Circle maps and C*-algebras

Thomas L. Schmidt & Benjamin R. Johannesen (joint with Klaus Thomsen) Aarhus University tschmidt@imf.au.dk & benjamin@imf.au.dk

Groupoids from circle maps

Assume throughout $\phi : \mathbb{T} \to \mathbb{T}$ is a continuous piecewise monotone map. Define the valency of ϕ at $x \in \mathbb{T}$ by

- $val(\phi, x) = (+, +)$ if ϕ is increasing at x.
- $val(\phi, x) = (-, -)$ if ϕ is decreasing at x.
- $val(\phi, x) = (+, -)$ if x is a local maximum for ϕ .
- $val(\phi, x) = (-, +)$ if x is a local minimum for ϕ .

Definition Define the following relations

$$x \stackrel{(n,m)}{\sim} y \Leftrightarrow \phi^n(x) = \phi^m(y), \operatorname{val}(\phi^n, x) = \operatorname{val}(\phi^m, y),$$
$$x \stackrel{k}{\sim} u \Leftrightarrow \exists n, m \in \mathbb{N} \cdot k = n - m, x \stackrel{(n,m)}{\sim} u$$

Markov maps and K-theory

Assume that ϕ is a Markov map, i.e. maps critical points to critical points. We note the following result about Markov maps:

Theorem There is a $k \in \mathbb{N}$ such that for any $j \geq k$ and $x \in \phi(\mathbb{T} \setminus \mathscr{C})$, there exist $y_{\pm} \in \mathbb{T}$ such that $\phi^j(y_{\pm}) = x$ and $\operatorname{val}(\phi^j, y_{\pm}) = (\pm, \pm)$.

The number k is called the order of ϕ . Also simplicity simplifies:

Theorem $C_r^*(\Gamma_{\phi}^+)$ is simple if and only if ϕ is transitive.

Moreover there is an algorithm for computing the K-theory of $C_r(\Gamma_{\phi}^+)$. Using work of Katsura [Ka], one can construct a C^* -correspondence E on $C_r^*(R_{\phi}^+(k))$ whose corresponding C^* -algebra \mathscr{O}_E is isomorphic to $C_r^*(\Gamma_{\phi}^+)$. This yields a six-term exact sequence

Define the set
$$\Gamma_{\phi}^{+} = \{(x, k, y) \in \mathbb{T} \times \mathbb{Z} \times \mathbb{T} \mid x \stackrel{k}{\sim} y\}.$$

The set Γ_{ϕ}^{+} is an étale locally compact Hausdorff groupoid, which can be identified with a groupoid associated to a pseudo-group \mathscr{P}^{+} of orientation preserving homeomorphisms on \mathbb{T} .

Structure of $C_r^*(\Gamma_{\phi}^+)$

Assume that ϕ is surjective and not locally injective.

Theorem $C_r^*(\Gamma_{\phi}^+)$ is unital, separable, nuclear and satisfies the universal coefficient theorem by Rosenberg and Schochet [RS].

Note, ϕ is transitive if and only if there is a point with dense forward orbit as ϕ is surjective, and ϕ is totally transitive if and only if ϕ is exact.

Theorem If ϕ is transitive, then $C_r^*(\Gamma_{\phi}^+)$ is purely infinite.

Consider the Γ_{ϕ}^+ -orbit $\Gamma_{\phi}^+\{x\} = \{y \in \mathbb{T} \mid x \stackrel{k}{\sim} y\}$ of $x \in \mathbb{T}$. Then $C_r^*(\Gamma_{\phi}^+)$ is simple if and only if the Γ_{ϕ}^+ -orbit of x is dense in \mathbb{T} for all $x \in \mathbb{T}$.

