Partial Crossed Product Description of the Cuntz-Li Algebras

Giuliano Boava

Groups, Dynamical Systems and C*-Algebras

Münster - August 2013.

Contents

(1) Preliminaries

- Cuntz-Li Algebras
- Partial Crossed Products
- Partial Group Algebras
(2) Partial Group Algebra Description
(3) Partial Crossed Product Description

4 Application in Bost-Connes Algebra

Contents

(1) Preliminaries

- Cuntz-Li Algebras
- Partial Crossed Products
- Partial Group AlgebrasPartial Group Algebra DescriptionPartial Crossed Product Description
4 Application in Bost-Connes Algebra

Contents

(1) Preliminaries

- Cuntz-Li Algebras
- Partial Crossed Products
- Partial Group Algebras
(2) Partial Group Algebra Description
(3) Partial Crossed Product Description

4. Application in Bost-Connes Algebra

Cuntz-Li Algebras: Definition

- R integral domain with finite quotients, i.e., $R /(m)$ is finite, for all $m \neq 0$ in R, which is not a field.

Cuntz-Li Algebras: Definition

- R integral domain with finite quotients, i.e., $R /(m)$ is finite, for all $m \neq 0$ in R, which is not a field.

Definition (Cuntz-Li, 2010)

The Cuntz-Li algebra of R, denoted by $\mathfrak{A}[R]$, is the universal C^{*}-algebra generated by isometries $\left\{s_{m} \mid m \in R^{\times}\right\}$and unitaries $\left\{u^{n} \mid n \in R\right\}$ subject to the relations
(CL1) $s_{m} s_{m^{\prime}}=s_{m m^{\prime}}$;
(CL2) $u^{n} u^{n^{\prime}}=u^{n+n^{\prime}}$;
(CL3) $s_{m} u^{n}=u^{m n} s_{m}$;
(CL4) $\sum_{I+(m) \in R /(m)} u^{\prime} s_{m} s_{m}^{*} u^{-l}=1$.

Cuntz-Li Algebras: Properties

- There is a natural projection $p_{m, m^{\prime}}: R /\left(m^{\prime}\right) \longrightarrow R /(m)$ whenever $m \leq m^{\prime}$.

Cuntz-Li Algebras: Properties

- There is a natural projection $p_{m, m^{\prime}}: R /\left(m^{\prime}\right) \longrightarrow R /(m)$ whenever $m \leq m^{\prime}$.
- $\hat{R}=\lim \left\{R /(m), p_{m, m^{\prime}}\right\}$ is the profinite completion of R.

Cuntz-Li Algebras: Properties

- There is a natural projection $p_{m, m^{\prime}}: R /\left(m^{\prime}\right) \longrightarrow R /(m)$ whenever $m \leq m^{\prime}$.
- $\hat{R}=\lim \left\{R /(m), p_{m, m^{\prime}}\right\}$ is the profinite completion of R.

Theorem (Cuntz-Li, 2010)

$\overline{\operatorname{span}}\left\{u^{n} s_{m} s_{m}^{*} u^{-n} \mid m \in R^{\times}, n \in R\right\}$ is a commutative C^{*}-algebra and its spectrum is homeomorphic to \hat{R}.

Preliminaries
Partial Group Algebra Description Partial Crossed Product Description Application in Bost-Connes Algebra

Cuntz-Li Algebras: Properties

Theorem (Cuntz-Li, 2010)
 $\mathfrak{A}[R]$ is simple and purely infinite.

Preliminaries
Partial Group Algebra Description Partial Crossed Product Description Application in Bost-Connes Algebra

Cuntz-Li Algebras: Properties

Theorem (Cuntz-Li, 2010)
 $\mathfrak{A}[R]$ is simple and purely infinite.

Theorem (Cuntz-Li, 2010)

$\mathfrak{A}[R]$ is a crossed product by a semigroup.

Contents

(1) Preliminaries

- Cuntz-Li Algebras
- Partial Crossed Products
- Partial Group Algebras
(2) Partial Group Algebra Description
(3) Partial Crossed Product Description

4 Application in Bost-Connes Algebra

Partial Action

Definition

A partial action α of a (discrete) group G on a C^{*}-algebra \mathcal{A} is a collection $\left(\mathcal{D}_{t}\right)_{t \in G}$ of ideals of \mathcal{A} and $*$-isomorphisms
$\alpha_{t}: \mathcal{D}_{t^{-1}} \longrightarrow \mathcal{D}_{t}$ such that
(PA1) $\mathcal{D}_{e}=\mathcal{A}$;
(PA2) $\alpha_{t}^{-1}\left(\mathcal{D}_{t} \cap \mathcal{D}_{s^{-1}}\right) \subseteq \mathcal{D}_{(s t)^{-1}}$;
(PA3) $\alpha_{s} \circ \alpha_{t}(x)=\alpha_{s t}(x), \quad \forall x \in \alpha_{t}^{-1}\left(\mathcal{D}_{t} \cap \mathcal{D}_{s^{-1}}\right)$.

