ÜBUNGEN ZUR VORLESUNG TOPOLOGIE II

Aufgabenblatt 12

Abgabe: Mittwoch, 15.7., in der Vorlesung

Exercise 12.1. Let N, M be modules over the principal ideal domain R. Show that there is an isomorphism $\operatorname{Tor}_{1}^{R}(M ; N) \cong \operatorname{Tor}_{1}^{R}(N ; M)$.
Exercise 12.2. Let R, S be two rings. We say that a covariant functor $F: R-\operatorname{Mod} \rightarrow$ $S-\operatorname{Mod}$ is exact if for all R-modules N, M, the map $F: \operatorname{Hom}_{R}(M ; N) \rightarrow \operatorname{Hom}_{S}(F M ; F N)$ is a homomorphism of abelian groups. We say that F is exact if for any short exact sequence $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ of R-modules, the induced sequence $0 \rightarrow F M^{\prime} \rightarrow F M \rightarrow F M^{\prime \prime} \rightarrow 0$ is exact, too.

Let F be an exact functor and C_{\bullet} be a chain complex in R - Mod. Show that there is a natural isomorphism $H_{*}\left(F\left(C_{\bullet}\right)\right) \cong F\left(H_{*}\left(C_{\bullet}\right)\right)$.

Exercise 12.3. Let (X, Y) be a space pair such that $H_{*}(X, Y ; \mathbb{Z} / p)=0$ for all prime numbers p and $H_{*}(X, Y ; \mathbb{Q})=0$. Show that $H_{*}(X, Y ; \mathbb{Z})=0$.
Exercise 12.4. Let $f: X \rightarrow Y$ be a map of spaces. The mapping cylinder Z_{f} of f is the topological space $Y \amalg(X \times[0,1]) / \sim$, where \sim is the equivalence relation $(x, 0) \sim f(x)$ for all $x \in X$. Show that there exists a commutative diagram

where $g: X \rightarrow Z_{f}$ is the map $x \mapsto(x, 1)$ and the right-hand-side vertical map is a homotopy equivalence. Let A be an abelian group. Show that $f_{*}: H_{*}(X ; A) \rightarrow H_{*}(Y ; A)$ is an isomorphism if and only if $H_{*}\left(Z_{f}, X ; A\right)=0$. Conclude with the help of exercise 9.3 that the following are equivalent:
(1) $f_{*}: H_{*}(X ; \mathbb{Z}) \rightarrow H_{*}(Y ; \mathbb{Z})$ is an isomorphism.
(2) $f_{*}: H_{*}(X ; A) \rightarrow H_{*}(Y ; A)$ is an isomorphism for $A=\mathbb{Z} / p$ (for all prime numbers p) and $A=\mathbb{Q}$.

Exercise 12.5. Let $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ be a short exact sequence of R-modules. Show that there exist free resolutions $F_{\bullet}^{\prime} \rightarrow M^{\prime}, F_{\bullet} \rightarrow M, F_{\bullet}^{\prime \prime} \rightarrow M^{\prime \prime}$ and a short exact sequence of chain complexes $0 \rightarrow F_{\bullet}^{\prime} \rightarrow F_{\bullet} \rightarrow F_{\bullet}^{\prime \prime} \rightarrow 0$. Deduce that there is a long exact sequence $0 \rightarrow \operatorname{Hom}\left(M^{\prime \prime}, N\right) \rightarrow \operatorname{Hom}(M, N) \rightarrow \operatorname{Hom}\left(M^{\prime}, N\right) \rightarrow \operatorname{Ext}\left(M^{\prime \prime}, N\right) \rightarrow \operatorname{Ext}(M, N) \rightarrow$ $\operatorname{Ext}\left(M^{\prime}, N\right) \rightarrow \ldots$

