Hypergroupoids and their C*-algebras

Jean Renault

University of Orléans

August 23rd 2013 Münster

Introduction

Rohit Holkar visited Orleans last March and brought to my attention an observation and a question.

Observation: Let X be a proper G-space, where G is a groupoid. If X is not free, then the quotient (X * X)/G is no longer a groupoid.

Question: What kind of object is it?

The answer is that it is a hypergroupoid and that there is a nice theory of locally compact hypergroupoids with Haar system which extends the case of groupoids.

Groupoid equivalence

Recall the usual setting of groupoid equivalence:

Definition

Two topological groupoids G, H are said to be equivalent if there exists a topological space X endowed with a left principal action of G and a right principal action of H such that the moment maps give identification maps

$$r: X/H \to G^{(0)}$$
 and $s: G \setminus X \to H^{(0)}$.

Then

$$G \simeq (X * X)/H, \qquad H \simeq G \setminus (X * X)$$

Thus, if X is a left principal G-space, $G \setminus (X * X)$ is a groupoid equivalent to G and this is the most general situation of groupoid equivalence.

Proper G-space

Suppose now that X is only a proper G-space. What kind of object is

$$H = G \setminus (X * X)$$
?

Let us be more precise. We assume that

- G carries a Haar system λ
- X carries a G-invariant r-system α; we say that (X, α) is a measured proper G-space.

Then the usual formulas of [MRW 87] or [R 87] define

- a convolution product on $C_c(H)$,
- a structure of $(C_c(G), C_c(H))$ -bimodule on $C_c(X)$ with compatible left and right inner products.

Convolution formulas

Given measured proper G-spaces $(X, \alpha), (Y, \beta), (Z, \gamma)$ and $f \in C_c((X * Y)/G), g \in C_c((Y * Z)/G)$, we define

$$(\alpha, f, \beta)(\beta, g, \gamma) = (\alpha, f *_{\beta} g, \gamma)$$

where the convolution product is given by:

$$f *_{\beta} g[x,z] = \int f[x,y]g[y,z]d\beta^{r_{X}(x)}(y)$$

One defines also

$$(\alpha, f, \beta)^* = (\beta, f^*, \alpha)$$

where the involution is given by $f^*[y, x] = \overline{f[x, y]}$.

The hypergroupoid C*-algebras

The full and the reduced norms on $C_c(G, \lambda)$ induce a norm on $C_c(H)$ and on $C_c(X)$ via the disintegration theorem. We thus obtain:

- the C*-algebras $C^*(H) = (\alpha, \alpha)$ and $C^*_r(H) = (\alpha, \alpha)_r$
- the C*-bimodules $C^*(X) = (\lambda, \alpha)_r$ and $C^*_r(X) = (\lambda, \alpha)_r$.

Definition

We say that $H = G \setminus (X * X)$ is a spatial hypergroupoid and that $C^*(H)$ and $C^*_r(H)$ are their full and reduced C*-algebras.

An elementary example

One of the simplest example one can think arises from the flip on the real line:

- $G = \mathbb{Z}_2$;
- $X = \mathbb{R}$ where \mathbb{Z}_2 acts by the flip $x \mapsto -x$ and α is the Lebesgue measure.

Identifying $H^{(0)} = X/G$ and \mathbb{R}_+ via $[x] = x^2$ and $H = X \times X/G$ and \mathbb{C} via $[x, y] = (x + iy)^2$, we obtain on $C_c(\mathbb{C})$:

$$(f * g)(x^2 - z^2 + 2ixz) = \int f(x^2 - y^2 + 2ixy)g(y^2 - z^2 + 2iyz)dy$$

$$f^*(w) = \overline{f(-\overline{w})}$$

The source and range maps foliate \mathbb{C} into families of parabolas with one degenerate parabola which is a half-line.

More examples

- Z is a free G-space \Leftrightarrow H is a groupoid;
- Z is a transitive G-space \Leftrightarrow H is a hypergroup.

1. A pair (G, K), where G is a locally compact group and K is a compact subgroup. The homogeneous space X = G/K is a proper G-space equipped with an invariant measure α . Then, $(X \times X)/G$ is the double coset hypergroup $K \setminus G/K$. The full and the regular representations of G yield respectively the full and the reduced C*-algebras of this hypergroup.

Hecke C*-algebras

- 2. A Hecke pair (Γ, Λ) consists of
 - a countable discrete group Γ ;
 - an almost-normal subgroup Λ .

This means that the left action of Λ on Γ/Λ has finite orbits. The Schlichting completion produces a totally disconnected locally compact group $G = \overline{\Gamma}$ and a compact subgroup $K = \overline{\Lambda}$ such that $C_c(\Lambda \setminus \Gamma/\Lambda) = C_c(K \setminus G/K)$ as *-algebras. This fits into the above general framework and gives some insight about natural C*-completions.

