ÜBUNGEN ZUR VORLESUNG TOPOLOGIE II

Aufgabenblatt 4 Abgabe: Mittwoch, 13.5.2009 in der Vorlesung.

Exercise 4.1. Give an example of two chain complexes C_{\bullet} and B_{\bullet} and a chain map $C_{\bullet} \to B_{\bullet}$ which is a quasiisomorphism but not a chain homotopy equivalence.

Exercise 4.2. Let R be a commutative ring and let C_{\bullet}, B_{\bullet} be two chain complexes of R-modules; the differentials of both are denoted by the symbol ∂ . We define a new chain complex $\operatorname{Hom}(C_{\bullet}, B_{\bullet})_{\bullet}$ of R-modules. The nth group is $\operatorname{Hom}(C_{\bullet}, B_{\bullet})_n := \prod_{m \in \mathbb{Z}} \operatorname{Hom}_R(C_m, B_{m+n})$ (here $\operatorname{Hom}_R(C_m, B_{m+n})$ is the R-module of R-linear maps; this is the same as $\operatorname{Mor}_{R-\operatorname{Mod}}(C_m, B_{m+n})$). The differential is defined by $(f \in \operatorname{Hom}(C_{\bullet}, B_{\bullet})_n) D_n(f) := \partial \circ f - (-1)^n f \circ \partial$. Show the following statements:

- (1) Hom $(C_{\bullet}; B_{\bullet})_{\bullet}$, with the differential D, is a chain complex of R-modules.
- (2) A 0-cycle of $\operatorname{Hom}(C_{\bullet}, B_{\bullet})$ is a chain map and two 0-cycles are homologous if and only if they are chain homotopic. The zeroeth homology $H_0(\operatorname{Hom}(C_{\bullet}, B_{\bullet}))$ is isomorphic to the group of chain homotopy classes of chain maps from C to B.

Exercise 4.3. (the Hurewicz homomorphism) Let X be a path-connected space and $x \in X$ be a basepoint. In this exercise, a homomorphism $h : \pi_1(X, x) \to H_1(X)$ is constructed. Let $c : [0, 1] \to X$ be a path. We can interpret c as a singular 1-simplex in X. This defines a map $F : \{c : [0, 1] \to X\} \to C_1(X)$. Show:

- (1) If c is closed, then F(c) is a cycle. If c is constant, then F(c) is the boundary of a singular 2-chain.
- (2) Let c^{-1} be the path c with the opposite direction. Then $F(c^{-1}) + F(c)$ is null-homologous.
- (3) Let c, d be two path with c(1) = d(0) and let c * d be the composition of the two paths. Then F(c * d) - F(c) - F(d) is nullhomologous.
- (4) Let c, d be two paths with c(0) = d(0) and c(1) = d(1) and assume that c and d are homotopic relative to the endpoints. Then F(c) F(d) is nullhomologous.
- (5) For a closed path c based at x, let $[[c]] \in \pi_1(X, x)$ be its homotopy class. The map $[[c]] \mapsto [F(c)]$ is a well defined homomorphism $h : \pi_1(X, x) \to H_1(X)$, the Hurewicz homomorphism. Show that the homomorphisms h assemble to a natural transformation of covariant functors $\mathbf{Top}_* \to \mathbf{Gr}$ from the category of pointed spaces to the category of groups and homomorphisms.
- (6) Show, by an example, that h is not an isomorphism in general.

Exercise 4.4. Let R be a field and C_{\bullet} be a chain complex of R-vector spaces. Let H_{\bullet} be the chain complex whose nth module is $H_n(C_{\bullet})$ and all of whose differentials are zero. Show: C_{\bullet} and H_{\bullet} are chain homotopy equivalent. Hint: any vector space has a basis.

Exercise 4.5. Let \mathcal{I} be a small category and let $C : \mathcal{I} \to \mathbf{Ch}$ be a functor. Show that the colimit $\operatorname{colim}_{\mathcal{I}} C$ exists. Hint: show first that colimits of *R*-modules exist; furthermore the *n*th group of $\operatorname{colim}_{\mathcal{I}} C$ will be the colimit of the *n*th groups of *C*. Show that there is a natural homomorphism $\Phi : \operatorname{colim}_{\mathcal{I}} H_*(C) \to H_*(\operatorname{colim}_{\mathcal{I}} C)$.

We say that \mathcal{I} is *directed* if the following conditions are satisfied:

- For $i, j \in Ob(\mathcal{I})$, there exists at most one morphism from i to j.
- For any two objects i and j of \mathcal{I} , there exists another object k and morphisms $i \to k$, $j \to k$.

(The standard example of a directed small category is the totally ordered set \mathbb{N} : The objects are natural numbers and there exists a unique morphism from n to m if and only if $n \leq m$; the composition of morphisms is determined by these properties.)

Now assume that \mathcal{I} is a directed small category and $C : \mathcal{I} \to \mathbf{Ch}$ a functor. Show that the homomorphism $\Phi : \operatorname{colim}_{\mathcal{I}} H_*(C) \to H_*(\operatorname{colim}_{\mathcal{I}} C)$ is an isomorphism.