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Introduction

Rohit Holkar visited Orleans last March and brought to my
attention an observation and a question.

Observation: Let X be a proper G -space, where G is a groupoid. If
X is not free, then the quotient (X ∗X )/G is no longer a groupoid.

Question: What kind of object is it?

The answer is that it is a hypergroupoid and that there is a nice
theory of locally compact hypergroupoids with Haar system which
extends the case of groupoids.



Spatial hypergroupoids Abstract hypergroupoids

Groupoid equivalence

Recall the usual setting of groupoid equivalence:

Definition

Two topological groupoids G ,H are said to be equivalent if there
exists a topological space X endowed with a left principal action of
G and a right principal action of H such that the moment maps
give identification maps

r : X/H → G (0) and s : G\X → H(0).

Then
G ' (X ∗ X )/H, H ' G\(X ∗ X )

Thus, if X is a left principal G -space, G\(X ∗ X ) is a groupoid
equivalent to G and this is the most general situation of groupoid
equivalence.
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Proper G -space

Suppose now that X is only a proper G -space. What kind of
object is

H = G\(X ∗ X ) ?

Let us be more precise. We assume that

G carries a Haar system λ

X carries a G -invariant r -system α; we say that (X , α) is a
measured proper G -space.

Then the usual formulas of [MRW 87] or [R 87] define

a convolution product on Cc(H),

a structure of (Cc(G ),Cc(H))-bimodule on Cc(X ) with
compatible left and right inner products.
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Convolution formulas

Given measured proper G -spaces (X , α), (Y , β), (Z , γ) and
f ∈ Cc((X ∗ Y )/G ), g ∈ Cc((Y ∗ Z )/G ), we define

(α, f , β)(β, g , γ) = (α, f ∗β g , γ)

where the convolution product is given by:

f ∗β g [x , z ] =

∫
f [x , y ]g [y , z ]dβrX (x)(y)

One defines also
(α, f , β)∗ = (β, f ∗, α)

where the involution is given by f ∗[y , x ] = f [x , y ].
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The hypergroupoid C*-algebras

The full and the reduced norms on Cc(G , λ) induce a norm on
Cc(H) and on Cc(X ) via the disintegration theorem. We thus
obtain:

the C*-algebras C ∗(H) = (α, α) and C ∗r (H) = (α, α)r

the C*-bimodules C ∗(X ) = (λ, α)r and C ∗r (X ) = (λ, α)r .

Definition

We say that H = G\(X ∗ X ) is a spatial hypergroupoid and that
C ∗(H) and C ∗r (H) are their full and reduced C*-algebras.
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An elementary example

One of the simplest example one can think arises from the flip on
the real line:

G = Z2;

X = R where Z2 acts by the flip x 7→ −x and α is the
Lebesgue measure.

Identifying H(0) = X/G and R+ via [x ] = x2 and H = X × X/G
and C via [x , y ] = (x + iy)2, we obtain on Cc(C):

(f ∗ g)(x2 − z2 + 2ixz) =

∫
f (x2 − y2 + 2ixy)g(y2 − z2 + 2iyz)dy

f ∗(w) = f (−w)

The source and range maps foliate C into families of parabolas
with one degenerate parabola which is a half-line.
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More examples

Z is a free G -space ⇔ H is a groupoid;

Z is a transitive G -space ⇔ H is a hypergroup.

1. A pair (G ,K ), where G is a locally compact group and K is a
compact subgroup. The homogeneous space X = G/K is a proper
G -space equipped with an invariant measure α. Then, (X × X )/G
is the double coset hypergroup K\G/K . The full and the regular
representations of G yield respectively the full and the reduced
C*-algebras of this hypergroup.
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Hecke C*-algebras

2. A Hecke pair (Γ,Λ) consists of

a countable discrete group Γ;

an almost-normal subgroup Λ.

This means that the left action of Λ on Γ/Λ has finite orbits. The
Schlichting completion produces a totally disconnected locally
compact group G = Γ and a compact subgroup K = Λ such that
Cc(Λ\Γ/Λ) = Cc(K\G/K ) as ∗-algebras. This fits into the above
general framework and gives some insight about natural
C*-completions.
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Groupoid quotients

3. A pair (G ,K ), where G is a locally compact groupoid with Haar
system and K is a proper subgroupoid. Assume that the map
r : G/K → G (0) has a G -invariant system of measures α. Then
(X = G/K , α) is a measured proper G -space. Thus we can
construct the hypergroupoid (X ∗ X )/G = K\G/K and its full and
its reduced C*-algebras.

