SFB-workshop: Grroups, dynamical systems and C*-algebras, Münster, August 20-24, 2013

C*-Quantum Groups with Projection

Sutanu Roy

(jointly with Ralf Meyer \& Stanistaw Lech Woronowicz)
Georg-August-Universität Göttingen, Germany
sutanu@uni-math.gwdg.de

Introduction

We introduce the notion of braided multiplicative unitaries over C^{*}-quantum groups.
Every standard multiplicative unitary of a C^{*}-quantum group \mathbb{G} acting on a Hilbert space \mathcal{H} and every braided multiplicative unitary over \mathbb{G} acting on another Hilbert space \mathcal{K} give rise to a standard multiplicative unitary acting on $\mathcal{H} \otimes \mathcal{K}$.

We use this to study semidirect product of C^{*}-quantum groups or C^{*}-quantum groups with projec tion in the level of multiplicative unitaries.

Hopf algebras with projection (Radford '85)

Let (H, Δ) be a Hopf-algebra and let $p: H \rightarrow H$ is an idempotent Hopf algebra homomorphism.

- The image of p is again a Hopf algebra $\left(H_{1}, \Delta_{1}\right)$
- Define $H_{2}:=\left\{h \in H:\left(p \otimes \mathrm{id}_{H}\right) \Delta(h)=1 \otimes h\right\}$. Then $\left(H_{2}, \Delta_{2}\right)$ is a braided Hopf algebra over $\left(H_{1}, \Delta_{1}\right)$:
$\rightarrow \mathrm{H}_{2}$ is a H_{1}-(right right) Yetter-Drinfeld algebra.
\rightarrow The restriction of Δ on H_{2} defines $\Delta_{2}: H_{2} \rightarrow H_{2} \boxtimes H_{2}$, where \boxtimes is the braided tensor product induced by the H_{1}-Yetter-Drinfeld structure on H_{2}.
Conversely, a Hopf algebra $\left(H_{1}, \Delta_{1}\right)$ and an H_{1}-braided Hopf algebra $\left(H_{2}, \Delta_{2}\right)$ give rise to a unique Hopf algebra (H, Δ).

Multiplicative unitaries (Baaj-Skandalis '93)

A unitary $\mathbb{W} \in \mathbb{B}(\mathcal{H} \otimes \mathcal{H})$ is said to be a multiplicative unitary if it satisfies the pentagon equation:
$\mathbb{W}_{23} \mathbb{W}_{12}=\mathbb{W}_{12} \mathbb{W}_{13} \mathbb{W}_{23} \quad$ in $\mathcal{U}(\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H})$.
Dual multiplicative unitary is defined by $\widehat{\mathbb{W}}:=\Sigma \mathbb{W}^{*} \Sigma \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$, where Σ is the flip operator.

C*-quantum groups and duality (Woronowicz '96)

Let C be a C^{*}-algebra and $\Delta: C \rightarrow \mathcal{M}(C \otimes C)$ is a nondegenerate ${ }^{*}$-homomorphism. A pair $\mathbb{G}=\left(C, \Delta_{C}\right)$ is said to be a C^{*}-quantum group if it comes from a manageable multiplicative unitary $\mathbb{W} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$:

- $C=\left\{\left(\omega \otimes \operatorname{id}_{\mathcal{H}}\right) \mathbb{W}: \omega \in \mathbb{B}(\mathcal{H})_{*}\right\}^{\text {norm }}$ closure
- $\Delta_{C}(c)=\mathbb{W}(c \otimes 1) \mathbb{W}^{*}$ for all $c \in C$

Manageability is preserved under duality. Quantum group $\widehat{\mathbb{G}}=\left(\hat{C}, \hat{\Delta}_{C}\right)$, dual to \mathbb{G}, is defined by

- $\hat{C}=\left\{\left(\operatorname{id}_{\mathcal{H}} \otimes \omega\right) \mathbb{W}: \omega \in \mathbb{B}(\mathcal{H})_{*}\right\}^{\text {norm }}$ closure
- $\hat{\Delta}_{C}(\hat{c})=\sigma\left(\mathbb{W}^{*}(1 \otimes \hat{c}) \mathbb{W}\right)$ for all $\hat{c} \in \hat{c}$, where σ is the flip morphism
$\mathbb{W} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$ is also an unitary element of $\mathcal{M}(\hat{C} \otimes C)$
Moreover, $\mathrm{W} \in \mathcal{U} \mathcal{M}(\hat{C} \otimes C)$ is unique: two different multiplicative unitaries giving rise to \mathbb{G} are same while viewed in $\mathcal{U} \mathcal{M}(\hat{C} \otimes C)$. W is known as the reduced bicharacter of \mathbb{G}.

