ÜBUNGEN ZUR VORLESUNG TOPOLOGIE II

Aufgabenblatt 12 Abgabe: Mittwoch, 15.7., in der Vorlesung

Exercise 12.1. Let N, M be modules over the principal ideal domain R. Show that there is an isomorphism $\operatorname{Tor}_1^R(M; N) \cong \operatorname{Tor}_1^R(N; M)$.

Exercise 12.2. Let R, S be two rings. We say that a covariant functor $F : R - \text{Mod} \rightarrow S - \text{Mod}$ is exact if for all R-modules N, M, the map $F : \text{Hom}_R(M; N) \rightarrow \text{Hom}_S(FM; FN)$ is a homomorphism of abelian groups. We say that F is *exact* if for any short exact sequence $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ of R-modules, the induced sequence $0 \rightarrow FM' \rightarrow FM \rightarrow FM'' \rightarrow 0$ is exact, too.

Let F be an exact functor and C_{\bullet} be a chain complex in R – Mod. Show that there is a natural isomorphism $H_*(F(C_{\bullet})) \cong F(H_*(C_{\bullet}))$.

Exercise 12.3. Let (X, Y) be a space pair such that $H_*(X, Y; \mathbb{Z}/p) = 0$ for all prime numbers p and $H_*(X, Y; \mathbb{Q}) = 0$. Show that $H_*(X, Y; \mathbb{Z}) = 0$.

Exercise 12.4. Let $f : X \to Y$ be a map of spaces. The mapping cylinder Z_f of f is the topological space $Y \coprod (X \times [0,1]) / \sim$, where \sim is the equivalence relation $(x,0) \sim f(x)$ for all $x \in X$. Show that there exists a commutative diagram

$$\begin{array}{ccc} X \xrightarrow{g} Z_f \\ & \downarrow_{\mathrm{id}} & \downarrow \\ X \xrightarrow{f} Y \end{array}$$

where $g: X \to Z_f$ is the map $x \mapsto (x, 1)$ and the right-hand-side vertical map is a homotopy equivalence. Let A be an abelian group. Show that $f_*: H_*(X; A) \to H_*(Y; A)$ is an isomorphism if and only if $H_*(Z_f, X; A) = 0$. Conclude with the help of exercise 9.3 that the following are equivalent:

- (1) $f_*: H_*(X; \mathbb{Z}) \to H_*(Y; \mathbb{Z})$ is an isomorphism.
- (2) $f_*: H_*(X; A) \to H_*(Y; A)$ is an isomorphism for $A = \mathbb{Z}/p$ (for all prime numbers p) and $A = \mathbb{Q}$.

Exercise 12.5. Let $0 \to M' \to M \to M'' \to 0$ be a short exact sequence of *R*-modules. Show that there exist free resolutions $F'_{\bullet} \to M'$, $F_{\bullet} \to M$, $F''_{\bullet} \to M''$ and a short exact sequence of chain complexes $0 \to F'_{\bullet} \to F_{\bullet} \to F''_{\bullet} \to 0$. Deduce that there is a long exact sequence $0 \to \operatorname{Hom}(M'', N) \to \operatorname{Hom}(M, N) \to \operatorname{Hom}(M', N) \to \operatorname{Ext}(M'', N) \to \operatorname{Ext}(M, N) \to \operatorname{Ext}(M', N) \to \cdots$.