Preliminaries

Partial Crossed Product

- α partial action of a group G on a C^{*}-algebra \mathcal{A}.

Partial Crossed Product

- α partial action of a group G on a C^{*}-algebra \mathcal{A}.
- Let $\mathcal{L}=\oplus_{t \in G} D_{t}$ and denote an element $\left(a_{t}\right)_{t \in G}$ by $\sum_{t \in G} a_{t} \delta_{t}$.

Partial Crossed Product

- α partial action of a group G on a C^{*}-algebra \mathcal{A}.
- Let $\mathcal{L}=\oplus_{t \in G} D_{t}$ and denote an element $\left(a_{t}\right)_{t \in G}$ by $\sum_{t \in G} a_{t} \delta_{t}$.
- \mathcal{L} is a $*$-algebra with the operations $\left(a_{s} \delta_{s}\right)\left(a_{t} \delta_{t}\right)=\alpha_{s}\left(\alpha_{s^{-1}}\left(a_{s}\right) a_{t}\right) \delta_{s t}$ and $\left(a_{t} \delta_{t}\right)^{*}=\alpha_{t^{-1}}\left(a_{t}^{*}\right) \delta_{t^{-1}}$.

Partial Crossed Product

- α partial action of a group G on a C^{*}-algebra \mathcal{A}.
- Let $\mathcal{L}=\oplus_{t \in G} D_{t}$ and denote an element $\left(a_{t}\right)_{t \in G}$ by $\sum_{t \in G} a_{t} \delta_{t}$.
- \mathcal{L} is a $*$-algebra with the operations

$$
\left(a_{s} \delta_{s}\right)\left(a_{t} \delta_{t}\right)=\alpha_{s}\left(\alpha_{s^{-1}}\left(a_{s}\right) a_{t}\right) \delta_{s t} \text { and }\left(a_{t} \delta_{t}\right)^{*}=\alpha_{t-1}\left(a_{t}^{*}\right) \delta_{t^{-1}} .
$$

Definition

The full partial crossed product and the reduced partial crossed product of \mathcal{A} by G through α, denoted by $\mathcal{A} \rtimes_{\alpha} G$ and $\mathcal{A} \rtimes_{\alpha, \mathrm{r}} \mathcal{G}$, are the completion of \mathcal{L} under certain C^{*}-norms.

Partial Representation

Definition

A partial representation π of a (discrete) group G into a unital
C^{*}-algebra \mathcal{B} is a map $\pi: G \longrightarrow \mathcal{B}$ such that, for all $s, t \in \mathcal{G}$,
(PR1) $\pi(e)=1$;
(PR2) $\pi\left(t^{-1}\right)=\pi(t)^{*}$;
(PR3) $\pi(s) \pi(t) \pi\left(t^{-1}\right)=\pi(s t) \pi\left(t^{-1}\right)$.

Universal Property of $\mathcal{A} \rtimes_{\alpha} G$

Definition

Let $\pi: G \longrightarrow \mathcal{B}$ be a partial representation of G into a unital C^{*}-algebra \mathcal{B} and $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ be a $*$-homomorphism. We say that the pair (φ, π) is α-covariant if:
(COV1) $\varphi\left(\alpha_{t}(x)\right)=\pi(t) \varphi(x) \pi\left(t^{-1}\right)$, for all $t \in G e x \in \mathcal{D}_{t^{-1}}$; (COV2) $\varphi(x) \pi(t) \pi\left(t^{-1}\right)=\pi(t) \pi\left(t^{-1}\right) \varphi(x)$, for all $x \in \mathcal{A}$ e $t \in G$.

Universal Property of $\mathcal{A} \rtimes_{\alpha} G$

Definition

Let $\pi: G \longrightarrow \mathcal{B}$ be a partial representation of G into a unital C^{*}-algebra \mathcal{B} and $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ be a $*$-homomorphism. We say that the pair (φ, π) is α-covariant if:
(COV1) $\varphi\left(\alpha_{t}(x)\right)=\pi(t) \varphi(x) \pi\left(t^{-1}\right)$, for all $t \in G e x \in \mathcal{D}_{t^{-1}}$;
(COV2) $\varphi(x) \pi(t) \pi\left(t^{-1}\right)=\pi(t) \pi\left(t^{-1}\right) \varphi(x)$, for all $x \in \mathcal{A}$ e $t \in G$.

