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Hyperbolicity

An invertible linear map T : Rd → Rd is hyper-

bolic if Rd = Es ⊕ Eu, T -invariant,

C > 0,0 < λ < 1,

‖Tnv‖ ≤ Cλn‖v‖, n ≥ 1 v ∈ Es,
‖T−nv‖ ≤ Cλn‖v‖, n ≥ 1 v ∈ Eu,

Same definition replacing Rd by a vector bundle

(over compact space).

M compact manifold, ϕ : M → M diffeomor-

phism is Anosov if Dϕ : TM → TM is hyper-

bolic.

Smale: M,ϕ Axiom A: replace TM above by

TM |NW (ϕ) = Es ⊕ Eu, where NW (ϕ) is the

set of non-wandering points. But NW (ϕ) is

usually a fractal, not a submanifold.
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Smale spaces (D. Ruelle)

(X, d) compact metric space,

ϕ : X → X homeomorphism 0 < λ < 1,

For x in X and ε > 0 and small, there is a

local stable set Xs(x, ε) and a local unstable

set Xu(x, ε):

1. Xs(x, ε) × Xu(x, ε) is homeomorphic to a

neighbourhood of x,

2. ϕ-invariance,

3.

d(ϕ(y), ϕ(z)) ≤ λd(y, z), y, z ∈ Xs(x, ε),

d(ϕ−1(y), ϕ−1(z)) ≤ λd(y, z), y, z ∈ Xu(x, ε),
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That is, we have a local picture:
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Global stable and unstable sets:

Xs(x) = {y | lim
n→+∞

d(ϕn(x), ϕn(y)) = 0}

Xu(x) = {y | lim
n→+∞

d(ϕ−n(x), ϕ−n(y)) = 0}

These are equivalence relations.

Xs(x, ε) ⊂ Xs(x), Xu(x, ε) ⊂ Xu(x).
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Example 1

The linear map A =

(
1 1
1 0

)
is hyperbolic. Let

γ > 1 be the Golden mean,

(γ,1)A = γ(γ,1)

(−1, γ)A = −γ−1(−1, γ)

As det(A) = −1, it induces a homeomorphism

of R2/Z2 which is Anosov.

Xs and Xu are Kronecker foliations with lines

of slope −γ−1 and γ.
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Example 3: Shifts of finite type (SFTs)

Let G = (G0, G1, i, t) be a finite directed graph.

Then we have the shift space and shift map:

ΣG = {(ek)∞k=−∞ | e
k ∈ G1,

i(ek+1) = t(ek), for all n}
σ(e)k = ek+1, ”left shift”

The local product structure is given by

Σs(e,1) = {(. . . , ∗, ∗, ∗, e0, e1, e2, . . .)}
Σu(e,1) = {(. . . , e−2, e−1, e0, ∗, ∗, ∗, . . .)}
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Smales spaces have a large supply of periodic
points and it is interesting to count them.

Adjacency matrix of G: G0 = {1,2, . . . , N}, AG
is N ×N with

(AG)i,j = #edges from i to j

Theorem 1. Let AG be the adjancency matrix
of the graph G. For any p ≥ 1, we have

#{e ∈ ΣG | σp(e) = e} = Tr(ApG).

This is reminiscent of the Lefschetz fixed-point
formula for smooth maps of compact mani-
folds.

Question 2. Is the right hand side actually the
result of σ acting on some homology theory of
(ΣG, σ)?

Positive answers by Bowen-Franks and Krieger.
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Krieger’s invariants for SFT’s

W. Krieger defined invariants, which we de-

note by Ds(ΣG, σ), Du(ΣG, σ), for shifts of fi-

nite type by considering stable and unstable

equivalence as groupoids and taking its groupoid

C∗-algebra:

K0(C∗(Xs)),K0(C∗(Xs))

In this case, these are both AF-algebras and

Ds(ΣG, σ) = limZN AG−→ ZN AG−→ · · ·

(For the unstable, replace AG with ATG.) Each

comes with a canonical automorphism.

Returning to Smale spaces . . .
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Bowen’s Theorem

Theorem 3 (Bowen). For a non-wandering Smale

space, (X,ϕ), there exists a SFT (Σ, σ) and

π : (Σ, σ)→ (X,ϕ),

with π ◦ σ = ϕ ◦ π, continuous, surjective and

finite-to-one.

