Exercises for Index theory II

Sheet 2
J. Ebert

To be discussed: 08.05.14
Exercise 1. (K-theory of a surface) Last term, we proved that a connected oriented closed surface has $K^{0}(X) \cong \mathbb{Z}^{2}$. The main ingredient was the theory of the first Chern class and the theorem that homotopy classes $\left[X, S^{2}\right]$ are given by the mapping degree. Give a proof that uses Bott periodicity instead. Hint: use the classification of surfaces; X is a 2-dimensional CW complex with $X^{(1)}=\bigvee^{2 g} S^{1}$ and $X / X^{(1)} \cong S^{2}$. You need to know $K^{0}\left(S^{2}\right)$ and a tiny bit of the first Chern class.
Exercise 2. (The Gysin sequence) Let $\pi: V \rightarrow X$ be a hermitian vector bundle over a compact space, with Thom class $\mathbf{t}_{V} \in K^{0}(D V, D V)$ and zero section $\iota: V \rightarrow D V$. We let $\mathbf{e}(V):=\iota^{*} \mathbf{t}_{V} \in K^{0}(X)$ be the K-theoretic Euler class. Use the long exact sequence of the pair ($D V, S V$) and the Thom isomorphism to derive a long exact sequence

$$
K^{0}(X) \xrightarrow{\text { e. }} K^{0}(X) \xrightarrow{\pi^{*}} K^{0}(S V) \rightarrow K^{-1}(X) \ldots,
$$

the Gysin sequence
The following exercises will give the proof of the following result
Theorem. Let $\mathbf{x}:=1-[H] \in K^{0}\left(\mathbb{C P}^{n}\right)$. There is an isomorphism $\mathbb{Z}[\mathbf{x}] /\left(\mathbf{x}^{n+1}\right) \cong$ $K^{0}\left(\mathbb{C P}^{n}\right)$; and $K^{-1}\left(\mathbb{C P}^{n}\right)=0$.
Exercise 3. Prove that $K^{-1}\left(\mathbb{C P}^{n}\right)=0$ and that $K^{0}\left(\mathbb{C P}^{n}\right)$ is free abelian of rank $n+1$; by induction on n. Use the pair $\left(\mathbb{C P}^{n}, \mathbb{C P}^{n-1}\right)$.
Exercise 4. Show that $\mathbf{x}^{n+1}=0 \in K^{0}\left(\mathbb{C P}^{n}\right)$. Hint: Use the fact that for each codimension 1 subspace $V \subset \mathbb{C}^{n+1}$, there is a section s of H such that $s^{-1}(0)=\mathbb{P} V$. Therefore, \mathbf{x} lies in the image of $K^{0}\left(\mathbb{C P}^{n}, \mathbb{C P}^{n}-\mathbb{P} V\right) \rightarrow K^{0}\left(\mathbb{C P}^{n}\right)$. Use that if $V_{0}, \ldots, V_{n} \subset \mathbb{C}^{n+1}$ are in general position, then $\cap_{i=0}^{n} \mathbb{P} V_{i}=\emptyset$.

Exercise 5. Use the Gysin sequence and the previous two exercises to reduce the proof of the theorem to the following purely algebraic lemm:

Lemma. Let R be a commutative ring with unit, and assume that $R \cong \mathbb{Z}^{n+1}$ as abelian group. Let $I \subset R$ be an ideal, such that $I \oplus \mathbb{Z} \rightarrow R,(x, a) \mapsto x+a \cdot 1$ is an isomorphism of abelian groups. Let $\mathbf{x} \in I \subset R$ be an element with $\mathbf{x}^{n+1}=0$ and such that $\mu_{\mathbf{x}}: R \rightarrow I$, $y \mapsto \mathbf{x} y$ is surjective. Show that $\mathbb{Z}[\mathbf{x}] /\left(\mathbf{x}^{n+1}\right) \rightarrow R$ is an isomorphism of rings.
Exercise 6. Prove the lemma!

