# A homology theory for Smale 

 spacesIan F. Putnam, University of Victoria

## Hyperbolicity

An invertible linear map $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is hyperbolic if $\mathbb{R}^{d}=E^{s} \oplus E^{u}, T$-invariant, $C>0,0<\lambda<1$,

$$
\begin{aligned}
\left\|T^{n} v\right\| \leq C \lambda^{n}\|v\|, & n \geq 1 \quad v \in E^{s}, \\
\left\|T^{-n} v\right\| \leq C \lambda^{n}\|v\|, & n \geq 1 \quad v \in E^{u},
\end{aligned}
$$

Same definition replacing $\mathbb{R}^{d}$ by a vector bundle (over compact space).
$M$ compact manifold, $\varphi: M \rightarrow M$ diffeomorphism is Anosov if $D \varphi: T M \rightarrow T M$ is hyperbolic.

Smale: $M, \varphi$ Axiom A: replace $T M$ above by $\left.T M\right|_{N W(\varphi)}=E^{s} \oplus E^{u}$, where $N W(\varphi)$ is the set of non-wandering points. But $N W(\varphi)$ is usually a fractal, not a submanifold.

Smale spaces (D. Ruelle)
( $X, d$ ) compact metric space,
$\varphi: X \rightarrow X$ homeomorphism $0<\lambda<1$,

For $x$ in $X$ and $\epsilon>0$ and small, there is a local stable set $X^{s}(x, \epsilon)$ and a local unstable set $X^{u}(x, \epsilon)$ :

1. $X^{s}(x, \epsilon) \times X^{u}(x, \epsilon)$ is homeomorphic to a neighbourhood of $x$,
2. $\varphi$-invariance,
3. 

$$
\begin{aligned}
d(\varphi(y), \varphi(z)) & \leq \lambda d(y, z), \quad y, z \in X^{s}(x, \epsilon), \\
d\left(\varphi^{-1}(y), \varphi^{-1}(z)\right) & \leq \lambda d(y, z), \quad y, z \in X^{u}(x, \epsilon),
\end{aligned}
$$

That is, we have a local picture:


Global stable and unstable sets:

$$
\begin{aligned}
& X^{s}(x)=\left\{y \mid \lim _{n \rightarrow+\infty} d\left(\varphi^{n}(x), \varphi^{n}(y)\right)=0\right\} \\
& X^{u}(x)=\left\{\left.y\right|_{n \rightarrow+\infty} d\left(\varphi^{-n}(x), \varphi^{-n}(y)\right)=0\right\}
\end{aligned}
$$

These are equivalence relations.

$$
X^{s}(x, \epsilon) \subset X^{s}(x), X^{u}(x, \epsilon) \subset X^{u}(x)
$$

## Example 1

The linear map $A=\left(\begin{array}{cc}1 & 1 \\ 1 & 0\end{array}\right)$ is hyperbolic. Let $\gamma>1$ be the Golden mean,

$$
\begin{aligned}
(\gamma, 1) A & =\gamma(\gamma, 1) \\
(-1, \gamma) A & =-\gamma^{-1}(-1, \gamma)
\end{aligned}
$$

As $\operatorname{det}(A)=-1$, it induces a homeomorphism of $\mathbb{R}^{2} / \mathbb{Z}^{2}$ which is Anosov.
$X^{s}$ and $X^{u}$ are Kronecker foliations with lines of slope $-\gamma^{-1}$ and $\gamma$.

Example 2: $2^{\infty}$-solenoid

$$
X_{0}=\bar{D} \times S^{1}
$$



$$
\begin{aligned}
& X=\bigcap_{n \geqslant 0} \varphi_{0}^{n}\left(X_{0}\right), \varphi=\varphi_{0} \mid X \\
& X^{s}((x, y), \varepsilon) \cong \overline{\mathbb{D}} \times\{y\} \cap X \quad C_{\text {antor }} \\
& X^{n}((x, y), \varepsilon) \cong\{x\} \times(y-\varepsilon, y+6)
\end{aligned}
$$

Example 3: Shifts of finite type (SFTs)

Let $G=\left(G^{0}, G^{1}, i, t\right)$ be a finite directed graph.
Then we have the shift space and shift map:

$$
\begin{aligned}
\Sigma_{G}= & \left\{\left(e^{k}\right)_{k=-\infty}^{\infty} \mid e^{k} \in G^{1},\right. \\
& \left.i\left(e^{k+1}\right)=t\left(e^{k}\right), \text { for all } n\right\} \\
\sigma(e)^{k}= & e^{k+1}, \text { "left shift" }
\end{aligned}
$$

The local product structure is given by

$$
\begin{array}{r}
\Sigma^{s}(e, 1)=\left\{\left(\ldots, *, *, *, e^{0}, e^{1}, e^{2}, \ldots\right)\right\} \\
\Sigma^{u}(e, 1)=\left\{\left(\ldots, e^{-2}, e^{-1}, e^{0}, *, *, *, \ldots\right)\right\}
\end{array}
$$

Smales spaces have a large supply of periodic points and it is interesting to count them.

