(M)→ Diff(M).

The purpose of this note is to study the effect of the maps BµM and Bµ∂M on
rational homotopy and homology. The precise choice of the embedding does not
play a role for this question as long as M is connected. This is because the homotopy
class of BµM only depends on the isotopy class of the embedding. If M is connected
and not orientable, there is only one isotopy class of embeddings, and if M is
connected and orientable, there are two such isotopy classes which differ by the
reflection automorphism of the group Diff∂(D2n+1).

Theorem 1.4 (Homotopical theorem). For every (2n + 1)-dimensional manifold
M , the maps

(µM )∗ : πk(BDiff∂(D2n+1))⊗Q→ πk(BDiff(M))⊗Q

and

(µ∂M )∗ : πk(BDiff∂(D2n+1))⊗Q→ πk(BDiff∂(M))⊗Q
are injective when k 6= 1 and k ≤ φQ(D2n).

Remark 1.5. Note that π1(BDiff∂(D2n+1)) = π0(Diff∂(D2n+1)) is always a finite
group; this is trivial when n = 0 and follows from [7] for n = 1. For n ≥ 2,
[8, Corollaire 2] and the h-cobordism theorem identifies π0(Diff∂(D2n+1)) with the
group of homotopy (2n+ 2)-spheres which is finite by [19].

Remark 1.6. By [21, Corollary B], Theorem 1.4 holds for k ≤ 2n − 4 if n ≥ 5.
Theorem 1.4 is also true for k = 2n−3 and n ≥ 5, since π2n−3(BDiff∂(D2n+1)⊗Q =
0 for such n by [21, Theorem A].

Theorem 1.4 could have been proven with little effort in [1] at latest. It was
in fact known by experts and we learnt the statement from Mauricio Bustamante.
The proof is given here for sake of completeness and to contrast it with our main
result (Theorem 1.7 below), which seemingly goes into the opposite direction.

It concerns the effect of µM in rational homology. Since BDiff∂(D2n+1) is a con-
nected E2n+1-space (and hence a homotopy commutative H-space), H∗(BDiff∂(D2n+1);Q)
(with the Pontrjagin product) is the free graded-commutative algebra generated by
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π∗(BDiff∂(D2n+1))⊗Q. Therefore in the concordance stable range, H∗(BDiff∂(D2n+1);Q)
is a polynomial algebra with one generator in each dimension divisible by 4.

Let

Ung := ]g(Sn × Sn+1)

be the connected sum of g copies of Sn × Sn+1, and let

Ung,1 := Ung \ int(D2n+1)

be Ung with the interior of a disc removed.

Theorem 1.7 (Homological theorem). Let M be a connected manifold of dimension
2n+ 1 ≥ 9 and suppose that M contains an embedded copy of Ung,1. Then the maps

(µM )∗ : H̃k(BDiff∂(D2n+1);Q)→ H̃k(BDiff(M);Q)

and

(µ∂M )∗ : H̃k(BDiff∂(D2n+1);Q)→ H̃k(BDiff∂(M);Q)

are trivial if k ≤ φQ(D2n) + 1 and k ≤ g−4
2 .

Finally, using the recent work [21], we can show that the range for the validity
of Theorem 1.4 given in Remark 1.6 is optimal.

Theorem 1.8. For even n ≥ 6, there is a closed (2n + 1)-dimensional smooth
manifold M such that the kernel of

(µM )∗ : π2n−2(BDiff∂(D2n+1))⊗Q→ π2n−2(BDiff(M))⊗Q

is nonzero.
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2. Proof of the homotopical theorem

The proof of Theorem 1.4 relies on higher torsion invariants as axiomatized by
Igusa [18], and we review some background beforehand. Let K(Z) be the algebraic
K-theory spectrum of Z and let

u : Q(S0)→ Ω∞K(Z)

be the unit map on infinite loop spaces.
Consider a fibration π : E → B with fibre M , a finite CW complex of dimension

d. Let

ρk(π) : B → BGL(Hk(M ;Z)) (2.1)
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be the map induced by the monodromy action of the fundamental group on the
homology of the fibre. The Z-module Hk(M ;Z) is finitely generated, and hence
there is a canonical map

ι : BGL(Hk(M ;Z))→ Ω∞K(Z);

such a map exists even if the homology groups are not free, essentially because Z
is a regular ring (each finitely generated Z-module has a finite length resolution
by projective finitely generated Z-modules). See the discussion leading up to [9,
Proposition 6.7] for details.

