Partial Crossed Product Description of the Cuntz-Li Algebras

Giuliano Boava

Groups, Dynamical Systems and C*-Algebras

Münster - August 2013.

Giuliano Boava Partial Crossed Product Description of the Cuntz-Li Algebras

- Cuntz-Li Algebras
- Partial Crossed Products
- Partial Group Algebras
- Partial Group Algebra Description
- Partial Crossed Product Description
 - 4 Application in Bost-Connes Algebra

Preliminaries

Partial Group Algebra Description Partial Crossed Product Description Application in Bost-Connes Algebra Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Contents

Preliminaries

- Cuntz-Li Algebras
- Partial Crossed Products
- Partial Group Algebras
- Partial Group Algebra Description
- 8 Partial Crossed Product Description
- 4 Application in Bost-Connes Algebra

Preliminaries

Partial Group Algebra Description Partial Crossed Product Description Application in Bost-Connes Algebra Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Contents

- Cuntz-Li Algebras
- Partial Crossed Products
- Partial Group Algebras
- Partial Group Algebra Description
- Partial Crossed Product Description
 - 4 Application in Bost-Connes Algebra

Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Cuntz-Li Algebras: Definition

• *R* integral domain with finite quotients, i.e., R/(m) is finite, for all $m \neq 0$ in *R*, which is not a field.

Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Cuntz-Li Algebras: Definition

• *R* integral domain with finite quotients, i.e., R/(m) is finite, for all $m \neq 0$ in *R*, which is not a field.

Definition (Cuntz-Li, 2010)

The **Cuntz-Li algebra of** *R*, denoted by $\mathfrak{A}[R]$, is the universal *C*^{*}-algebra generated by isometries $\{s_m \mid m \in R^{\times}\}$ and unitaries $\{u^n \mid n \in R\}$ subject to the relations

(CL1)
$$s_m s_{m'} = s_{mm'};$$

(CL2) $u^n u^{n'} = u^{n+n'};$
(CL3) $s_m u^n = u^{mn} s_m;$
(CL4) $\sum_{l+(m)\in R/(m)} u^l s_m s_m^* u^{-l} = 1.$

イロン イ理 とくほう くほう

FSC

Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Cuntz-Li Algebras: Properties

There is a natural projection p_{m,m'} : R/(m') → R/(m) whenever m ≤ m'.

Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Cuntz-Li Algebras: Properties

- There is a natural projection $p_{m,m'} : R/(m') \longrightarrow R/(m)$ whenever $m \le m'$.
- $\hat{R} = \lim_{\longleftarrow} \{R/(m), p_{m,m'}\}$ is the profinite completion of R.

Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Cuntz-Li Algebras: Properties

- There is a natural projection $p_{m,m'} : R/(m') \longrightarrow R/(m)$ whenever $m \le m'$.
- $\hat{R} = \lim_{\longleftarrow} \{R/(m), p_{m,m'}\}$ is the profinite completion of *R*.

Theorem (Cuntz-Li, 2010)

 $\overline{\text{span}}\{u^n s_m s_m^* u^{-n} \mid m \in \mathbb{R}^{\times}, n \in \mathbb{R}\}\$ is a commutative C^* -algebra and its spectrum is homeomorphic to $\hat{\mathbb{R}}$.

Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Cuntz-Li Algebras: Properties

Theorem (Cuntz-Li, 2010)

 $\mathfrak{A}[R]$ is simple and purely infinite.

Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Cuntz-Li Algebras: Properties

Theorem (Cuntz-Li, 2010)

 $\mathfrak{A}[R]$ is simple and purely infinite.

Theorem (Cuntz-Li, 2010)

 $\mathfrak{A}[R]$ is a crossed product by a semigroup.