Adjacency matrix of $G: G^{0}=\{1,2, \ldots, N\}, A_{G}$ is $N \times N$ with

$$
\left(A_{G}\right)_{i, j}=\text { \#edges from } i \text { to } j
$$

Theorem 1. Let $A_{G}$ be the adjancency matrix of the graph $G$. For any $p \geq 1$, we have

$$
\#\left\{e \in \Sigma_{G} \mid \sigma^{p}(e)=e\right\}=\operatorname{Tr}\left(A_{G}^{p}\right)
$$

This is reminiscent of the Lefschetz fixed-point formula for smooth maps of compact manifolds.

Question 2. Is the right hand side actually the result of $\sigma$ acting on some homology theory of $\left(\Sigma_{G}, \sigma\right)$ ?

Positive answers by Bowen-Franks and Krieger.

Krieger's invariants for SFT's
W. Krieger defined invariants, which we denote by $D^{s}\left(\Sigma_{G}, \sigma\right), D^{u}\left(\Sigma_{G}, \sigma\right)$, for shifts of finite type by considering stable and unstable equivalence as groupoids and taking its groupoid $C^{*}$-algebra:

$$
K_{0}\left(C^{*}\left(X^{s}\right)\right), K_{0}\left(C^{*}\left(X^{s}\right)\right)
$$

In this case, these are both AF-algebras and

$$
D^{s}\left(\Sigma_{G}, \sigma\right)=\lim \mathbb{Z}^{N} \xrightarrow{A_{G}} \mathbb{Z}^{N} \xrightarrow{A_{G}} \ldots
$$

(For the unstable, replace $A_{G}$ with $A_{G}^{T}$.) Each comes with a canonical automorphism.

Returning to Smale spaces ...

## Bowen's Theorem

Theorem 3 (Bowen). For a non-wandering Smale space, $(X, \varphi)$, there exists a SFT $(\Sigma, \sigma)$ and

$$
\pi:(\Sigma, \sigma) \rightarrow(X, \varphi)
$$

with $\pi \circ \sigma=\varphi \circ \pi$, continuous, surjective and finite-to-one.

First, this means that SFT's have a special place among Smale spaces. Secondly, one can try to understand $(X, \varphi)$ by investigating $(\Sigma, \sigma)$. For example, they will have the same entropy. Of course, $(\Sigma, \sigma)$ is not unique.
A. Manning used Bowen's Theorem to provide a formula counting the number of periodic points for $(X, \varphi)$.

For $N \geq 0$, define

$$
\begin{aligned}
\Sigma_{N}(\pi)= & \left\{\left(e_{0}, e_{1}, \ldots, e_{N}\right) \mid\right. \\
& \pi\left(e_{n}\right)=\pi\left(e_{0}\right), \\
& 0 \leq n \leq N\} .
\end{aligned}
$$

For all $N \geq 0,\left(\Sigma_{N}(\pi), \sigma\right)$ is also a shift of finite type. Observe that $S_{N+1}$ acts on $\Sigma_{N}(\pi)$.

Theorem 4 (Manning). For a non-wandering Smale space $(X, \varphi),(\Sigma, \sigma)$ as above and $p \geq 1$, we have

$$
\begin{gathered}
\#\left\{x \in X \mid \varphi^{p}(x)=x\right\} \\
=\sum_{N}(-1)^{N} \operatorname{Tr}\left(\sigma_{*}^{p}: D^{s}\left(\Sigma_{N}(\pi)\right)^{\text {alt }}\right. \\
\left.\rightarrow D^{s}\left(\Sigma_{N}(\pi)\right)^{a l t}\right) .
\end{gathered}
$$

Question 5 (Bowen). Is there a homology theory for Smale spaces $H_{*}(X, \varphi)$ which provides a Lefschetz formula, counting the periodic points?

In fact, the groups $D^{s}\left(\Sigma_{N}(\pi)\right)^{\text {alt }}$ appear to be giving a chain complex.

Idea: for $0 \leq n \leq N$, let $\delta_{n}: \Sigma_{N}(\pi) \rightarrow \Sigma_{N-1}(\pi)$ be the map which deletes entry $n$.

Let $\left(\delta_{n}\right)_{*}: D^{s}\left(\Sigma_{N}(\pi)\right)^{\text {alt }} \rightarrow D^{s}\left(\Sigma_{N-1}(\pi)\right)^{\text {alt }}$ be the induced map and $\partial=\sum_{n=0}^{N}(-1)^{n}\left(\delta_{n}\right)_{*}$ to make a chain complex.

