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To be discussed: 26.06.14 - ??

The purpose of this set of exercises is to discuss the Spin groups in terms of Clifford

algebras. You might want to consult references: the classic paper on the material is

Atiyah, Bott, Shapiro: ”Clifford modules”; a must-read. A textbook reference is Lawson-

Michelsohn: ”Spin geometry”.

Recall that Clp,q is the (unital, associative) R-algebra generated by elements e1, . . . , ep, ε1, . . . , εq,

subject to the relations

eiej + ejei = −2δij ; εiεj + εjεi = 2δij ; eiεj + εjei = 0.

We consider Rp+q = span{e1, . . . , ep, ε1, . . . , εq} as a subspace of Clp,q. The grading involu-

tion on Clp,q is the unique automorphism α of Clp,q such that α(v) = −v. Let Clp,qi ⊂ Clp,q

be the eigenspace of α to the eigenvalue (−1)i. Moreover, we let ∗ : Clp,q → Clp,q be the

unique antiautomorphism with ei 7→ −ei and εi 7→ εi.

We identify Rn with its dual space using the standard inner product. Let (v1, . . . , vn) be

the standard basis. Consider the exterior algebra Λ∗Rn and the operators

ai(ω) := vi ∧ ω; bi(ω) = ιviω

on Λ∗Rn given by the wedge product and the insertion. The exterior algebra has the

standard even/odd grading, given by the involution ι which is (−1)p on ΛpRn.

Exercise 1. Prove that the operators ei := ai − bi and εi := ai + bi define an algebra

homomorphism γ : Cln,n → End(Λ∗Rn), which is moreover graded. Moreover, prove that

γ(x∗) = γ(x)∗ (the latter is the adjoint with respect to the standard scalar product on the

exterior algebra) for all x ∈ Cln,n. Thus γ is a ∗-homomorphism. We call the resulting

Clifford module by Sn,n and call it the spinor representation.

Exercise 2. Prove that the map

c : Cln,0 ⊂ Cln,n
x 7→γ(x)1→ Λ∗Rn

is an isomorphism of vector spaces (not of algebras). Hint: for dimension reasons, it is

enough to prove surjectivity.

Exercise 3. Prove that Sn,n⊗Sm,m ∼= Sm+n,m+n (here we use the exterior tensor product

of graded Clifford modules). Prove by induction on n that γ : Cln,n → End(Λ∗Rn) is an

isomorphism of algebras.



Exercise 4. Let (Cln,0)× be the group of units in the Clifford algebra. We define two

subgroups: ∆n ⊂ (Cln,0)× is the group of all units x such that γ(x) ∈ End(Λ∗Rn) is

orthogonal (equivalently γ(x)∗γ(x) = γ(x∗x) = 1 or x∗x = 1), and Γn ⊂ (Cln,0)× is the

group of all units x such that α(x)yx−1 ∈ Rn for all y ∈ Rn. We define Pin(n) := ∆n∩Γn.

In a similar way, consider the complexification Sn,n ⊗ C, with induced homomorphism

γc : Cln,0 ⊗ C → End(Sn,n ⊗ C). Let ∆c
n ⊂ (Cln,0 ⊗ C)× be those elements x with γ(x)

unitary and let Γcn be the group of all x ∈ (Cln,0⊗C)× with α(x)yx−1 ∈ Rn for all y ∈ Rn.

We let Pinc(n) = Γcn ∩∆c
n.

Prove that Pin(n) and Pinc(n) are compact Lie groups. Hint: use the nontrivial result

from Lie theory that a closed subgroup of GLk(R) is a Lie group.

The groups Γn and Γcn come with homomorphism ρ : Γn → GLn(R) and ρc : Γcn → GLn(R):

x 7→ (y 7→ α(x)yx−1).

Exercise 5. Prove that the kernel of ρc consists of all z1, z ∈ C×. Hint: here you have

to work a bit. Pick x in the kernel and write x as a linear combination of the elements

ej1 · · · ejk . Hence

ker(ρc : Pinc(n)→ O(n)) ∼= S1; ker(ρ : Pin(n)→ O(n)) ∼= ±1.

