Exercises for Index theory II

Sheet 4
J. Ebert

To be discussed: 29.05.14
Exercise 1. Derive the Newton formula relating the Chern classes and the Chern character:

$$
\sum_{k=0}^{n}(-1)^{n-k} s_{n-k} c_{k}=0 \in I(U(n)) .
$$

This is done by setting $t=x_{i}$ in the defining identity

$$
\prod_{i=1}^{n}\left(t+x_{i}\right)=\sum_{k=0}^{n} t^{n-k} \sigma_{k}\left(x_{1}, \ldots, x_{n}\right)
$$

and summing over $i=1, \ldots, n$.
Exercise 2. Let $V \rightarrow S^{2 n}$ be a complex vector bundle, $n>0$. Prove that

$$
c_{n}(V)=\frac{(-1)^{n-1}}{(n-1)!} \operatorname{ch}_{n}(V) \in H^{2 n}\left(S^{2 n}\right)
$$

Hint: you need to distinguish the cases $\operatorname{rank}(V)=n ; \ldots<n ; \ldots>n$. For $\operatorname{rank}(V)=n$, use the Newton formula. For $\operatorname{rank}(V)=n-r$, replace V by $V \oplus \mathbb{R}^{r}$. If $\operatorname{rank}(V)>n$, use that V has a section without zeroes to write $V=V_{0} \oplus \mathbb{C}^{k}$ with $\operatorname{rank}\left(V_{0}\right)=n$ and reduce to the case of $\operatorname{rank}(V)=n$.

Exercise 3. Recall that $\int_{S^{2 n}} \operatorname{ch}(V) \in \mathbb{Z}$ (a corollary of Bott periodicity). Use this fact (and the previous exercise, and Gauß-Bonnet) to deduce that $T S^{2 n}$ does not have the structure of a complex vector bundle if $n \geq 4$.

Exercise 4. The spheres are stably parallelizable, and therefore $p\left(T S^{2 n}\right)=1$. Use the relation between Euler and Pontrjagin classes to show that $T S^{4 k}, k \geq 1$, does not have the structure of a complex vector bundle. Hint: a rank $2 k$ complex vector bundle $V \rightarrow S^{4 k}$ satisfies $p_{k}(V)=(-1)^{k} 2 c_{2 k}(V)$.

Exercise 5. Look up the proof that $T \mathbb{C P}^{n} \oplus \mathbb{C} \cong H^{n+1}$ (as usual, $H \rightarrow \mathbb{C P}^{n}$ is the dual tautological line bundle). You find a proof in Milnor-Stasheff's book and another proof in my bordism theory lecture notes, p. 31. Compute the Chern classes and Pontrjagin classes of $T \mathbb{C P}^{n}$. Hint: if $L \rightarrow X$ is a complex line bundle with Chern class $c-1(L)=x$, then $p_{1}(L)=x^{2}$. The relation between Chern classes and Pontrjagin classes of complex vector bundles can be found in Milnor-Stasheff, p. 177.

A very interesting class of manifolds are algebraic hypersurfaces. Let q be a homogeneous polynomial function $\mathbb{C}^{n+2} \rightarrow \mathbb{C}$ of degree d. Then q determines a section s_{q} of the line bundle $H^{\otimes d} \rightarrow \mathbb{C} \mathbb{P}^{n+1}$ (hint: for each line ℓ, consider $s_{q}(\ell)=\left.q\right|_{\ell}$). Assume that $s_{q} \pitchfork 0$ (such polynomials exist, but that is not the point here). Let $V=V_{n, d}:=s_{q}^{-1}(0)$ (this is of course a complex manifold of dimension n and it can be shown that the diffeomorphism type of this manifold only depends on n and d). An important piece of information about these manifolds is the Lefschetz hyperplane theorem which asserts that the inclusion $V \rightarrow \mathbb{C P}^{n+1}$ is n-connected. The proof can be given using Morse theory and can be found in Milnor: Morse Theory.

Exercise 6. Show that the normal bundle of $V_{n, d}$ is $\left.H\right|_{V_{n, d}}$. Let $z:=\left.c_{1}(H)\right|_{V_{n, d}} \in$ $H^{2}\left(V_{n, d}\right)$. Prove that

$$
c(T V)(1+d z)=(1+z)^{n+2} ; p(T V)\left(1+d^{2} z^{2}\right)=\left(1+z^{2}\right)^{n+2} .
$$

Moreover, compute that

$$
\int_{V} z^{n}=d .
$$

Hint: use Theorem 6.3.7 of the lecture notes for the first term.
Exercise 7. Specialize the previous formulae to the case $n=1$ (so V is a connected Riemann surface). Prove that the genus of V is given by $g\left(V_{1, d}\right)=1+\frac{d}{2}(d-3)$. Perform a sanity check for low values of d (this needs some Riemann surface theory).

Exercise 8. Compute the signature and the Euler characteristic of the hypersurfaces $V_{2, d}$ (assuming the Hirzebruch signature formula). Show that if d is even, then $c_{1}(T V)$ is an even multiple of z and that $\int_{V} p_{1}(T V)$ is divisible by 48 in this case.