First, this means that SFT’s have a special

place among Smale spaces. Secondly, one can

try to understand (X,ϕ) by investigating (Σ, σ).

For example, they will have the same entropy.

Of course, (Σ, σ) is not unique.

A. Manning used Bowen’s Theorem to pro-

vide a formula counting the number of periodic

points for (X,ϕ).
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For N ≥ 0, define

ΣN(π) = {(e0, e1, . . . , eN) |
π(en) = π(e0),

0 ≤ n ≤ N}.

For all N ≥ 0, (ΣN(π), σ) is also a shift of finite
type. Observe that SN+1 acts on ΣN(π).

Theorem 4 (Manning). For a non-wandering
Smale space (X,ϕ), (Σ, σ) as above and p ≥ 1,
we have

#{x ∈ X | ϕp(x) = x}
=

∑
N(−1)NTr(σp∗ : Ds(ΣN(π))alt

→ Ds(ΣN(π))alt).

Question 5 (Bowen). Is there a homology the-
ory for Smale spaces H∗(X,ϕ) which provides a
Lefschetz formula, counting the periodic points?

In fact, the groups Ds(ΣN(π))alt appear to be
giving a chain complex.
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Idea: for 0 ≤ n ≤ N , let δn : ΣN(π)→ ΣN−1(π)

be the map which deletes entry n.

Let (δn)∗ : Ds(ΣN(π))alt → Ds(ΣN−1(π))alt be

the induced map and ∂ =
∑N
n=0(−1)n(δn)∗ to

make a chain complex.

This is wrong: a map

ρ : (Σ, σ)→ (Σ′, σ)

between shifts of finite type does not always in-

duce a group homomorphism between Krieger’s

invariants.

While it is true that ρ will map Rs(Σ) to Rs(Σ′)
the functorial properties of the construction of

groupoid C∗-algebras is subtle.
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Let π : (Y, ψ) → (X,ϕ) be a factor map be-
tween Smale spaces. For every y in Y , we
have π(Y s(y)) ⊆ Xs(π(y)).

Definition 6. π is s-bijective if
π : Y s(y)→ Xs(π(y)) is bijective, for all y.

Theorem 7. If π is s-bijective then π : Y s(y, ε)→
Xs(π(y), ε′) is a local homeomorphism.

Theorem 8. Let π : (Σ, σ)→ (Σ′, σ) be a fac-
tor map between SFT’s.

If π is s-bijective, then there is a map

πs : Ds(Σ, σ)→ Ds(Σ′, σ).

If π is u-bijective, then there is a map

πs∗ : Ds(Σ′, σ)→ Ds(Σ, σ).

Bowen’s π : (Σ, σ) → (X,ϕ) is not s-bijective
or u-bijective if X is a torus, for example.
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A better Bowen’s Theorem

Let (X,ϕ) be a Smale space. We look for a

Smale space (Y, ψ) and a factor map

πs : (Y, ψ)→ (X,ϕ)

satisfying:

1. πs is s-bijective,

2. dim(Y u(y, ε)) = 0.

That is, Y u(y, ε) is totally disconnected, while

Y s(y, ε) is homeomorphic to Xs(πs(y), ε).

This is a “one-coordinate” version of Bowen’s

Theorem.
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Similarly, we look for a Smale space (Z, ζ) and

a factor map πu : (Z, ζ) → (X,ϕ) satisfying

dim(Zs(z, ε)) = 0, and πu is u-bijective.

We call π = (Y, ψ, πs, Z, ζ, πu) a s/u-bijective

pair for (X,ϕ).

Theorem 9. If (X,ϕ) is a non-wandering Smale

space, then there exists an s/u-bijective pair.

Consider the fibred product:

Σ = {(y, z) ∈ Y × Z | πs(y) = πu(z)}

with

Σ
ρu
~~||

||
||

|| ρs
  B

BB
BB

BB
B

Y

πs   B
BB

BB
BB

B Z

πu~~||
||

||
||

X

ρs(y, z) = z is s-bijective, ρu(y, z) = y is u-

bijective. Hence, Σ is a SFT.
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For L,M ≥ 0, we define

ΣL,M(π) = {(y0, . . . , yL, z0, . . . , zM) |
yl ∈ Y, zm ∈ Z,
πs(yl) = πu(zm)}.

Each of these is a SFT.