Preliminaries

Partial Group Algebra Description Partial Crossed Product Description Application in Bost-Connes Algebra Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Contents

- Cuntz-Li Algebras
- Partial Crossed Products
- Partial Group Algebras
- Partial Group Algebra Description
- Partial Crossed Product Description
 - 4 Application in Bost-Connes Algebra

Preliminaries

Partial Group Algebra Description Partial Crossed Product Description Application in Bost-Connes Algebra Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Partial Action

Definition

A **partial action** α of a (discrete) group *G* on a *C**-algebra \mathcal{A} is a collection $(\mathcal{D}_t)_{t\in G}$ of ideals of \mathcal{A} and *-isomorphisms $\alpha_t : \mathcal{D}_{t^{-1}} \longrightarrow \mathcal{D}_t$ such that (PA1) $\mathcal{D}_e = \mathcal{A}$; (PA2) $\alpha_t^{-1}(\mathcal{D}_t \cap \mathcal{D}_{s^{-1}}) \subseteq \mathcal{D}_{(st)^{-1}}$; (PA3) $\alpha_s \circ \alpha_t(x) = \alpha_{st}(x), \quad \forall x \in \alpha_t^{-1}(\mathcal{D}_t \cap \mathcal{D}_{s^{-1}}).$

Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Partial Crossed Product

• α partial action of a group G on a C*-algebra A.

Giuliano Boava Partial Crossed Product Description of the Cuntz-Li Algebras

Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Partial Crossed Product

- α partial action of a group *G* on a *C**-algebra *A*.
- Let $\mathcal{L} = \bigoplus_{t \in G} D_t$ and denote an element $(a_t)_{t \in G}$ by $\sum_{t \in G} a_t \delta_t$.

Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Partial Crossed Product

- α partial action of a group *G* on a *C**-algebra *A*.
- Let $\mathcal{L} = \bigoplus_{t \in G} D_t$ and denote an element $(a_t)_{t \in G}$ by $\sum_{t \in G} a_t \delta_t$.
- \mathcal{L} is a *-algebra with the operations $(a_s \delta_s)(a_t \delta_t) = \alpha_s(\alpha_{s^{-1}}(a_s)a_t)\delta_{st}$ and $(a_t \delta_t)^* = \alpha_{t^{-1}}(a_t^*)\delta_{t^{-1}}$.

Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Partial Crossed Product

- α partial action of a group *G* on a *C**-algebra *A*.
- Let $\mathcal{L} = \bigoplus_{t \in G} D_t$ and denote an element $(a_t)_{t \in G}$ by $\sum_{t \in G} a_t \delta_t$.
- \mathcal{L} is a *-algebra with the operations $(a_s \delta_s)(a_t \delta_t) = \alpha_s(\alpha_{s^{-1}}(a_s)a_t)\delta_{st}$ and $(a_t \delta_t)^* = \alpha_{t^{-1}}(a_t^*)\delta_{t^{-1}}$.

Definition

The **full partial crossed product** and the **reduced partial crossed product** of \mathcal{A} by G through α , denoted by $\mathcal{A}\rtimes_{\alpha}G$ and $\mathcal{A}\rtimes_{\alpha,r}G$, are the completion of \mathcal{L} under certain C^* -norms.

A D b 4 A b

WESTFÄLISCHE WILHELMS-UNIVERSITÄT

CAPES

UFSC

Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Partial Representation

Definition

A **partial representation** π of a (discrete) group *G* into a unital *C**-algebra \mathcal{B} is a map $\pi : G \longrightarrow \mathcal{B}$ such that, for all $s, t \in G$, (PR1) $\pi(e) = 1$; (PR2) $\pi(t^{-1}) = \pi(t)^*$; (PR3) $\pi(s)\pi(t)\pi(t^{-1}) = \pi(st)\pi(t^{-1})$.

Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Universal Property of $\mathcal{A} \rtimes_{\alpha} \mathcal{G}$

Definition

Let $\pi : G \longrightarrow \mathcal{B}$ be a partial representation of G into a unital C^* -algebra \mathcal{B} and $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ be a *-homomorphism. We say that the pair (φ, π) is α -covariant if:

(COV1)
$$\varphi(\alpha_t(x)) = \pi(t)\varphi(x)\pi(t^{-1})$$
, for all $t \in G$ e $x \in \mathcal{D}_{t^{-1}}$;

(COV2) $\varphi(x)\pi(t)\pi(t^{-1}) = \pi(t)\pi(t^{-1})\varphi(x)$, for all $x \in \mathcal{A}$ e $t \in G$.

Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Universal Property of $\mathcal{A} \rtimes_{\alpha} \mathcal{G}$

Definition

Let $\pi : G \longrightarrow \mathcal{B}$ be a partial representation of G into a unital C^* -algebra \mathcal{B} and $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ be a *-homomorphism. We say that the pair (φ, π) is α -covariant if:

(COV1)
$$\varphi(\alpha_t(x)) = \pi(t)\varphi(x)\pi(t^{-1})$$
, for all $t \in G$ e $x \in \mathcal{D}_{t^{-1}}$;

(COV2) $\varphi(x)\pi(t)\pi(t^{-1}) = \pi(t)\pi(t^{-1})\varphi(x)$, for all $x \in \mathcal{A}$ e $t \in G$.

Proposition

If (φ, π) is α -covariant pair, then there exists a unique *-homomorphism $\varphi \times \pi : \mathcal{A} \rtimes_{\alpha} \mathcal{G} \longrightarrow \mathcal{B}$ such that

$$(\varphi \times \pi)(a_t \delta_t) = \varphi(a_t)\pi(t), \quad \forall t \in G, \ \forall a_t \in \mathcal{D}_t.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Preliminaries

Partial Group Algebra Description Partial Crossed Product Description Application in Bost-Connes Algebra Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Contents

Preliminaries

- Cuntz-Li Algebras
- Partial Crossed Products
- Partial Group Algebras
- Partial Group Algebra Description
- Partial Crossed Product Description
 - 4 Application in Bost-Connes Algebra

Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Partial Group Algebra

• Given a (discrete) group G, define $\mathcal{G} = \{[t] \mid t \in G\}$.

Giuliano Boava Partial Crossed Product Description of the Cuntz-Li Algebras

Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Partial Group Algebra

• Given a (discrete) group G, define $\mathcal{G} = \{[t] \mid t \in G\}$.

Definition (Exel-Laca-Quigg, 2002)

The **partial group algebra of** *G*, denoted by $C_p^*(G)$, is defined to be the universal *C**-algebra generated by the set *G* subject to the relations

$$\mathcal{R}_{p} = \{[e] = 1\} \cup \{[t^{-1}] = [t]^{*}\}_{t \in G} \cup \{[s][t][t^{-1}] = [st][t^{-1}]\}_{s,t \in G}.$$

Preliminaries

Partial Group Algebra Description Partial Crossed Product Description Application in Bost-Connes Algebra Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Partial Group Algebra with Relations

• Denote $[t][t^{-1}]$ by ε_t .

Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Partial Group Algebra with Relations

- Denote $[t][t^{-1}]$ by ε_t .
- Let R be a set of relations on G such that every relation is of the form

$$\sum_{i} \lambda_{i} \prod_{j} \varepsilon_{t_{ij}} = \mathbf{0}.$$

Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Partial Group Algebra with Relations

- Denote $[t][t^{-1}]$ by ε_t .
- Let R be a set of relations on G such that every relation is of the form

$$\sum_{i} \lambda_{i} \prod_{j} \varepsilon_{t_{ij}} = \mathbf{0}.$$

Definition (Exel-Laca-Quigg, 2002)

The **partial group algebra of** *G* **with relations** \mathcal{R} , denoted by $C_p^*(G, \mathcal{R})$, is defined to be the universal *C*^{*}-algebra generated by the set \mathcal{G} with the relations $\mathcal{R}_p \cup \mathcal{R}$.

WESTFÄLISCHE WILHELMS-UNIVERSITÄT

MÜNSTER

CAPES

UFSC

Theorems

Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Theorem (Exel-Laca-Quigg, 2002)

$C^*_p(G) \cong C(X) \rtimes_{\alpha} G$, where $X = \{ \xi \subseteq G \mid e \in \xi \}$.

Giuliano Boava Partial Crossed Product Description of the Cuntz-Li Algebras

Cuntz-Li Algebras Partial Crossed Products Partial Group Algebras

Theorem (Exel-Laca-Quigg, 2002)

 $C_p^*(G) \cong C(X) \rtimes_{\alpha} G$, where $X = \{\xi \subseteq G \mid e \in \xi\}$.

