# A homology theory for Smale spaces

Ian F. Putnam, University of Victoria

# Hyperbolicity

An invertible linear map  $T : \mathbb{R}^d \to \mathbb{R}^d$  is hyperbolic if  $\mathbb{R}^d = E^s \oplus E^u$ , *T*-invariant,  $C > 0, 0 < \lambda < 1$ ,

$$||T^n v|| \le C\lambda^n ||v||, \quad n \ge 1 \quad v \in E^s,$$
$$||T^{-n} v|| \le C\lambda^n ||v||, \quad n \ge 1 \quad v \in E^u,$$

Same definition replacing  $\mathbb{R}^d$  by a vector bundle (over compact space).

M compact manifold,  $\varphi: M \to M$  diffeomorphism is Anosov if  $D\varphi: TM \to TM$  is hyperbolic.

Smale:  $M, \varphi$  Axiom A: replace TM above by  $TM|_{NW(\varphi)} = E^s \oplus E^u$ , where  $NW(\varphi)$  is the set of non-wandering points. But  $NW(\varphi)$  is usually a fractal, not a submanifold.

#### Smale spaces (D. Ruelle)

(X,d) compact metric space,

 $\varphi: X \to X$  homeomorphism  $0 < \lambda < 1$ ,

For x in X and  $\epsilon > 0$  and small, there is a local stable set  $X^{s}(x, \epsilon)$  and a local unstable set  $X^{u}(x, \epsilon)$ :

1.  $X^{s}(x,\epsilon) \times X^{u}(x,\epsilon)$  is homeomorphic to a neighbourhood of x,

2.  $\varphi$ -invariance,

3.

$$d(\varphi(y),\varphi(z)) \leq \lambda d(y,z), \quad y,z \in X^{s}(x,\epsilon),$$
  
$$d(\varphi^{-1}(y),\varphi^{-1}(z)) \leq \lambda d(y,z), \quad y,z \in X^{u}(x,\epsilon),$$

That is, we have a local picture:



Global stable and unstable sets:

$$X^{s}(x) = \{y \mid \lim_{n \to +\infty} d(\varphi^{n}(x), \varphi^{n}(y)) = 0\}$$
  
$$X^{u}(x) = \{y \mid \lim_{n \to +\infty} d(\varphi^{-n}(x), \varphi^{-n}(y)) = 0\}$$

These are equivalence relations.

$$X^{s}(x,\epsilon) \subset X^{s}(x), X^{u}(x,\epsilon) \subset X^{u}(x).$$

## Example 1

The linear map  $A=\left( \begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right)$  is hyperbolic. Let  $\gamma>1$  be the Golden mean,

$$(\gamma, 1)A = \gamma(\gamma, 1)$$
  
(-1, \gamma)A = -\gamma^{-1}(-1, \gamma)

As det(A) = -1, it induces a homeomorphism of  $\mathbb{R}^2/\mathbb{Z}^2$  which is Anosov.

 $X^s$  and  $X^u$  are Kronecker foliations with lines of slope  $-\gamma^{-1}$  and  $\gamma.$ 



 $X = \bigcap_{n \ge c} \varphi_{o}(X_{o}), \varphi = \varphi_{o} | X$ 

 $X^{s}((x,y), \epsilon) \cong \overline{\mathbb{D}}^{x}(y) \cap X$  Cantor  $X^{u}((x,y),\varepsilon) = \langle x \rangle x (y-\varepsilon,y+\varepsilon)$ 

# Example 3: Shifts of finite type (SFTs)

Let  $G = (G^0, G^1, i, t)$  be a finite directed graph. Then we have the shift space and shift map:

$$\Sigma_G = \{ (e^k)_{k=-\infty}^{\infty} \mid e^k \in G^1, \\ i(e^{k+1}) = t(e^k), \text{ for all } n \}$$
  
$$\sigma(e)^k = e^{k+1}, \text{ "left shift"}$$

The local product structure is given by

$$\Sigma^{s}(e,1) = \{(\dots,*,*,*,e^{0},e^{1},e^{2},\dots)\}$$
  
$$\Sigma^{u}(e,1) = \{(\dots,e^{-2},e^{-1},e^{0},*,*,*,\dots)\}$$

Smales spaces have a large supply of periodic points and it is interesting to count them.

