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Rieffel Induction

1 Let X be a right Hilbert B-module together with a
∗-homomorphism φ : A→ L(X).

2 Then we view X as an A – B-bimodule: a · x := φ(a)(x) so
that 〈a · x , y〉

B
= 〈x , a∗ · y〉

B
.

3 Then we call (X, φ) an A – B-correspondence.

4 Let π : B → B(H) be a representation.

5 Then X �H is a pre-Hilbert space with respect to the
pre-inner product

(x ⊗ h | y ⊗ k) :=
(
π
(
〈y , x〉

B

)
h | k

)
.

6 Then the induced representation of A, IndA
B π acts on the

completion X⊗B H by

(IndA
B π)(a)[x ⊗ h] := [a · x ⊗ h].
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Motivation: Rieffel ’74 + Green ’76

1 Recall that a dynamical system (A,G , α) is a strongly
continuous homomorphism α : G → Aut A.

2 This allows us to endow Cc(G ,A) with a ∗-algebra structure:

f ∗ g(s) =

∫
G

f (r)αr (g(r−1s)) dr and f ∗(s) = αs(f (s−1)∗).

3 The crossed product, A oα G is the enveloping C ∗-algebra of
Cc(G ,A).

4 In particular, its representations L := π o U are in one-to-one
correspondence to covariant pairs (π,U) consisting of a
representation π : A→ B(H) and U : G → U(H) such that
π(αs(a)) = U(s)π(a)U(s)∗.

5 If A = C, Co G ∼= C ∗(G ). If G = {e}, then A o G = A and
if αs = id for all s, A oα G ∼= A⊗max C ∗(G ).
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The Fundamental Example

Example (Ignoring Modular Functions)

1 Let (A,G , α) be a dynamical system and H a closed subgroup
of G so that (A,H, α|H) is a subsystem.

2 View X0 = Cc(G ,A) as a pre-Hilbert A oα|H H-module:

〈f , g〉
Cc (H)

= f ∗ ∗ g |H and

f · b(s) =

∫
H

f (st−1)αsh(b(t)) dµH(t),

and complete to a Hilbert A oα|H H-module X = XG
H .

3 Then Cc(G ,A) ⊂ A oα G acts on XG
H via “convolution”:

f · [g ] = [f ∗ g ] for f , g ∈ Cc(G ).

4 This makes XG
H into a A oα G – A oα|H H-correspondence, and

we can induce representations L of A oα|H H to a

representation IndG
H L of A oα G .
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Mackey Induction

Example (Rieffel, 1974)

Let H be a closed subgroup of G . Then if we let A = C in the
above and let ω be a representation of H, then the representation
IndG

H ω of G obtained via the correspondence XG
H is (unitarily

equivalent to) Mackey’s induced representation.
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Morita Equivalence

1 A particularly friendly example of Rieffel induction occurs
when X is an A – B-correspondence with 〈· , ·〉

B
full and

φ : A→ L(X) is an isomorphism onto the generalized compact
operators K(X) on X. (Recall that K(X ) is a closed span of
the rank-one operators Θx ,y where Θx ,y (z) := x · 〈y , z〉

B
.)

2 In this case, the situation is symmetric. The bimodule X is
also a full left Hilbert A-module with respect to the inner
product

A
〈x , y〉 = φ−1(Θx ,y ).

3 Then induction provides an “isomorphism of the
representation theories” of A and B, and we usually write
X–Ind in place of IndA

B .

4 In particular, X–Indπ is irreducible if and only if π is
irreducible.
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Mackey’s Imprimitivity Theorem

1 Recall that representations of crossed products A oα G are in
one-to-one correspondence with covariant pairs (π,U) where
π : A→ B(H) is a representation and U : G → U(H) is a
unitary representation such that π(αs(a)) = U(s)π(a)U(s)∗.

