## Exercises for Index theory II

Sheet 4
J. Ebert

To be discussed: 26.06.14-??
The purpose of this set of exercises is to discuss the Spin groups in terms of Clifford algebras. You might want to consult references: the classic paper on the material is Atiyah, Bott, Shapiro: "Clifford modules"; a must-read. A textbook reference is LawsonMichelsohn: "Spin geometry".
Recall that $\mathrm{Cl}^{p, q}$ is the (unital, associative) $\mathbb{R}$-algebra generated by elements $e_{1}, \ldots, e_{p}, \epsilon_{1}, \ldots, \epsilon_{q}$, subject to the relations

$$
e_{i} e_{j}+e_{j} e_{i}=-2 \delta_{i j} ; \epsilon_{i} \epsilon_{j}+\epsilon_{j} \epsilon_{i}=2 \delta_{i j} ; e_{i} \epsilon_{j}+\epsilon_{j} e_{i}=0
$$

We consider $\mathbb{R}^{p+q}=\operatorname{span}\left\{e_{1}, \ldots, e_{p}, \epsilon_{1}, \ldots, \epsilon_{q}\right\}$ as a subspace of $\mathrm{Cl}^{p, q}$. The grading involution on $\mathrm{Cl}^{p, q}$ is the unique automorphism $\alpha$ of $\mathrm{Cl}^{p, q}$ such that $\alpha(v)=-v$. Let $\mathrm{Cl}_{i}^{p, q} \subset \mathrm{Cl}^{p, q}$ be the eigenspace of $\alpha$ to the eigenvalue $(-1)^{i}$. Moreover, we let $*: \mathrm{Cl}^{p, q} \rightarrow \mathrm{Cl}^{p, q}$ be the unique antiautomorphism with $e_{i} \mapsto-e_{i}$ and $\epsilon_{i} \mapsto \epsilon_{i}$.
We identify $\mathbb{R}^{n}$ with its dual space using the standard inner product. Let $\left(v_{1}, \ldots, v_{n}\right)$ be the standard basis. Consider the exterior algebra $\Lambda^{*} \mathbb{R}^{n}$ and the operators

$$
a_{i}(\omega):=v_{i} \wedge \omega ; b_{i}(\omega)=\iota_{v_{i}} \omega
$$

on $\Lambda^{*} \mathbb{R}^{n}$ given by the wedge product and the insertion. The exterior algebra has the standard even/odd grading, given by the involution $\iota$ which is $(-1)^{p}$ on $\Lambda^{p} \mathbb{R}^{n}$.

Exercise 1. Prove that the operators $e_{i}:=a_{i}-b_{i}$ and $\epsilon_{i}:=a_{i}+b_{i}$ define an algebra homomorphism $\gamma: \mathrm{Cl}^{n, n} \rightarrow \operatorname{End}\left(\Lambda^{*} \mathbb{R}^{n}\right)$, which is moreover graded. Moreover, prove that $\gamma\left(x^{*}\right)=\gamma(x)^{*}$ (the latter is the adjoint with respect to the standard scalar product on the exterior algebra) for all $x \in \mathrm{Cl}^{n, n}$. Thus $\gamma$ is a $*$-homomorphism. We call the resulting Clifford module by $\mathbb{S}_{n, n}$ and call it the spinor representation.

Exercise 2. Prove that the map

$$
c: \mathrm{Cl}^{n, 0} \subset \mathrm{Cl}^{n, n} \xrightarrow{x \mapsto \gamma(x) 1} \Lambda^{*} \mathbb{R}^{n}
$$

is an isomorphism of vector spaces (not of algebras). Hint: for dimension reasons, it is enough to prove surjectivity.

Exercise 3. Prove that $\mathbb{S}_{n, n} \otimes \mathbb{S}_{m, m} \cong \mathbb{S}_{m+n, m+n}$ (here we use the exterior tensor product of graded Clifford modules). Prove by induction on $n$ that $\gamma: \mathrm{Cl}^{n, n} \rightarrow \operatorname{End}\left(\Lambda^{*} \mathbb{R}^{n}\right)$ is an isomorphism of algebras.

