Inducing Irreducible Representations

Dana P. Williams

Dartmouth College

SFB-Workshop on Groups, Dynamical Systems and C*-Algebras 23 August 2013

Rieffel Induction

- Let X be a right Hilbert B-module together with a *-homomorphism $\phi : A \to \mathcal{L}(X)$.
- **2** Then we view X as an A-B-bimodule: $a \cdot x := \phi(a)(x)$ so that $\langle a \cdot x, y \rangle_{B} = \langle x, a^* \cdot y \rangle_{B}$.
- **③** Then we call (X, ϕ) an A-B-correspondence.
- Let $\pi: B \to B(\mathcal{H})$ be a representation.
- **5** Then $X \odot \mathcal{H}$ is a pre-Hilbert space with respect to the pre-inner product

$$(x \otimes h \mid y \otimes k) := (\pi(\langle y, x \rangle_{_{B}})h \mid k).$$

• Then the induced representation of A, $\operatorname{Ind}_B^A \pi$ acts on the completion $X \otimes_B \mathcal{H}$ by

$$(\operatorname{Ind}_B^A \pi)(a)[x \otimes h] := [a \cdot x \otimes h].$$

Motivation: Rieffel '74 + Green '76

- Recall that a dynamical system (A, G, α) is a strongly continuous homomorphism α : G → Aut A.
- This allows us to endow $C_c(G, A)$ with a *-algebra structure: $f * g(s) = \int_G f(r) \alpha_r(g(r^{-1}s)) dr$ and $f^*(s) = \alpha_s(f(s^{-1})^*)$.
- Solution The crossed product, A ⋊_α G is the enveloping C*-algebra of C_c(G, A).
- In particular, its representations L := π ⋊ U are in one-to-one correspondence to covariant pairs (π, U) consisting of a representation $\pi : A → B(\mathcal{H})$ and $U : G → U(\mathcal{H})$ such that $\pi(\alpha_s(a)) = U(s)\pi(a)U(s)^*.$
- If A = C, C ⋊ G ≅ C^{*}(G). If G = {e}, then A ⋊ G = A and if $\alpha_s = id$ for all s, A ⋊_α G ≅ A ⊗_{max} C^{*}(G).

The Fundamental Example

Example (Ignoring Modular Functions)

- Let (A, G, α) be a dynamical system and H a closed subgroup of G so that (A, H, α|_H) is a subsystem.
- View $X_0 = C_c(G, A)$ as a pre-Hilbert $A \rtimes_{\alpha|_H} H$ -module:

$$\langle f, g \rangle_{_{\mathcal{C}_{c}(\mathcal{H})}} = f^{*} * g|_{\mathcal{H}}$$
 and
 $f \cdot b(s) = \int_{\mathcal{H}} f(st^{-1}) \alpha_{sh}(b(t)) d\mu_{\mathcal{H}}(t),$

and complete to a Hilbert $A \rtimes_{\alpha|_H} H$ -module $X = X_H^G$.

- **③** Then $C_c(G, A) \subset A \rtimes_{\alpha} G$ acts on X_H^G via "convolution": $f \cdot [g] = [f * g]$ for $f, g \in C_c(G)$.
- This makes X_{H}^{G} into a $A \rtimes_{\alpha} G A \rtimes_{\alpha|_{H}} H$ -correspondence, and we can induce representations L of $A \rtimes_{\alpha|_{H}} H$ to a representation $\operatorname{Ind}_{H}^{G} L$ of $A \rtimes_{\alpha} G$.

Example (Rieffel, 1974)

Let H be a closed subgroup of G. Then if we let $A = \mathbb{C}$ in the above and let ω be a representation of H, then the representation $\operatorname{Ind}_{H}^{G} \omega$ of G obtained via the correspondence X_{H}^{G} is (unitarily equivalent to) Mackey's induced representation.