Proposition

If (φ, π) is α-covariant pair, then there exists a unique *-homomorphism $\varphi \times \pi: \mathcal{A} \rtimes_{\alpha} G \longrightarrow \mathcal{B}$ such that

$$
(\varphi \times \pi)\left(a_{t} \delta_{t}\right)=\varphi\left(a_{t}\right) \pi(t), \quad \forall t \in G, \forall a_{t} \in \mathcal{D}_{t}
$$

Contents

(1) Preliminaries

- Cuntz-Li Algebras
- Partial Crossed Products
- Partial Group Algebras
(2) Partial Group Algebra Description
(3) Partial Crossed Product Description

4 Application in Bost-Connes Algebra

Partial Group Algebra

- Given a (discrete) group G, define $\mathcal{G}=\{[t] \mid t \in G\}$.

Partial Group Algebra

- Given a (discrete) group \mathcal{G}, define $\mathcal{G}=\{[t] \mid t \in G\}$.

Definition (Exel-Laca-Quigg, 2002)

The partial group algebra of G, denoted by $C_{p}^{*}(G)$, is defined to be the universal C^{*}-algebra generated by the set \mathcal{G} subject to the relations

$$
\mathcal{R}_{\mathrm{p}}=\{[e]=1\} \cup\left\{\left[t^{-1}\right]=[t]^{*}\right\}_{t \in G} \cup\left\{[s][t]\left[t^{-1}\right]=[s t]\left[t^{-1}\right]\right\}_{s, t \in G} .
$$

Partial Group Algebra with Relations

- Denote $[t]\left[t^{-1}\right]$ by ε_{t}.

Partial Group Algebra with Relations

- Denote $[t]\left[t^{-1}\right]$ by ε_{t}.
- Let \mathcal{R} be a set of relations on \mathcal{G} such that every relation is of the form

$$
\sum_{i} \lambda_{i} \prod_{j} \varepsilon_{t_{i j}}=0
$$

Partial Group Algebra with Relations

- Denote $[t]\left[t^{-1}\right]$ by ε_{t}.
- Let \mathcal{R} be a set of relations on \mathcal{G} such that every relation is of the form

$$
\sum_{i} \lambda_{i} \prod_{j} \varepsilon_{t_{j j}}=0 .
$$

Definition (Exel-Laca-Quigg, 2002)

The partial group algebra of G with relations \mathcal{R}, denoted by $C_{p}^{*}(G, \mathcal{R})$, is defined to be the universal C^{*}-algebra generated by the set \mathcal{G} with the relations $\mathcal{R}_{\mathrm{p}} \cup \mathcal{R}$.

Theorems

Theorem (Exel-Laca-Quigg, 2002)
 $C_{p}^{*}(G) \cong C(X) \rtimes_{\alpha} G$, where $X=\{\xi \subseteq G \mid e \in \xi\}$.

Preliminaries
Partial Group Algebra Description Partial Crossed Product Description Application in Bost-Connes Algebra

Theorems

Theorem (Exel-Laca-Quigg, 2002)
 $C_{p}^{*}(G) \cong C(X) \rtimes_{\alpha} G$, where $X=\{\xi \subseteq G \mid e \in \xi\}$.

$$
\begin{aligned}
& \text { Theorem (Exel-Laca-Quigg, 2002) } \\
& C_{\mathrm{D}}^{*}(G, \mathcal{R}) \cong C(\Omega) \rtimes_{\alpha} G, \text { where } \\
& \Omega=\left\{\xi \in X \mid f\left(t^{-1} \xi\right)=0, \forall f \in \mathcal{R}, \forall t \in \xi\right\} \text {. }
\end{aligned}
$$

Contents

(1) Preliminaries

- Cuntz-Li Algebras
- Partial Crossed Products
- Partial Group Algebras
(2) Partial Group Algebra Description
(3) Partial Crossed Product Description

4 Application in Bost-Connes Algebra

Partial Group Algebra Description

- R integral domain with finite quotients which is not a field.

Partial Group Algebra Description

- R integral domain with finite quotients which is not a field.
- K field of fractions of R.

Partial Group Algebra Description

- R integral domain with finite quotients which is not a field.
- K field of fractions of R.
- Semidirect product $K \rtimes K^{\times}$.