Adjacency matrix of G:  $G^0 = \{1, 2, ..., N\}, A_G$ is  $N \times N$  with

$$(A_G)_{i,j} =$$
#edges from *i* to *j*

**Theorem 1.** Let  $A_G$  be the adjancency matrix of the graph G. For any  $p \ge 1$ , we have

$$#\{e \in \Sigma_G \mid \sigma^p(e) = e\} = Tr(A_G^p).$$

This is reminiscent of the Lefschetz fixed-point formula for smooth maps of compact manifolds.

**Question 2.** Is the right hand side actually the result of  $\sigma$  acting on some homology theory of  $(\Sigma_G, \sigma)$ ?

Positive answers by Bowen-Franks and Krieger.

# Krieger's invariants for SFT's

W. Krieger defined invariants, which we denote by  $D^s(\Sigma_G, \sigma), D^u(\Sigma_G, \sigma)$ , for shifts of finite type by considering stable and unstable equivalence as groupoids and taking its groupoid  $C^*$ -algebra:

$$K_0(C^*(X^s)), K_0(C^*(X^s))$$

In this case, these are both AF-algebras and

$$D^{s}(\Sigma_{G}, \sigma) = \lim \mathbb{Z}^{N} \xrightarrow{A_{G}} \mathbb{Z}^{N} \xrightarrow{A_{G}} \cdots$$

(For the unstable, replace  $A_G$  with  $A_G^T$ .) Each comes with a canonical automorphism.

Returning to Smale spaces . . .

#### **Bowen's Theorem**

**Theorem 3** (Bowen). For a non-wandering Smale space,  $(X, \varphi)$ , there exists a SFT  $(\Sigma, \sigma)$  and

$$\pi: (\Sigma, \sigma) \to (X, \varphi),$$

with  $\pi \circ \sigma = \varphi \circ \pi$ , continuous, surjective and finite-to-one.

First, this means that SFT's have a special place among Smale spaces. Secondly, one can try to understand  $(X, \varphi)$  by investigating  $(\Sigma, \sigma)$ . For example, they will have the same entropy. Of course,  $(\Sigma, \sigma)$  is not unique.

A. Manning used Bowen's Theorem to provide a formula counting the number of periodic points for  $(X, \varphi)$ .

For  $N \ge 0$ , define

$$\Sigma_N(\pi) = \{(e_0, e_1, \dots, e_N) \mid \pi(e_n) = \pi(e_0), \\ 0 \le n \le N\}.$$

For all  $N \ge 0$ ,  $(\Sigma_N(\pi), \sigma)$  is also a shift of finite type. Observe that  $S_{N+1}$  acts on  $\Sigma_N(\pi)$ .

**Theorem 4** (Manning). For a non-wandering Smale space  $(X, \varphi)$ ,  $(\Sigma, \sigma)$  as above and  $p \ge 1$ , we have

$$\#\{x \in X \mid \varphi^p(x) = x\}$$
  
=  $\sum_N (-1)^N Tr(\sigma^p_* : D^s(\Sigma_N(\pi))^{alt})$   
 $\rightarrow D^s(\Sigma_N(\pi))^{alt}).$ 

**Question 5** (Bowen). Is there a homology theory for Smale spaces  $H_*(X, \varphi)$  which provides a Lefschetz formula, counting the periodic points?

In fact, the groups  $D^s(\Sigma_N(\pi))^{alt}$  appear to be giving a chain complex.

Idea: for  $0 \le n \le N$ , let  $\delta_n : \Sigma_N(\pi) \to \Sigma_{N-1}(\pi)$ be the map which deletes entry n.

Let  $(\delta_n)_* : D^s(\Sigma_N(\pi))^{alt} \to D^s(\Sigma_{N-1}(\pi))^{alt}$  be the induced map and  $\partial = \sum_{n=0}^N (-1)^n (\delta_n)_*$  to make a chain complex.

This is wrong: a map

$$\rho: (\Sigma, \sigma) \to (\Sigma', \sigma)$$

between shifts of finite type does *not* always induce a group homomorphism between Krieger's invariants.