Groupoid quotients

3. A pair (G, K), where G is a locally compact groupoid with Haar system and K is a proper subgroupoid. Assume that the map $r: G/K \to G^{(0)}$ has a G-invariant system of measures α . Then $(X = G/K, \alpha)$ is a measured proper G-space. Thus we can construct the hypergroupoid $(X * X)/G = K \setminus G/K$ and its full and its reduced C*-algebras.

M. Laca, N. Larsen and S. Neshveyev [Non-Commutative Geometry, 2007] consider the case of a semi-direct groupoid $G = \Gamma \ltimes Y$ where a group Γ acts on a space Y and $H = \Lambda \ltimes Y$ where Λ is a subgroup of Γ acting properly on Y.

Locally compact hypergroups

Our spatial hypergroupoids X * X/G should fit into a general theory of locally compact hypergroupoids with Haar systems. The theory of abstract locally compact hypergroups is now well-established (Dunkl, Jewett, Spector are the names usually associated with it). This theory emphasizes the measure algebra M(H) of a locally compact hypergroup and not the convolution function algebra $C_{c}(H)$. The earliest reference I have found to the hypergroup C*-algebra $C^*(H)$ is in K. Tzanev's thesis (2000). An earlier appearance of the hypergroup C*-algebra $C^*(H)$ was given to me by S. Echterhoff during the workshop : P. Hermann, Induced representations of hypergroups, Math. Z. 211, 687-699 (1992).

It should be said here that the existence of a Haar measure on an arbitrary locally compact hypergroup has not been established yet. At this stage, it is better to assume its existence.

The idea is very simple: we take the usual definition of a locally compact groupoid H but where the product of two composable elements x, y is no longer a third element but a probability measure x * y with compact support. Thus we have the hypergroupoid H, its unit space $H^{(0)}$ identified to a subset of H, the range and source maps $r, s : H \to H^{(0)}$, the inverse map $x \mapsto x^{-1}$. We denote by $H^{(2)}$ the set of composable pairs . We assume that H is locally compact Hausdorff and make the usual continuity assumptions.

The product

We denote by P(H) the space of probability measures on H. The product is a map $m: H^{(2)} \to P(H)$ such that

- the support of m(x, y) is a compact subset of $H_{s(y)}^{r(x)}$;
- for all f bounded and Borel on $H^{(2)}$, the map $(x, y) \mapsto f(x * y) := \int f dm(x, y)$ is Borel;
- So for all $(x, y, z) \in H^{(3)}$, we have $\int m(x, .) dm(y, z) = \int m(., z) dm(x, y);$
- for all $x \in H$, $m(r(x), x) = m(x, s(x)) = \delta_x$;
- **6** for all $(x, y) \in H^{(2)}$, $m(x, y)^{-1} = m(y^{-1}, x^{-1})$.

Continuity assumptions

We need some assumptions expressing the continuity of the product. Examples of spatial hypergroupoids show that the natural condition:

 $\forall f \in C_c(H), (x, y) \in H^{(2)} \mapsto f(x * y)$ is continuous is too strong.

We define the left translation operator $L(x)f(y) := f(x^{-1} * y)$.

We require

- L(x) maps $C_c(H^{s(x)})$ into $C_c(H^{r(x)})$;
- for all $f \in C_c(H)$ and $\epsilon > 0$, there exists a neighborhood U of $H^{(0)}$ in H such that $|f(x) f(y^{-1})| \le \epsilon$ as soon as the support of m(x, y) meets U.

Haar systems

Definition

A Haar system on a locally compact hypergroupoid H is a system of Radon measures $\lambda = (\lambda^u)$ for the range map such that

• for all $f \in C_c(H)$, $u \in H^{(0)} \mapsto \int f d\lambda^u$ is continuous;

② for all
$$f \in C_c(H)$$
 and all $x \in H$,
 $\int f(x * y) d\lambda^{s(x)}(y) = \int f(y) d\lambda^{r(x)}(y)$

Locally compact groups, commutative locally compact hypergroups, compact hypergroups are known to have a Haar measure, which is unique. Etale locally compact hypergroupoids also have a Haar system.

Haar systems for spatial hypergroupoids

Theorem

Let G be a locally compact groupoid and (X, α) a measured proper G-space. Then H = (X * X)/G is a locally compact hypergroupoid with Haar system.

The disintegration of $\alpha^{r(x)}$ along the map $\varphi^x : X^{r(x)} \to H^{[x]}$ sending y to [x, y] provides both the probability measures m[x, y, z]defining the product and the measure $\lambda^{[x]} = \varphi_*^x \alpha^{r(x)}$. Explicitly,

$$f[x, y, z] = \int f[\zeta x, z] d\beta^{y}(\zeta)$$

where β^{y} is the normalized Haar measure of the isotropy group G(y).

The *-algebra $C_c(H)$

The convolution product and the involution are defined by the usual formulas: for $f, g \in C_c(H)$, we set

$$(f * g)(x) = \int f(x * y)g(y^{-1})d\lambda^{s(x)}(y)$$
$$f^*(x) = \overline{f(x^{-1})}$$

We require

•
$$\forall f,g \in C_c(H), f * g \in C_c(H).$$

Proposition

Endowed with these operations and the inductive limit topology, $C_c(H)$ is a topological *-algebra.

