

C*-Algebras Associated to Irreversible Algebraic Dynamics

Nicolai Stammeier, Westfälische Wilhelms-Universität Münster

Setting

Irreversible algebraic dynamics (G, \mathcal{P}, θ) :

Let G be a discrete, abelian group and \mathcal{P} a semigroup with unit e isomorphic to \mathbb{N}^k or $\bigoplus \mathbb{N}$. Suppose further:

Results

The core \mathcal{F} , given by as the fixed point algebra of the natural gauge action of $\widetilde{\mathcal{P}^{-1}\mathcal{P}}$ and its **diagonal** \mathcal{D} , generated by $e_{p,q}$, play a dominant role for the structure of $\mathcal{O}[G, \mathcal{P}, \theta]$:

 $\mathcal{O}[G, \mathcal{P}, \theta] \cong C(G_{\theta}) \rtimes (G \rtimes_{\theta} \mathcal{P})$

- $\mathcal{P} \stackrel{\theta}{\frown} G$ is an action by group monomorphisms with **finite cokernel**,
- $p \wedge q = e \text{ in } \mathcal{P} \iff \theta_p(G) + \theta_q(G) = G \text{ (independence),}$
- $\bigcap \theta_p(G) = \{0\}$ (exactness).

C*-algebraic construction:

Let $\mathcal{O}[G, \mathcal{P}, \theta]$ be the universal C*-algebra generated by

- a unitary representation $(u_q)_{q\in G}$ of G and
- an isometric represenstation $(s_p)_{p \in \mathcal{P}}$ of the semigroup \mathcal{P} subject to the relations :

(CNP 1)	$s_p^*s_q = s_q s_p^*$	for all rel. prime $p, q \in \mathcal{P}$.
(CNP 2)	$s_p u_g = u_{\theta_p(g)} s_p$	for all $p \in \mathcal{P}, g \in G$.
(CNP 3)	$\sum e_{p,g} = 1$	for all $p \in \mathcal{P}$,
	$[g] \in \overline{G/\theta_p(G)}$	
	* *	

where
$$e_{p,g} = u_g s_p s_p^* u_g^*$$
.

Motivation

	J	
\bigcup		\bigcup
${\cal F}$	\simeq	$C(G_{\theta}) \rtimes G$
\bigcup		\bigcup
${\cal D}$	\simeq	$C(G_{ heta})$

- where $G_{\theta} := \varprojlim_{\mathcal{P}} G/\theta_p(G)$. Facts:
- $\mathcal{O}[G, \mathcal{P}, \theta]$ is the Cuntz-Nica-Pimsner algebra of the product system of finite type associated to (G, \mathcal{P}, θ) .
- \mathcal{F} is a generalized Bunce-Deddens algebra in the sense of [5] and hence has many regularity properties. According to [1], it is classified by its Elliott invariant.
- $\mathcal{O}[G, \mathcal{P}, \theta]$ is a unital UCT Kirchberg algebra.
- The canonical representation of $\mathcal{O}[G, \mathcal{P}, \theta]$ on $\ell^2(G)$ is faithful.
- $C^*(G)$ is a masa in $\mathcal{O}[G, \mathcal{P}, \theta]$.
- $\mathcal{O}[G, \mathcal{P}, \theta]$ is simple if and only if θ is exact.

The case of a single endomorphism has been studied by Joachim Cuntz and Anatoly Vershik in [2], where they exhibit several interesting features of the algebra. Additionally, they considered an analogous construction for a polymorphism given by two independent endomorphisms. This revealed signs that multiply generated systems may yield intriguing algebras that go beyond the scope of singly generated systems.

In [3], Jeong Hee Hong, Nadia S. Larsen and Wojciech Szymański introduced a notion of finite type product systems of Hilbert bimodules in order to study the KMS structure on the corresponding Nica-Toeplitz algebras. It is already implicit in [3] that irreversible algebraic dynamics give rise to optimal examples for these product systems of finite type.

Examples

- $G = \mathbb{Z}, \mathcal{P} \subset \mathbb{Z}^{\times}$ acting by multiplication is exact. p, q are relatively prime in \mathbb{Z} if and only if $p\mathbb{Z} + q\mathbb{Z} = \mathbb{Z}$.
- For $G = \mathbb{Z}^d$, $\theta_p \in M_d(\mathbb{Z})$ such that $|\det(\theta_p)| > 1$ unless p = e. Relatively prime determinants yield a sufficient criterion for independence. Exactness is related to the eigenvalues of the matrices.

Current projects

Modifying (CNP 3) to get the natural Toeplitz extension $\mathcal{NT}[G, \mathcal{P}, \theta]$, we obtain

 $\mathcal{NT}[G, \mathcal{P}, \theta] \cong \mathcal{D}_{\mathcal{NT}} \rtimes (G \rtimes_{\theta} \mathcal{P}) \cong C^*(G \rtimes_{\theta} \mathcal{P}),$

where the C*-algebra of the semigroup $G \rtimes_{\theta} \mathcal{P}$ is to be understood in the sense of Xin Li, see [4]. The structure of these and closely related algebras is being analysed in a joint project with Nathan Brownlowe and Nadia S. Larsen.

A modified construction that allows for endomorphisms with infinite cokernel is being developed. However, there is evidence that $C^*(G \rtimes_{\theta} \mathcal{P})$ may already be simple in this case, see [6].

Using k-graphs and a certain discretization procedure, a possibly different algebra is obtained. Since it is likely to be a unital UCT Kirchberg algebra, this difference can be measured in terms of K-theory.

• $G = \mathcal{R}$: the ring of integers of an algebraic number field, $\mathcal{P} \subset \mathcal{R}^{\times}$ satisfying $\mathcal{P} \cap \mathcal{R}^* = \{1\}$ and θ given by multiplication. Exactness is automatic and independence relates to prime ideal factorization.

• $G = \mathbb{Z}^2$ with $\mathcal{P} \cong \mathbb{N}^2$ acting via $\begin{pmatrix} 1 & -5 \\ 1 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 5 \\ -1 & 1 \end{pmatrix}$ also satisfies the hypotheses, although both generators have the same determinant. Note that the system is isomorphic to the one given by multiplication with $1 + \sqrt{-5}$ and $1 - \sqrt{-5}$ on $G = \mathbb{Z}[\sqrt{-5}]$, which is the ring of integers in $\mathbb{Q}(\sqrt{-5})$.

References

- [1] Carrión, J.: Classification of a class of crossed product C*-algebras associated with residually finite *groups*, J. Funct. Anal. **260** (2011)
- [2] Cuntz, J., Vershik, A.: C*-algebras associated with endomorphisms and polymorphisms of compact *abelian groups*, arxiv:1202.5960 (2012)
- [3] Hong, J.H., Larsen, N.S., Szymański, W.: KMS states on Nica-Toeplitz algebras of product systems, Internat. J. Math. **23** (2012)
- [4] Li, X.: Semigroup C*-algebras and amenability of semigroups, J. Funct. Anal. **262** (2012) [5] Orfanos, S.: Generalized Bunce-Deddens algebras, Proc. Amer. Math. Soc. 138 (2010)

[6] Vieira, F.: *C*-algebras associated with endomorphisms of groups*, arxiv:1308.1386 (2013)

living knowledge

www.wwu.de/math/sfb878 n.stammeier@wwu.de