This is wrong: a map

$$
\rho:(\Sigma, \sigma) \rightarrow\left(\Sigma^{\prime}, \sigma\right)
$$

between shifts of finite type does not always induce a group homomorphism between Krieger's invariants.

While it is true that $\rho$ will map $R^{s}(\Sigma)$ to $R^{s}\left(\Sigma^{\prime}\right)$ the functorial properties of the construction of groupoid $C^{*}$-algebras is subtle.

Let $\pi:(Y, \psi) \rightarrow(X, \varphi)$ be a factor map between Smale spaces. For every $y$ in $Y$, we have $\pi\left(Y^{s}(y)\right) \subseteq X^{s}(\pi(y))$.

Definition 6. $\pi$ is $s$-bijective if $\pi: Y^{s}(y) \rightarrow X^{s}(\pi(y))$ is bijective, for all $y$.

Theorem 7. If $\pi$ is s-bijective then $\pi: Y^{s}(y, \epsilon) \rightarrow$ $X^{s}\left(\pi(y), \epsilon^{\prime}\right)$ is a local homeomorphism.

Theorem 8. Let $\pi:(\Sigma, \sigma) \rightarrow\left(\Sigma^{\prime}, \sigma\right)$ be a factor map between SFT's.

If $\pi$ is $s$-bijective, then there is a map

$$
\pi^{s}: D^{s}(\Sigma, \sigma) \rightarrow D^{s}\left(\Sigma^{\prime}, \sigma\right)
$$

If $\pi$ is $u$-bijective, then there is a map

$$
\pi^{s *}: D^{s}\left(\Sigma^{\prime}, \sigma\right) \rightarrow D^{s}(\Sigma, \sigma)
$$

Bowen's $\pi:(\Sigma, \sigma) \rightarrow(X, \varphi)$ is not $s$-bijective or $u$-bijective if $X$ is a torus, for example.

## A better Bowen's Theorem

Let $(X, \varphi)$ be a Smale space. We look for a Smale space $(Y, \psi)$ and a factor map

$$
\pi_{s}:(Y, \psi) \rightarrow(X, \varphi)
$$

satisfying:

1. $\pi_{s}$ is $s$-bijective,
2. $\operatorname{dim}\left(Y^{u}(y, \epsilon)\right)=0$.

That is, $Y^{u}(y, \epsilon)$ is totally disconnected, while $Y^{s}(y, \epsilon)$ is homeomorphic to $X^{s}\left(\pi_{s}(y), \epsilon\right)$.

This is a "one-coordinate" version of Bowen's Theorem.

Similarly, we look for a Smale space ( $Z, \zeta$ ) and a factor map $\pi_{u}:(Z, \zeta) \rightarrow(X, \varphi)$ satisfying $\operatorname{dim}\left(Z^{s}(z, \epsilon)\right)=0$, and $\pi_{u}$ is $u$-bijective.

We call $\pi=\left(Y, \psi, \pi_{s}, Z, \zeta, \pi_{u}\right)$ a $s / u$-bijective pair for $(X, \varphi)$.

Theorem 9. If $(X, \varphi)$ is a non-wandering Smale space, then there exists an s/u-bijective pair.

Consider the fibred product:

$$
\Sigma=\left\{(y, z) \in Y \times Z \mid \pi_{s}(y)=\pi_{u}(z)\right\}
$$

with

$\rho_{s}(y, z)=z$ is $s$-bijective, $\rho_{u}(y, z)=y$ is $u$ bijective. Hence, $\Sigma$ is a SFT.

For $L, M \geq 0$, we define

$$
\begin{aligned}
\Sigma_{L, M}(\pi)= & \left\{\left(y_{0}, \ldots, y_{L}, z_{0}, \ldots, z_{M}\right) \mid\right. \\
& y_{l} \in Y, z_{m} \in Z \\
& \left.\pi_{s}\left(y_{l}\right)=\pi_{u}\left(z_{m}\right)\right\} .
\end{aligned}
$$

Each of these is a SFT.

Moreover, the maps

$$
\begin{aligned}
\delta_{l,} & : \Sigma_{L, M} \rightarrow \Sigma_{L-1, M}, \\
\delta_{m}: & \Sigma_{L, M} \rightarrow \Sigma_{L, M-1}
\end{aligned}
$$

which delete $y_{l}$ and $z_{m}$ are $s$-bijective and $u$ bijective, respectively.

This is the key point! We have avoided the issue which caused our earlier attempt to get a chain complex to fail.