Theorem (Exel-Laca-Quigg, 2002)

$$\begin{split} & \boldsymbol{C}_p^*(\boldsymbol{G},\mathcal{R}) \cong \boldsymbol{C}(\Omega) \rtimes_{\alpha} \boldsymbol{G}, \textit{ where} \\ & \boldsymbol{\Omega} = \{ \xi \in \boldsymbol{X} \, | \, f(t^{-1}\xi) = \boldsymbol{0}, \; \forall \, f \in \mathcal{R}, \; \forall \, t \in \xi \}. \end{split}$$

Giuliano Boava Partial Crossed Product Description of the Cuntz-Li Algebras

- Cuntz-Li Algebras
- Partial Crossed Products
- Partial Group Algebras
- Partial Group Algebra Description
- 3 Partial Crossed Product Description
- 4 Application in Bost-Connes Algebra

Partial Group Algebra Description

• *R* integral domain with finite quotients which is not a field.

Giuliano Boava Partial Crossed Product Description of the Cuntz-Li Algebras

Partial Group Algebra Description

- *R* integral domain with finite quotients which is not a field.
- K field of fractions of R.

Partial Group Algebra Description

- *R* integral domain with finite quotients which is not a field.
- K field of fractions of R.
- Semidirect product $K \rtimes K^{\times}$.

Partial Group Algebra Description

- *R* integral domain with finite quotients which is not a field.
- K field of fractions of R.
- Semidirect product $K \rtimes K^{\times}$.

• Set of relations
$$\mathcal{R} = \mathcal{R}_1 \cup \mathcal{R}_2 \cup \mathcal{R}_3$$
, where
 $\mathcal{R}_1 = \{\varepsilon_{(n,1)} = 1 \mid n \in R\}, \mathcal{R}_2 = \{\varepsilon_{(0,\frac{1}{m})} = 1 \mid m \in R^{\times}\}$
and $\mathcal{R}_3 = \left\{\sum_{l+(m)\in R/(m)} \varepsilon_{(l,m)} = 1 \mid m \in R^{\times}\right\}.$

Partial Group Algebra Description

- *R* integral domain with finite quotients which is not a field.
- *K* field of fractions of *R*.
- Semidirect product $K \rtimes K^{\times}$.
- Set of relations $\mathcal{R} = \mathcal{R}_1 \cup \mathcal{R}_2 \cup \mathcal{R}_3$, where $\mathcal{R}_1 = \{\varepsilon_{(n,1)} = 1 \mid n \in R\}, \mathcal{R}_2 = \{\varepsilon_{(0,\frac{1}{m})} = 1 \mid m \in R^{\times}\}$ and $\mathcal{R}_3 = \left\{\sum_{l+(m)\in R/(m)} \varepsilon_{(l,m)} = 1 \mid m \in R^{\times}\right\}.$

• Partial group algebra $C_p^*(K \rtimes K^{\times}, \mathcal{R})$.

Partial Group Algebra Description

Proposition (B.-Exel, 2013)

There exists a *-isomorphism

$$\mathfrak{A}[R] \longrightarrow C_{p}^{*}(K \rtimes K^{\times}, \mathcal{R})$$

 $u^{n} \longmapsto [n, 1]$
 $s_{m} \longmapsto [0, m]$
 $s_{m'}^{*}u^{n}s_{m} \longleftarrow \left[\frac{n}{m'}, \frac{m}{m'}\right].$

Sketch of the Proof

• Let's check (CL3) $s_m u^n = u^{mn} s_m$:

Giuliano Boava Partial Crossed Product Description of the Cuntz-Li Algebras

Sketch of the Proof

- Let's check (CL3) $s_m u^n = u^{mn} s_m$:
- $s_m u^n \mapsto [0, m][n, 1] = [0, m][n, 1][n, 1]^*[n, 1] = [mn, m][n, 1]^*[n, 1] = [mn, m],$

Sketch of the Proof

- Let's check (CL3) $s_m u^n = u^{mn} s_m$:
- $s_m u^n \mapsto [0, m][n, 1] = [0, m][n, 1][n, 1]^*[n, 1] = [mn, m][n, 1]^*[n, 1] = [mn, m],$
- $u^{mn}s_m \mapsto [mn, 1][0, m] = [mn, 1][mn, 1]^*[mn, 1][0, m] = [mn, 1][mn, 1]^*[mn, m] = [mn, m].$

