SFB-workshop: Groups, dynamical systems and C^* -algebras, Münster, August 20-24, 2013

Twisted Topological Graph Algebras

Hui Li

University of Wollongong, Australia Supervised by Professor David Pask and Professor Aidan Sims h1338@uowmail.edu.au

MODEL / ANALYSE / FORMULATE / ILLUMINATE

Topological Graphs(Katsura)

A quadruple $E = (E^0, E^1, r, s)$ is called a *topological graph* if E^0, E^1 are locally compact Hausdorff spaces, $r : E^1 \to E^0$ is a continuous map, and $s : E^1 \to E^0$ is a local homeomorphism.

We think of E^0 as a space of vertices, and we think of each $e \in E^1$ as an arrow pointing from s(e) to r(e).

An Annoying Technicality

We can prove that it is fine to work only on the precompact open cover of the edge set consisting of *s*-sections.

Twisted Toeplitz Representations(Li)

If E^0 , E^1 are both countable and discrete, then E is a directed graph.

Let *E* be a topological graph. An *s*-section is a subset $U \subset E^1$ such that $s|_U$ is a homeomorphism. An *r*-section is a subset $U \subset E^1$ such that $r|_U$ is a homeomorphism. A bisection is a subset $U \subset E^1$ such that $r|_U$, $s|_U$ are both homeomorphisms.

Let *E* be a topological graph. We define 1. $E_{sce}^{0} := E^{0} \setminus \overline{r(E^{1})}$. 2. $E_{fin}^{0} := \{v \in E^{0} : \text{ there exists a neighbourhood } N \text{ of } v \text{ such that } r^{-1}(\overline{N}) \text{ is compact} \}$. 3. $E_{rg}^{0} := E_{fin}^{0} \setminus \overline{E_{sce}^{0}}$.

1-cocycle

Let T be a locally compact Hausdorff space, let $N = \{N_i\}_{i \in I}$ be an open cover of T. Then for $i, j \in I$, we denote $N_{ij} := N_i \cap N_j$.

A collection of functions $\mathbf{S} = \{s_{ij} \in C(\overline{N_{ij}}, \mathbb{T})\}_{i,j \in I}$ is called a 1-cocycle relative to N if for i, $j, k \in I, s_{ij}s_{jk} = s_{ik}$ on $\overline{N_{ijk}}$.

Let *T* be a locally compact Hausdorff space and *N* be an open subset of *T*. We think of $C_0(N) := \{f \in C_0(T) : f(N^c) = 0\}$ as a closed two-sided ideal of $C_0(T)$. Fix $f \in C_0(N)$, and $g \in BC(N)$. We define $f \times g : T \to \mathbb{C}$ by

$$f imes g(t) := egin{cases} f(t)g(t) & ext{if } t \in N \ 0 & ext{otherwise}, \end{cases}$$

and in fact $f \times g \in C_0(N)$.

Let *E* be a topological graph, let $N = \{N_i\}_{i \in I}$ be a precompact open cover of E^1 consisting of *s*-sections, and let $S = \{s_{ij}\}_{i,j \in I}$ be a 1-cocycle relative to N. A *twisted Toeplitz representation* of *E* in a C^* -algebra *B* is a collection of linear maps $\{\psi_i : C_0(N_i) \rightarrow B\}_{i \in I}$ and a homomorphism $\pi : C_0(E^0) \rightarrow B$, such that for all $i, j \in I, x \in C_0(N_i), y \in C_0(N_j)$, and $f \in C_0(E^0)$, we have

1. $\psi_i((f \circ r)x) = \pi(f)\psi_i(x);$ 2. $\psi_i(x)^*\psi_j(y) = \pi(\langle x, y \rangle_{C_0(E^0)} \times (s_{ij}|_{N_{ij}} \circ s|_{N_{ij}}^{-1})).$

Covariant Twisted Toeplitz Representations(Li)

Let E be a topological graph, let $N = \{N_i\}_{i \in I}$ be a precompact open cover of E^1 consisting

Bracket Functions

Lemma

Let *T* be a locally compact Hausdorff space, let $N = \{N_i\}_{i \in I}$ be an open cover of *T*, and let $S = \{s_{ij}\}_{i,j \in I}$ be a 1-cocycle relative to N. Fix $x, x' \in \prod_{i \in I} C(\overline{N_i})$ with $x_i = s_{ij}x_j$, $x'_i = s_{ij}x'_j$ on $\overline{N_{ij}}$, for all $i, j \in I$. Then there is a unique function $[x|x'] \in C(T)$, such that $[x|x'](t) = \overline{x_i(t)}x'_i(t)$, if $t \in N_i$.

