Michael Hartz

The universal operator algebras \mathcal{A}_{l}

Some remarks

Remarks on the definition of \mathcal{A}_{1}
 1. \mathcal{A}, is a non self-adjoint operator algebra.
 2. The algebra \mathcal{A}, is generated by a commuting row contraction $S=\left(S_{1}, \ldots, S_{d}\right)$ with
 $$
p(S)=0 \quad \text { for all } p \in 1,
$$

and has the following universal property:
Given any commuting row contraction $T=\left(T_{1}, \ldots, T_{d}\right)$ on a Hilbert space \mathcal{H} satisfying $p(T)=0$ for all $p \in I$, there is a unique unital completely contractive algebra homomorphism

$$
\mathcal{A}_{l} \rightarrow \mathcal{B}(\mathcal{H}), \quad S_{i} \mapsto T_{i} \quad(i=1, \ldots, d) .
$$

3. \mathcal{A}, can be realized as an algebra of analytic functions on the variety associated to I.

Example

If $d=1$ and $I=\{0\}$, then \mathcal{A}, is the disk algebra by von Neumann's inequality

The isomorphism problem for the algebras $\mathcal{A}_{\text {/ }}$

Kenneth R. Davidson, Christopher Ramsey, and Orr Shalit asked in [1]:

Question

Let $I, J \subset \mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$ be two radical homogeneous ideals. When are \mathcal{A}, and \mathcal{A}, isometrically
or topologically isomorphic?
Let
$V(I)=\left\{z \in \mathbb{C}^{d}: p(z)=0\right.$ for all $\left.p \in /\right\}$
be the vanishing locus of $/$
Theorem (Davidson, Ramsey, Shalit 2011)
The following are equivalent:
(i) \mathcal{A}_{l} and \mathcal{A}_{J} are isometrically isomorphic.
(i)
(ii) There is a unitary on \mathbb{C}^{d} which maps $V(J)$ onto $V(I)$.

Topological isomorphisms

The question about topological isomorphisms is more difficult.
Theorem (Davidson, Ramsey, Shalit 2011)
Consider the following assertions:
(i) \mathcal{A}_{l} and \mathcal{A}, are topologically isomorphic.
(ii) There is an invertible linear map on \mathbb{C}^{d} which maps $V(J)$ onto $V(I)$ and is isometric on $V(J)$. Then (i) \Rightarrow (ii) holds. Moreover, (ii) \Rightarrow (i) is true if the geometry of $V(J)$ and $V(I)$ is not too
complicated. complicated.

Conjecture (Davidson, Ramsey, Shalit 2011)
The implication (ii) \Rightarrow (i) in the preceding theorem is true in general.

References

[1] Kenneth R. Davidson, Christopher Ramsey, and Orr Moshe Shalit, The isomorphism problem for some universal operator algebrasa, Adv. Math. 228 (2011), no. 1, 167-218.
for some universal operator algebras, Adv. Math. 228 (2011), no. 1, 167-218.
[2] Michael Hartz, Topological isomorphisms for some universal operator algebras, J. Funct. Anal. 263 (2012), no. 11, 3564-3587.

Sums of Fock spaces

```
For a Hilbert space E with dim}(E)<\infty, le
        \mathcal{F}}(E)=\mp@subsup{\bigoplus}{n=0}{\infty}\mp@subsup{E}{}{\otimesn
```

denote the full Fock space.
A reduction
To establish the conjecture, it suffices to show that for any finite collection of subspaces
$V_{1}, \ldots, V_{r} \subset \mathbb{C}^{d}$, the algebraic sum
$\mathcal{F}\left(V_{1}\right)+\ldots+\mathcal{F}\left(V_{r}\right) \subset \mathcal{F}\left(\mathbb{C}^{d}\right)$
is closed.

Theorem (H. 2012)
Given finitely many subspaces $V_{1}, \ldots, V_{r} \subset \mathbb{C}^{d}$, the algebraic sum
is closed. Hence, the conjecture holds.

A key point in the proof of the main result
Projections can be used to determine if algebraic sums are closed. Let $\mathcal{H}=\mathcal{F}\left(\mathbb{C}^{d}\right)$ and let

$$
\mathcal{A}=C^{*}\left(\left[P_{\mathcal{F}\left(V_{1}\right)}\right], \ldots,\left[P_{\mathcal{F}\left(V_{V}\right)}\right]\right) \subset \mathcal{B}(\mathcal{H}) / \mathcal{K}(\mathcal{H}) .
$$

\mathcal{A} contains the information of whether $\mathcal{F}\left(V_{1}\right)+\ldots+\mathcal{F}\left(V_{r}\right)$ is closed.
Key lemma
Without loss of generality, we may assume that $V_{1} \cap \ldots \cap V_{r}=\{0\}$. In this case, every irreducible representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{K})$ satisfies
$\pi\left(\left[P_{\mathcal{F}\left(V_{i}\right)}\right]\right)=0 \quad$ for some $i \in\{1, \ldots, r\}$.
Roughly speaking, the key lemma says that every irreducible representation does not see one of the subspaces. This makes an inductive argument possible.