2 In particular, representations of C0(G/H) olt G are in
one-to-one correspondence with “systems of imprimitivity” for
representations U of G . That is, with covariant pairs (M,U)
of (C0(G/H),G , lt): M(lts(φ)) = U(s)M(φ)U(s)∗ where
lts(φ)(rH) = φ(s−1rH).

3 Then we obtain Mackey’s Imprimitivity Theorem from the
observation that K(XG

H) is isomorphic to C0(G/H) olt G :
untangling gives us the result that a representation of U of G
is induced from a representation π of H exactly when there is
a system of imprimitivity M such that (M,U) is convariant
and therefore a representation of C0(G/H) olt G .
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Inducing Irreducible Representations — Base Case

1 Consider a dynamical system (A,G , α) with A = C0(X ) and
αs(f )(x) = f (s−1 · x).

2 For x ∈ X , let Gx = { s ∈ G : s · x = x } and let ω be a
representation of Gx .

3 If evx : C0(X )→ C is evaluation at x , then (evx , ω) is a
covariant representation of C0(X ) oα|Gx Gx .

Theorem (Mackey ’49, Glimm ’62)

For each x ∈ X and every irreducible representation ω of Gx , the
representation L = IndG

Gx
(evx oω) induced from the stability group

Gx is an irreducible representation of C0(X ) oα G .
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Proof

Sketch of the Proof: [ W ’79].

We easily see that ω irreducible implies evx oω is irreducible.
Hence X–Ind(evx oω) ∼= (M ⊗ N) o U is an irreducible

representation of C0(G/Gx)⊗ C0(X ) olt⊗α G ∼=Green K(XG
Gx

) on
HL for suitable representations M of C0(G/Gx), N of C0(X ) and
U of G . However L := IndG

Gx
(evx oω) ∼= N o U for the same N

and U.

We want to see that any operator on HL commuting with the
image of L is a scalar. Therefore it will suffice to show that if T
computes with the image of N (and U), then it also commutes
with the image of M. (This will force T to commute with the
image of the irreducible representation X–Ind(evx oω).) This is
easy if G · x = { s · x : s ∈ G } is closed and homeomorphic to
G/Gx . The general case follows via some topological gymnastics
and playing around in the weak operator topology.
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Effros-Hahn Conjecture

1 If the action of G on X is nice — so that, orbits are locally
closed — then every irreducible representation of C0(X ) oα G
is induced from a stability group as above.

2 In their 1967 Memoir, E. Effros and F. Hahn conjectured that
if G was amenable, then every primitive ideal is induced from
a stability group. (That is, every primitive ideal is the kernel of
an irreducible representation induced from a stability group.)

3 In the early 70s, P. Green and others formulated the
Generalized Effros-Hahn Conjecture: Given a dynamical
system (A,G , α) with G amenable and a primitive ideal
J ∈ Prim A oα G , then there is a primitive ideal P ∈ Prim A
and an irreducible representation π o U of A oα|GP

GP with

ker π = P such that J = ker(IndG
GP
π o U).

4 If the action of G on Prim A is nice, then it is not hard to see
that all primitive ideals are induced, as above, from stability
groups.
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The Solution and the another Problem

1 In 1979, building on work of J.-L. Sauvagoet, E. Gootman and
J. Rosenberg verified the Effros-Hahn conjecture for separable
systems.

2 Then, combined with the result on inducing irreducible
representations from stability groups, we get a very simple
picture of the primitive ideal space of C0(X ) oα G .

3 But the GRS-Theorem does not say that if π o U is an
irreducible representation of A oα|GP

GP with P = ker π, then

IndG
GP

(π o U) is irreducible — even if G is amenable.

4 This is (yet another) serious impediment to employing the
GRS-Theorem to obtain a global description of the primitive
ideal space of crossed products A oα G with A
non-commutative.
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The Conjecture

Definition

We say that (A,G , α) satisfies the strong Effros-Hahn Induction
property (strong-EHI) if given P ∈ Prim A and an irreducible
representation π o U of A oα|GP

GP with ker π = P, then

IndG
Gp

(π o U) is irreducible. (We say that (A,G , α) statisfies the

Effros-Hahn Induction property (EHI) if the above is true at the level of
primitive ideals.)

