Category of Compact Quantum Semigroups

Marat Aukhadiev Kazan State Power Engineering University m.aukhadiev@gmail.com

1.Compact quantum semigroup definition

 (\mathcal{A}, Δ) is called a compact quantum semigroup, if \mathcal{A} is a unital C^* -algebra and $\Delta : \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ is a unital *-homomorphism, satisfying coassociativity property:

 $(\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta.$

In this case Δ is called *a comultiplication*.

When \mathcal{A} is a commutative C^* -algebra, by Gelfand-Naimark theorem it is isomorphic to C(P) for a compact space P. Then the comultiplication Δ gives a semigroup structure on P:

 $f(x \cdot y) = \Delta(f)(x, y).$

When \mathcal{A} is non-commutative, it does not correspond to any compact semigroup. But algebra \mathcal{A} is understood as an algebra of functions on a compact quantum semigroup.

7. Quantum semigroup morphisms

We say that π^* is a morphism taking a compact quantum semigroup $(\mathcal{A}_2, \Delta_2)$ to $(\mathcal{A}_1, \Delta_1)$, if there exists a *-homomorphism $\pi: \mathcal{A}_1 \to \mathcal{A}_2$, verifying the equation:

$(\pi \otimes \pi) \Delta_1 = \Delta_2 \pi$

 π^* is called a dual morphism to π .

If π is a surjection, then $(\mathcal{A}_2, \Delta_2)$ is called a compact quantum subsemigroup in $(\mathcal{A}_1, \Delta_1)$, and π^* is an embedding.

2. A representation of C(G)

Let G be a compact Abelian group, Γ – a discrete abelian group, isomorphic to a group of characters of G. Consider Hilbert space $L^2 = L^2(G, d\mu)$, where μ is a shift-invariant normed measure. Denote by $\{e_a\}_{a\in\Gamma}$ an orthonormal basis of L^2 , corresponding to the characters $\chi^a, a \in \Gamma$ of the group G. For $f \in C(G)$ define an operator $L_f \colon L^2 \to L^2$ by

$L_f g = f \cdot g.$

We obtain representation $f \to L_f$ of the algebra C(G) in $B(L^2)$, with the image being a commutative C^* -algebra.

3. A deformation of the functions algebra.

Take a subsemigroup $S \subset \Gamma$ with zero, which generates Γ . Let $H_S \subset L^2$ be a Hilbert space with basis $\{e_a\}_{a \in S}$, and $P_S \colon L^2 \to H_S$ – a projection. Define for $f \in C(G)$:

 $T_f = P_S L_f P_S.$

8. Quantum subgroup

Consider compact abelian group G and a subsemigroup S in the dual group. In the classical compact quantum group $(C(G), \Delta_G)$ the comultiplication is the following for all $f \in C(G), x, y \in G$.

 $\Delta_G(f)(x,y) = f(x \cdot y),$

Theorem 2.

Compact group $G = (C(G), \Delta_G)$ is a compact quantum subgroup in $QS = (\mathcal{C}^*_{red}(S), \Delta)$. There exists a non-ergodic action of G on QS, given by a C^* -dynamical system $(G, \alpha, \mathcal{C}^*_{red}(S))$. And a quantum projective space P = QS/G is a classical compact semigroup.

9. Inverse semigroup duals

Let S_{inv} be a category of inverse semigroups from the class defined in Section 5, morphisms are inverse semigroup morphisms. Denote by QS_{red} a category of compact quantum semigroups $(C^*_{red}(S), \Delta)$ for all $S \in S_{inv}$.

Theorem 3.

Category \mathcal{QS}_{red} is dual to \mathcal{S}_{inv} .

A reduced semigroup $C^a st$ -algebra $\mathcal{C}^*_{red}(S)$ is a C^* -algebra generated by all T_f for $f \in C(G)$.

4. Example. Deformation parameter

Suppose Γ is a group of integers \mathbb{Z} . As an example of such semigroup S we could choose a semigroup of non-negative integers $\mathbb{Z}_+ \subset \Gamma$. The Pontryagin dual of \mathbb{Z} , its group of characters, would be a unit circle $G = S^1$. For $S = \mathbb{Z}_+$, $C^a st_{red}(S) = \mathcal{T}$ is the Toeplitz algebra.

Note, that for the same group Γ we could choose other semigroups, e.g. $S = \{0, 2, 3, 4, ...\}$ or $S = \{0, 3, 6, 7, 8, ...\}$. Indeed, all such semigroups generate \mathbb{Z} , since they contain elements with difference between them equal to unit. But the corresponding C^* -algebras are not canonically isomorphic.

This shows that the result of deformation depends on the choice of S, not only on G. That is why we call S a deformation parameter.

5. Inverse semigroup

Isometric operators $T_a = P_S L_{\chi^a} P_S$ for $a \in S$ and T_a^* are generators in $\mathcal{C}_{red}^*(S)$. A finite product $T_a, T_b^*, a, b \in S$ is called *a monomial*. Linear combinations of monomials are dense in $\mathcal{C}_{red}^*(S)$. Monomials form an inverse semigroup denoted by Mon(S). This duality extends the Pontryagin duality theorem. When $S = \Gamma$ the dual quantum semigroup is a compact group of characters G.

10. The dual algebra

Denote $\mathfrak{A} = C^*_{red}(S)$, and \mathfrak{A}^* — a dual space of \mathfrak{A} . The comultiplication Δ generates the Banach unital algebra structure on \mathfrak{A}^* , with multiplication given by

 $(\phi * \psi)(A) = (\phi \otimes \psi) \Delta(A)$

$$\phi, \psi \in \mathfrak{A}^*, A \in \mathfrak{A}$$
.
Let $\widetilde{C(S)}$ be a closed linear span of T_a and T_a^* for $a \in S$,
and $\widetilde{C(S)}^{\perp}$ – a space of functionals with zero value on $\widetilde{C(S)}$.

Theorem 4.

There exists a short exact split sequence

$$0 \to \widetilde{C(S)}^{\perp} \to \mathfrak{A}^* \to M(G) \to 0,$$

where M(G) is an algebra of regular Borel measures on group G with convolution multiplication.

6. A compact quantum semigroup

Define comultiplication $\Delta: Mon(S) \rightarrow Mon(S) \otimes Mon(S)$ by $\Delta(V) = V \otimes V$. **Theorem 1.**

The map Δ extends to a unital *-homomorphism $\Delta \colon \mathcal{C}^*_{red}(S) \to \mathcal{C}^*_{red}(S) \otimes \mathcal{C}^*_{red}(S)$. The pair $(\mathcal{C}^*_{red}(S), \Delta)$ is a compact quantum semigroup.

 $(C^*_{red}(S), \Delta)$ is a compact quantum **group** if and only if $S = \Gamma$. In this case $(C^*_{red}(\Gamma), \Delta) \cong G$.

 $S \to QS = (C^*_{red}(S), \Delta),$ $\Gamma \to G.$

11. Haar state

A Haar state in \mathfrak{A}^* is a state $h \in \mathfrak{A}^*$, such that for any functional $\phi \in \mathfrak{A}^*$ we have

 $h * \phi = \phi * h = \lambda_{\phi} h, \ \lambda_{\phi} \in \mathbb{C}.$

The Haar state is unique if it exists.

Theorem 5.

There exists a Haar state h in \mathfrak{A}^* .