ÜBUNGEN ZUR VORLESUNG TOPOLOGIE II

Aufgabenblatt 3 Abgabe: Mittwoch, 6.5.2009 in der Vorlesung.

Exercise 3.1. Let R be a ring and $0 \rightarrow V \xrightarrow{f} U \xrightarrow{g} W \rightarrow 0$ be a short exact sequence of left R-modules, i.e.: Ker(g) = Im(f). Show that the following conditions are equivalent:

- (1) There is a homomorphism of R-modules $s: W \to U$ such that $q \circ s = \mathrm{id}_W$.
- (2) There is a homomorphism of R-modules $t: U \to V$ such that $t \circ f = id_V$.
- (3) There is an isomorphism of *R*-modules $\phi : U \to V \oplus W$ such that $\phi(f(v)) = (v, 0)$ und $g(\phi^{-1}(v, w)) = w$ for all $u \in U, v \in V$ und $w \in W$.

A short exact sequence that satisfies the above conditions is called *split-exact* or one says that the sequence *splits*.

Show furthermore: If W is a free R-module, then any short exact sequence $0 \to V \to U \to W \to 0$ splits. What happens if R is a field? Give an example of a short exact sequence of \mathbb{Z} -modules that is not split-exact.

Exercise 3.2. (The Five Lemma) Let R be a ring and let

$$A_{1} \xrightarrow{f_{1}} A_{2} \xrightarrow{f_{2}} A_{3} \xrightarrow{f_{3}} A_{4} \xrightarrow{f_{4}} A_{5}$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma} \qquad \downarrow^{\delta} \qquad \downarrow^{\epsilon}$$

$$B_{1} \xrightarrow{g_{1}} B_{2} \xrightarrow{g_{2}} B_{3} \xrightarrow{g_{3}} B_{4} \xrightarrow{g_{4}} B_{5}$$

be a commutative diagram of left *R*-modules. Assume that both rows are exact (i.e., the rows are exact at A_2 , A_3 , A_4 , B_2 , B_3 , B_4). Show the following implications:

- If β and δ are surjective and ϵ is injective, then γ is surjective.
- If β and δ are injective and α is surjective, then γ is injective.

Show, by examples, that none of the assumptions on δ , α , β and ϵ can be removed.

Background: this is the important *Five Lemma*, which is used very often in homological algebra.

Exercise 3.3. This exercise deals with a detail of the proof of the homotopy-invariance of singular homology in the lecture. Let $n \ge 0$. Let $e_i \in \mathbb{R}^{n+2}$, $i = 0, \ldots n + 1$ be the standard basis vector. We denote $v_i := e_i$, $i = 0, \ldots n$ and $w_i := e_i + e_{n+1}$, $i = 0, \ldots, n$. Show: the convex hull of $v_0, \ldots, v_n, w_0 \ldots, w_n$ is equal to $\Delta^n \times [0, 1]$. Show: the union of the (n+1) different (n+1)-simplices $[v_0, w_0, \ldots, w_n], [v_0, v_1, w_1 \ldots, w_n] \ldots [v_0, \ldots, v_n, w_n]$ is equal to $\Delta^n \times [0, 1]$ and the interiors of these (n+1)-simplices are disjoint.

Exercise 3.4. (Long exact homology sequence of a triple) Let (X, Y, Z) be a triple of topological spaces, i.e., X is a topological space and $Z \subset Y \subset X$ are subspaces. Show that there exists a long exact sequence of singular homology groups

 $\dots \to H_{n+1}(X,Y) \xrightarrow{\delta} H_n(Y,Z) \to H_n(X,Z) \to H_n(X;Y) \xrightarrow{\delta} H_{n-1}(Y,Z) \dots$

Formulate and prove the statement that this sequence is natural with respect to the triple.

$$0 \to H_n(A) \to H_n(X) \to H_n(X, A) \to 0.$$

A simple situation in which this statement can be applied is the following. Let (X, x) be a pointed space. We define the *reduced homology* of X by $\tilde{H}_n(X) := H_n(X, \{x\})$. Show the following things:

- (1) Let $\epsilon : X \to *$ be the constant map. There is a natural isomorphism $\tilde{H}_n(X) \cong \text{Ker } H_n(\epsilon)$. In particular, the reduced homology groups with respect to two different basepoints are naturally isomorphic. Also, we see that $\tilde{H}_n(X) \cong H_n(X)$ for all $n \ge 1$.
- (2) Let (X, A) be a pair of spaces and let $x \in A$ be a basepoint. Show that there is a long exact sequence relating the groups $\tilde{H}_*(X)$, $\tilde{H}_*(A)$ and $H_*(X, A)$.