Circle maps and C^{*}-algebras

Thomas L. Schmidt \& Benjamin R. Johannesen (joint with Klaus Thomsen) Aarhus University
tschmidt@imf.au.dk \& benjamin@imf.au.dk

Markov maps and K-theory

Groupoids from circle maps

Assume throughout $\phi: \mathbb{T} \rightarrow \mathbb{T}$ is a continuous piecewise monotone map. Define the valency of ϕ at $x \in \mathbb{T}$ by

- $\operatorname{val}(\phi, x)=(+,+)$ if ϕ is increasing at x.
- $\operatorname{val}(\phi, x)=(-,-)$ if ϕ is decreasing at x.
- $\operatorname{val}(\phi, x)=(+,-)$ if x is a local maximum for ϕ.
- $\operatorname{val}(\phi, x)=(-,+)$ if x is a local minimum for ϕ.

Definition Define the following relations

$$
\begin{gathered}
x \stackrel{(n, m)}{\sim} y \Leftrightarrow \phi^{n}(x)=\phi^{m}(y), \operatorname{val}\left(\phi^{n}, x\right)=\operatorname{val}\left(\phi^{m}, y\right), \\
x \stackrel{k}{\sim} y \Leftrightarrow \exists n, m \in \mathbb{N}: k=n-m, x \stackrel{(n, m)}{\sim} y
\end{gathered}
$$

Define the set $\Gamma_{\phi}^{+}=\{(x, k, y) \in \mathbb{T} \times \mathbb{Z} \times \mathbb{T} \mid x \stackrel{k}{\sim} y\}$.
The set Γ_{ϕ}^{+}is an étale locally compact Hausdorff groupoid, which can be identified with a groupoid associated to a pseudo-group \mathscr{P}^{+}of orientation preserving homeomorphisms on \mathbb{T}.

Structure of $C_{r}^{*}\left(\Gamma_{\phi}^{+}\right)$

Assume that ϕ is surjective and not locally injective.
Theorem $C_{r}^{*}\left(\Gamma_{\phi}^{+}\right)$is unital, separable, nuclear and satisfies the universal coefficient theorem by Rosenberg and Schochet [RS].

Note, ϕ is transitive if and only if there is a point with dense forward orbit as ϕ is surjective, and ϕ is totally transitive if and only if ϕ is exact.

Theorem If ϕ is transitive, then $C_{r}^{*}\left(\Gamma_{\phi}^{+}\right)$is purely infinite.
Consider the Γ_{ϕ}^{+}-orbit $\Gamma_{\phi}^{+}\{x\}=\{y \in \mathbb{T} \mid x \stackrel{k}{\sim} y\}$ of $x \in \mathbb{T}$. Then $C_{r}^{*}\left(\Gamma_{\phi}^{+}\right)$is simple if and only if the Γ_{ϕ}^{+}-orbit of x is dense in \mathbb{T} for all $x \in \mathbb{T}$.

$\overline{\Gamma_{\phi}^{+}\{0\}}=\mathbb{T}$

A point $e \in \mathbb{T} \backslash \mathscr{C}$ is an exceptional fixed point if $\phi^{-1}(e) \backslash \mathscr{C}=\{e\}$, where $\mathscr{C}=\mathscr{C}_{1}$, and \mathscr{C}_{n} denotes the set of critical points for ϕ^{n}

Theorem $C_{r}^{*}\left(\Gamma_{\phi}^{+}\right)$is simple if and only if ϕ is exact (or, equivalently, totally transitive) and has no exceptional fixed points.

Hence if ϕ is exact and has no exceptional fixed points, then $C_{r}^{*}\left(\Gamma_{\phi}^{+}\right)$is classified by its K-theory, by the Kirchberg-Phillips theorem [Ph].

Structure of $C_{r}^{*}\left(R_{\phi}^{+}\right)$

Define the equivalence relations $R_{\phi}^{+}(n)=\left\{(x, 0, y) \in \Gamma_{\phi}^{+} \mid x \stackrel{(n, n)}{\sim} y\right\}$ and $R_{\phi}^{+}=\left\{(x, 0, y) \in \Gamma_{\phi}^{+}\right\}=\bigcup_{n \in \mathbb{N}} R_{\phi}^{+}(n)$. Then

$$
C_{r}^{*}\left(R_{\phi}^{+}\right)=\overline{\bigcup_{n \in \mathbb{N}} \mathbb{D}_{n}}, \quad \text { where } \quad \mathbb{D}_{n}=C_{r}^{*}\left(R_{\phi}^{+}(n)\right)
$$

Moreover the core $C_{r}^{*}\left(R_{\phi}^{+}\right)$of $C_{r}^{*}\left(\Gamma_{\phi}^{+}\right)$is the fixed point algebra of the gauge action on $C_{r}^{*}\left(\Gamma_{\phi}^{+}\right)$given by $\beta_{z}(f)(x, k, y)=z^{k} f(x, k, y)$ for all $f \in C_{c}\left(\Gamma_{\phi}^{+}\right)$.