Exercise 4. Let $\left(\mathrm{Cl}^{n, 0}\right)^{\times}$be the group of units in the Clifford algebra. We define two subgroups: $\Delta_{n} \subset\left(\mathrm{Cl}^{n, 0}\right)^{\times}$is the group of all units $x$ such that $\gamma(x) \in \operatorname{End}\left(\Lambda^{*} \mathbb{R}^{n}\right)$ is orthogonal (equivalently $\gamma(x)^{*} \gamma(x)=\gamma\left(x^{*} x\right)=1$ or $x^{*} x=1$ ), and $\Gamma_{n} \subset\left(\mathrm{Cl}^{n, 0}\right)^{\times}$is the group of all units $x$ such that $\alpha(x) y x^{-1} \in \mathbb{R}^{n}$ for all $y \in \mathbb{R}^{n}$. We define $\operatorname{Pin}(n):=\Delta_{n} \cap \Gamma_{n}$. In a similar way, consider the complexification $\mathbb{S}_{n, n} \otimes \mathbb{C}$, with induced homomorphism $\gamma^{c}: \mathrm{Cl}^{n, 0} \otimes \mathbb{C} \rightarrow \operatorname{End}\left(\mathbb{S}_{n, n} \otimes \mathbb{C}\right)$. Let $\Delta_{n}^{c} \subset\left(\mathrm{Cl}^{n, 0} \otimes \mathbb{C}\right)^{\times}$be those elements $x$ with $\gamma(x)$ unitary and let $\Gamma_{n}^{c}$ be the group of all $x \in\left(\mathrm{Cl}^{n, 0} \otimes \mathbb{C}\right)^{\times}$with $\alpha(x) y x^{-1} \in \mathbb{R}^{n}$ for all $y \in \mathbb{R}^{n}$. We let $\operatorname{Pin}^{c}(n)=\Gamma_{n}^{c} \cap \Delta_{n}^{c}$.
Prove that $\operatorname{Pin}(n)$ and $\operatorname{Pin}^{c}(n)$ are compact Lie groups. Hint: use the nontrivial result from Lie theory that a closed subgroup of $\mathrm{GL}_{k}(\mathbb{R})$ is a Lie group.

The groups $\Gamma_{n}$ and $\Gamma_{n}^{c}$ come with homomorphism $\rho: \Gamma_{n} \rightarrow \mathrm{GL}_{n}(\mathbb{R})$ and $\rho^{c}: \Gamma_{n}^{c} \rightarrow \mathrm{GL}_{n}(\mathbb{R})$ : $x \mapsto\left(y \mapsto \alpha(x) y x^{-1}\right)$.

Exercise 5. Prove that the kernel of $\rho^{c}$ consists of all $z 1, z \in \mathbb{C}^{\times}$. Hint: here you have to work a bit. Pick $x$ in the kernel and write $x$ as a linear combination of the elements $e_{j_{1}} \cdots e_{j_{k}}$. Hence

$$
\operatorname{ker}\left(\rho^{c}: \operatorname{Pin}^{c}(n) \rightarrow O(n)\right) \cong S^{1} ; \operatorname{ker}(\rho: \operatorname{Pin}(n) \rightarrow O(n)) \cong \pm 1
$$

Exercise 6. Prove the inclusions (hence equalities)

$$
O(n) \subset \operatorname{Im}(\rho) \subset \operatorname{Im}\left(\rho^{c}\right) \subset O(n)
$$

Hint: the second inclusion is clear. For the first one, let $x \in \mathbb{R}^{n} \subset \mathrm{Cl}^{n, 0}$ be a unit vector. Prove that $x \in \operatorname{Pin}(n)$ and that $\rho(x) \in \mathrm{GL}_{n}(\mathbb{R})$ is the reflection at the hyperplane $x^{\perp}$. Use that the reflections generate the orthogonal group; this classical result is known as the Cartan-Dieudonné theorem. For the third one, use that $\operatorname{Pin}^{c}(n)$ is compact and that $O(n) \subset \mathrm{GL}_{n}(\mathbb{R})$ is a maximal compact subgroup. This latter statement can be proven nicely using invariant integration: let $K$ be compact, $O(n) \subset K \subset \mathrm{GL}_{n}(\mathbb{R})$. By invariant integration, $K$ leaves an inner product on $\mathbb{R}^{n}$ invariant. Since this inner product is also invariant under $O(n)$, it must be a multiple of the standard scalar product. Hence $K \subset O(n)$.