The map ι hits the component of [Hk(M ;Z)] ∈ K0(Z) = π0(Ω∞K(Z)) ∼= Z. The
algebraic K-theory Euler characteristic of the fibration π is the alternating sum

χ(π) :=

d∑
k=0

(−1)kι ◦ ρk(π) : B → Ω∞K(Z),

where d = dim(M) and we have used the H-space structure on Ω∞K(Z) to form
the sum. Of course, χ(π) hits the component indexed by χ(M) ∈ Z = K0(Z).

The fibration π has an associated transfer map [3]

trfπ : Σ∞B+ → Σ∞E+

on the level of suspension spectra; we mostly consider its adjoint, also denoted

trfπ : B → Q(E+).

The Dwyer–Weiss–Williams index theorem [9, Corollary 8.12] implies that if π
is a smooth fibre bundle, the diagram

B

χ(π) ##

trfπ // Q(E+)

u◦c
��

Ω∞K(Z)

(2.2)

commutes up to a preferred homotopy (here u ◦ c is the composition of the unit
map with the collapse map c : Q(E+)→ Q(S0)).

Remark 2.3. Actually, [9, Theorem 8.5] proves a stronger version involving the
algebraic K-theory A(E) of the space E and a fibrewise version thereof. Raptis
and Steimle gave a substantially simpler proof of the homotopy-commutativity of
(2.2) in [25]; they also showed [9, Theorem 8.5] for smooth bundles in [26].

The diagram (2.2) can be used to define secondary invariants under additional
hypotheses on the bundle π; we follow the approach of [2] here, with some modifi-
cations. The extra hypothesis to be made is that the monodromy action of π1(B)
on Hk(M ;Z) is unipotent for all k (in [2], the authors consider homology with coef-
ficients in a field, but the construction generalizes to regular rings such as Z, see [2,
Remark 6.11]). Moreover, we assume as in [2] that the base space B is a compact
manifold, possibly with boundary.

Under these assumptions, the map χ(π) comes with a preferred homotopy to the
constant map to the point

χ(M) :=

d∑
k=0

(−1)k[Hk(M ;Z)] ∈ Ω∞K(Z),
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see [2, Theorem 6.7]. Combining this homotopy with the preferred homotopy from
(2.2) yields a map

T (π) : B → hofibχ(M)(u) ' hofib0(u) (2.4)

(use the infinite loop space structures to identify the homotopy fibres). Using
Borel’s computation [5] of π∗(Ω

∞K(Z)) ⊗ R, one can define characteristic classes
of unipotent smooth bundles as follows. Firstly

H∗(hofib0(u);R) = R[a4, a8, . . .] (2.5)

for certain generators a4k of degree 4k (the transgression of ak is the Borel class in
H4k+1(Ω∞K(Z);R)). Following [2, §7] (but using the notation of [1]), one defines

ts4k(π) := T (π)∗a4k ∈ H4k(B;R). (2.6)

It is convenient for us to replace the coefficient field by Q, which can be done as
follows. Firstly, the Borel class comes from a spectrum cohomology class bk ∈
H4k+1(K(Z);R). Secondly, Borel showed that H4k+1(K(Z);R) is 1-dimensional,
and so there is αk ∈ R× such that αkbk lies in H∗(K(Z);Q). We now define

t
s
4k(π) = t

s
4k(E) := αkt

s
4k(π) ∈ H4k(B;Q). (2.7)

The construction of (2.4) is given in [2] only for compact manifold bases; the defini-
tion of (2.7) can be generalized to arbitrary base spaces as follows. For an arbitrary
unipotent bundle E → B, we define t

s
4k(E) ∈ H4k(B;Q) as the class corresponding

to the homomorphism

Ωfr
4k(B)→ Q; [X, f ] 7→ 〈ts4k(f∗E); [X]〉 (2.8)

from the framed bordism group of B under the isomorphism Hom(Ωfr
4k(B);Q) ∼=

H4k(B;Q) (one needs [2, Proposition 7.3] to show that (2.8) is well-defined).
Now let Tor(M) ⊂ Diff(M) be the Torelli diffeomorphism group, i.e. the sub-

group of those diffeomorphisms which act as the identity onH∗(M ;Z) andH∗(M,∂M ;Z).
The universal M -bundle over BTor(M) is clearly unipotent, and combining the
classes t

s
4k, we obtain a map

τM : BTor(M)→
∏
k≥1

K(Q, 4k). (2.9)