Sketch of the Proof

Sketch of the Proof

• With
$$s = \left(\frac{q}{p'}, \frac{p}{p'}\right)$$
 and $t = \left(\frac{n}{m'}, \frac{m}{m'}\right)$, we have $st = \left(\frac{m'q+pn}{p'm'}, \frac{pm}{p'm'}\right)$;

Sketch of the Proof

• Let's check (PR3) [*s*][*t*][*t*]* = [*st*][*t*]*:

• With
$$s = \left(\frac{q}{p'}, \frac{p}{p'}\right)$$
 and $t = \left(\frac{n}{m'}, \frac{m}{m'}\right)$, we have $st = \left(\frac{m'q+pn}{p'm'}, \frac{pm}{p'm'}\right)$;

 $[st][t]^* \mapsto$

Sketch of the Proof

• With
$$s = \left(\frac{q}{p'}, \frac{p}{p'}\right)$$
 and $t = \left(\frac{n}{m'}, \frac{m}{m'}\right)$, we have $st = \left(\frac{m'q+pn}{p'm'}, \frac{pm}{p'm'}\right)$;

$$[st][t]^* \longmapsto (s^*_{p'm'}u^{m'q+pn}s_{pm})(s^*_{m'}u^ns_m)^* =$$

Sketch of the Proof

• With
$$s = \left(\frac{q}{p'}, \frac{p}{p'}\right)$$
 and $t = \left(\frac{n}{m'}, \frac{m}{m'}\right)$, we have $st = \left(\frac{m'q+pn}{p'm'}, \frac{pm}{p'm'}\right)$;

$$[st][t]^* \longmapsto (s^*_{p'm'} u^{m'q+pn} s_{pm})(s^*_{m'} u^n s_m)^* = s^*_{p'} u^q s^*_{m'} s_p u^n s_m s^*_m u^{-n} s_{m'} =$$

Sketch of the Proof

• With
$$s = \left(\frac{q}{p'}, \frac{p}{p'}\right)$$
 and $t = \left(\frac{n}{m'}, \frac{m}{m'}\right)$, we have $st = \left(\frac{m'q+pn}{p'm'}, \frac{pm}{p'm'}\right)$;

$$[st][t]^* \longmapsto (s^*_{p'm'}u^{m'q+pn}s_{pm})(s^*_{m'}u^ns_m)^* = s^*_{p'}u^q s^*_{m'}s_pu^n s_m s^*_m u^{-n}s_{m'} = s^*_{p'}u^q s^*_{m'}s_p \underbrace{u^n s_m s^*_m u^{-n}}_{s_m s^*_m u^{-n}} \underbrace{s_{m'}s^*_{m'}}_{s_{m'}} s_{m'} =$$

Sketch of the Proof

• With
$$s = \left(\frac{q}{p'}, \frac{p}{p'}\right)$$
 and $t = \left(\frac{n}{m'}, \frac{m}{m'}\right)$, we have $st = \left(\frac{m'q+pn}{p'm'}, \frac{pm}{p'm'}\right)$;

$$[st][t]^{*} \longmapsto (s_{p'm'}^{*}u^{m'q+pn}s_{pm})(s_{m'}^{*}u^{n}s_{m})^{*} = s_{p'}^{*}u^{q}s_{m'}^{*}s_{p}u^{n}s_{m}s_{m}^{*}u^{-n}s_{m'} = s_{p'}^{*}u^{q}s_{m'}^{*}s_{p}\underbrace{u^{n}s_{m}s_{m}^{*}u^{-n}}_{s_{m'}}\underbrace{s_{m'}}_{s_{m'}}s_{m'} = s_{p'}^{*}u^{q}s_{m'}^{*}s_{p}\underbrace{u^{n}s_{m}s_{m}^{*}u^{-n}}_{s_{m'}}\underbrace{s_{m'}}_{s_{m'}}s_{m'} = s_{p'}^{*}u^{q}s_{m'}^{*}s_{p}\underbrace{u^{n}s_{m}s_{m}^{*}u^{-n}}_{s_{m'}}\underbrace{s_{m'}}_{s_{m'}}s_{m'} = s_{p'}^{*}u^{q}s_{m'}^{*}s_{p}\underbrace{u^{n}s_{m}s_{m}^{*}u^{-n}}_{s_{m'}}\underbrace{s_{m'}}_{s_{m'}}s_{m'} = s_{p'}^{*}u^{q}s_{m'}^{*}s_{p}\underbrace{u^{n}s_{m}s_{m}^{*}u^{-n}}_{s_{m'}}\underbrace{s_{m'}s_{m'}}_{s_{m'}}s_{m'}$$

