ÜBUNGEN ZUR VORLESUNG TOPOLOGIE II

Aufgabenblatt 7 Abgabe: Mittwoch, 10.6.2009 in der Vorlesung.

Exercise 7.1. Let $G = \langle x_1, \ldots, x_n | r_1, \ldots, r_m \rangle$ be a finitely presented group. Show that G^{ab} is the abelian group $\mathbb{Z}\{x_1, \ldots, x_n\}/(\rho_1, \ldots, \rho_n)$, where ρ_i is obtained by "linearization" from the word r_i .

Exercise 7.2. Fill in the details of the proof that F_g is a compact oriented differentiable manifold of dimension 2.

Exercise 7.3. Let M, N be topological manifolds of dimension n. Let M be compact and N be connected. Let $f: M \to N$ be injective. Show that f is surjective as well. Conclude that there is no continuous injective map $f: \mathbb{R}^m \to \mathbb{R}^n$ when m > n.

Exercise 7.4. Let F_g be a closed oriented surface of genus $g \ge 0$. Let $D \subset F_g$ be a closed disc. Let M be the Möbius band, as described in exercise 6.1, with boundary ∂M . Choose a homeomorphism $h : \partial D \cong \partial M$. Let $X_g := (F_g \setminus D) \coprod M / \sim$, where \sim is the equivalence relation induced by h. X_g is a compact 2-manifold that is not orientable (do not show that here). The task is to compute $\pi_1(X)$ and $H_*(X)$.

Instead of one disc D, take two disjoint discs $D_1, D_2 \subset F_g$ and glue in two Möbius bands into the holes of $F_g \setminus (D_1 \cup D_2)$ and call the result Y_g . Compute $\pi_1(Y_g)$ and $H_*(Y_g)$.

Background: one can show that any nonorientable compact 2-manifold is diffeomorphic to exactly one of X_g or Y_g .

Exercise 7.5. Let A be a real nonsingular $n \times n$ -matrix. Assume that $a_{ij} \ge 0$ for all i, j. Show that A has a real eigenvector $v = (v_1, \ldots, v_n)$ with $v_i \ge 0$ for all i (Hint: Brouwers fixed point theorem).