While it is true that  $\rho$  will map  $R^s(\Sigma)$  to  $R^s(\Sigma')$ the functorial properties of the construction of groupoid  $C^*$ -algebras is subtle. Let  $\pi$  :  $(Y, \psi) \to (X, \varphi)$  be a factor map between Smale spaces. For every y in Y, we have  $\pi(Y^s(y)) \subseteq X^s(\pi(y))$ .

**Definition 6.**  $\pi$  *is s*-bijective *if*  $\pi : Y^{s}(y) \to X^{s}(\pi(y))$  *is bijective, for all* y.

**Theorem 7.** If  $\pi$  is s-bijective then  $\pi : Y^s(y, \epsilon) \rightarrow X^s(\pi(y), \epsilon')$  is a local homeomorphism.

**Theorem 8.** Let  $\pi : (\Sigma, \sigma) \to (\Sigma', \sigma)$  be a factor map between SFT's.

If  $\pi$  is s-bijective, then there is a map

 $\pi^s: D^s(\Sigma, \sigma) \to D^s(\Sigma', \sigma).$ 

If  $\pi$  is *u*-bijective, then there is a map

$$\pi^{s*}: D^s(\Sigma', \sigma) \to D^s(\Sigma, \sigma).$$

Bowen's  $\pi : (\Sigma, \sigma) \to (X, \varphi)$  is not *s*-bijective or *u*-bijective if X is a torus, for example.

#### A better Bowen's Theorem

Let  $(X, \varphi)$  be a Smale space. We look for a Smale space  $(Y, \psi)$  and a factor map

$$\pi_s: (Y,\psi) \to (X,\varphi)$$

satisfying:

- 1.  $\pi_s$  is *s*-bijective,
- 2.  $dim(Y^u(y, \epsilon)) = 0.$

That is,  $Y^u(y, \epsilon)$  is totally disconnected, while  $Y^s(y, \epsilon)$  is homeomorphic to  $X^s(\pi_s(y), \epsilon)$ .

This is a "one-coordinate" version of Bowen's Theorem.

Similarly, we look for a Smale space  $(Z,\zeta)$  and a factor map  $\pi_u : (Z,\zeta) \to (X,\varphi)$  satisfying  $dim(Z^s(z,\epsilon)) = 0$ , and  $\pi_u$  is *u*-bijective.

We call  $\pi = (Y, \psi, \pi_s, Z, \zeta, \pi_u)$  a s/u-bijective pair for  $(X, \varphi)$ .

**Theorem 9.** If  $(X, \varphi)$  is a non-wandering Smale space, then there exists an s/u-bijective pair.

Consider the fibred product:

$$\Sigma = \{(y, z) \in Y \times Z \mid \pi_s(y) = \pi_u(z)\}$$

with



 $\rho_s(y,z) = z \text{ is } s\text{-bijective, } \rho_u(y,z) = y \text{ is } u\text{-bijective. Hence, } \Sigma \text{ is a SFT.}$ 

For  $L, M \geq 0$ , we define

$$\Sigma_{L,M}(\pi) = \{(y_0, \dots, y_L, z_0, \dots, z_M) \mid \\ y_l \in Y, z_m \in Z, \\ \pi_s(y_l) = \pi_u(z_m)\}.$$

Each of these is a SFT.

Moreover, the maps

$$\delta_{l,}: \Sigma_{L,M} \to \Sigma_{L-1,M},$$
  
$$\delta_{m}: \Sigma_{L,M} \to \Sigma_{L,M-1}$$

which delete  $y_l$  and  $z_m$  are *s*-bijective and *u*-bijective, respectively.

This is the key point! We have avoided the issue which caused our earlier attempt to get a chain complex to fail.

We get a double complex:

$$D^{s}(\Sigma_{0,2})^{alt} \leftarrow D^{s}(\Sigma_{1,2})^{alt} \leftarrow D^{s}(\Sigma_{2,2})^{alt} \leftarrow D^{s}(\Sigma_{2,2})^{alt} \leftarrow D^{s}(\Sigma_{1,1})^{alt} \leftarrow D^{s}(\Sigma_{2,1})^{alt} \leftarrow D^{s}(\Sigma_{1,1})^{alt} \leftarrow D^{s}(\Sigma_{2,1})^{alt} \leftarrow D^{s}(\Sigma_{1,1})^{alt} \leftarrow D^{s}(\Sigma_{2,1})^{alt} \leftarrow D^{s}(\Sigma_{1,1})^{alt} \leftarrow D^{s}(\Sigma_{2,1})^{alt} \leftarrow D^{s}(\Sigma_{1,1})^{alt} \leftarrow D^{s}(\Sigma_{1,1})^{alt}$$