Partial Group Algebra Description

- R integral domain with finite quotients which is not a field.
- K field of fractions of R.
- Semidirect product $K \rtimes K^{\times}$.
- Set of relations $\mathcal{R}=\mathcal{R}_{1} \cup \mathcal{R}_{2} \cup \mathcal{R}_{3}$, where

$$
\begin{aligned}
& \mathcal{R}_{1}=\left\{\varepsilon_{(n, 1)}=1 \mid n \in R\right\}, \mathcal{R}_{2}=\left\{\left.\varepsilon\left(0, \frac{1}{m}\right)=1 \right\rvert\, m \in R^{\times}\right\} \\
& \text {and } \mathcal{R}_{3}=\left\{\sum_{I+(m) \in R /(m)} \varepsilon_{(I, m)}=1 \mid m \in R^{\times}\right\} .
\end{aligned}
$$

Partial Group Algebra Description

- R integral domain with finite quotients which is not a field.
- K field of fractions of R.
- Semidirect product $K \rtimes K^{\times}$.
- Set of relations $\mathcal{R}=\mathcal{R}_{1} \cup \mathcal{R}_{2} \cup \mathcal{R}_{3}$, where

$$
\begin{aligned}
& \mathcal{R}_{1}=\left\{\varepsilon_{(n, 1)}=1 \mid n \in R\right\}, \mathcal{R}_{2}=\left\{\left.\varepsilon\left(0, \frac{1}{m}\right)=1 \right\rvert\, m \in R^{\times}\right\} \\
& \text {and } \mathcal{R}_{3}=\left\{\sum_{I+(m) \in R /(m)} \varepsilon_{(I, m)}=1 \mid m \in R^{\times}\right\} .
\end{aligned}
$$

- Partial group algebra $C_{\mathrm{p}}^{*}\left(K \rtimes K^{\times}, \mathcal{R}\right)$.

Partial Group Algebra Description

Proposition (B.-Exel, 2013)

There exists a *-isomorphism

$$
\begin{aligned}
\mathfrak{A}[R] & \longrightarrow C_{\mathrm{p}}^{*}\left(K \rtimes K^{\times}, \mathcal{R}\right) \\
u^{n} & \longmapsto[n, 1] \\
s_{m} & \longmapsto[0, m] \\
s_{m^{\prime}}^{*} u^{n} s_{m} & \longleftrightarrow\left[\frac{n}{m^{\prime}}, \frac{m}{m^{\prime}}\right] .
\end{aligned}
$$

Sketch of the Proof

- Let's check (CL3) $s_{m} u^{n}=u^{m n} s_{m}$:

Sketch of the Proof

- Let's check (CL3) $s_{m} u^{n}=u^{m n} s_{m}$:
- $s_{m} u^{n} \longmapsto[0, m][n, 1]=[0, m][n, 1][n, 1]^{*}[n, 1]=$ $[m n, m][n, 1]^{*}[n, 1]=[m n, m]$,

Sketch of the Proof

- Let's check (CL3) $s_{m} u^{n}=u^{m n} s_{m}$:
- $s_{m} u^{n} \longmapsto[0, m][n, 1]=[0, m][n, 1][n, 1]^{*}[n, 1]=$ $[m n, m][n, 1]^{*}[n, 1]=[m n, m]$,
- $u^{m n} s_{m} \longmapsto[m n, 1][0, m]=[m n, 1][m n, 1]^{*}[m n, 1][0, m]=$ $[m n, 1][m n, 1]^{*}[m n, m]=[m n, m]$.

Sketch of the Proof

- Let's check (PR3) $[s][t][t]^{*}=[s t][t]^{*}$:

Sketch of the Proof

- Let's check (PR3) $[s][t][t]^{*}=[s t][t]^{*}$:
- With $s=\left(\frac{q}{p^{\prime}}, \frac{p}{p^{\prime}}\right)$ and $t=\left(\frac{n}{m^{\prime}}, \frac{m}{m^{\prime}}\right)$, we have $s t=\left(\frac{m^{\prime} q+p n}{p^{\prime} m^{\prime}}, \frac{p m}{p^{\prime} m^{\prime}}\right)$;

Sketch of the Proof

- Let's check (PR3) $[s][t][t]^{*}=[s t][t]^{*}$:
- With $s=\left(\frac{q}{p^{\prime}}, \frac{p}{p^{\prime}}\right)$ and $t=\left(\frac{n}{m^{\prime}}, \frac{m}{m^{\prime}}\right)$, we have

$$
s t=\left(\frac{m^{\prime} q+p n}{p^{\prime} m^{\prime}}, \frac{p m}{p^{\prime} m^{\prime}}\right)
$$

$[s t][t]^{*} \longmapsto$

Sketch of the Proof

- Let's check (PR3) $[s][t][t]^{*}=[s t][t]^{*}$:
- With $s=\left(\frac{q}{p^{\prime}}, \frac{p}{p^{\prime}}\right)$ and $t=\left(\frac{n}{m^{\prime}}, \frac{m}{m^{\prime}}\right)$, we have
$s t=\left(\frac{m^{\prime} q+p n}{p^{\prime} m^{\prime}}, \frac{p m}{p^{\prime} m^{\prime}}\right)$;
$[s t][t]^{*} \longmapsto\left(s_{p^{\prime} m^{\prime}}^{*} u^{m^{\prime} q+p n} s_{p m}\right)\left(s_{m^{\prime}}^{*} u^{n} s_{m}\right)^{*}=$