M. Laca, N. Larsen and S. Neshveyev [Non-Commutative
Geometry, 2007] consider the case of a semi-direct groupoid
G = Γ×Y where a group Γ acts on a space Y and H = Λ×Y
where Λ is a subgroup of Γ acting properly on Y .
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Locally compact hypergroups

Our spatial hypergroupoids X ∗ X/G should fit into a general
theory of locally compact hypergroupoids with Haar systems.

The theory of abstract locally compact hypergroups is now
well-established (Dunkl, Jewett, Spector are the names usually
associated with it). This theory emphasizes the measure algebra
M(H) of a locally compact hypergroup and not the convolution
function algebra Cc(H). The earliest reference I have found to the
hypergroup C*-algebra C ∗(H) is in K. Tzanev’s thesis (2000).

An earlier appearance of the hypergroup C*-algebra C ∗(H) was
given to me by S. Echterhoff during the workshop : P. Hermann,
Induced representations of hypergroups, Math. Z. 211, 687-699
(1992).

It should be said here that the existence of a Haar measure on an
arbitrary locally compact hypergroup has not been established yet.
At this stage, it is better to assume its existence.
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Axioms

The idea is very simple: we take the usual definition of a locally
compact groupoid H but where the product of two composable
elements x , y is no longer a third element but a probability measure
x ∗ y with compact support. Thus we have the hypergroupoid H,
its unit space H(0) identified to a subset of H, the range and source
maps r , s : H → H(0), the inverse map x 7→ x−1. We denote by
H(2) the set of composable pairs . We assume that H is locally
compact Hausdorff and make the usual continuity assumptions.
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The product

We denote by P(H) the space of probability measures on H. The
product is a map m : H(2) → P(H) such that

1 the support of m(x , y) is a compact subset of H
r(x)
s(y) ;

2 for all f bounded and Borel on H(2), the map
(x , y) 7→ f (x ∗ y) :=

∫
f dm(x , y) is Borel;

3 for all (x , y , z) ∈ H(3), we have∫
m(x , .)dm(y , z) =

∫
m(., z)dm(x , y);

4 for all x ∈ H, m(r(x), x) = m(x , s(x)) = δx ;

5 for all (x , y) ∈ H(2), m(x , y)−1 = m(y−1, x−1).
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Continuity assumptions

We need some assumptions expressing the continuity of the
product. Examples of spatial hypergroupoids show that the natural
condition:
∀f ∈ Cc(H), (x , y) ∈ H(2) 7→ f (x ∗ y) is continuous

is too strong.

We define the left translation operator L(x)f (y) := f (x−1 ∗ y).

We require

L(x) maps Cc(Hs(x)) into Cc(H r(x));

for all f ∈ Cc(H) and ε > 0, there exists a neighborhood U of
H(0) in H such that |f (x)− f (y−1)| ≤ ε as soon as the
support of m(x , y) meets U.
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Haar systems

Definition

A Haar system on a locally compact hypergroupoid H is a system
of Radon measures λ = (λu) for the range map such that

1 for all f ∈ Cc(H), u ∈ H(0) 7→
∫
f dλu is continuous;

2 for all f ∈ Cc(H) and all x ∈ H,∫
f (x ∗ y)dλs(x)(y) =

∫
f (y)dλr(x)(y).

Locally compact groups, commutative locally compact
hypergroups, compact hypergroups are known to have a Haar
measure, which is unique. Etale locally compact hypergroupoids
also have a Haar system.
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Haar systems for spatial hypergroupoids

Theorem

Let G be a locally compact groupoid and (X , α) a measured
proper G -space. Then H = (X ∗ X )/G is a locally compact
hypergroupoid with Haar system.