Example: Let G be a locally compact group and let $\mathcal{H}=L^{2}(G, \mu)$, where μ is the right Haar measure.
The unitary $\mathbb{W} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$ defined by $(\mathbb{W} f)\left(g_{1}, g_{2}\right):=f\left(g_{1} g_{2}, g_{2}\right)$ for $f \in L^{2}(G \times G, \mu \times \mu)$ and $g_{1}, g_{2} \in G$ is a manageable multiplicative unitary.
This gives rise to the quantum group $\left(C_{0}(G), \Delta_{G}\right)$, where $\Delta_{G}(f)\left(g_{1}, g_{2}\right):=f\left(g_{1} g_{2}\right)$ for all $f \in$ $C_{0}(G)$.
Dual quantum group $\hat{C}=C_{\text {red }}^{*}(G)$ with $\hat{\Delta}_{G}\left(\lambda_{g}\right)=\lambda_{g} \otimes \lambda_{g}$, where λ_{g} s are the right regular representations of G.

Semidirect products of groups

A group G is isomorphic to a semidirect product of groups Q and K if and only if there is an idempotent group homomorphism $p: G \rightarrow G$ such that $\operatorname{lm}(p) \cong Q$ and $\operatorname{Ker}(p) \cong K$.

- G is homeomorphic to $K \times Q$ via multiplication map $(k, q) \rightarrow k \cdot q$.
- K is homeomorphic to G / Q via quotient map $\delta: G \rightarrow G / Q$.

Generalisation of the Radford's construction to the C^{*}-algebraic framework for the semidirect product of groups identifies H_{1} with $\mathrm{C}_{0}(Q)$ and H_{2} with $\mathrm{C}_{0}(G / Q)$.

\mathbb{G}-Yetter-Drinfeld pair of representations and braiding

A unitary $U \in \mathcal{M}(\mathbb{K}(\mathcal{K}) \otimes C)$ is said to be a representation of $\mathbb{G}=\left(C, \Delta_{C}\right)$ on a Hilbert space \mathcal{H} if it is a character in the second leg: $\left(\mathrm{id}_{\mathcal{K}} \otimes \Delta_{C}\right) \mathrm{U}=\mathrm{U}_{12} \mathrm{U}_{13}$.

A pair of representations (U, V) of \mathbb{G} and $\widehat{\mathbb{G}}$ acting on \mathcal{K} is called \mathbb{G}-Yetter-Drinfeld if and only if $\mathrm{W}_{23} \mathrm{U}_{13} \mathrm{~V}_{12}=\mathrm{V}_{12} \mathrm{U}_{13} \mathrm{~W}_{23} \quad$ in $\mathcal{U} \mathcal{M}(\mathbb{K}(\mathcal{K}) \otimes \hat{C} \otimes C)$.
Every \mathbb{G}-Yetter-Drinfeld pair gives rise to a braiding operator $\chi^{(\mathcal{K}, \mathcal{K})}$.

When either of the representations U, V is trivial then the braiding operator $X^{(\mathcal{K}, \mathcal{K})}$ is the standard flip operator Σ.

Braided multiplicative unitaries

Let (U, V) be a \mathbb{G}-Yetter-Drinfeld pair of representations acting on \mathcal{K}. An element $\mathbb{F} \in \mathcal{U}(\mathcal{K} \otimes \mathcal{K})$ is called a braided multiplicative unitary over \mathbb{G} if it satisfies

- \mathbb{G}-(co)invariance condition: $\mathrm{U}_{13} \mathrm{U}_{23} \mathbb{F}_{12}=\mathbb{F}_{12} \mathrm{U}_{13} \mathrm{U}_{23} \quad$ in $\mathcal{U M}(\mathbb{K}(\mathcal{K} \otimes \mathcal{K}) \otimes C)$,
$\bullet \widehat{\mathbb{G}}$-(co)invariance condition: $\mathrm{V}_{13} \mathrm{~V}_{23} \mathbb{F}_{12}=\mathbb{F}_{12} \mathrm{~V}_{13} \mathrm{~V}_{23} \quad$ in $\mathcal{U} \mathcal{M}(\mathbb{K}(\mathcal{K} \otimes \mathcal{K}) \otimes \hat{C})$,
- braided pentagon equation: $\mathbb{F}_{23} \mathbb{F}_{12}=\mathbb{F}_{12}\left(\chi_{23}^{(\mathcal{K}, \mathcal{K})}\right) \mathbb{F}_{12}\left(\chi^{(\mathcal{K}, \mathcal{K})}\right)_{23}^{*} \mathbb{F}_{23} \quad$ in $\mathcal{U}(\mathcal{K} \otimes \mathcal{K} \otimes \mathcal{K})$.