$$\partial_N^s : \qquad \oplus_{L-M=N} D^s(\Sigma_{L,M})^{alt} \\ \rightarrow \qquad \oplus_{L-M=N-1} D^s(\Sigma_{L,M})^{alt}$$

$$\partial_N^s = \sum_{l=0}^L (-1)^l \delta_{l,}^s + \sum_{m=0}^{M+1} (-1)^{m+M} \delta_{m,m}^{s*}$$

$$H_N^s(\pi) = \ker(\partial_N^s) / Im(\partial_{N+1}^s).$$

Recall: beginning with  $(X, \varphi)$ , we select an s/u-bijective pair  $\pi = (Y, \psi, \pi_s, Z, \zeta \pi_u)$  construct the double complex and compute  $H_N^s(\pi)$ .

**Theorem 10.** The groups  $H_N^s(\pi)$  do not depend on the choice of s/u-bijective pair  $\pi$ .

From now on, we write  $H_N^s(X,\varphi)$ .

**Theorem 11.** The functor  $H_*^s(X, \varphi)$  is covariant for *s*-bijective factor maps, contravariant for *u*-bijective factor maps.

**Theorem 12.** The groups  $H_N^s(X, \varphi)$  are all finite rank and non-zero for only finitely many  $N \in \mathbb{Z}$ .

We can regard  $\varphi$  :  $(X,\varphi) \rightarrow (X,\varphi)$ , which is both s and u-bijective and so induces an automorphism of the invariants.

**Theorem 13.** (Lefschetz Formula) Let  $(X, \varphi)$ be any non-wandering Smale space and let  $p \ge p$ 1.

$$\sum_{N \in \mathbb{Z}} (-1)^N \quad Tr[(\varphi^s)^p : H^s_N(X, \varphi) \otimes \mathbb{Q}$$
$$\rightarrow \qquad H^s_N(X, \varphi) \otimes \mathbb{Q}]$$
$$= \qquad \#\{x \in X \mid \varphi^p(x) = x\}$$

=

## Example 1: Shifts of finite type

If  $(X, \varphi) = (\Sigma, \sigma)$ , then  $Y = \Sigma = Z$  is an s/u-bijective pair.

The double complex  $D_a^s$  is:



and  $H_0^s(\Sigma, \sigma) = D^s(\Sigma)$  and  $H_N^s(\Sigma, \sigma) = 0, N \neq 0$ .

Example 2:  $\dim(X^{s}(x, \epsilon)) = 0$ .

(As an example, the solenoid we saw in example 2.)

We may find a SFT and s-bijective map

$$\pi_s: (\Sigma, \sigma) \to (X, \varphi).$$

The  $Y = \Sigma, Z = X$  is an s/u-bijective pair and the double complex  $D^s$  is:



Example 2':  $(X, \varphi) = 2^{\infty}$ -solenoid (Bazett-P.)

An s/u-bijective pair is  $Y = \{0,1\}^{\mathbb{Z}}$ , the full 2-shift, Z = X and the double complex  $D^s$  is



and we get

 $H_0^s(X,\varphi) \cong \mathbb{Z}[1/2], H_1^s(X,\varphi) \cong \mathbb{Z},$ 

 $H_N^s(\Sigma_G, \sigma) = 0, N \neq 0, 1.$ 

Generalized 1-solenoids (Williams, Yi, Thomsen): Amini, P, Saeidi Gholikandi. **Example 3: Our Anosov example** (Bazett-P.):

$$\left(\begin{array}{cc}1 & 1\\1 & 0\end{array}\right): \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{R}^2/\mathbb{Z}^2$$

The double complex  $D^s$  looks like:



and

$$\begin{array}{c|c|c} N & H_N^s(X,\varphi) & \varphi^s \\ \hline -1 & \mathbb{Z} & 1 \\ 0 & \mathbb{Z}^2 & \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \\ 1 & \mathbb{Z} & -1. \end{array}$$

23