Twisted Topological Graph Correspondences

Let $E = (E^0, E^1, r, s)$ be a topological graph, let $N = \{N_i\}_{i \in I}$ be an open cover of E^1 , and let $S = \{s_{ij}\}_{i,j \in I}$ be a 1-cocycle relative to N. We define

 $C_c(E, \mathbf{N}, \mathbf{S}) := \Big\{ x \in \prod_{i \in I} C(\overline{N_i}) : x_i = s_{ij} x_j \text{ on } \overline{N_{ij}}, \ [x|x] \in C_c(E^1) \Big\}.$

of *s*-sections, let $\mathbf{S} = \{s_{ij}\}_{i,j \in I}$ be a 1-cocycle relative to N, and let $\{\psi_i, \pi\}_{i \in I}$ be a twisted Toeplitz representation of *E*. We call $\{\psi_i, \pi\}_{i \in I}$ covariant if there exists a collection $\mathcal{G} \subset C_c(E_{rg}^0)$ of nonnegative functions generating $C_0(E_{rg}^0)$, and for each $f \in \mathcal{G}$ there exist a finite subset $F \subset I$ and a collection of functions $\{h_i\}_{i \in F} \subset C(E^1, [0, 1])$ such that

1. $\{N_i\}_{i \in F}$ covers $r^{-1}(\operatorname{supp}(f))$; 2. $\operatorname{supp}(h_i) \subset N_i$, for all $i \in F$; 3. $\sum_{i \in F} h_i = 1$ on $r^{-1}(\operatorname{supp}(f))$; and 4. $\pi(f) = \sum_{i \in F} \psi_i (\sqrt{h_i(f \circ r)}) \psi_i (\sqrt{h_i(f \circ r)})^*$.

This definition is formulated so as to make it easy to check that a given collection $\{\psi_i, \pi\}_{i \in I}$ is covariant. However, when *using* covariance of a collection $\{\psi_i, \pi\}_{i \in I}$ it is *true* that Condition 4 of the definition holds for every $f \in C_c(E_{rg}^0)$, every finite subset $F \subset I$, and every collection of functions $\{h_i\}_{i \in F} \subset C(E^1, [0, 1])$ satisfying the first three conditions of the definition

Result

Theorem(Li)

Let *E* be a topological graph, let $N = \{N_i\}_{i \in I}$ be a precompact open cover of E^1 consisting of *s*-sections, and let $S = \{s_{ij}\}_{i,j \in I}$ be a 1-cocycle relative to N. Then the Toeplitz algebra $\mathcal{T}_{X(E,N,S)}$ is isomorphic with the *C**-algebra generated by a universal twisted Toeplitz repre-

For $x \in C_c(E, \mathbf{N}, \mathbf{S})$ and $f \in C_0(E^0)$, we define right and left $C_0(E^0)$ -actions on $C_c(E, \mathbf{N}, \mathbf{S})$ by $(x \cdot f)_i = x_i(f \circ s|_{\overline{N_i}})$, and $(f \cdot x)_i = (f \circ r|_{\overline{N_i}})x_i$, for all $i \in I$.

Proposition(Li)

Let *E* be a topological graph, let $N = \{N_i\}_{i \in I}$ be an open cover of E^1 , and let $S = \{s_{ij}\}_{i,j \in I}$ be a 1-cocycle relative to N. Fix $x, y \in C_c(E, N, S)$. Then there exists a unique function $\langle x, y \rangle_{C_0(E^0)} \in C_c(E^0)$, such that $\langle x, y \rangle_{C_0(E^0)}(v) = \sum_{s(e)=v} [x|y](e)$, for all $v \in E^0$. Hence $\langle \cdot, \cdot \rangle_{C_0(E^0)}$ is a right $C_0(E^0)$ -valued inner product on $C_c(E, N, S)$. Furthermore, the completion X(E, N, S) of $C_c(E, N, S)$ under the $\| \cdot \|_{C_0(E^0)}$ norm is a C^* -correspondence over $C_0(E^0)$.

Let *E* be a topological graph. We define $N := \{E^1\}$, and we define $S := \{1\}$. Then X(E, N, S) coincides with the normal graph correspondence X(E) defined by Katsura.

sentation of *E*, and the Cuntz-Pimsner algebra $\mathcal{O}_{X(E,N,S)}$ is isomorphic with the *C*^{*}-algebra generated by a universal covariant twisted Toeplitz representation of *E*.

References

T. Katsura, *A class of C*-algebras generalizing both graph algebras and homeomorphism C*-algebras. I. Fundamental results*, Trans. Amer. Math. Soc. **356** (2004), 4287–4322 (electronic). T. Katsura, *On C*-algebras associated with C*-correspondences*, J. Funct. Anal. **217** (2004), 366–401.

I. Raeburn, *On the Picard group of a continuous trace C***-algebra*, Trans. Amer. Math. Soc. **263** (1981), 183–205.

I. Raeburn and D. P. Williams, Morita equivalence and continuous-trace C^* -algebras, American Mathematical Society, Providence, RI, 1998, xiv+327.