$$S_{p'}^* U^q S_{m'}^* S_p S_{m'} S_{m'}^* U^n S_m S_m^* U^{-n} S_{m'}$$

Sketch of the Proof

- Let's check (PR3) [*s*][*t*][*t*]* = [*st*][*t*]*:
- With $s = \left(\frac{q}{p'}, \frac{p}{p'}\right)$ and $t = \left(\frac{n}{m'}, \frac{m}{m'}\right)$, we have $st = \left(\frac{m'q+pn}{p'm'}, \frac{pm}{p'm'}\right)$;

$$[st][t]^* \longmapsto (s^*_{p'm'}u^{m'q+pn}s_{pm})(s^*_{m'}u^ns_m)^* = s^*_{p'}u^q s^*_{m'}s_p u^n s_m s^*_m u^{-n}s_{m'} = s^*_{p'}u^q s^*_{m'}s_p \underbrace{u^n s_m s^*_m u^{-n}}_{s_m s^*_m u^{-n}} \underbrace{s_{m'} s^*_{m'}}_{s_{m'}} s_{m'} =$$

$$s_{p'}^{*} u^{q} s_{m'}^{*} s_{p} s_{m'} s_{m'}^{*} u^{n} s_{m} s_{m}^{*} u^{-n} s_{m'} \\ (s_{p'}^{*} u^{q} s_{p}) (s_{m'}^{*} u^{n} s_{m}) (s_{m}^{*} u^{-n} s_{m'})$$

Sketch of the Proof

• With
$$s = \left(\frac{q}{p'}, \frac{p}{p'}\right)$$
 and $t = \left(\frac{n}{m'}, \frac{m}{m'}\right)$, we have $st = \left(\frac{m'q+pn}{p'm'}, \frac{pm}{p'm'}\right)$;

$$[st][t]^* \longmapsto (s^*_{p'm'} u^{m'q+pn} s_{pm})(s^*_{m'} u^n s_m)^* = s^*_{p'} u^q s^*_{m'} s_p u^n s_m s^*_m u^{-n} s_{m'} = s^*_{p'} u^q s^*_{m'} s_p \underbrace{u^n s_m s^*_m u^{-n}}_{s_m s^*_m u^{-n}} \underbrace{s_{m'} s^*_{m'}}_{s_{m'}} s_{m'} =$$

$$\begin{array}{ll} s_{p'}^* u^q s_{m'}^* s_p s_{m'} s_{m'}^* u^n s_m s_m^* u^{-n} s_{m'} & = \\ (s_{p'}^* u^q s_p) (s_{m'}^* u^n s_m) (s_m^* u^{-n} s_{m'}) & \longleftrightarrow [s][t][t]^* \end{array}$$

Contents

Preliminaries

- Cuntz-Li Algebras
- Partial Crossed Products
- Partial Group Algebras
- 2 Partial Group Algebra Description
- Partial Crossed Product Description
 - Application in Bost-Connes Algebra

Partial Crossed Product Description

Corollary

 $\mathfrak{A}[R]$ is *-isomorphic to $C(\Omega) \rtimes_{\alpha} K \rtimes K^{\times}$.

Giuliano Boava Partial Crossed Product Description of the Cuntz-Li Algebras

Partial Crossed Product Description

Corollary

 $\mathfrak{A}[R]$ is *-isomorphic to $C(\Omega) \rtimes_{\alpha} K \rtimes K^{\times}$.

• Now, we characterize Ω .

Partial Crossed Product Description

Corollary

- Now, we characterize Ω .
- Extend the partial order from R[×] to K[×]. For w, w' ∈ K[×], w ≤ w' if there exists r ∈ R such that w' = wr.

Partial Crossed Product Description

Corollary

- Now, we characterize Ω .
- Extend the partial order from R[×] to K[×]. For w, w' ∈ K[×], w ≤ w' if there exists r ∈ R such that w' = wr.
- Consider the fractional ideals (w) = wR, $w \in K^{\times}$.