Observe that Tor(D2n+1) = Diff+(D2n+1) is the group of orientation-preserving
diffeomorphisms, we obtain in particular

τD2n+1 : BDiff∂(D2n+1)→ BDiff+(D2n+1) = BTor(D2n+1)→
∏
k≥1

K(Q, 4k)

(2.10)
Farrell-Hsiang’s theorem might be restated as follows.

Theorem 2.11. The map τD2n+1 induces an isomorphism on rational homotopy
groups in degrees at most φQ(D2n).

Proof. The map τD2n+1 factors throughBDiff∂(D2n+1)→ BC(D2n)→ BDiff+(D2n+1).
Consider the diagram

BC(D2n)

σ◦m+
��

// BDiff+(D2n+1)

×idDm

��
BC(D2n+m) // BDiff+(D2n+m+1);

(2.12)
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the left vertical map is a composition of the suspension map and the right vertical
map is given by taking products withDm and an identificationD2n+m+1 = D2n+1×
Dm. The square commutes up to homotopy by the definition of the suspension map
σ+. A special case of [1, Theorem 7.1] states that for each unipotent bundle E → B,
t
s
4k(E ×Dm) = t

s
4k(E). It follows that τD2n+1 : BDiff∂(D2n+1) →

∏
k≥1K(Q, 4k)

factors as

BDiff∂(D2n+1)→ BC(D2n)→ BC(D2n) := hocolimmBC(D2n+m)→
∏
m≥1

K(Q, 4k).

(2.13)
All three maps in (2.13) induce isomorphisms on rational homotopy up to degree
φQ(D2n). This is true for the second map by definition.

The third map is a rational equivalence. Since the Whitehead group of π1(D2n) is
trivial, BC(D2n) is the stable h-cobordism space H(D2n). The stable h-cobordism
theorem [27] states an equivalence H(D2n) ' hofib(Q(S0) → A(∗)), and the lin-
earization map from A(∗) to Ω∞K(Z) induces a rational equivalence

hofib(Q(S0)→ A(∗))→ hofib(Q(S0)→ Ω∞K(Z)).

Together with [5], this shows that the rational homotopy groups of BC(D2n) and
of

∏
m≥1K(Q, 4k) are abstractly isomorphic and at most 1-dimensional.

To conclude that the third map in (2.13) is a rational isomorphism, it is therefore
enough to prove that the induced map on rational homotopy groups is nontrivial
whenever its target is nonzero, and this amounts to proving that for each k ≥ 1,
there is m and an element in π4k(BC(D2n+m)) such that t

s
D2n+m+1 is nontrivial

on that element. This was done by Igusa in [16, Theorem 6.4.2], but with the
higher Franz–Reidemeister torsion classes tFR4k ∈ H4k(BC(D2n+m);R) in place of

t
s
4k. These were constructed using ideas from Morse theory in [16, §5.7.2] (for

bundles with structure group Tor(M)) and in [17, §2.11] for unipotent bundles.
The main theorem of [1] shows that there is a universal constant λ4k ∈ R× such
that t

s
4k(π) = λ4kt

IK
4k (π) for all unipotent bundles over compact manifold bases,

and so the third map in (2.13) is a rational equivalence.
It is shown in [16, §6.5] that the first map in (2.13) induces an isomorphism on

rational homotopy groups up to degree φQ(D2n). In loc.cit., the result is stated in
terms of (1.2), so we give a few more details here. One looks at the fibre sequence

Diff∂(D2n+1)→ C(D2n)→ Diff∂(D2n).

The two maps are compatible with the following involutions on the spaces: the
group inversion on Diff∂(D2n), an involution defined at the beginning of [16, §6.5]
on C(D2n), and the involution

I : Diff∂(D2n+1)→ Diff∂(D2n+1) (2.14)

given by conjugation with the reflection map

r(x1, . . . , x2n+1) := (x1, . . . , x2n,−x2n+1).