Conjecture (Echterhoff & W, 2008)

Every separable dynamical system (A,G , α) satisfies EHI.

Remark

In any case were we can prove that EHI holds, we can also show
that strong-EHI holds.
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What is True

1 Recall that a representation π : A→ B(H) is called
homogeneous if every non-zero sub-representation of π has
the same kernel as π.

Theorem (Echterhoff & W)

Suppose that (A,G , α) is separable, P ∈ Prim A and π o U is an
irreducible representation of A oα|Gp GP with ker π = P. If π is

homogeneous, then IndG
GP

(π o U) is irreducible.

Sketch of the Proof.

Morita theory implies that X–Ind(π o U) ∼= (M ⊗ ρ) o U is an
irreducible representation of K(XG

GP
) ∼= C0(G/GP)⊗ A olt⊗α G .

Moreover, IndGGP
π o U ∼= ρo U. Homogeneity is used to invoke a

1963 result of Effros to produce an ideal center decomposition of ρ
which implies that the range of M is in the center of ρ(A). Now
the proof proceeds as in the transformation group case.
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Some Cases Where Strong-EHI Holds

Remark

Unfortunately, examples show that π o U irreducible does not
always imply that π is homogeneous. Nevertheless, there are some
very general situations where our strong-EHI follows from our
theorem.

Theorem (Echterhoff & W)

Let (A,G , α) be separable. Then it satisfies strong-EHI in the
following cases.

1 A is type I or more generally points in Prim A are locally
closed.

2 A is a sub-quotient of the group C ∗-algebra of an almost
connected locally compact group.

3 GP is normal in G for all P ∈ Prim A (for example, if G is
abelian).
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One Construction to Rule Them All

C0(X ) o G //

��

C ∗(G ) //

��

C ∗(G , σ)

��
A o G //

��

Ao G //

��

C ∗(G ; E )

ww
A oτ G // C ∗(G ; E ;A, χ)

��
C ∗(G ,B)

Transformation Group C ∗-Algebras Groupoid C ∗-Algebras Crossed
Product C ∗-Algebras Groupoid Crossed Product C ∗-Algebras
Twists of various sorts Combine Fell Bundle C ∗-Algebras
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Fell Bundles

Definition

A Fell bundle over a groupoid G is an upper semicontinuous
Banach bundle p : B → G equipped with a partial multiplication
(a, b) 7→ ab from B(2) := { (a, b) : (p(a), p(b)) ∈ G (2) } and an
involution a 7→ a∗, both compatible with the groupoid structure,
such that

1 For all u ∈ G (0), B(u) is a C ∗-algebra with respect to the
inherited operations and

2 For all x ∈ G , B(x) is a B(r(x)) – B(s(x))-imprimitivity
bimodule with respect to the inherited module actions and
inner products

B(r(x))
〈a , b〉 = ab∗ and 〈a , b〉

B(s(x))
= a∗b.
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Fell Bundle C ∗-Algebras

Provided G has a Haar system, we make Γc(G ,B) into a
∗-algebra:

f ∗ g(x) :=

∫
G

f (y)g(y−1x) dλr(x)(y) and

f ∗(x) = f (x−1)∗.

Which only makes sense since B(y)B(y−1x) = B(x) and
B(x−1)∗ = B(x).

Just as for groupoids, we have a universal norm:

‖f ‖ := sup{ ‖L(f )‖ : L is a suitably continuous representation }.

and we can complete to get the associated C ∗-algebra
C ∗(G ,B).

Note that A := Γ0(G (0),B|G (0)) is a C ∗-algebra.