Altogether, the above exercises prove that there are short exact sequences

$$
1 \rightarrow \pm 1 \rightarrow \operatorname{Pin}(n) \rightarrow O(n) \rightarrow 1 ; 1 \rightarrow S^{1} \rightarrow \operatorname{Pin}^{c}(n) \rightarrow O(n) \rightarrow 1 .
$$

Exercise 7. Show that $\operatorname{Pin}(n) \cap \mathrm{Cl}_{0}^{n, 0}=\rho^{-1}(S O(n))$. This group is called $\operatorname{Spin}(n)$, the Spin group. Similar, $\operatorname{Spin}^{c}(n)=\operatorname{Pin}^{c}(n) \cap \mathrm{Cl}_{0}^{n, 0} \otimes \mathbb{C}=\left(\rho^{c}\right)^{-1}(S O(n))$.

Exercise 8. Show that $\operatorname{Spin}(n)$ and $\operatorname{Spin}^{c}(n)$ are connected, if $n \geq 2$. Hint: why is it enough to study $\operatorname{Spin}(n)$ ? Show that $x(t)=\cos (t)+\sin (t) e_{1} e_{2}$ is a path that connects the two elements in the kernel of $\rho$. Conclude that for $n \geq 3$, the group $\operatorname{Spin}(n)$ is simply-connected $\left(\right.$ since $\left.\pi_{1}(S O(n))=\mathbb{Z} / 2\right)$.

Exercise 9. Let $\gamma: \mathbb{R}^{n} \rightarrow \operatorname{End}\left(\mathbb{S}_{n, n}\right)$ be the Clifford multiplication. Prove that $\gamma$ is $\operatorname{Spin}(n)$-equivariant in the following sense. On the source of $\gamma, \operatorname{Spin}(n)$ acts through the homomorphism $\rho$. As $\operatorname{Spin}(n)$ is a subgroup of the units in $\mathrm{Cl}^{n, 0}$, it acts on $\mathbb{S}_{n, n}$ through $\gamma$ and thus on $\operatorname{End}\left(\mathbb{S}_{n, n}\right)$ (how?).

Exercise 10. Let $V \rightarrow X$ be an $n$-dimensional Riemannian vector bundle. We define a Spin-structure on $V$ to be a pair $(P, \eta)$, where $P \rightarrow X$ is a $\operatorname{Spin}(n)$-principal bundle and $\eta: P \times_{\operatorname{Spin}(n)} \mathbb{R}^{n} \rightarrow V$ an isometry of Riemannian vector bundles. In a similar way, one defines a $\operatorname{Spin}^{c}$-structure, replacing $\operatorname{Spin}(n)$ by $\operatorname{Spin}^{c}(n)$.
Assume that a Spin-structure on $V$ is given. Show (using the last exercise) that $P \times{ }_{\operatorname{Spin}(n)}$ $\mathbb{S}_{n, n} \otimes \mathbb{C}$ is a graded $\mathrm{Cl}\left(V \oplus \mathbb{R}^{0, n}\right)$-module bundle. Now let $n$ be even. Under the algebraic Bott periodicity, we obtain a graded $\mathrm{Cl}(V)$-module bundle $\$_{V} \rightarrow X$, the complex spinor bundle.

Now let $M$ be a Riemannian manifold and $(P, \eta)$ be a spin structure on $T M$. Let $\$_{M}$ be the spinor bundle constructed in the last exercise. It has a graded Dirac operator $\not D$, the Atiyah-Singer-Dirac operator. We wish to compute the index of this operator. This is done in the following steps. Recall that

$$
\operatorname{ind}(\not D)=\int_{M} \lambda\left(\$_{M}\right) \operatorname{Td}(T M \otimes \mathbb{C})
$$

This leaves the computation of $\lambda\left(\$_{M}\right)$, which was defined in the following way. If $V \rightarrow X$ is a rank $2 n$ vector bundle with a spin structure, let $\lambda\left(\$_{V}\right):=\operatorname{th}^{-1}(\operatorname{ch}(\operatorname{abs}(E))) \in H^{*}(X ; \mathbb{R})$, using the Atiyah-Bott-Shapiro map, the Chern character and the Thom isomorphism. This is a characteristic class for $\operatorname{Spin}(2 n)$-principal bundles.
There is a map $\operatorname{Spin}(2)^{n} \rightarrow \operatorname{Spin}(2 n)$, which is not injective, but it is a covering of maximal tori. Since the map $I(\operatorname{Spin}(2 n)) \rightarrow I\left(\operatorname{Spin}(2)^{n}\right)$ is injective, it is enough to compute $\lambda\left(\$_{V}\right)$ for bundles with structural group $\operatorname{Spin}(2)^{n}$. Use the multiplicative structure of all data at hand to reduce to the case $n=1$.
For the case $n=1$, give a direct calculation. Hint: for the result to be proven, you might consult the literature.