Theorem

The unitary $\mathbb{W}_{1234} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{K} \otimes \mathcal{H} \otimes \mathcal{K})$ defined by $\mathbb{W}_{1234}:=\mathbb{W}_{13} \mathbb{U}_{23} \hat{\mathbb{V}}_{34}^{*} \mathbb{F}_{24} \hat{\mathbb{V}}_{34}$ is a multiplicative unitary, where $\hat{V}:=\sigma\left(\mathrm{V}^{*}\right) \in \mathcal{U} \mathcal{M}(\hat{C} \otimes \mathbb{K}(\mathcal{K}))$.

There is also a notion of manageability for \mathbb{F} which yields the manageability for \mathbb{W}_{123}

Projections on C^{*}-quantum groups

Let $\mathbb{W} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$ is a multiplicative unitary gives rise to \mathbb{G}

A unitary $\mathrm{P} \in \mathcal{U}(\hat{C} \otimes C)$ is said to be a projection on \mathbb{G} if the corresponding concrete unitary $\mathbb{P} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$ satisfies

- bicharacter conditions: $\mathbb{W}_{23} \mathbb{P}_{12}=\mathbb{P}_{12} \mathbb{P}_{13} \mathbb{W}_{23}$ and $\mathbb{P}_{23} \mathbb{W}_{12}=\mathbb{W}_{12} \mathbb{P}_{13} \mathbb{P}_{23}$ in $\mathcal{U}(\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H})$,
- idempotent condition: $\mathbb{P}_{23} \mathbb{P}_{12}=\mathbb{P}_{12} \mathbb{P}_{13} \mathbb{P}_{23} \quad$ in $\mathcal{U}(\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H})$.

Proposition

$\mathbb{P} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$ is a manageable multiplicative unitary

The quantum group $\mathbb{H}=\left(A, \Delta_{A}\right)$ generated by \mathbb{P} is called the image of the projection P .
The reduced bicharacter $\mathrm{W}^{A} \in \mathcal{U} \mathcal{M}(\hat{A} \otimes A)$ of \mathbb{H} is same as P

Braided m.u. on C^{*}-quantum groups with projection

Let \mathbb{G} be a C^{*}-quantum group with projection $\mathrm{P} \in \mathcal{U} \mathcal{M}(\hat{C} \otimes C)$ and let \mathbb{H} be its image P defines a unique left quantum group homomorphism $\Delta_{L}: C \rightarrow C \otimes C$

such that $\left(\right.$ id $\left._{C} \otimes \Delta_{L}\right) \mathrm{W}=\mathrm{P}_{12} \mathrm{~W}_{13}$
Second leg of the unitary $\mathrm{F}:=\mathrm{P}^{*} \mathrm{~W} \in \mathcal{U} \mathcal{M}(\hat{C} \otimes C)$ is (co)invariant under Δ_{L}, or equivalently,
$\left(\right.$ id $\left._{C} \otimes \Delta_{L}\right) F=F_{13}$.

Theorem

There are representations $\rho: C \rightarrow \mathbb{B}(\mathcal{K})$ and $\hat{\rho}: \hat{C} \rightarrow \mathbb{B}(\mathcal{K})$, where $\mathcal{K}=\overline{\mathcal{H}} \otimes \mathcal{H}$, such that
$\bullet(\mathrm{U}, \mathrm{V})$ is a \mathbb{H}-Yetter-Drinfeld pair acting on \mathcal{K}, where $\mathrm{U}:=\left(\hat{\rho} \otimes \mathrm{id}_{A}\right) \mathrm{P} \in \mathcal{U} \mathcal{M}(\mathbb{K}(\mathcal{K}) \otimes A)$ and $\hat{V}:=\left(\operatorname{id}_{\hat{A}} \otimes \rho\right) P \in \mathcal{U} \mathcal{M}(\hat{A} \otimes \mathbb{K}(\mathcal{K}))$,
\bullet the braiding operator is defined by $\chi^{(\mathcal{K}, \mathcal{K})}:=(\hat{\rho} \otimes \rho) \mathrm{P} \circ \Sigma$
$\bullet \mathbb{F}:=(\hat{\rho} \otimes \rho) \mathrm{F} \in \mathcal{U}(\mathcal{K} \otimes \mathcal{K})$ is a braided multiplicative unitary over \mathbb{H}.
Moreover, $\mathbb{W}_{1234} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{K} \otimes \mathcal{H} \otimes \mathcal{K})$ a multiplicative unitary of \mathbb{G}.