One should think of C ∗(G ,B) as a generalized crossed
product of A by the groupoid G .
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Motivating Example

1 Let (A,G , α) be a dynamical system (with G a group).

2 Let B = A× G be the trivial bundle over G .

3 Then B is naturally a Fell bundle: (a, s)(b, t) := (aαs(b), st)
and (a, s)∗ = (α−1s (a∗), s−1).

4 If g ∈ Γc(G ,B), then g(s) = (ǧ(s), s) where g ∈ Cc(G ,A).

5 f ∗ g(s) = (f̌ ∗ ǧ(s), s) where

f̌ ∗ ǧ(s) =

∫
G

f̌ (r)αr (g(r−1s)) dr and f ∗(s) = (f̌ ∗(s), s)

where f̌ ∗(s) = α−1s (f (s−1)∗).

6 Now it is an easy matter to check that C ∗(G ,B) is
isomorphic to A oα G .
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Twists

1 If G is a groupoid (with a Haar system), a twist over G is a

groupoid extension G (0) × T // E
j // G such that E

becomes a principal T-bundle over G . (Think of E as given
by a 2-cocycle on G .)

2 We let B = (E ×C)/T — where (e, λ) · z := (z · e, z̄λ) — be
the associated complex line bundle over G .

3 Then B is a Fell bundle: [e, λ][f , µ] = [ef , λµ].
4 If g ∈ Γc(G ,B), then g(j(e)) = [e, ǧ(e)] where g ∈ Cc(E )

with g(z · e) = z̄ ǧ(e).
5 Then f ∗ g(j(e)) = [e, f̌ ∗ ǧ(e)] where

f̌ ∗ ǧ(e) :=

∫
G

f (e1)g(e−11 e) dλr(e)(j(e1)).

6 Now we can see that C ∗(G ,B) is the C ∗-algebra C ∗(G ; E ) of
the twist introduced by Kumjian.

7 Note that if E is given by a continuous 2-cocycle σ, then
C ∗(G ; E ) is Renault’s C ∗(G , σ).
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First Result

Theorem (Ionescu & W, 13)

Let p : B → G be a separable Fell bundle over a locally compact
groupoid G . Suppose that u ∈ G (0),
G (u) := { x ∈ G : r(x) = u = s(x) } and that L is an irreducible

representation of C ∗(G (u),B|G(u)). Then Ind
G
G(u) L is an

irreducible representation of C ∗(G ,B).
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Remark

As we’ll see on the next slide, when A = Γ0(G (0),B|G (0)) is
non-commutative, this is not quite the “right” result. But it is just
what is needed in the special case where B is the trivial bundle
B = G ×C. Then C ∗(G ,B) is the just the usual groupoid algebra
C ∗(G ). In particular, it gives another proof of strong-EHI for
transformation group C ∗-algebras.
Moreover, for groupoid C ∗-algebras, we can finish the job and
prove a complete Effros-Hahn result.

Theorem (Ionescu & W, 2009)

Suppose that G is a second countable locally compact groupoid
with a Haar system. Assume that G is amenable and that J is a
primitive ideal in C ∗(G ). Then there is a u ∈ G (0) and an
irreducible representation L of C ∗(G (u)) such that

J = ker(Ind
G
G(u) L).
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The Main Result

Theorem (Ionescu & W, 2013)

Let p : B → G be a Fell bundle over a locally compact groupoid
with Haar system and let A = Γ0(G (0),B|G (0)) be the associated

C ∗-algebra. Let P ∈ Prim A. Then GP ⊂ G (u) for a unique
u ∈ G (0). Suppose that L is an irreducible representation of
C ∗(GP ,B|GP

) which is the integrated form of π : B|GP
→ B(H)

with π|A(u) homogeneous with kernel P. Then Ind
G
GP

L is
irreducible.

Remark

Just as in the crossed product case, the homogeneity condition is
satisfied automatically if A is type I (or more generally if points in
Prim A are locally closed). A true Effros-Hahn result is just a bit
out of reach. So far.
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