The disintegration of αr(x) along the map ϕx : X r(x) → H [x]

sending y to [x , y ] provides both the probability measures m[x , y , z ]
defining the product and the measure λ[x] = ϕx

∗α
r(x). Explicitly,

f [x , y , z ] =

∫
f [ζx , z ]dβy (ζ)

where βy is the normalized Haar measure of the isotropy group
G (y).
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The ∗-algebra Cc(H)

The convolution product and the involution are defined by the
usual formulas: for f , g ∈ Cc(H), we set

(f ∗ g)(x) =

∫
f (x ∗ y)g(y−1)dλs(x)(y)

f ∗(x) = f (x−1)

We require

∀f , g ∈ Cc(H), f ∗ g ∈ Cc(H).

Proposition

Endowed with these operations and the inductive limit topology,
Cc(H) is a topological ∗-algebra.
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The I-norm

As usual, the I-norm of f ∈ Cc(H) is

‖f ‖I = max( sup
u∈H(0)

∫
|f |dλu, sup

u∈H(0)

∫
|f ∗|dλu)

It satisfies
‖f ∗ g‖I ≤ ‖f ‖I‖g‖I ‖f ∗‖ = ‖f ‖
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The regular representations

We fix u ∈ H(0). Let f ∈ Cc(H). Given ξ ∈ Cc(Hu), we define
Lu(f )ξ ∈ Cc(Hu) by

Lu(f )ξ(x) =

∫
f (x ∗ y)ξ(y−1)dλu(y)

We endow Cc(Hu) with the scalar product
(ξ|η)u =

∫
ξ(x)η(x)dλu(x). Its completion is the Hilbert space

L2(Hu, λu).

Proposition

For all u ∈ H(0), Lu is a ∗-representation of the ∗-algebra Cc(H)
on the Hilbert space L2(Hu, λu). Moreover ‖Lu(f )‖ ≤ ‖f ‖I for all
f ∈ Cc(H).
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The reduced C*-algebra

We define the reduced norm as

‖f ‖r = sup{‖Lu(f )‖ : u ∈ H(0)}

Definition

The reduced C*-algebra C ∗r (H) is the completion of Cc(H) for the
reduced norm.
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The full C*-algebra

We define the full norm

‖f ‖ = sup{‖L(f )‖ : L non-degenerate and I-bounded ∗-representation}

Definition

The full C*-algebra C ∗(H) is the completion of Cc(H) for the full
norm.
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Representations of a hypergroupoid

Definition

Let H be a Borel hypergroupoid. A Borel H-Hilbert bundle is a
Borel Hilbert bundle p : H → H(0) and a Borel map

H ∗ H → H : (x , ξ) 7→ L(x)ξ

such that

1 p(L(x)ξ) = r(x);

2 L(x) : Hs(x) → Hr(x) is a linear contraction;

3 if u ∈ H(0), L(u) : Hu → Hu is the identity;

4 L(x ∗ y) = L(x)L(y);

5 L(x−1) = L(x)∗.



Spatial hypergroupoids Abstract hypergroupoids

Quasi-invariant measures

Same definition as for Borel groupoids with Haar system:

Definition

A quasi-invariant measure of a Borel hypergroupoid with Haar
system (H, λ) is a measure µ on H(0) such that µ ◦ λ and
(µ ◦ λ)−1 are equivalent.

Its module is the Radon-Nikodym derivative
D = d(µ ◦ λ)−1/d(µ ◦ λ). It satisfies

D(x ∗ y) = D(x)D(y) a.e.
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The integral of a representation

Given a Borel H-Hilbert bundle H and a quasi-invariant measure µ
for a locally compact hypergroupoid with Haar system (H, λ), we
define for f ∈ Cc(H)

L(f ) : (L2(H(0), µ,H))→ (L2(H(0), µ,H))

such that for all ξ, η ∈ L2(H(0), µ,H):

〈ξ, L(f )η〉 =

∫
f (x)(ξ ◦ r(x), L(x)η ◦ s(x))D−1/2(x)d(µ ◦ λ)(x)

Proposition

The above formula defines a non-degenerate and I-bounded
∗-representation of Cc(H) in the Hilbert space L2(H(0), µ,H).
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Disintegration theorem

The same proof as in the case of a locally compact groupoid yields
the following disintegration theorem:

Theorem

Let (H, λ) be a second countable locally compact hypergroupoid
with Haar system. Then every non-degenerate and I-bounded
∗-representation of Cc(H) in a Hilbert space is equivalent to the
integral of a representation of H with respect to some
quasi-invariant measure.
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