SFB-workshop: Groups, dynamical systems and C*-algebras, Münster, August 20–24, 2013 C^{*}-Quantum Groups with Projection

> Sutanu Roy (jointly with Ralf Meyer & Stanisław Lech Woronowicz) Georg-August-Universität Göttingen, Germany sutanu@uni-math.gwdg.de

Introduction

We introduce the notion of *braided multiplicative unitaries* over C^{*}-quantum groups.

Every standard multiplicative unitary of a C^{*}-quantum group \mathbb{G} acting on a Hilbert space \mathcal{H} and every *braided multiplicative unitary* over \mathbb{G} acting on another Hilbert space \mathcal{K} give rise to a standard multiplicative unitary acting on $\mathcal{H} \otimes \mathcal{K}$.

G-Yetter-Drinfeld pair of representations and braiding

A unitary $U \in \mathcal{M}(\mathbb{K}(\mathcal{K}) \otimes C)$ is said to be a *representation* of $\mathbb{G} = (C, \Delta_C)$ on a Hilbert space \mathcal{H} if it is a character in the second leg: $(id_{\mathcal{K}} \otimes \Delta_{\mathcal{C}})U = U_{12}U_{13}$.

We use this to study *semidirect product of* C^* -quantum groups or C^* -quantum groups with projec*tion* in the level of multiplicative unitaries.

Hopf algebras with projection (Radford '85)

Let (H, Δ) be a Hopf-algebra and let $p: H \to H$ is an idempotent Hopf algebra homomorphism.

- The image of p is again a Hopf algebra (H_1, Δ_1) .
- Define $H_2 := \{h \in H : (p \otimes id_H)\Delta(h) = 1 \otimes h\}$. Then (H_2, Δ_2) is a braided Hopf algebra over (H_1, Δ_1) :
- \rightarrow H₂ is a H₁-(right right) Yetter-Drinfeld algebra.
- \rightarrow The restriction of Δ on H_2 defines $\Delta_2 \colon H_2 \rightarrow H_2 \boxtimes H_2$, where \boxtimes is the *braided tensor* product induced by the H_1 -Yetter-Drinfeld structure on H_2 .

Conversely, a Hopf algebra (H_1, Δ_1) and an H_1 -braided Hopf algebra (H_2, Δ_2) give rise to a unique Hopf algebra (H, Δ) .

Multiplicative unitaries (Baaj-Skandalis '93)

A unitary $\mathbb{W} \in \mathbb{B}(\mathcal{H} \otimes \mathcal{H})$ is said to be a *multiplicative unitary* if it satisfies the *pentagon* equation:

 $\mathbb{W}_{23}\mathbb{W}_{12} = \mathbb{W}_{12}\mathbb{W}_{13}\mathbb{W}_{23} \quad \text{in } \mathcal{U}(\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H}).$

Dual multiplicative unitary is defined by $\widehat{\mathbb{W}} := \Sigma \mathbb{W}^* \Sigma \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$, where Σ is the flip operator.

A pair of representations (U, V) of \mathbb{G} and \mathbb{G} acting on \mathcal{K} is called \mathbb{G} -*Yetter-Drinfeld* if and only if

 $W_{23}U_{13}V_{12} = V_{12}U_{13}W_{23} \quad \text{in } \mathcal{UM}(\mathbb{K}(\mathcal{K}) \otimes \hat{\mathcal{C}} \otimes \mathcal{C}).$

Every G-Yetter-Drinfeld pair gives rise to a *braiding operator* $\times^{(\mathcal{K},\mathcal{K})}$.

When either of the representations U, V is trivial then the braiding operator $X^{(\mathcal{K},\mathcal{K})}$ is the standard flip operator Σ .