Moreover, the maps

δl, : ΣL,M → ΣL−1,M ,

δ,m : ΣL,M → ΣL,M−1

which delete yl and zm are s-bijective and u-

bijective, respectively.

This is the key point! We have avoided the

issue which caused our earlier attempt to get

a chain complex to fail.
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We get a double complex:

Ds(Σ0,2)alt

OO

Ds(Σ1,2)altoo

OO

Ds(Σ2,2)altoo

OO

oo

Ds(Σ0,1)alt

OO

Ds(Σ1,1)altoo

OO

Ds(Σ2,1)altoo

OO

oo

Ds(Σ0,0)alt

OO

Ds(Σ1,0)altoo

OO

Ds(Σ2,0)altoo

OO

oo

∂sN : ⊕L−M=ND
s(ΣL,M)alt

→ ⊕L−M=N−1D
s(ΣL,M)alt

∂sN =
∑L
l=0(−1)lδsl, +

∑M+1
m=0 (−1)m+Mδs∗,m

Hs
N(π) = ker(∂sN)/Im(∂sN+1).
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Recall: beginning with (X,ϕ), we select an

s/u-bijective pair π = (Y, ψ, πs, Z, ζπu) construct

the double complex and compute Hs
N(π).

Theorem 10. The groups Hs
N(π) do not de-

pend on the choice of s/u-bijective pair π.

From now on, we write Hs
N(X,ϕ).

Theorem 11. The functor Hs
∗(X,ϕ) is covari-

ant for s-bijective factor maps, contravariant

for u-bijective factor maps.

Theorem 12. The groups Hs
N(X,ϕ) are all fi-

nite rank and non-zero for only finitely many

N ∈ Z.
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We can regard ϕ : (X,ϕ) → (X,ϕ), which is

both s and u-bijective and so induces an auto-

morphism of the invariants.

Theorem 13. (Lefschetz Formula) Let (X,ϕ)

be any non-wandering Smale space and let p ≥
1.∑
N∈Z

(−1)N Tr[(ϕs)p : Hs
N(X,ϕ)⊗ Q

→ Hs
N(X,ϕ)⊗ Q]

= #{x ∈ X | ϕp(x) = x}
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Example 1: Shifts of finite type

If (X,ϕ) = (Σ, σ), then Y = Σ = Z is an s/u-

bijective pair.

The double complex Ds
a is:

0

OO

0oo

OO

0oo

OO

oo

0

OO

0oo

OO

0oo

OO

oo

Ds(Σ)

OO

0oo

OO

0oo

OO

oo

and Hs
0(Σ, σ) = Ds(Σ) and Hs

N(Σ, σ) = 0, N 6=
0.
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Example 2: dim(Xs(x, ε)) = 0.

(As an example, the solenoid we saw in exam-

ple 2.)

We may find a SFT and s-bijective map

πs : (Σ, σ)→ (X,ϕ).

The Y = Σ, Z = X is an s/u-bijective pair and

the double complex Ds is:

0

OO

0oo

OO

0oo

OO

oo

0

OO

0oo

OO

0oo

OO

oo

Ds(Σ0)alt

OO

Ds(Σ1)altoo

OO

Ds(Σ2)altoo

OO

oo
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Example 2’: (X, ϕ) = 2∞-solenoid (Bazett-

P.)

An s/u-bijective pair is Y = {0,1}Z, the full

2-shift, Z = X and the double complex Ds is

0

OO

0oo

OO

0oo

OO

oo

0

OO

0oo

OO

0oo

OO

oo

Z[1/2]

OO

Zoo

OO

0oo

OO

oo

and we get

Hs
0(X,ϕ) ∼= Z[1/2], Hs

1(X,ϕ) ∼= Z,

Hs
N(ΣG, σ) = 0, N 6= 0,1.

Generalized 1-solenoids (Williams, Yi, Thom-

sen): Amini, P, Saeidi Gholikandi.
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Example 3: Our Anosov example (Bazett-

P.): (
1 1
1 0

)
: R2/Z2 → R2/Z2

The double complex Ds looks like:

0

OO

0oo

OO

0oo

OO

oo

Z2

OO

Zoo

OO

0oo

OO

oo

Z3

OO

Z2oo

OO

0oo

OO

oo

and

N Hs
N(X,ϕ) ϕs

−1 Z 1

0 Z2

(
1 1
1 0

)
1 Z −1.
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