ÜBUNGEN ZUR VORLESUNG TOPOLOGIE II

Aufgabenblatt 13

Abgabe: Mittwoch, 22.7., in der Vorlesung

Exercise 13.1. Compute the cohomology of $\mathbb{R P}^{n}$ with coefficients in $\mathbb{Z} / 2$ and in \mathbb{Z}, using the universal coefficient theorem.

Exercise 13.2. Let G be a group and R be a commuative ring with unit. The group ring $R G$ of G is defined as follows: as an abelian group, $R G$ is the free R-module generated by the elements of G. Given two elements $\sum_{g \in G} a_{g} g, \sum_{g \in G} b_{g} g$ with $a_{g}, b_{g} \in R$ (only finitely many a_{g}, b_{g} are nonzero), their product is defined to be $\sum_{g \in G}\left(\sum_{h, k \in G ; h k=g} a_{h} b_{k}\right) g$. Show that this is a ring with unit (not commuative unless G is). Show that a left $R G$-module is the same as a representation of G in R-modules. Let V be an $R G$-module. Denote by $V^{G} \subset V$ be the R-module consisting of all $v \in V$ with $g v=v$ for all $v \in V$ (the invariant subspace of V. Show that $V \mapsto V^{G}$ defines an additive left-exact functor $R G-\operatorname{Mod} \rightarrow R-$ Mod.

Exercise 13.3. Let X be a topological space with a free right- G-action, $Y:=X / G$ such that the quotient map $q: X \rightarrow Y$ is a covering. The G-action on X turns the singular cochain complex $C^{*}(X ; A)$ with coefficients in the abelian group into a chain complex of left $\mathbb{Z} G-$ Mod and so we an talk about the invariant subcomplex $C^{*}(X ; A)^{G}$. Show that q induces an isomorphism $C^{*}(Y ; A) \rightarrow C^{*}(X ; A)^{G}$.

Exercise 13.4. Let G be a finite group. Let R be a commutative ring in which $|G|$ in invertible. Show that the functor $R G-\operatorname{Mod} \rightarrow R-\operatorname{Mod} ; V \rightarrow V^{G}$ is exact. Hint: you may need the operator $v \mapsto \frac{1}{|G|} \sum_{g \in G} g v$ which sends $V \rightarrow V^{G}$. Show: in the situation of exercise 13.3 , the quotient map q induces an isomorphism $H^{*}(Y ; R) \cong H^{*}(X ; R)^{G}$. Hint: exercise 12.2. Show, by an example, that both the finiteness of G and the invertibility of $|G|$ are essential for this isomorphism to hold.

Exercise 13.5. Let $f: X \rightarrow Y$ be a finite covering, say of degree k. Recall the transfer $f^{!}$: $C_{*}(Y) \rightarrow C_{*}(X)$, which is a chain map. There is an induced map on singular cochain complexes $f_{!}: C^{*}(X) \rightarrow C^{*}(Y)$ (arbitrary coefficents) which in turn induces a map $f_{!}: H^{*}(X) \rightarrow H^{*}(Y)$. Show that the composition $f_{!} \circ f^{*}: H^{*}(Y) \rightarrow H^{*}(Y)$ is equal to multiplication by k.