Partial Crossed Product Description

Corollary

- Now, we characterize Ω .
- Extend the partial order from R[×] to K[×]. For w, w' ∈ K[×], w ≤ w' if there exists r ∈ R such that w' = wr.
- Consider the fractional ideals (w) = wR, $w \in K^{\times}$.
- There is a natural projection $p_{w,w'}: (R + (w'))/(w') \longrightarrow (R + (w))/(w)$ whenever $w \le w'$.

Partial Crossed Product Description

Corollary

- Now, we characterize Ω .
- Extend the partial order from R[×] to K[×]. For w, w' ∈ K[×], w ≤ w' if there exists r ∈ R such that w' = wr.
- Consider the fractional ideals (w) = wR, $w \in K^{\times}$.
- There is a natural projection $p_{w,w'}: (R + (w'))/(w') \longrightarrow (R + (w))/(w)$ whenever $w \le w'$.

•
$$\hat{R}_{\mathcal{K}} = \lim_{\longleftarrow} \{ (R + (w))/(w), p_{w,w'} \}.$$

Partial Crossed Product Description

Corollary

 $\mathfrak{A}[R]$ is *-isomorphic to $C(\Omega) \rtimes_{\alpha} K \rtimes K^{\times}$.

- Now, we characterize Ω .
- Extend the partial order from R[×] to K[×]. For w, w' ∈ K[×], w ≤ w' if there exists r ∈ R such that w' = wr.
- Consider the fractional ideals (w) = wR, $w \in K^{\times}$.
- There is a natural projection $p_{w,w'}: (R + (w'))/(w') \longrightarrow (R + (w))/(w)$ whenever $w \le w'.$

•
$$\hat{R}_{K} = \lim_{\longleftarrow} \{ (R + (w))/(w), p_{w,w'} \}.$$

• Clearly, $\hat{R}_{K} \cong \hat{R}$.

Partial Crossed Product Description

Proposition

 Ω is homeomorphic to $\hat{R}_{\mathcal{K}}$ and, hence, to \hat{R} .

Partial Crossed Product Description

Proposition

 Ω is homeomorphic to $\hat{R}_{\mathcal{K}}$ and, hence, to \hat{R} .

Corollary

There exists a *-isomorphism

$$\begin{aligned} \mathfrak{A}[R] &\longrightarrow & C(\hat{R}_K) \rtimes_{lpha} K \rtimes K^{\succ} \ & u^n &\longmapsto & 1 \delta_{(n,1)} \ & s_m &\longmapsto & \mathbf{1}_{(0,m)} \delta_{(0,m)}, \end{aligned}$$

where $1_{(u,w)}$ is the characteristic function of $\{(u_{w'} + (w'))_{w'} \in \hat{R}_K \mid u_w + (w) = u + (w)\}.$

・ロ と ・ 四 と ・ 三 と ・ 三 と

FSC

Partial Crossed Product Description

Proposition

The partial action θ on \hat{R}_{K} is topologically free and minimal.

Giuliano Boava Partial Crossed Product Description of the Cuntz-Li Algebras

Partial Crossed Product Description

Proposition

The partial action θ on \hat{R}_{K} is topologically free and minimal.

Corollary

 $\mathfrak{A}[R]$ is simple.

Contents

- Cuntz-Li Algebras
- Partial Crossed Products
- Partial Group Algebras
- Partial Group Algebra Description
- 3 Partial Crossed Product Description
- 4 Application in Bost-Connes Algebra

Bost-Connes Algebra

Definition (Bost-Connes, 1995)

The **Bost-Connes algebra**, denoted by C_{\odot} , is the universal *C*^{*}-algebra generated by isometries { $\mu_m \mid m \in \mathbb{N}^*$ } and unitaries $\{e_{\gamma} \mid \gamma \in \mathbb{Q}/\mathbb{Z}\}$ subject to the relations (BC1) $\mu_m \mu_{m'} = \mu_{mm'}$; (BC2) $\mu_m \mu_{m'}^* = \mu_{m'}^* \mu_m$, if (m, m') = 1; (BC3) $e_{\gamma}e_{\gamma'}=e_{\gamma+\gamma'};$ (BC4) $e_{\gamma}\mu_m = \mu_m e_{m\gamma};$ (BC5) $\mu_m e_{\gamma} \mu_m^* = \frac{1}{m} \sum e_{\delta}$, where the sum is taken over all $\delta \in \mathbb{Q}/\mathbb{Z}$ such that $m\delta = \gamma$.