The rational homotopy sequence of the fibration splits into negative and posi-
tive eigenspaces of these involutions. An Eckmann-Hilton argument proves that
π+
∗ (Diff∂(D2n+1)) ⊗ Q → π+

∗ (C(D2n)) ⊗ Q is an isomorphism in all degrees. On
the other hand, I∗ = id on πk( ) ⊗ Q for k ≤ φQ(D2n); Corollary 6.5.3 of [16]



DIFFEOMORPHISMS OF ODD-DIMENSIONAL DISCS, GLUED INTO A MANIFOLD 7

states this when k is in the range given by (1.2), but the proof clearly works for
k ≤ φQ(D2n). Hence for k ≤ φQ(D2n) + 1

πk(BDiff∂(D2n+1))⊗Q = π+
k (BDiff∂(D2n+1))⊗Q ∼= π+

k (BC(D2n))⊗Q.

Finally, π−k (BC(D2n))⊗Q = 0 for k ≤ φQ(D2n). To see this, observe that the sta-

bilization map BC(Dd)) → BC(Dd+1) switches the eigenspaces of the involutions
by [16, Lemma 6.5.1]. Hence it is enough to check that π−k (BC(D2n))⊗Q = 0 for
very large n, and this follows from Theorem 6.4.2 and Lemma 6.5.4 of [16], using
that the third map in (2.13) is a rational equivalence. �

Proof of Theorem 1.4 for closed M . We first consider the case where M is closed.
The cohomology classes t

s
4k have the following additivity property: for unipotent

bundles πj : Ej → B with common (vertical) boundary bundle E01 = ∂E0 = ∂E1,
the boundary bundle π01 : E01 → B, as well as the glued bundle π : E = E0 ∪∂Ej
E1 → B are also unipotent, and we have

t
s
4k(π) + t

s
4k(π01) = t

s
4k(π1) + t

s
4k(π2) ∈ H4k(B;Q). (2.15)

This is proven for B a compact manifold in [1, Corollary 5.2], the case of a general
base follows by using framed cobordism as in the construction of t

s
4k for general

base spaces.
Next, the map µM : BDiff∂(D2n+1)→ BDiff(M) lifts to µ̃M : BDiff∂(D2n+1)→

BTor(M), and (2.15) shows that

τM ◦ µ̃M ∼ τD2n+1 . (2.16)

By Theorem 2.11, it follows that µ̃M is injective on πk( )⊗Q when k ≤ φQ(D2n).
Because Tor(M) ⊂ Diff(M) is a union of path-components, p∗ : πk(BTor(M)) →
πk(BDiff(M)) is injective when k = 1 and an isomorphism when k ≥ 2, and
µM = p ◦ µ̃M is injective on rational homotopy groups up to degree φQ(D2n). �

We have used that M is closed in order to use (2.15) which in the quoted source
is only covered for closed M . The case of a general M reduces to the closed case
by “doubling”. Let M be a manifold with boundary, let A ⊂ ∂M be a compact
codimension 0 submanifold and form M ∪∂M−int(A) M . This is a manifold with
boundary A ∪∂A A. Let DiffA(M) be the group of diffeomorphisms which fix A
pointwise. There is a doubling map

dA : BDiffA(M)→ BDiff∂(M ∪∂M−int(A) M)

given by extending a diffeomorphism with its reflection. The diagram

BDiff∂(D2n+1)
µM //

dD2n

��

BDiffA(M)

dA

��
BDiff∂(D2n+1 ∪D2n D2n+1)

µM∪∂M−int(A)M// BDiff∂(M ∪∂M−int(A) M)

(2.17)

commutes up to homotopy, where D2n ⊂ ∂D2n+1 denotes a half-disc in the bound-
ary.

Lemma 2.18. The doubling map induces an isomorphism

(dD2n)∗ : πk(BDiff∂(D2n+1))⊗Q→ πk(BDiff∂(D2n+1 ∪D2n D2n+1))⊗Q

when k ≤ φQ(D2n) + 1.
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Proof. By the Eckmann-Hilton argument, the effect of d on rational homotopy
groups is the map

1 + (BI)∗ : π∗(BDiff∂(D2n+1))⊗Q→ π∗(BDiff∂(D2n+1))⊗Q
(here I is the involution (2.14), and we identified D2n+1∪D2nD2n+1 = D2n+1). The
lemma now follows from the fact that BI∗ = id on πk( )⊗Q for k ≤ φQ(D2n) + 1
(see the proof of Theorem 2.11 above for more details). �

Remark 2.19. The bound given in Lemma 2.18 is optimal: [21, Corollary 8.4] shows
that the involution acts nontrivially on π2n−2(BDiff∂(D2n+1)) ⊗ Q when n ≥ 5,
while φQ(D2n) + 1 = 2n− 3 for such n.