Morita Equivalence

- A particularly friendly example of Rieffel induction occurs when X is an A−B-correspondence with (·, ·)_B full and φ : A → L(X) is an isomorphism onto the generalized compact operators K(X) on X. (Recall that K(X) is a closed span of the rank-one operators Θ_{x,y} where Θ_{x,y}(z) := x · (y, z)_B.)
- In this case, the situation is symmetric. The bimodule X is also a full left Hilbert A-module with respect to the inner product _A(x , y) = φ⁻¹(Θ_{x,y}).
- Then induction provides an "isomorphism of the representation theories" of A and B, and we usually write X-Ind in place of Ind^A_B.
- In particular, X–Ind π is irreducible if and only if π is irreducible.

Mackey's Imprimitivity Theorem

- Q Recall that representations of crossed products A ⋊_α G are in one-to-one correspondence with covariant pairs (π, U) where π : A → B(H) is a representation and U : G → U(H) is a unitary representation such that π(α_s(a)) = U(s)π(a)U(s)*.
- In particular, representations of C₀(G/H) ⋊_{lt} G are in one-to-one correspondence with "systems of imprimitivity" for representations U of G. That is, with covariant pairs (M, U) of (C₀(G/H), G, lt): M(lt_s(φ)) = U(s)M(φ)U(s)* where lt_s(φ)(rH) = φ(s⁻¹rH).
- Then we obtain Mackey's Imprimitivity Theorem from the observation that *K*(X^G_H) is isomorphic to *C*₀(*G*/*H*) ⋊_{It} *G*: untangling gives us the result that a representation of *U* of *G* is induced from a representation *π* of *H* exactly when there is a system of imprimitivity *M* such that (*M*, *U*) is convariant and therefore a representation of *C*₀(*G*/*H*) ⋊_{It} *G*.

Inducing Irreducible Representations — Base Case

- Consider a dynamical system (A, G, α) with $A = C_0(X)$ and $\alpha_s(f)(x) = f(s^{-1} \cdot x)$.
- ② For $x \in X$, let $G_x = \{ s \in G : s \cdot x = x \}$ and let ω be a representation of G_x .
- **③** If $ev_x : C_0(X) \to \mathbb{C}$ is evaluation at *x*, then $(ev_x, ω)$ is a covariant representation of $C_0(X) \rtimes_{α|_{G_x}} G_x$.

Theorem (Mackey '49, Glimm '62)

For each $x \in X$ and every irreducible representation ω of G_x , the representation $L = \text{Ind}_{G_x}^G(\text{ev}_x \rtimes \omega)$ induced from the stability group G_x is an irreducible representation of $C_0(X) \rtimes_{\alpha} G$.

Sketch of the Proof: [W '79].

We easily see that ω irreducible implies $ev_x \rtimes \omega$ is irreducible. Hence X-Ind $(ev_x \rtimes \omega) \cong (M \otimes N) \rtimes U$ is an irreducible representation of $C_0(G/G_x) \otimes C_0(X) \rtimes_{It \otimes \alpha} G \cong^{Green} \mathcal{K}(X_{G_x}^G)$ on \mathcal{H}_L for suitable representations M of $C_0(G/G_x)$, N of $C_0(X)$ and U of G. However $L := Ind_{G_x}^G(ev_x \rtimes \omega) \cong N \rtimes U$ for the same Nand U.

We want to see that any operator on \mathcal{H}_L commuting with the image of L is a scalar. Therefore it will suffice to show that if T computes with the image of N (and U), then it also commutes with the image of M. (This will force T to commute with the image of the irreducible representation X–Ind($ev_x \rtimes \omega$).) This is easy if $G \cdot x = \{ s \cdot x : s \in G \}$ is closed and homeomorphic to G/G_x . The general case follows via some topological gymnastics and playing around in the weak operator topology.