We get a double complex:

$$
\begin{aligned}
& D^{s}\left(\Sigma_{0,2}\right)^{\text {alt }} \leftarrow D^{s}\left(\Sigma_{1,2}\right)^{\text {alt }} \leftarrow D^{s}\left(\Sigma_{2,2}\right)^{\text {alt }} \leftarrow \\
& D^{s}\left(\Sigma_{0,1}\right)^{\text {alt }} \leftarrow D^{s}\left(\Sigma_{1,1}\right)^{\text {alt }} \leftarrow D^{s}\left(\Sigma_{2,1}\right)^{\text {alt }} \leftarrow \\
& D^{s}\left(\Sigma_{0,0}\right)^{\text {alt }} \longleftarrow D^{s}\left(\Sigma_{1,0}\right)^{\text {alt }} \leftarrow D^{s}\left(\Sigma_{2,0}\right)^{\text {alt }} \longleftarrow \\
& \\
& \partial_{N}^{s}: \quad \oplus_{L-M=N} D^{s}\left(\Sigma_{L, M}\right)^{\text {alt }} \\
& \quad \rightarrow \quad \oplus_{L-M=N-1} D^{s}\left(\Sigma_{L, M}\right)^{\text {alt }} \\
& \partial_{N}^{s}= \\
& \sum_{l=0}^{L}(-1)^{l} \delta_{l,}^{s}+\sum_{m=0}^{M+1}(-1)^{m+M} \delta_{, m}^{s *}
\end{aligned}
$$

$$
H_{N}^{s}(\pi)=\operatorname{ker}\left(\partial_{N}^{s}\right) / \operatorname{Im}\left(\partial_{N+1}^{s}\right)
$$

Recall: beginning with $(X, \varphi)$, we select an $s / u$-bijective pair $\pi=\left(Y, \psi, \pi_{s}, Z, \zeta \pi_{u}\right)$ construct the double complex and compute $H_{N}^{s}(\pi)$.

Theorem 10. The groups $H_{N}^{s}(\pi)$ do not depend on the choice of $s / u$-bijective pair $\pi$.

From now on, we write $H_{N}^{s}(X, \varphi)$.
Theorem 11. The functor $H_{*}^{s}(X, \varphi)$ is covariant for s-bijective factor maps, contravariant for u-bijective factor maps.

Theorem 12. The groups $H_{N}^{s}(X, \varphi)$ are all finite rank and non-zero for only finitely many $N \in \mathbb{Z}$.

We can regard $\varphi:(X, \varphi) \rightarrow(X, \varphi)$, which is both $s$ and $u$-bijective and so induces an automorphism of the invariants.

## Theorem 13. (Lefschetz Formula) Let $(X, \varphi)$

 be any non-wandering Smale space and let $p \geq$ 1.$$
\begin{aligned}
\sum_{N \in \mathbb{Z}}(-1)^{N} & \operatorname{Tr}\left[\left(\varphi^{s}\right)^{p}:\right. & H_{N}^{s}(X, \varphi) \otimes \mathbb{Q} \\
& \rightarrow & \left.H_{N}^{s}(X, \varphi) \otimes \mathbb{Q}\right] \\
& = & \#\left\{x \in X \mid \varphi^{p}(x)=x\right\}
\end{aligned}
$$

## Example 1: Shifts of finite type

If $(X, \varphi)=(\Sigma, \sigma)$, then $Y=\Sigma=Z$ is an $s / u-$ bijective pair.

The double complex $D_{a}^{s}$ is:

and $H_{0}^{s}(\Sigma, \sigma)=D^{s}(\Sigma)$ and $H_{N}^{s}(\Sigma, \sigma)=0, N \neq$ 0 .

Example 2: $\operatorname{dim}\left(\mathrm{X}^{\mathrm{s}}(\mathrm{x}, \epsilon)\right)=0$.
(As an example, the solenoid we saw in example 2.)

We may find a SFT and $s$-bijective map

$$
\pi_{s}:(\Sigma, \sigma) \rightarrow(X, \varphi)
$$

The $Y=\Sigma, Z=X$ is an $s / u$-bijective pair and the double complex $D^{s}$ is:


Example 2': $(\mathrm{X}, \varphi)=2^{\infty}$-solenoid (BazettP.)

An $s / u$-bijective pair is $Y=\{0,1\}^{\mathbb{Z}}$, the full 2-shift, $Z=X$ and the double complex $D^{s}$ is

and we get

$$
\begin{aligned}
& H_{0}^{s}(X, \varphi) \cong \mathbb{Z}[1 / 2], H_{1}^{s}(X, \varphi) \cong \mathbb{Z} \\
& H_{N}^{s}\left(\Sigma_{G}, \sigma\right)=0, N \neq 0,1 .
\end{aligned}
$$

Generalized 1-solenoids (Williams, Yi, Thomsen): Amini, P, Saeidi Gholikandi.

Example 3: Our Anosov example (BazettP.):

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right): \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}
$$

The double complex $D^{s}$ looks like:

and