Proof of Theorem 1.4, general case. To prove the statement for µM , use (2.17) with
A = ∅ and apply Lemma 2.18. The statement for µ∂M follows from that for µM in
view of the definition of µM . �

Remark 2.20. From the proof of Theorem 1.4 given above, one can also deduce a
statement about H∗(BTor(M);Q), namely that µ̃M is injective on rational homol-
ogy in the concordance stable range, at least when M is closed or orientable.

In the case where M is closed, this follows from (2.16) and Theorem 2.11. For
manifolds with nonempty boundary, a bit more care is needed to check that doubling
really gives a map Tor(M)→ Tor(M ∪∂M M). For oriented M , the argument goes
as follows.

Mapping both halves of M ∪∂M M to M and excision in homology gives a
Diff(M)-equivariant isomorphism H∗(M ∪∂M M ;Z) ∼= H∗(M ;Z)⊕H∗(M,∂M ;Z),
from which it follows that the double of f also induces the identity on homology.

We leave it to the reader to figure out statements in cohomology or a variant for
nonorientable M .

3. Proof of the homological theorem

We now turn to the proof of Theorem 1.7, which relies on work by Botvinnik
and Perlmutter [24], [6]. To state their results, let

V ng := \g(Sn ×Dn+1)

be the boundary connected sum of g copies of Sn×Dn+1, and let D = D2n ⊂ ∂V ng
be a disk in the boundary of V ng . Note that V n0 = D2n+1. There is a stabilization
map

BDiffD(V ng )→ BDiffD(V ng+1), (3.1)

given by taking boundary connected sum with Sn × Dn+1 at D and extending
diffeomorphisms by the identity. Perlmutter [24, Theorem 1.1] proved that the
map (3.1) induces an isomorphism in homology in degrees ∗ ≤ 1

2 (g − 4), provided
that n ≥ 4. Botvinnik and Perlmutter [6] computed the homology of BDiffD(V ng )
in the stable range. Let

θn : BO(2n+ 1)〈n〉 → BO(2n+ 1)

be the n-connected cover of BO(2n + 1). Let π : E → B be a bundle with fibre
V ng and structure group DiffD(V ng ). The vertical tangent bundle TvE admits a
θn-structure, i.e. a bundle map ` : TvE → θ∗nγ2n+1 to the pullback of the universal
bundle over BO(2n + 1). This θn-structure is unique up to contractible choice,
once the following condition is imposed. Inside E, there is a trivial D-subbundle
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B×D. The restriction of the vertical tangent bundle TvE to B×D has a canonical
trivialization, and one requires that ` is compatible with that trivialization (see [6,
Proposition 6.16] for all this).

Let ` : E → BO(2n+ 1)〈n〉 be the map of spaces underlying `. Let

απ : B
trfπ→ Q(E+)

Q(`)→ Q(BO(2n+ 1)〈n〉+)

be the composition of the transfer with the map induced by `. In particular, we
can apply this construction to the universal bundle over BDiffD(V ng ) and obtain a
map

αg : BDiffD(V ng )→ Q1+(−1)ng(BO(2n+ 1)〈n〉+); (3.2)

the target is the path component indexed by

χ(V ng ) = 1 + (−1)ng ∈ Z = π0(Q(BO(2n+ 1)〈n〉+)).

The following is essentially [6, Corollary B].

Theorem 3.3 (Botvinnik, Perlmutter). Let n ≥ 4. Then the map (3.2) induces
an isomorphism in integral homology in degrees ∗ ≤ 1

2 (g − 4).