WEDTRALIDURE WILHELMS-UNIVERSITÄT

Münster

CAPES

UFSC

Partial Crossed Product Description

• Taking $R = \mathbb{Z}$, we have $\mathfrak{A}[\mathbb{Z}] \cong C(\hat{\mathbb{Z}}_{\mathbb{Q}}) \rtimes_{\alpha} \mathbb{Q} \rtimes \mathbb{Q}^*$.

Partial Crossed Product Description

- Taking $R = \mathbb{Z}$, we have $\mathfrak{A}[\mathbb{Z}] \cong C(\hat{\mathbb{Z}}_{\mathbb{Q}}) \rtimes_{\alpha} \mathbb{Q} \rtimes \mathbb{Q}^*$.
- There is a natural embedding $\mathbb{Q}^*_+ \hookrightarrow \mathbb{Q} \rtimes \mathbb{Q}^*$ given by $q \mapsto (0, q)$.

Partial Crossed Product Description

- Taking $R = \mathbb{Z}$, we have $\mathfrak{A}[\mathbb{Z}] \cong C(\hat{\mathbb{Z}}_{\mathbb{Q}}) \rtimes_{\alpha} \mathbb{Q} \rtimes \mathbb{Q}^*$.
- There is a natural embedding $\mathbb{Q}^*_+ \hookrightarrow \mathbb{Q} \rtimes \mathbb{Q}^*$ given by $q \mapsto (0, q)$.
- Restricting α to Q^{*}₊, we obtain the partial crossed product C(Â_Q) ⋊ Q^{*}₊.

Partial Crossed Product Description

- Taking $R = \mathbb{Z}$, we have $\mathfrak{A}[\mathbb{Z}] \cong C(\hat{\mathbb{Z}}_{\mathbb{Q}}) \rtimes_{\alpha} \mathbb{Q} \rtimes \mathbb{Q}^*$.
- There is a natural embedding $\mathbb{Q}^*_+ \hookrightarrow \mathbb{Q} \rtimes \mathbb{Q}^*$ given by $q \mapsto (0, q)$.
- Restricting α to Q^{*}₊, we obtain the partial crossed product C(Â_Q) ⋊ Q^{*}₊.

Theorem

The Bost-Connes algebra $C_{\mathbb{Q}}$ is *-isomorphic to $C(\hat{\mathbb{Z}}_{\mathbb{Q}}) \rtimes \mathbb{Q}_{+}^{*}$.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

WESTFÄLISCHE WILHELMS-UNIVERSITÄT

UFSC

Partial Crossed Product Description

One side of the isomorphism is given by

$$\begin{array}{rccc} C_{\mathbb{Q}} & \longrightarrow & C(\hat{\mathbb{Z}}_{\mathbb{Q}}) \rtimes \mathbb{Q}^{*}_{+} \\ \mu_{m} & \longmapsto & \mathbf{1}_{(0,m)} \delta_{m} \\ e(n/m) & \longmapsto & \sum_{l+(m) \in \mathbb{Z}/(m)} \exp\left(-\frac{ln}{m} \cdot 2\pi i\right) \mathbf{1}_{(l,m)} \delta_{1}. \end{array}$$

Partial Crossed Product Description

The other side is given by

$$\begin{array}{rcl} C(\hat{\mathbb{Z}}_{\mathbb{Q}}) \rtimes \mathbb{Q}^{*}_{+} & \longrightarrow & C_{\mathbb{Q}} \\ & & \delta_{m/m'} & \longmapsto & \mu^{*}_{m'}\mu_{m'} \\ 1_{(n/m',m/m')} & \longmapsto & \frac{1}{m}\sum_{l+(m)\in\mathbb{Z}/(m)} \exp\left(\frac{nl}{m}\cdot 2\pi i\right) e\left(\frac{lm'}{m}\right) \end{array}$$

THE END!

Giuliano Boava Partial Crossed Product Description of the Cuntz-Li Algebras