Braided multiplicative unitaries

Let (U, V) be a G-Yetter-Drinfeld pair of representations acting on \mathcal{K} . An element $\mathbb{F} \in \mathcal{U}(\mathcal{K} \otimes \mathcal{K})$ is called a *braided multiplicative unitary over* G if it satisfies

- **G**-(co)invariance condition: $U_{13}U_{23}\mathbb{F}_{12} = \mathbb{F}_{12}U_{13}U_{23}$ in $\mathcal{UM}(\mathbb{K}(\mathcal{K} \otimes \mathcal{K}) \otimes C)$,
- $\widehat{\mathbb{G}}$ -(co)invariance condition: $V_{13}V_{23}\mathbb{F}_{12} = \mathbb{F}_{12}V_{13}V_{23}$ in $\mathcal{UM}(\mathbb{K}(\mathcal{K}\otimes\mathcal{K})\otimes\hat{C})$,
- braided pentagon equation: $\mathbb{F}_{23}\mathbb{F}_{12} = \mathbb{F}_{12}(\times_{23}^{(\mathcal{K},\mathcal{K})})\mathbb{F}_{12}(\times_{23}^{(\mathcal{K},\mathcal{K})})^*_{23}\mathbb{F}_{23}$ in $\mathcal{U}(\mathcal{K}\otimes\mathcal{K}\otimes\mathcal{K})$.

Theorem

The unitary $\mathbb{W}_{1234} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{K} \otimes \mathcal{H} \otimes \mathcal{K})$ defined by $\mathbb{W}_{1234} := \mathbb{W}_{13} \mathbb{U}_{23} \hat{\mathbb{V}}_{34}^* \mathbb{F}_{24} \hat{\mathbb{V}}_{34}$ is a multiplicative unitary, where $\hat{V} := \sigma(V^*) \in \mathcal{UM}(\hat{C} \otimes \mathbb{K}(\mathcal{K})).$

There is also a notion of manageability for \mathbb{F} which yields the manageability for \mathbb{W}_{1234} .

C^{*}-quantum groups and duality (Woronowicz '96)

Let C be a C^{*}-algebra and $\Delta: C \rightarrow \mathcal{M}(C \otimes C)$ is a nondegenerate ^{*}-homomorphism. A pair $\mathbb{G} = (C, \Delta_C)$ is said to be a C^{*}-quantum group if it comes from a manageable multiplicative unitary $\mathbb{W} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$:

• $C = \{(\omega \otimes id_{\mathcal{H}}) \mathbb{W} : \omega \in \mathbb{B}(\mathcal{H})_*\}^{\text{norm closure}},$

• $\Delta_C(c) = \mathbb{W}(c \otimes 1)\mathbb{W}^*$ for all $c \in C$.

Manageability is preserved under duality. Quantum group $\widehat{\mathbb{G}} = (\widehat{C}, \widehat{\Delta}_C)$, dual to \mathbb{G} , is defined by • $\hat{C} = \{ (\mathrm{id}_{\mathcal{H}} \otimes \omega) \mathbb{W} : \omega \in \mathbb{B}(\mathcal{H})_* \}^{\mathrm{norm closure}},$ • $\hat{\Delta}_C(\hat{c}) = \sigma(\mathbb{W}^*(1 \otimes \hat{c})\mathbb{W})$ for all $\hat{c} \in \hat{C}$, where σ is the flip morphism.

 $\mathbb{W} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$ is also an unitary element of $\mathcal{M}(\hat{C} \otimes C)$. Moreover, $W \in \mathcal{UM}(\hat{C} \otimes C)$ is unique: two different multiplicative unitaries giving rise to \mathbb{G} are same while viewed in $\mathcal{UM}(\hat{C} \otimes C)$. W is known as the *reduced bicharacter* of \mathbb{G} .

Example: Let G be a locally compact group and let $\mathcal{H} = L^2(G, \mu)$, where μ is the right Haar measure.

The unitary $\mathbb{W} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$ defined by $(\mathbb{W}f)(g_1, g_2) := f(g_1g_2, g_2)$ for $f \in L^2(G \times G, \mu \times \mu)$ and $g_1, g_2 \in G$ is a manageable multiplicative unitary.

This gives rise to the quantum group $(C_0(G), \Delta_G)$, where $\Delta_G(f)(g_1, g_2) := f(g_1g_2)$ for all $f \in$ $C_0(G)$.

Projections on C*-quantum groups

Let $\mathbb{W} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$ is a multiplicative unitary gives rise to \mathbb{G} .