Effros-Hahn Conjecture

- If the action of G on X is nice so that, orbits are locally closed then every irreducible representation of C₀(X) ⋊_α G is induced from a stability group as above.
- In their 1967 Memoir, E. Effros and F. Hahn conjectured that if G was amenable, then every primitive ideal is induced from a stability group. (That is, every primitive ideal is the kernel of an irreducible representation induced from a stability group.)
- In the early 70s, P. Green and others formulated the *Generalized Effros-Hahn Conjecture*: Given a dynamical system (A, G, α) with G amenable and a primitive ideal J ∈ Prim A ⋊_α G, then there is a primitive ideal P ∈ Prim A and an irreducible representation π ⋊ U of A ⋊_{α|GP} G_P with ker π = P such that J = ker(Ind^G_{GP} π ⋊ U).
- If the action of G on Prim A is nice, then it is not hard to see that all primitive ideals are induced, as above, from stability groups.

The Solution and the another Problem

- In 1979, building on work of J.-L. Sauvagoet, E. Gootman and J. Rosenberg verified the Effros-Hahn conjecture for separable systems.
- 2 Then, combined with the result on inducing irreducible representations from stability groups, we get a very simple picture of the primitive ideal space of C₀(X) ⋊_α G.
- But the GRS-Theorem does not say that if π ⋊ U is an irreducible representation of A ⋊_{α|GP} G_P with P = ker π, then Ind^G_{GP}(π ⋊ U) is irreducible even if G is amenable.
- This is (yet another) serious impediment to employing the GRS-Theorem to obtain a global description of the primitive ideal space of crossed products A ⋊_α G with A non-commutative.

Definition

We say that (A, G, α) satisfies the strong Effros-Hahn Induction property (strong-EHI) if given $P \in \text{Prim } A$ and an irreducible representation $\pi \rtimes U$ of $A \rtimes_{\alpha|_{G_P}} G_P$ with ker $\pi = P$, then $\text{Ind}_{G_P}^G(\pi \rtimes U)$ is irreducible. (We say that (A, G, α) statisfies the Effros-Hahn Induction property (EHI) if the above is true at the level of primitive ideals.)

Conjecture (Echterhoff & W, 2008)

Every separable dynamical system (A, G, α) satisfies EHI.

Remark

In any case were we can prove that EHI holds, we can also show that strong-EHI holds.

What is True

 Recall that a representation π : A → B(H) is called homogeneous if every non-zero sub-representation of π has the same kernel as π.

Theorem (Echterhoff & W)

Suppose that (A, G, α) is separable, $P \in \text{Prim } A$ and $\pi \rtimes U$ is an irreducible representation of $A \rtimes_{\alpha|_{G_P}} G_P$ with ker $\pi = P$. If π is homogeneous, then $\text{Ind}_{G_P}^G(\pi \rtimes U)$ is irreducible.

Sketch of the Proof.

Morita theory implies that X-Ind $(\pi \rtimes U) \cong (M \otimes \rho) \rtimes U$ is an irreducible representation of $\mathcal{K}(X_{G_P}^G) \cong C_0(G/G_P) \otimes A \rtimes_{It \otimes \alpha} G$. Moreover, Ind $_{G_P}^G \pi \rtimes U \cong \rho \rtimes U$. Homogeneity is used to invoke a 1963 result of Effros to produce an ideal center decomposition of ρ which implies that the range of M is in the center of $\rho(A)$. Now the proof proceeds as in the transformation group case.

Some Cases Where Strong-EHI Holds

Remark

Unfortunately, examples show that $\pi \rtimes U$ irreducible does not always imply that π is homogeneous. Nevertheless, there are some very general situations where our strong-EHI follows from our theorem.

Theorem (Echterhoff & W)

Let (A, G, α) be separable. Then it satisfies strong-EHI in the following cases.

- A is type I or more generally points in Prim A are locally closed.
- A is a sub-quotient of the group C*-algebra of an almost connected locally compact group.
- G_P is normal in G for all $P \in Prim A$ (for example, if G is abelian).