Sketch of the Proof

- Let's check (PR3) $[s][t][t]^{*}=[s t][t]^{*}$:
- With $s=\left(\frac{q}{p^{\prime}}, \frac{p}{p^{\prime}}\right)$ and $t=\left(\frac{n}{m^{\prime}}, \frac{m}{m^{\prime}}\right)$, we have

$$
s t=\left(\frac{m^{\prime} q+p n}{p^{\prime} m^{\prime}}, \frac{p m}{p^{\prime} m^{\prime}}\right)
$$

$[s t][t]^{*} \longmapsto\left(s_{p^{\prime} m^{\prime}}^{*} u^{m^{\prime} q+p n} s_{p m}\right)\left(s_{m^{\prime}}^{*} u^{n} s_{m}\right)^{*}$

$$
s_{p^{\prime}}^{*} u^{q} s_{m^{\prime}}^{*} s_{p} u^{n} s_{m} s_{m}^{*} u^{-n} s_{m^{\prime}}
$$

Sketch of the Proof

- Let's check (PR3) $[s][t][t]^{*}=[s t][t]^{*}$:
- With $s=\left(\frac{q}{p^{\prime}}, \frac{p}{p^{\prime}}\right)$ and $t=\left(\frac{n}{m^{\prime}}, \frac{m}{m^{\prime}}\right)$, we have

$$
s t=\left(\frac{m^{\prime} q+p n}{p^{\prime} m^{\prime}}, \frac{p m}{p^{\prime} m^{\prime}}\right) \text {; }
$$

$[s t][t]^{*} \longmapsto\left(s_{p^{\prime} m^{\prime}}^{*} u^{m^{\prime} q+p n} s_{p m}\right)\left(s_{m^{\prime}}^{*} u^{n} s_{m}\right)^{*}$

$$
s_{p^{\prime}}^{*} u^{q} s_{m^{\prime}}^{*} s_{p} u^{n} s_{m} s_{m}^{*} u^{-n} s_{m^{\prime}} \quad=
$$

$$
s_{p^{\prime}}^{*} u^{q} s_{m^{\prime}}^{*} s_{p} \underbrace{u^{n} s_{m} s_{m}^{*} u^{-n}} \underbrace{s_{m^{\prime}} s_{m^{\prime}}^{*}} s_{m^{\prime}}
$$

$$
=
$$

Sketch of the Proof

- Let's check (PR3) $[s][t][t]^{*}=[s t][t]^{*}$:
- With $s=\left(\frac{q}{p^{\prime}}, \frac{p}{p^{\prime}}\right)$ and $t=\left(\frac{n}{m^{\prime}}, \frac{m}{m^{\prime}}\right)$, we have

$$
s t=\left(\frac{m^{\prime} q+p n}{p^{\prime} m^{\prime}}, \frac{p m}{p^{\prime} m^{\prime}}\right) \text {; }
$$

$$
\begin{aligned}
{[s t][t]^{*} \longmapsto\left(s_{p^{\prime} m^{\prime}}^{*} u^{m^{\prime} q+p n} s_{p m}\right)\left(s_{m^{\prime}}^{*} u^{n} s_{m}\right)^{*} } & = \\
s_{p^{\prime}}^{*} u^{q} s_{m^{\prime}}^{*} s_{p} u^{n} s_{m} s_{m}^{*} u^{-n} s_{m^{\prime}} & = \\
s_{p^{\prime}}^{*} u^{q} s_{m^{\prime}}^{*} s_{p} \underbrace{u^{n} s_{m} s_{m}^{*} u^{-n}} \underbrace{s_{m^{\prime}} s_{m^{\prime}}^{*} s_{m^{\prime}}} & = \\
s_{p^{\prime}}^{*} u^{q} s_{m^{\prime}}^{*} s_{p} s_{m^{\prime}} s_{m^{\prime}}^{*} u^{n} s_{m} s_{m}^{*} u^{-n} s_{m^{\prime}} & =
\end{aligned}
$$

Sketch of the Proof

- Let's check (PR3) $[s][t][t]^{*}=[s t][t]^{*}$:
- With $s=\left(\frac{q}{p^{\prime}}, \frac{p}{p^{\prime}}\right)$ and $t=\left(\frac{n}{m^{\prime}}, \frac{m}{m^{\prime}}\right)$, we have

$$
s t=\left(\frac{m^{\prime} q+p n}{p^{\prime} m^{\prime}}, \frac{p m}{p^{\prime} m^{\prime}}\right)
$$

$$
[s t][t]^{*} \longmapsto\left(s_{p^{\prime} m^{\prime}}^{*} u^{m^{\prime} q+p n} s_{p m}\right)\left(s_{m^{\prime}}^{*} u^{n} s_{m}\right)^{*}
$$

