The universal operator algebras \mathcal{A}_{I}

A basic question

Let $p_1, \ldots, p_r \in \mathbb{C}[z_1, \ldots, z_d]$. Consider the set of equations

$$p_1(z_1, \dots, z_d) = 0$$

:
$$p_r(z_1, \dots, z_d) = 0.$$

In complex algebraic geometry, the set of solutions $(z_1, \ldots, z_d) \in \mathbb{C}^d$ is studied. We ask: Which commuting tuples $(T_1, \ldots, T_n) \in \mathcal{B}(\mathcal{H})$ of operators satisfy these equations?

If we require that the tuple (T_1, \ldots, T_d) is a row contraction, that is, that $\sum_{i=1}^d T_i T_i^* \leq 1$, then there is a universal solution.

Definition of \mathcal{A}_{l}

Let $I \subset \mathbb{C}[z_1, \ldots, z_d]$ be a radical homogeneous ideal. We define \mathcal{A}_I to be the *universal operator* algebra generated by a commuting row contraction satisfying the relations in I.

Some remarks

Remarks on the definition of A_{I}

1. \mathcal{A}_{I} is a *non self-adjoint* operator algebra.

2. The algebra \mathcal{A}_I is generated by a commuting row contraction $S = (S_1, \ldots, S_d)$ with

$$p(S) = 0$$
 for all $p \in I$,

and has the following universal property: Given any commuting row contraction $T = (T_1, \ldots, T_d)$ on a Hilbert space \mathcal{H} satisfying p(T) = 0 for all $p \in I$, there is a unique unital completely contractive algebra homomorphism

 $\mathcal{A}_{I} \to \mathcal{B}(\mathcal{H}), \quad S_{i} \mapsto T_{i} \quad (i = 1, \dots, d).$

3. A_I can be realized as an algebra of analytic functions on the variety associated to I.

Example

If d = 1 and $I = \{0\}$, then \mathcal{A}_I is the disk algebra by von Neumann's inequality.

SFB-workshop: Groups, dynamical systems and C*-algebras, Münster, August 20-24, 2013 Universal operator algebras associated to homogeneous varieties

Michael Hartz University of Waterloo, Canada mphartz@uwaterloo.ca

The isomorphism problem for t

Kenneth R. Davidson, Christopher Ramsey, and Orr Shalit as

Question

Let $I, J \subset \mathbb{C}[z_1, \ldots, z_d]$ be two radical homogeneous ideals or topologically isomorphic?

$$\mathcal{V}(I) = \{z \in \mathbb{C}^d : p(z) = 0 \text{ for }$$

be the vanishing locus of I.

Theorem (Davidson, Ramsey, Shalit 2011)

The following are equivalent:

(i) \mathcal{A}_I and \mathcal{A}_J are isometrically isomorphic.

(ii) There is a unitary on \mathbb{C}^d which maps V(J) onto V(I).

Topological isomorphisms

The question about topological isomorphisms is more difficult

Theorem (Davidson, Ramsey, Shalit 2011)

Consider the following assertions:

(i) \mathcal{A}_I and \mathcal{A}_J are topologically isomorphic.

(ii) There is an invertible linear map on \mathbb{C}^d which maps V(J)

Then (i) \Rightarrow (ii) holds. Moreover, (ii) \Rightarrow (i) is true if the geo complicated.

Conjecture (Davidson, Ramsey, Shalit 2011

The implication (ii) \Rightarrow (i) in the preceding theorem is true i

References

- [1] Kenneth R. Davidson, Christopher Ramsey, and Orr Mos for some universal operator algebras, Adv. Math. 228 (20
- [2] Michael Hartz, Topological isomorphisms for some univer **263** (2012), no. 11, 3564–3587.

he algebras \mathcal{A}_l	Sums of Fock spaces
sked in [1]:	For a Hilbert space E with dim $(E) < \infty$
s. When are \mathcal{A}_{l} and \mathcal{A}_{J} isometrically	denote the full Fock space.
	A reduction
all $p \in I$ }	To establish the conjecture, it suffice $V_1, \ldots, V_r \subset \mathbb{C}^d$, the algebraic sum
	$\mathcal{F}(V_1)$
	is closed.
	Theorem (H. 2012)
	Given finitely many subspaces V_1, \ldots ,
	$\mathcal{F}(V_1)$
	is closed. Hence, the conjecture holds
t.	
	A key point in the p
onto $V(I)$ and is isometric on $V(J)$. cometry of $V(J)$ and $V(I)$ is not too	Projections can be used to determine if
	$\mathcal{A} = C^* \Big([P_{\mathcal{F}(V)}] \Big) \Big)$
	${\mathcal A}$ contains the information of whether .
in general.	Key lemma
	Without loss of generality, we may assure representation $\pi:\mathcal{A} o\mathcal{B}(\mathcal{K})$ satisfies
	$\pi\Big([P_{\mathcal{F}(V_i)}]\Big)$
	Roughly speaking, the key lemma says the subspaces. This makes an inductive argu
she Shalit, <i>The isomorphism problem</i> 011), no. 1, 167–218. <i>rsal operator algebras</i> . J. Funct. Anal.	

 ∞ , let

$$\mathcal{F}(E) = \bigoplus_{n=0}^{\infty} E^{\otimes n}$$

ces to show that for any finite collection of subspaces

 $0 + \ldots + \mathcal{F}(V_r) \subset \mathcal{F}(\mathbb{C}^d)$

, $V_r \subset \mathbb{C}^d$, the algebraic sum $0 + \ldots + \mathcal{F}(V_r) \subset \mathcal{F}(\mathbb{C}^d)$

roof of the main result

algebraic sums are closed. Let $\mathcal{H} = \mathcal{F}(\mathbb{C}^d)$ and let

 $[\mathcal{M}_{1}],\ldots,[\mathcal{P}_{\mathcal{F}(\mathcal{V}_{r})}])\subset\mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H}).$

 $\mathcal{F}(V_1) + \ldots + \mathcal{F}(V_r)$ is closed.

ume that $V_1 \cap \ldots \cap V_r = \{0\}$. In this case, every irreducible

= 0 for some $i \in \{1, ..., r\}$.

hat every irreducible representation does not see one of the ument possible.