Westfälische WILHELMS-UNIVERSITÄT Münster

SFB Workshop: Groups, Dynamical Systems and C^* -algebras August 20-24, 2013

K-theory for certain crossed products by \mathbb{Z}^2 -actions Selçuk Barlak – University of Münster – selcuk.barlak@uni-muenster.de

Introduction

One of the most celebrated results in K-theory for C^* -algebra is the Pimsner Voiculescu exact sequence [4] associated with a C^* -dynamical system (A, α, \mathbb{Z})

 $K_0(\alpha) - id K_0(\alpha) - id K_0(\alpha) = K(\alpha - \pi)$

Results

Let α denote the pointwise inner \mathbb{Z}^2 -action on $C^*(H_3)$ induced by the unitaries u and v.

The obstruction homomorphism associated with α is non-Theorem

$$\begin{array}{c}
K_0(A) \longrightarrow K_0(A) \longrightarrow K_0(A \rtimes_{\alpha} \mathbb{Z}) \\
 \downarrow \\
K_1(A \rtimes_{\alpha} \mathbb{Z}) \longrightarrow K_1(A)_{\overline{K_1(\alpha)} - id} K_1(A)
\end{array}$$

Hence, the K-theory of the crossed product is determined by $(K_*(A), K_*(\alpha), \mathbb{Z})$ up to an extension problem. One might ask what happens if we look at \mathbb{Z}^n -actions.

Question 1: To what extent does $(K_*(A), K_*(\alpha), \mathbb{Z}^n)$ determine the *K*-theory of the crossed product $K_*(A \rtimes_{\alpha} \mathbb{Z}^n)$?

Analogously to the case n = 1, one may hope that almost all information is contained in the induced action on K-theoretic level.

Question 2: Does it suffice to solve certain extension problems depending only on $(K_*(A), K_*(\alpha), \mathbb{Z}^n)$ in order to determine $K_*(A \rtimes_{\alpha} \mathbb{Z}^n)$?

An application of the classification done in [1] shows that Question 2 has a negative answer in general. Unfortunately, [1] makes heavy use of the Kirchberg-Phillips classification of Kirchberg algebras [2, 3]. The disadvantage of this approach is that it only states the existence of such \mathbb{Z}^2 -actions. Therefore, it would be nice to have more concrete examples giving a negative answer to Question 2.

trivial, and we have

 $K_*(C^*(H_3) \rtimes_{\alpha} \mathbb{Z}^2) \ncong K_*(C^*(H_3) \otimes C(\mathbb{T}^2)).$

Furthermore, one can construct many examples of pointwise inner \mathbb{Z}^2 -action with non-trivial obstructions in the following way. Let A be a unital separable C^* -algebra and let $u, v \in A$ be unitaries such that uvu^*v^* is central and has full spectrum. As mentioned above, u and v define a pointwise inner \mathbb{Z}^2 -action on A. Let B be a unital separable C^* -algebra whose K-groups do not vanish. Moreover, let $x \in B$ be a central unitary with full spectrum and $p \in B$ a projection satisfying

 $[x] \neq k[xp+1-p] \in K_1(B)$

for all integers k. Let $C := A *_{C(\mathbb{T})} B$ be the amalgamated free product where uvu^*v^* and x are identified. By construction, uvu^*v^* is a central unitary in C. Thus, u and v define a pointwise inner action α on C extending the action on A.

Theorem The obstruction homomorphism of $(C, \alpha, \mathbb{Z}^2)$ is non-trivial. If $K_*(C) \cong \mathbb{Z}^k$ with k > 0, we have

Approach

We give concrete examples of \mathbb{Z}^2 -actions on unital C^* -algebras for which Question 2 has a negative answer. Considering a crossed product by \mathbb{Z}^2 as an iterated crossed product by \mathbb{Z} , the Pimsner Voiculescu sequence can be applied twice. A careful study of the second application shows the existence of an unexpected obstruction homomorphism. Together with $(K_*(A), K_*(\alpha), \mathbb{Z}^2)$, this homomorphism determines the K-theory of the crossed product up to extension problems. There is a concrete description of this obstruction homomorphism in terms of Bott-elements in the *K*-groups of the underlying algebra.

To illustrate this, we would like to find \mathbb{Z}^2 -actions with non-trivial obstruction homomorphisms. We mainly focus on pointwise inner \mathbb{Z}^2 actions, meaning that each automorphism is inner. At first glance, it may seem unplausible that pointwise inner action can lead to non-trivial obstruction homomorphisms. The crucial observation is that a pointwise inner action is not necessarily unitarily implemented. Two unitaries u and v in a unital C^* -algebra define a pointwise inner \mathbb{Z}^2 -action if and only if uvu^*v^* is a central unitary. It turns out that such an action can only have a non-trivial obstruction homomorphism if uvu^*v^* has full spectrum. This leads to the Heisenberg group C^* -algebra

 $K_*(C \rtimes_{\alpha} \mathbb{Z}^2) \ncong K_*(C \otimes C(\mathbb{T}^2)).$

As an example, consider $A = C^*(H_3)$ and $B = C(\mathbb{T}) \oplus C(\mathbb{T})$. In this situation, $x = z \oplus z$ and $p = 1 \oplus 0$ satisfy the conditions above. The amalgamated free product $A *_{C(\mathbb{T})} B$ can be viewed as the universal unital C^* -algebra for a (non-trivial) obstruction associated with a pointwise inner \mathbb{Z}^2 -action. This means that $A *_{C(\mathbb{T})} B$ has a universal obstruction in the sense, that every obstruction class can be obtained as the image of this universal obstruction.

Since homotopic \mathbb{Z}^n -actions give rise to crossed products with isomorphic K-theory, one might ask if this also holds for pointwise homotopic actions. The next theorem shows that this even fails for pointwise homotopies in the inner automorphisms.

Theorem There is a separable C^* -algebra C with $K_0(C) \cong K_1(C) \cong \mathbb{Z}$ and a pointwise inner \mathbb{Z}^2 -action α on C, which is pointwise homotopic to the trivial action inside Inn(C), satisfying

 $K_*(C \rtimes_{\alpha} \mathbb{Z}^2) \ncong K_*(C \otimes C(\mathbb{T}^2)).$

 $C^*(H_3) := C^*(u, v \text{ unitaries } : uvu^*v^* \text{ is central })$

as a first candidate.

References

[1] M. Izumi, H. Matui: \mathbb{Z}^2 -actions on Kirchberg algebras, Adv. Math. **224**(2010):355–400.

[2] E. Kirchberg: The classification of Purely Infinite C^* -algebras using Kasparov's theory, preprint, 1994, to appear in Fields Institute Communication series.

[3] N. C. Phillips: A Classification Theorem for Nuclear Purely Infinite Simple C*-algebras, Doc. Math. 5(2000):49–114.

[4] M. Pimsner, D. Voiculescu: Exact Sequence for K-Groups and Ext-Groups of certain Cross-Product C^* -algebras, J. Operator Theory 4(1980):93–118.

living knowledge WWU Münster