Theorem 3.3 as stated above differs from the formulation given in [6] in so
far as loc.cit. does not mention the transfer at all, so some remarks have to
be made here. For a fibration θ : X → BO(d), Genauer [13] introduced the

cobordism category Cob∂θ of (d − 1)-dimensional θ-manifolds with boundaries and
their cobordisms (which have corners). He proved that there is a weak equivalence

BCob∂θ ' Ω∞−1Σ∞X+, and the equivalence is given by a parametrized Pontrjagin-
Thom construction (this result is parallel to the well-known [12] for the usual cobor-
dism category). Given any bundle π : E → B of smooth compact d-manifolds with
boundary equipped with a θ-structure ` on the vertical tangent bundle, one ob-
tains a tautological map B → ΩBCob∂θ , and from the description of the transfer
for smooth bundles, one sees that the composition of this tautological map with

Genauer’s equivalence agrees with the composition B
trfπ→ Q(E+)

Q(`+)→ Q(X+).
Using this observation, one derives Theorem 3.3 from the results of [6].

Corollary 3.4. If n ≥ 4, the iterated stabilization map

BDiffD(V n0 )→ BDiffD(V ng )

induces the zero map on integral reduced homology, in degrees ∗ ≤ 1
2 (g − 4).

Proof. The transfer has an additivity property [4] which implies that

BDiffD(V n0 ) //

α0

��

BDiffD(V ng )

αg

��
Q1(BO(2n+ 1)〈n〉+) // Q1+(−1)ng(BO(2n+ 1)〈n〉+)

commutes up to homotopy; the lower map takes the sum with a fixed point in
Q(−1)ng(BO(2n + 1)〈n〉+) and is a weak equivalence. We shall show that the left
vertical map is trivial in reduced homology (in all degrees); this will imply the claim
by Theorem 3.3.

The map α0 factors as

BDiffD(V n0 )
trf→ Q1((EDiffD(V n0 )×DiffD(V n0 ) V

n
0 )+)

Q(l)→ Q1(BO(2n+ 1)〈n〉+).
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The map Q(l) is induced from the vertical tangent bundle of the universal bundle
EDiffD(V n0 ) ×DiffD(V n0 ) V

n
0 → BDiffD(V n0 ), which is trivial by the following argu-

ment: the choice of a point in D ⊂ ∂V n0 determines a section s of the bundle, which
is a homotopy equivalence as V n0 is a disc, and the pullback of the vertical tangent
bundle along s is trivial. Hence Q(l) factors through Q1(S0) which is rationally
acyclic. Therefore α0 induces the zero map on rational homology. This finishes the
proof for rational homology, which is all we need for the proof of Theorem 1.7.

For the integral version, we use that the transfer is defined more generally for
fibrations with finite CW fibres. It follows that there is a commutative diagram

BDiffD(V n0 )
trf //

��

Q1((EDiffD(V n0 )×DiffD(V n0 ) V
n
0 )+)

��
BHomeoD(V n0 )

trf // Q1((EHomeoD(V n0 )×HomeoD(V n0 ) V
n
0 )+).

Because the map

` : EDiffD(V n0 )×DiffD(V n0 ) V
n
0 → BO(2n+ 1)〈n〉

is nullhomotopic as we just argued, it extends to a map

`′ : EHomeoD(V n0 )×HomeoD(V n0 ) V
n
0 → BO(2n+ 1)〈n〉.

Therefore α0 factors up to homotopy through BHomeoD(V n0 ), which is contractible
by the Alexander trick. �

Proof of Theorem 1.7. Since both µM and µ∂M factor through

µ∂Ung,1 : BDiff∂(D2n+1)→ BDiff∂(Ung,1),

it suffices to show that µ∂Ung,1 induces the trivial map in rational homology in the

indicated range of degrees. Note that

V ng ∪∂V ng \int(D) V
n
g = Ung,1.

Pick an embedding f : D2n+1 → V n0 ⊂ V ng which is disjoint from the disc

D ⊂ V n0 and such that f−1(∂V n0 ) = D2n is a disc in ∂D2n+1. This gives a map
µ : BDiff∂(D2n+1) → BDiffD(V n0 ), and by Corollary 3.4, the composition of that
with the stabilization map to BDiffD(V ng ) is trivial in integral homology degrees

≤ 1
2 (g − 4).
Diagram (2.17) becomes

BDiff∂(D2n+1) //

d

��

BDiffD(V ng )

d

��
BDiff∂(D2n+1 ∪D2n D2n+1)

µ // BDiff∂(Ung,1).