Theorem There are finite dimensional C^{*}-algebras \mathbb{A}_{n} and \mathbb{B}_{n} and $*$-homomorphisms $I_{n}, U_{n}: \mathbb{A}_{n} \rightarrow \mathbb{B}_{n}$ such that

$$
\mathbb{D}_{n} \simeq\left\{(a, b) \in \mathbb{A}_{n} \oplus C\left([0,1], \mathbb{B}_{n}\right) \mid I_{n}(a)=b(0), U_{k}(a)=b(1)\right\}
$$

Assume that ϕ is a Markov map, i.e. maps critical points to critical points. We note the following result about Markov maps:

Theorem There is a $k \in \mathbb{N}$ such that for any $j \geq k$ and $x \in \phi(\mathbb{T} \backslash \mathscr{C})$, there exist $y_{ \pm} \in \mathbb{T}$ such that $\phi^{j}\left(y_{ \pm}\right)=x$ and $\operatorname{val}\left(\phi^{j}, y_{ \pm}\right)=(\pm, \pm)$.

The number k is called the order of ϕ. Also simplicity simplifies:

Theorem $C_{r}^{*}\left(\Gamma_{\phi}^{+}\right)$is simple if and only if ϕ is transitive.
Moreover there is an algorithm for computing the K-theory of $C_{r}\left(\Gamma_{\phi}^{+}\right)$. Using work of Katsura [Ka], one can construct a C^{*}-correspondence E on $C_{r}^{*}\left(R_{\phi}^{+}(k)\right)$ whose corresponding C^{*}-algebra \mathscr{O}_{E} is isomorphic to $C_{r}^{*}\left(\Gamma_{\phi}^{+}\right)$. This yields a six-term exact sequence

Next, we note that the C^{*}-algebras \mathbb{A}_{k} and \mathbb{B}_{k} are finite dimensional, and that $K_{0}\left(\mathbb{A}_{k}\right)$ and $K_{0}\left(\mathbb{B}_{k}\right)$ can be determined by looking at the graph of ϕ. Putting all this together, one obtains short exact sequences

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{coker}(1-\tilde{A}) \longrightarrow K_{0}\left(C_{r}^{*}\left(\Gamma_{\phi}^{+}\right)\right) \longrightarrow \operatorname{ker}(1-\tilde{B}) \longrightarrow K_{1}\left(C_{r}^{*}\left(\Gamma_{\phi}^{+}\right)\right) \longrightarrow \operatorname{kek}(1-\tilde{A}) \longrightarrow 0 \\
& 0 \longrightarrow \tilde{B}) \longrightarrow
\end{aligned}
$$

where \tilde{A} and \tilde{B} are restrictions of endomorphisms $A: K_{0}\left(\mathbb{A}_{k}\right) \rightarrow K_{0}\left(\mathbb{A}_{k+1}\right)$ and $B: K_{0}\left(\mathbb{B}_{k}\right) \rightarrow_{\tilde{B}} K_{0}\left(\mathbb{B}_{k+1}\right)$ to ker $\left(I_{k}-U_{k}\right)_{0}$ and coker $\left(I_{k}-U_{k}\right)_{0}$ resp. The maps \tilde{A} and \tilde{B} can also be computed by considering the graph of ϕ. Some examples are shown below.

$K_{0}\left(C_{r}^{*}\left(\Gamma_{\phi}^{+}\right)\right)=\mathbb{Z} \oplus \mathbb{Z}_{5}$, $K_{1}\left(C_{r}^{*}\left(\Gamma_{\phi}^{+}\right)\right)=\mathbb{Z}$.

$$
\begin{gathered}
K_{0}\left(C_{r}^{*}\left(\Gamma_{\phi}^{+}\right)\right)=\mathbb{Z} \oplus \mathbb{Z}_{2 n k-1} \\
K_{1}\left(C_{r}^{*}\left(\Gamma_{\phi}^{+}\right)\right)=\mathbb{Z}
\end{gathered}
$$

Further work

There are still several questions that remain open:

- What happens to the whole story if the pseudo-group \mathscr{P}^{+}is replaced by the pseudo-group \mathscr{P} of all homeomorphisms on \mathbb{T}.
- What more can we say about the structure of the core of $C_{r}^{*}\left(\Gamma_{\phi}^{+}\right)$? How does the structure relate to conditions of ϕ ?
- Is it possible to relax the requirement that the map ϕ is Markov?

References

[Th] Thomas Schmidt and Klaus Thomsen. Circle Maps and C^{*}-algebras. Ergodic Theory and Dynamical Systems, to appear.
[Ka] T. Katsura, On C^{*}-algebras associated with C^{*}-correspondences, J. Func. Analysis 217 (2004), 366-401.
[Ph] N. C. Phillips, A classification theorem for nuclear purely infinite simple C^{*}-algebras, Doc. Math. 5 (2000), 49-114.
[RS] J. Rosenberg and C. Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor, Duke J. Math. 55 (1987), 337-347.