One Construction to Rule Them All

Transformation Group C^* -Algebras Groupoid C^* -Algebras Crossed Product C^* -Algebras Groupoid Crossed Product C^* -Algebras Twists of various sorts Combine Fell Bundle C^* -Algebras

Definition

A Fell bundle over a groupoid G is an upper semicontinuous Banach bundle $p : \mathscr{B} \to G$ equipped with a partial multiplication $(a, b) \mapsto ab$ from $\mathscr{B}^{(2)} := \{ (a, b) : (p(a), p(b)) \in G^{(2)} \}$ and an involution $a \mapsto a^*$, both compatible with the groupoid structure, such that

- For all $u \in \underline{G}^{(0)}$, B(u) is a C^* -algebra with respect to the inherited operations and
- Por all x ∈ G, B(x) is a B(r(x)) B(s(x))-imprimitivity bimodule with respect to the inherited module actions and inner products

$$_{B(r(x))}\langle a , b
angle = ab^*$$
 and $\langle a , b
angle_{B(s(x))} = a^*b.$

Fell Bundle C*-Algebras

 Provided G has a Haar system, we make Γ_c(G, B) into a *-algebra:

$$f * g(x) := \int_G f(y)g(y^{-1}x) \, d\lambda^{r(x)}(y)$$
 and
 $f^*(x) = f(x^{-1})^*.$

Which only makes sense since $B(y)B(y^{-1}x) = B(x)$ and $B(x^{-1})^* = B(x)$.

• Just as for groupoids, we have a universal norm:

 $||f|| := \sup\{ ||L(f)|| : L \text{ is a suitably continuous representation } \}.$

and we can complete to get the associated C^* -algebra $C^*(G, \mathscr{B})$.

- Note that $A := \Gamma_0(\underline{G}^{(0)}, \mathscr{B}|_{G^{(0)}})$ is a C^* -algebra.
- One should think of $C^*(G, \mathscr{B})$ as a generalized crossed product of A by the groupoid G.

Motivating Example

- Let (A, G, α) be a dynamical system (with G a group).
- 2 Let $\mathscr{B} = A \times G$ be the trivial bundle over G.
- Then \mathscr{B} is naturally a Fell bundle: $(a, s)(b, t) := (a\alpha_s(b), st)$ and $(a, s)^* = (\alpha_s^{-1}(a^*), s^{-1})$.
- If $g \in \Gamma_c(G, \mathscr{B})$, then $g(s) = (\check{g}(s), s)$ where $g \in C_c(G, A)$.

•
$$f * g(s) = (\check{f} * \check{g}(s), s)$$
 where
 $\check{f} * \check{g}(s) = \int_{\mathcal{G}} \check{f}(r) \alpha_r(g(r^{-1}s)) dr$ and $f^*(s) = (\check{f}^*(s), s)$
where $\check{f}^*(s) = \alpha_s^{-1}(f(s^{-1})^*)$.

Now it is an easy matter to check that C*(G, B) is isomorphic to A ⋊_α G.

Twists

- If <u>G</u> is a groupoid (with a Haar system), a twist over <u>G</u> is a groupoid extension <u>G</u>⁽⁰⁾ × **T** → <u>E</u> ^j→ G such that <u>E</u> becomes a principal **T**-bundle over G. (Think of <u>E</u> as given by a 2-cocycle on <u>G</u>.)
- We let $\mathscr{B} = (\underline{E} \times \mathbb{C})/\mathbf{T}$ where $(e, \lambda) \cdot z := (z \cdot e, \overline{z}\lambda)$ be the associated complex line bundle over \underline{G} .
- **3** Then \mathscr{B} is a Fell bundle: $[e, \lambda][f, \mu] = [ef, \lambda \mu]$.
- If $g \in \Gamma_c(\underline{G}, \mathscr{B})$, then $g(j(e)) = [e, \check{g}(e)]$ where $g \in C_c(\underline{E})$ with $g(z \cdot e) = \bar{z}\check{g}(e)$.

• Then
$$f * g(j(e)) = [e, \check{f} * \check{g}(e)]$$
 where
 $\check{f} * \check{g}(e) := \int_{G} f(e_1)g(e_1^{-1}e) d\lambda^{r(e)}(j(e_1)).$

- Now we can see that C*(<u>G</u>, *B*) is the C*-algebra C*(<u>G</u>; <u>E</u>) of the twist introduced by Kumjian.
- Note that if <u>E</u> is given by a continuous 2-cocycle σ, then C^{*}(<u>G</u>; <u>E</u>) is Renault's C^{*}(<u>G</u>, σ).