A unitary $P \in \mathcal{U}(\hat{C} \otimes C)$ is said to be a *projection* on \mathbb{G} if the corresponding concrete unitary $\mathbb{P} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$ satisfies:

• bicharacter conditions: $\mathbb{W}_{23}\mathbb{P}_{12} = \mathbb{P}_{12}\mathbb{P}_{13}\mathbb{W}_{23}$ and $\mathbb{P}_{23}\mathbb{W}_{12} = \mathbb{W}_{12}\mathbb{P}_{13}\mathbb{P}_{23}$ in $\mathcal{U}(\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H})$, • idempotent condition: $\mathbb{P}_{23}\mathbb{P}_{12} = \mathbb{P}_{12}\mathbb{P}_{13}\mathbb{P}_{23}$ in $\mathcal{U}(\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H})$.

Proposition

 $\mathbb{P} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$ is a manageable multiplicative unitary.

The quantum group $\mathbb{H} = (A, \Delta_A)$ generated by \mathbb{P} is called the *image of the projection* P.

The reduced bicharacter $W^A \in \mathcal{UM}(\hat{A} \otimes A)$ of \mathbb{H} is same as P.

Braided m.u. on C^{*}-quantum groups with projection

Let \mathbb{G} be a C^{*}-quantum group with projection $P \in \mathcal{UM}(\hat{C} \otimes C)$ and let \mathbb{H} be its image. P defines a unique left quantum group homomorphism $\Delta_L: C \to C \otimes C:$

Dual quantum group $\hat{C} = C^*_{red}(G)$ with $\hat{\Delta}_G(\lambda_q) = \lambda_q \otimes \lambda_q$, where $\lambda_q s$ are the right regular representations of *G*.

Semidirect products of groups

A group *G* is isomorphic to a *semidirect product* of groups *Q* and *K* if and only if there is an *idempotent* group homomorphism $p: G \to G$ such that $\text{Im}(p) \cong Q$ and $\text{Ker}(p) \cong K$.

• G is homeomorphic to $K \times Q$ via multiplication map $(k, q) \rightarrow k \cdot q$. • K is homeomorphic to G/Q via quotient map $\delta: G \to G/Q$.

Generalisation of the Radford's construction to the C*-algebraic framework for the semidirect product of groups identifies H_1 with $C_0(Q)$ and H_2 with $C_0(G/Q)$.

$$C \otimes C \xrightarrow{\Delta_L \otimes \operatorname{id}_C} C \otimes C \otimes C, \qquad C \otimes C \xrightarrow{\operatorname{id}_C \otimes \Delta_L} C \otimes C \otimes C,$$

such that $(id_C \otimes \Delta_L)W = P_{12}W_{13}$.

Second leg of the unitary $F := P^*W \in \mathcal{UM}(\hat{C} \otimes C)$ is (co)invariant under Δ_I , or equivalently, $(\mathrm{id}_C \otimes \Delta_L) \mathsf{F} = \mathsf{F}_{13}.$

Theorem

There are representations $\rho: C \to \mathbb{B}(\mathcal{K})$ and $\hat{\rho}: \hat{C} \to \mathbb{B}(\mathcal{K})$, where $\mathcal{K} = \overline{\mathcal{H}} \otimes \mathcal{H}$, such that • (U, V) is a \mathbb{H} -Yetter-Drinfeld pair acting on \mathcal{K} , where $U := (\hat{\rho} \otimes id_A) P \in \mathcal{UM}(\mathbb{K}(\mathcal{K}) \otimes A)$ and $\hat{\mathsf{V}} := (\mathsf{id}_{\hat{A}} \otimes \rho)\mathsf{P} \in \mathcal{UM}(\hat{A} \otimes \mathbb{K}(\mathcal{K})),$

• the braiding operator is defined by $\times^{(\mathcal{K},\mathcal{K})} := (\hat{\rho} \otimes \rho) P \circ \Sigma$,

• $\mathbb{F} := (\hat{\rho} \otimes \rho) \mathsf{F} \in \mathcal{U}(\mathcal{K} \otimes \mathcal{K})$ is a braided multiplicative unitary over \mathbb{H} .

Moreover, $\mathbb{W}_{1234} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{K} \otimes \mathcal{H} \otimes \mathcal{K})$ a multiplicative unitary of \mathbb{G} .