(3.5)

Lemma 2.18 shows that the left vertical in (3.5) induces an isomorphism in rational
homotopy in degrees at most φQ(D2n) + 1. The same is true in rational homology,
since both spaces are connected H-spaces and their rational homology is the free
graded commutative algebra on the rational homotopy, and so the proof is complete.

�



DIFFEOMORPHISMS OF ODD-DIMENSIONAL DISCS, GLUED INTO A MANIFOLD 11

4. Optimality of the range in the homotopical theorem

Proof of Theorem 1.8. The compositionBDiff∂(D2n+1)
µM→ BDiff(M)→ BHomeo(M)

factors through BHomeo∂(D2n+1) ' ∗. Hence µM factors through the space

hofib(BDiff(M)→ BHomeo(M)).

By [21, Theorem A], π2n−2(BDiff∂(D2n+1)) ⊗ Q 6= 0 if n ≥ 6. Therefore, it is
enough to find a closed (2n + 1)-manifold M such that π2n−2(hofib(BDiff(M) →
BHomeo(M)))⊗Q = 0.

Now by smoothing theory [20, Essay V], hofib(BDiff(M)→ BHomeo(M)) is ho-
motopy equivalent to a union of path components of the section space Γ(M ; Fr(M)×O(2n+1)
Top(2n+1)
O(2n+1) ).

We now prove that

π2n−2(Γ(RP2 × S2n−1; Fr(RP2 × S2n−1)×O(2n+1)
Top(2n+ 1)

O(2n+ 1)
))⊗Q = 0 (4.1)

when n is even. Homotopy groups of section spaces can be computed by means of
the Federer spectral sequence [11]; see [22, §5.2] for the variant we shall be using. Let
E → B be a fibration over a finite-dimensional CW-complex with simply connected
fibre F and a fixed section s. Then there is a spectral sequence

E2
p,q = H−p(B;πq(F ))⇒ πp+q(Γ(B;E), s)

(the coefficient systems in the E2-term are twisted). Hence πm(Γ(B;E), s) admits
a finite filtration whose filtration quotients are subquotients of H−p(B;πq(F )) with
p+ q = m; and so in order to prove that πm(Γ(B;E), s)⊗Q = 0, it suffices to show
that H−p(B;πq(F ))⊗Q = 0 if p+ q = m.

Because Top(2n+1)
O(2n+1) is simply connected by [20, V.5.0(4)–(5)], we can apply the

Federer spectral in the case at hand. Furthermore, by loc.cit., Top(2n+1)
O(2n+1) is rationally

(2n+ 2)-connected. So the only entries in the E2-page which could potentially be
rationally nonzero and contribute to (4.1) are

H2n+1−i(RP2 × S2n−1;π4n−1−i(
Top(2n+ 1)

O(2n+ 1)
)⊗Q)

for 0 ≤ i ≤ 2. It remains to be shown that

H2−i(RP2;π4n−1−i(
Top(2n+ 1)

O(2n+ 1)
)⊗Q) = 0 (4.2)

when 0 ≤ i ≤ 2.
The fundamental group π1(RP2) = C2 acts on π4n−1−i(

Top(2n+1)
O(2n+1) ) by conjugation

with an isometry of determinant −1. There is an isomorphism

π4n−1−i(
Top(2n+ 1)

O(2n+ 1)
) = π2n−2−i(BDiff∂(D2n+1))

coming from Morlet’s theorem [20, V.3.4] that BDiff∂(D2n+1) ' Ω2n+1
0 (Top(2n+1)

O(2n+1) ).

By the discussion in [21, §8.2], the action of the generator of C2 on π4n−1−i(
Top(2n+1)
O(2n+1) )

corresponds under this isomorphism to minus the involution (BI)∗ considered in
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the proof of Lemma 2.18 above. By [21, Corollary 8.4], we therefore have, for even
n, that

π4n−1(
Top(2n+ 1)

O(2n+ 1)
)⊗Q = Q+,

π4n−2(
Top(2n+ 1)

O(2n+ 1)
)⊗Q = 0

and

π4n−3(
Top(2n+ 1)

O(2n+ 1)
)⊗Q = Q−

as C2-modules. Since H2(RP2;Q+) = H0(RP2;Q−) = 0, we obtain (4.2), which
concludes the proof. �
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