Theorem (Ionescu & W, 13)

Let $p: \mathscr{B} \to \underline{G}$ be a separable Fell bundle over a locally compact groupoid \underline{G} . Suppose that $u \in \underline{G}^{(0)}$, $\underline{G}(u) := \{x \in G : r(x) = u = s(x)\}$ and that L is an irreducible representation of $C^*(\underline{G}(u), \mathscr{B}|_{\underline{G}(u)})$. Then $\operatorname{Ind}_{\underline{G}(u)}^{\underline{G}}L$ is an irreducible representation of $C^*(\underline{G}, \mathscr{B})$.

Remark

As we'll see on the next slide, when $A = \Gamma_0(\underline{G}^{(0)}, \mathscr{B}|_{\underline{G}^{(0)}})$ is non-commutative, this is not quite the "right" result. But it is just what is needed in the special case where \mathscr{B} is the trivial bundle $\mathscr{B} = \underline{G} \times \mathbb{C}$. Then $C^*(\underline{G}, \mathscr{B})$ is the just the usual groupoid algebra $C^*(\underline{G})$. In particular, it gives another proof of strong-EHI for transformation group C^* -algebras. Moreover, for groupoid C^* -algebras, we can finish the job and prove a complete Effros-Hahn result.

Theorem (Ionescu & W, 2009)

Suppose that \underline{G} is a second countable locally compact groupoid with a Haar system. Assume that \underline{G} is amenable and that J is a primitive ideal in $C^*(G)$. Then there is a $u \in \underline{G}^{(0)}$ and an irreducible representation L of $C^*(\underline{G}(u))$ such that $J = \operatorname{ker}(\operatorname{Ind}_{\underline{G}(u)}^{\underline{G}}L)$.

Theorem (Ionescu & W, 2013)

Let $p: \mathscr{B} \to \underline{G}$ be a Fell bundle over a locally compact groupoid with Haar system and let $A = \Gamma_0(\underline{G}^{(0)}, \mathscr{B}|_{\underline{G}^{(0)}})$ be the associated C^* -algebra. Let $P \in \text{Prim } A$. Then $\underline{G}_P \subset \underline{G}(u)$ for a unique $u \in \underline{G}^{(0)}$. Suppose that L is an irreducible representation of $C^*(\underline{G}_P, \mathscr{B}|_{\underline{G}_P})$ which is the integrated form of $\pi: \mathscr{B}|_{\underline{G}_P} \to B(\mathcal{H})$ with $\pi|_{A(u)}$ homogeneous with kernel P. Then $\text{Ind}_{\underline{G}_P} L$ is irreducible.

Remark

Just as in the crossed product case, the homogeneity condition is satisfied automatically if A is type I (or more generally if points in Prim A are locally closed). A true Effros-Hahn result is just a bit out of reach. So far.

References

- Siegfried Echterhoff and Dana P. Williams, *Inducing primitive ideals*, Trans. Amer. Math. Soc (2008), (in press).
- Siegfried Echterhoff and Dana P. Williams, *The Mackey machine for crossed products: Inducing primitive ideals*, Group Representations, Ergodic Theory, and Mathematical Physics: A Tribute to George W. Mackey (Robert S. Doran, Calvin C. Moore, and Robert J. Zimmer, eds.), Contemp. Math., vol. 449, Amer. Math. Soc., Providence, RI, 2008, pp. 129–136.
- Marius Ionescu and Dana P. Williams, The generalized Effros-Hahn conjecture for groupoids, Indiana Univ. Math. J. (2009), 2489–2508.
- Marius lonescu and Dana P. Williams, Irreducible representations of groupoid C*-algebras, Proc. Amer. Math. Soc. 137 (2009), no. 4, 1323–1332. MR MR2465655