$$
s_{p^{\prime}}^{*} u^{q} s_{m^{\prime}}^{*} s_{p} u^{n} s_{m} s_{m}^{*} u^{-n} s_{m^{\prime}}
$$

$$
s_{p^{\prime}}^{*} u^{q} s_{m^{\prime}}^{*} s_{p} \underbrace{u^{n} s_{m} s_{m}^{*} u^{-n}} \underbrace{s_{m^{\prime}} s_{m^{\prime}}^{*}} s_{m^{\prime}}
$$

$$
s_{p^{\prime}}^{*} u^{q} s_{m^{\prime}}^{*} s_{p} s_{m^{\prime}} s_{m^{\prime}}^{*} u^{n} s_{m} s_{m}^{*} u^{-n} s_{m^{\prime}}
$$

$$
\left(s_{p^{\prime}}^{*} u^{q} s_{p}\right)\left(s_{m^{\prime}}^{*} u^{n} s_{m}\right)\left(s_{m}^{*} u^{-n} s_{m^{\prime}}\right)
$$

Sketch of the Proof

- Let's check (PR3) $[s][t][t]^{*}=[s t][t]^{*}$:
- With $s=\left(\frac{q}{p^{\prime}}, \frac{p}{p^{\prime}}\right)$ and $t=\left(\frac{n}{m^{\prime}}, \frac{m}{m^{\prime}}\right)$, we have

$$
\begin{aligned}
& s t=\left(\frac{m^{\prime} a+p n}{p^{\prime} m^{\prime}}, \frac{p m}{p^{\prime} m^{\prime}}\right) \text {; } \\
& {[s t][t]^{*} \longmapsto\left(s_{p^{\prime} m^{\prime}}^{*} u^{m^{\prime} q+p n} s_{p m}\right)\left(s_{m^{\prime}}^{*} u^{n} s_{m}\right)^{*}} \\
& s_{p^{\prime}}^{*} u^{q} s_{m^{\prime}}^{*} s_{p} u^{n} s_{m} s_{m}^{*} u^{-n} s_{m^{\prime}} \\
& s_{p^{\prime}}^{*} u^{q} s_{m^{\prime}}^{*} s_{p} \underbrace{u^{n} s_{m} s_{m}^{*} u^{-n}} \underbrace{s_{m^{\prime}} s_{m^{\prime}}^{*}} s_{m^{\prime}} \\
& s_{p^{\prime}}^{*} u^{q} s_{m^{\prime}}^{*} s_{p} s_{m^{\prime}} s_{m^{\prime}}^{*} u^{n} s_{m} s_{m}^{*} u^{-n} s_{m^{\prime}} \\
& \left(s_{p^{\prime}}^{*} u^{q} s_{p}\right)\left(s_{m^{\prime}}^{*} u^{n} s_{m}\right)\left(s_{m}^{*} u^{-n} s_{m^{\prime}}\right) \longleftrightarrow[s][t][t]^{*} .
\end{aligned}
$$

Contents

(1) Preliminaries

- Cuntz-Li Algebras
- Partial Crossed Products
- Partial Group AlgebrasPartial Group Algebra Description
3 Partial Crossed Product Description
(4) Application in Bost-Connes Algebra

Partial Crossed Product Description

Corollary

$\mathfrak{A}[R]$ is $*$-isomorphic to $C(\Omega) \rtimes_{\alpha} K \rtimes K^{\times}$.

Partial Crossed Product Description

Corollary

$\mathfrak{A}[R]$ is $*$-isomorphic to $C(\Omega) \rtimes_{\alpha} K \rtimes K^{\star}$.

- Now, we characterize Ω.

Partial Crossed Product Description

Corollary

$\mathfrak{A}[R]$ is $*$-isomorphic to $C(\Omega) \rtimes_{\alpha} K \rtimes K^{\star}$.

- Now, we characterize Ω.
- Extend the partial order from R^{\times}to K^{\times}. For $w, w^{\prime} \in K^{\times}$, $w \leq w^{\prime}$ if there exists $r \in R$ such that $w^{\prime}=w r$.

Partial Crossed Product Description

Corollary

$\mathfrak{A}[R]$ is $*$-isomorphic to $C(\Omega) \rtimes_{\alpha} K \rtimes K^{\times}$.

- Now, we characterize Ω.
- Extend the partial order from R^{\times}to K^{\times}. For $w, w^{\prime} \in K^{\times}$, $w \leq w^{\prime}$ if there exists $r \in R$ such that $w^{\prime}=w r$.
- Consider the fractional ideals $(w)=w R, w \in K^{\times}$.

Partial Crossed Product Description

Corollary

$\mathfrak{A}[R]$ is $*$-isomorphic to $C(\Omega) \rtimes_{\alpha} K \rtimes K^{\times}$.