Next, we note that the C^* -algebras \mathbb{A}_k and \mathbb{B}_k are finite dimensional, and that $K_0(\mathbb{A}_k)$ and $K_0(\mathbb{B}_k)$ can be determined by looking at the graph of ϕ . Putting all this together, one obtains short exact sequences

$$0 \longrightarrow \operatorname{coker}(1 - \tilde{A}) \longrightarrow K_0(C_r^*(\Gamma_{\phi}^+)) \longrightarrow \operatorname{ker}(1 - \tilde{B}) \longrightarrow 0$$

 $0 \longrightarrow \operatorname{coker}(1 - \tilde{B}) \longrightarrow K_1(C_r^*(\Gamma_{\phi}^+)) \longrightarrow \operatorname{ker}(1 - \tilde{A}) \longrightarrow 0$

where \tilde{A} and \tilde{B} are restrictions of endomorphisms $A : K_0(\mathbb{A}_k) \to K_0(\mathbb{A}_{k+1})$ and $B : K_0(\mathbb{B}_k) \to K_0(\mathbb{B}_{k+1})$ to ker $(I_k - U_k)_0$ and coker $(I_k - U_k)_0$ resp. The maps \tilde{A} and \tilde{B} can also be computed by considering the graph of ϕ . Some examples are shown below.

A point $e \in \mathbb{T} \setminus \mathscr{C}$ is an exceptional fixed point if $\phi^{-1}(e) \setminus \mathscr{C} = \{e\}$, where $\mathscr{C} = \mathscr{C}_1$, and \mathscr{C}_n denotes the set of critical points for ϕ^n .

Theorem $C_r^*(\Gamma_{\phi}^+)$ is simple if and only if ϕ is exact (or, equivalently, totally transitive) and has no exceptional fixed points.

Hence if ϕ is exact and has no exceptional fixed points, then $C_r^*(\Gamma_{\phi}^+)$ is classified by its K-theory, by the Kirchberg–Phillips theorem [Ph].

Structure of $C_r^*(R_{\phi}^+)$

Further work

There are still several questions that remain open:

- What happens to the whole story if the pseudo-group \mathscr{P}^+ is replaced by the pseudo-group \mathscr{P} of all homeomorphisms on \mathbb{T} .
- What more can we say about the structure of the core of $C_r^*(\Gamma_{\phi}^+)$? How does the structure relate to conditions of ϕ ?
- Is it possible to relax the requirement that the map ϕ is Markov?

Define the equivalence relations $R_{\phi}^+(n) = \{(x, 0, y) \in \Gamma_{\phi}^+ \mid x \overset{(n,n)}{\sim} y\}$ and $R_{\phi}^+ = \{(x, 0, y) \in \Gamma_{\phi}^+\} = \bigcup_{n \in \mathbb{N}} R_{\phi}^+(n)$. Then

$$C_r^*(R_{\phi}^+) = \bigcup_{n \in \mathbb{N}} \mathbb{D}_n, \text{ where } \mathbb{D}_n = C_r^*(R_{\phi}^+(n)).$$

Moreover the core $C_r^*(R_{\phi}^+)$ of $C_r^*(\Gamma_{\phi}^+)$ is the fixed point algebra of the gauge action on $C_r^*(\Gamma_{\phi}^+)$ given by $\beta_z(f)(x,k,y) = z^k f(x,k,y)$ for all $f \in C_c(\Gamma_{\phi}^+)$.

Theorem There are finite dimensional C^* -algebras \mathbb{A}_n and \mathbb{B}_n and *-homomorphisms $I_n, U_n : \mathbb{A}_n \to \mathbb{B}_n$ such that

 $\mathbb{D}_n \simeq \{(a,b) \in \mathbb{A}_n \oplus C([0,1],\mathbb{B}_n) \mid I_n(a) = b(0), U_k(a) = b(1)\}.$

References

[Th] Thomas Schmidt and Klaus Thomsen. Circle Maps and C^* -algebras. Ergodic Theory and Dynamical Systems, to appear.

[Ka] T. Katsura, On C*-algebras associated with C*-correspondences, J.
Func. Analysis 217 (2004), 366-401.

[Ph] N. C. Phillips, A classification theorem for nuclear purely infinite simple C*-algebras, Doc. Math. 5 (2000), 49-114.

 [RS] J. Rosenberg and C. Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor, Duke J. Math. 55 (1987), 337-347.