Exercises for Index theory II

Sheet 3

J. Ebert

To be discussed: 15.05.14

Exercise 1. Let $V \rightarrow X$ be a complex vector bundle of rank n, and $L \rightarrow Y$ be a line bundle, with first Chern class $c_{1}(L)=x \in H^{2}(Y)$. Prove

$$
c_{1}\left(\Lambda^{n} V\right)=c_{1}(V) ; c_{n}(L \boxtimes V)=\sum_{p=0}^{n} x^{n-p} \times c_{p}(V) \in H^{2 n}(Y \times X) .
$$

Remark: reduce this problem to a computation with invariant polynomials.
Exercise 2. Let G be a Lie group and $g \in G$. Let $c_{g}: G \rightarrow G$ be the automorphism given by conjugation with $g ; c_{g}(h)=g h g^{-1}$. Prove that the induced map $B c_{g}: B G \rightarrow B G$ (determined up to homotopy) is homotopic to the identity. Hint: show that for each G-principal bundle $P \rightarrow X$, the bundle $P \times_{G, c_{g}} G \rightarrow X$ (interprete this notation!) is isomorphic to P, and apply this to the universal bundle $E G \rightarrow B G$.

The following exercises prove the following result, which will be important for us (and enters the proof of the general index formula).

Theorem. Let $q: E \rightarrow M$ be a smooth fibre bundle of closed manifolds (what you need is that E and M are closed and q is a submersion. Assume for simplicity that M is connected and (essential) that the Euler characteristic of the fibre $q^{-1}(x)$ is nonzero. Then the induced maps

$$
q^{*}: H^{*}(M) \rightarrow H^{*}(E)
$$

is injective.
The proof requires three steps: the case when q is a covering, the case when E and M are oriented, and the general case.

Exercise 3. Let $f: M \rightarrow N$ be a k-sheeted covering of closed manifolds. The transfer $\operatorname{trf}_{f}: H^{p}(M) \rightarrow H^{p}(N)$ is defined by the following procedure. Let $\omega \in \mathcal{A}^{p}(M)$ and let $U \subset N$ be such that $f^{-1}(U)=\coprod_{i=1}^{k} U_{i}$. Define $f!: \mathcal{A}^{p}(M) \rightarrow \mathcal{A}^{p}(N)$ by

$$
\left.(f!\omega)\right|_{U}=\sum_{i=1}^{k}\left(\left.f\right|_{U_{i}}\right)^{-1, *} \omega \in \mathcal{A}^{p}(U)
$$

Prove that this is a well-defined chain map $\mathcal{A}^{*}(M) \rightarrow \mathcal{A}^{*}(N)$, which induces the transfer on cohomology. Show that

$$
f_{!}\left(f^{*}(x)\right)=k x
$$

for each $x \in H^{*}(N)$ and conclude that the induced map $f^{*}: H^{*}(N) \rightarrow H^{*}(M)$ is injective.
Exercise 4. Let E and M be closed oriented and $q: E \rightarrow M$ be a submersion (this is a fibre bundle, by Ehresmann's fibration lemma). Let M be connected and $F:=q^{-1}(x)$. Assume that $\chi\left(F 9 \neq 0\right.$. Prove the Theorem under this assumption. Hints: let $T_{v} E:=$ $\operatorname{ker}(d q)$ be the vertical tangent bundle. Define the transfer $\operatorname{trf}_{q}: H^{p}(E) \rightarrow H^{p}(M)$ by

$$
\operatorname{trf}_{q}(\omega)=q_{!}\left(e\left(T_{v} E\right) \omega\right)
$$

Show that $\operatorname{trf}_{f} \circ f^{*}=\chi(F) \cdot$.
Exercise 5. Use the previous two exercises to show the theorem. Hint: orientation cover.