- Now, we characterize Ω.
- Extend the partial order from R^{\times}to K^{\times}. For $w, w^{\prime} \in K^{\times}$, $w \leq w^{\prime}$ if there exists $r \in R$ such that $w^{\prime}=w r$.
- Consider the fractional ideals $(w)=w R, w \in K^{\times}$.
- There is a natural projection

$$
\begin{aligned}
& p_{w, w^{\prime}}:\left(R+\left(w^{\prime}\right)\right) /\left(w^{\prime}\right) \longrightarrow(R+(w)) /(w) \text { whenever } \\
& w \leq w^{\prime} .
\end{aligned}
$$

Partial Crossed Product Description

Corollary

$\mathfrak{A}[R]$ is $*$-isomorphic to $C(\Omega) \rtimes_{\alpha} K \rtimes K^{\times}$.

- Now, we characterize Ω.
- Extend the partial order from R^{\times}to K^{\times}. For $w, w^{\prime} \in K^{\times}$, $w \leq w^{\prime}$ if there exists $r \in R$ such that $w^{\prime}=w r$.
- Consider the fractional ideals $(w)=w R, w \in K^{\times}$.
- There is a natural projection

$$
\begin{aligned}
& p_{w, w^{\prime}}:\left(R+\left(w^{\prime}\right)\right) /\left(w^{\prime}\right) \longrightarrow(R+(w)) /(w) \text { whenever } \\
& w \leq w^{\prime} .
\end{aligned}
$$

- $\hat{R}_{K}=\lim \left\{(R+(w)) /(w), p_{w, w^{\prime}}\right\}$.

Partial Crossed Product Description

Corollary

$\mathfrak{A}[R]$ is $*$-isomorphic to $C(\Omega) \rtimes_{\alpha} K \rtimes K^{\times}$.

- Now, we characterize Ω.
- Extend the partial order from R^{\times}to K^{\times}. For $w, w^{\prime} \in K^{\times}$, $w \leq w^{\prime}$ if there exists $r \in R$ such that $w^{\prime}=w r$.
- Consider the fractional ideals $(w)=w R, w \in K^{\times}$.
- There is a natural projection
$p_{w, w^{\prime}}:\left(R+\left(w^{\prime}\right)\right) /\left(w^{\prime}\right) \longrightarrow(R+(w)) /(w)$ whenever $w \leq w^{\prime}$.
- $\hat{R}_{K}=\lim _{\longleftarrow}\left\{(R+(w)) /(w), p_{w, w^{\prime}}\right\}$.
- Clearly, $\hat{R}_{K} \cong \hat{R}$.

Partial Crossed Product Description

Proposition

Ω is homeomorphic to \hat{R}_{K} and, hence, to \hat{R}.

Partial Crossed Product Description

Proposition

Ω is homeomorphic to \hat{R}_{K} and, hence, to \hat{R}.

Corollary

There exists a *-isomorphism

$$
\begin{aligned}
\mathfrak{A}[R] & \longrightarrow C\left(\hat{R}_{K}\right) \rtimes_{\alpha} K \rtimes K^{\times} \\
u^{n} & \longmapsto 1 \delta_{(n, 1)} \\
s_{m} & \longmapsto 1_{(0, m)} \delta_{(0, m)},
\end{aligned}
$$

where $1_{(u, w)}$ is the characteristic function of
$\left\{\left(u_{w^{\prime}}+\left(w^{\prime}\right)\right)_{w^{\prime}} \in \hat{R}_{K} \mid u_{w}+(w)=u+(w)\right\}$.

Partial Crossed Product Description

Proposition

The partial action θ on \hat{R}_{K} is topologically free and minimal.

Partial Crossed Product Description

Proposition

The partial action θ on \hat{R}_{K} is topologically free and minimal.

Corollary

$\mathfrak{A}[R]$ is simple.

Contents

(1) Preliminaries

- Cuntz-Li Algebras
- Partial Crossed Products
- Partial Group AlgebrasPartial Group Algebra Description
(3) Partial Crossed Product Description

4 Application in Bost-Connes Algebra

Bost-Connes Algebra

Definition (Bost-Connes, 1995)