Exercise 6. Prove the inclusions (hence equalities)

O(n) ⊂ Im(ρ) ⊂ Im(ρc) ⊂ O(n).

Hint: the second inclusion is clear. For the first one, let x ∈ Rn ⊂ Cln,0 be a unit

vector. Prove that x ∈ Pin(n) and that ρ(x) ∈ GLn(R) is the reflection at the hyperplane

x⊥. Use that the reflections generate the orthogonal group; this classical result is known

as the Cartan–Dieudonné theorem. For the third one, use that Pinc(n) is compact and

that O(n) ⊂ GLn(R) is a maximal compact subgroup. This latter statement can be

proven nicely using invariant integration: let K be compact, O(n) ⊂ K ⊂ GLn(R). By

invariant integration, K leaves an inner product on Rn invariant. Since this inner product

is also invariant under O(n), it must be a multiple of the standard scalar product. Hence

K ⊂ O(n).

Altogether, the above exercises prove that there are short exact sequences

1→ ±1→ Pin(n)→ O(n)→ 1; 1→ S1 → Pinc(n)→ O(n)→ 1.

Exercise 7. Show that Pin(n) ∩ Cln,00 = ρ−1(SO(n)). This group is called Spin(n), the

Spin group. Similar, Spinc(n) = Pinc(n) ∩ Cln,00 ⊗ C = (ρc)−1(SO(n)).



Exercise 8. Show that Spin(n) and Spinc(n) are connected, if n ≥ 2. Hint: why is it

enough to study Spin(n)? Show that x(t) = cos(t) + sin(t)e1e2 is a path that connects

the two elements in the kernel of ρ. Conclude that for n ≥ 3, the group Spin(n) is

simply-connected (since π1(SO(n)) = Z/2).

Exercise 9. Let γ : Rn → End(Sn,n) be the Clifford multiplication. Prove that γ is

Spin(n)-equivariant in the following sense. On the source of γ, Spin(n) acts through the

homomorphism ρ. As Spin(n) is a subgroup of the units in Cln,0, it acts on Sn,n through

γ and thus on End(Sn,n) (how?).

Exercise 10. Let V → X be an n-dimensional Riemannian vector bundle. We define a

Spin-structure on V to be a pair (P, η), where P → X is a Spin(n)-principal bundle and

η : P ×Spin(n) Rn → V an isometry of Riemannian vector bundles. In a similar way, one

defines a Spinc-structure, replacing Spin(n) by Spinc(n).

Assume that a Spin-structure on V is given. Show (using the last exercise) that P ×Spin(n)

Sn,n⊗C is a graded Cl(V ⊕R0,n)-module bundle. Now let n be even. Under the algebraic

Bott periodicity, we obtain a graded Cl(V )-module bundle /SV → X, the complex spinor

bundle.

Now let M be a Riemannian manifold and (P, η) be a spin structure on TM . Let /SM

be the spinor bundle constructed in the last exercise. It has a graded Dirac operator /D,

the Atiyah-Singer-Dirac operator. We wish to compute the index of this operator. This is

done in the following steps. Recall that

ind( /D) =

∫
M
λ(/SM )Td(TM ⊗ C).

This leaves the computation of λ(/SM ), which was defined in the following way. If V → X is

a rank 2n vector bundle with a spin structure, let λ(/SV ) := th−1(ch(abs(E))) ∈ H∗(X;R),

using the Atiyah-Bott-Shapiro map, the Chern character and the Thom isomorphism. This

is a characteristic class for Spin(2n)-principal bundles.

There is a map Spin(2)n → Spin(2n), which is not injective, but it is a covering of maximal

tori. Since the map I(Spin(2n))→ I(Spin(2)n) is injective, it is enough to compute λ(/SV )

for bundles with structural group Spin(2)n. Use the multiplicative structure of all data at

hand to reduce to the case n = 1.

For the case n = 1, give a direct calculation. Hint: for the result to be proven, you might

consult the literature.