The I-norm

As usual, the I-norm of $f \in C_c(H)$ is

$$\|f\|_{I} = \max(\sup_{u\in H^{(0)}}\int |f|d\lambda^{u}, \sup_{u\in H^{(0)}}\int |f^{*}|d\lambda^{u})$$

It satisfies

$$\|f * g\|_{I} \le \|f\|_{I} \|g\|_{I} \qquad \|f^{*}\| = \|f\|$$

The regular representations

We fix $u \in H^{(0)}$. Let $f \in C_c(H)$. Given $\xi \in C_c(H_u)$, we define $L_u(f)\xi \in C_c(H_u)$ by

$$L_u(f)\xi(x) = \int f(x*y)\xi(y^{-1})d\lambda^u(y)$$

We endow $\underline{C_c(H_u)}$ with the scalar product $(\xi|\eta)_u = \int \overline{\xi(x)} \eta(x) d\lambda_u(x)$. Its completion is the Hilbert space $L^2(H_u, \lambda_u)$.

Proposition

For all $u \in H^{(0)}$, L_u is a *-representation of the *-algebra $C_c(H)$ on the Hilbert space $L^2(H_u, \lambda_u)$. Moreover $||L_u(f)|| \le ||f||_I$ for all $f \in C_c(H)$.

The reduced C*-algebra

We define the reduced norm as

$$\|f\|_r = \sup\{\|L_u(f)\| : u \in H^{(0)}\}$$

Definition

The reduced C*-algebra $C_r^*(H)$ is the completion of $C_c(H)$ for the reduced norm.

The full C*-algebra

We define the full norm

 $||f|| = \sup\{||L(f)|| : L \text{ non-degenerate and I-bounded }*-representation}\}$

Definition

The full C*-algebra $C^*(H)$ is the completion of $C_c(H)$ for the full norm.

Representations of a hypergroupoid

Definition

Let H be a Borel hypergroupoid. A Borel H-Hilbert bundle is a Borel Hilbert bundle $p: \mathcal{H} \to H^{(0)}$ and a Borel map

 $H * \mathcal{H} \to \mathcal{H} : (x, \xi) \mapsto L(x)\xi$

such that

Quasi-invariant measures

Same definition as for Borel groupoids with Haar system:

Definition

A quasi-invariant measure of a Borel hypergroupoid with Haar system (H, λ) is a measure μ on $H^{(0)}$ such that $\mu \circ \lambda$ and $(\mu \circ \lambda)^{-1}$ are equivalent.

Its module is the Radon-Nikodym derivative $D = d(\mu \circ \lambda)^{-1}/d(\mu \circ \lambda)$. It satisfies

D(x * y) = D(x)D(y) a.e.

The integral of a representation

Given a Borel *H*-Hilbert bundle \mathcal{H} and a quasi-invariant measure μ for a locally compact hypergroupoid with Haar system (H, λ) , we define for $f \in C_c(H)$

$$L(f): (L^2(H^{(0)},\mu,\mathcal{H})) \rightarrow (L^2(H^{(0)},\mu,\mathcal{H}))$$

such that for all $\xi, \eta \in L^2(H^{(0)}, \mu, \mathcal{H})$:

 $\langle \xi, L(f)\eta \rangle = \int f(x)(\xi \circ r(x), L(x)\eta \circ s(x))D^{-1/2}(x)d(\mu \circ \lambda)(x)$

Proposition

The above formula defines a non-degenerate and I-bounded *-representation of $C_c(H)$ in the Hilbert space $L^2(H^{(0)}, \mu, \mathcal{H})$.

Disintegration theorem

The same proof as in the case of a locally compact groupoid yields the following disintegration theorem:

Theorem

Let (H, λ) be a second countable locally compact hypergroupoid with Haar system. Then every non-degenerate and I-bounded *-representation of $C_c(H)$ in a Hilbert space is equivalent to the integral of a representation of H with respect to some quasi-invariant measure.

References

Basic references on locally compact hypergroups:
Ch. F. Dunkl, "The measure algebra of a locally compact hypergroup," Trans. Am. Math. Soc, 179, 331-348 (1973).
R. I. Jewett, "Spaces with an abstract convolution of measures," Adv. Math., 8, No. 1, 1-101 (1975).
R. Spector, "Apercu de la théorie des hypergroupes," Lect.Notes

R. Spector, Aperçu de la théorie des hypergroupes, Lect.Notes Math., 497, 643-673 (1975).

Comultiplication presentation of locally compact hypergroups: Kalyuzhnyi, Podkolzin, Chapovsky, "Harmonic analysis on a locally compact hypergroups", Methods of Functional Analysis and Topology, vol 16, n4, 304-332, (2010).

Spatial hypergroupoids:

R. Holkar, J. R., "Hypergroupoids and C*-algebras", submitted, (2013).