The Bost-Connes algebra, denoted by $C_{\mathbb{Q}}$, is the universal C^{*}-algebra generated by isometries $\left\{\mu_{m} \mid m \in \mathbb{N}^{*}\right\}$ and unitaries $\left\{\boldsymbol{e}_{\gamma} \mid \gamma \in \mathbb{Q} / \mathbb{Z}\right\}$ subject to the relations
(BC1) $\mu_{m} \mu_{m^{\prime}}=\mu_{m m^{\prime}}$;
(BC2) $\mu_{m} \mu_{m^{\prime}}^{*}=\mu_{m^{\prime}}^{*} \mu_{m}$, if $\left(m, m^{\prime}\right)=1$;
(BC3) $\boldsymbol{e}_{\gamma} \boldsymbol{e}_{\gamma^{\prime}}=\boldsymbol{e}_{\gamma+\gamma^{\prime}}$;
(BC4) $\boldsymbol{e}_{\gamma} \mu_{m}=\mu_{m} \boldsymbol{e}_{m \gamma}$;
(BC5) $\mu_{m} e_{\gamma} \mu_{m}^{*}=\frac{1}{m} \sum e_{\delta}$, where the sum is taken over all $\delta \in \mathbb{Q} / \mathbb{Z}$ such that $m \delta=\gamma$.

Partial Crossed Product Description

- Taking $R=\mathbb{Z}$, we have $\mathfrak{A}[\mathbb{Z}] \cong C\left(\hat{\mathbb{Z}}_{\mathbb{Q}}\right) \rtimes_{\alpha} \mathbb{Q} \rtimes \mathbb{Q}^{*}$.

Partial Crossed Product Description

- Taking $R=\mathbb{Z}$, we have $\mathfrak{A}[\mathbb{Z}] \cong C\left(\hat{\mathbb{Z}}_{\mathbb{Q}}\right) \rtimes_{\alpha} \mathbb{Q} \rtimes \mathbb{Q}^{*}$.
- There is a natural embedding $\mathbb{Q}_{+}^{*} \hookrightarrow \mathbb{Q} \rtimes \mathbb{Q}^{*}$ given by $q \mapsto(0, q)$.

Partial Crossed Product Description

- Taking $R=\mathbb{Z}$, we have $\mathfrak{A}[\mathbb{Z}] \cong C\left(\hat{\mathbb{Z}}_{\mathbb{Q}}\right) \rtimes_{\alpha} \mathbb{Q} \rtimes \mathbb{Q}^{*}$.
- There is a natural embedding $\mathbb{Q}_{+}^{*} \hookrightarrow \mathbb{Q} \rtimes \mathbb{Q}^{*}$ given by $q \mapsto(0, q)$.
- Restricting α to \mathbb{Q}_{+}^{*}, we obtain the partial crossed product $C\left(\hat{\mathbb{Z}}_{\mathbb{Q}}\right) \rtimes \mathbb{Q}_{+}^{*}$.

Partial Crossed Product Description

- Taking $R=\mathbb{Z}$, we have $\mathfrak{A}[\mathbb{Z}] \cong C\left(\hat{\mathbb{Z}}_{\mathbb{Q}}\right) \rtimes_{\alpha} \mathbb{Q} \rtimes \mathbb{Q}^{*}$.
- There is a natural embedding $\mathbb{Q}_{+}^{*} \hookrightarrow \mathbb{Q} \rtimes \mathbb{Q}^{*}$ given by $q \mapsto(0, q)$.
- Restricting α to \mathbb{Q}_{+}^{*}, we obtain the partial crossed product $C\left(\hat{\mathbb{Z}}_{\mathbb{Q}}\right) \rtimes \mathbb{Q}_{+}^{*}$.

Theorem

The Bost-Connes algebra $C_{\mathbb{Q}}$ is *-isomorphic to $C\left(\hat{\mathbb{Z}}_{\mathbb{Q}}\right) \rtimes \mathbb{Q}_{+}^{*}$.

Partial Crossed Product Description

One side of the isomorphism is given by

$$
\begin{aligned}
C_{\mathbb{Q}} & \longrightarrow C\left(\hat{\mathbb{Z}}_{\mathbb{Q}}\right) \rtimes \mathbb{Q}_{+}^{*} \\
\mu_{m} & \longmapsto 1_{(0, m)} \delta_{m} \\
e(n / m) & \longmapsto \sum_{I+(m) \in \mathbb{Z} /(m)} \exp \left(-\frac{I n}{m} \cdot 2 \pi i\right) 1_{(I, m)} \delta_{1} .
\end{aligned}
$$

Partial Crossed Product Description

The other side is given by

$$
\begin{aligned}
C\left(\hat{\mathbb{Z}}_{\mathbb{Q}}\right) \rtimes \mathbb{Q}_{+}^{*} & \longrightarrow C_{\mathbb{Q}} \\
\delta_{m / m^{\prime}} & \longmapsto \mu_{m^{\prime}}^{*} \mu_{m} \\
1_{\left(n / m^{\prime}, m / m^{\prime}\right)} & \longmapsto \frac{1}{m} \sum_{I+(m) \in \mathbb{Z} /(m)} \exp \left(\frac{n I}{m} \cdot 2 \pi i\right) e\left(\frac{I m^{\prime}}{m}\right) .
\end{aligned}
$$

THE END!

