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Groupoids, Cocycles, and Homotopy

The class of groupoids includes many familiar mathematical objects —
groups, (topological) spaces, equivalence relations, and group actions, for
example. Roughly speaking, a groupoid G is a set with a partially defined
multiplication. We write

G(2) ⊆ G × G = {(x, y) : the product xy ∈ G is defined.}
We can think of elements of G as arrows:

r(x) s(x)
x

Then, the product xy is defined iff s(x) = r(y):

r(x) s(y)
s(x) = r(y)

x y

xy

Reversing an arrow gives you its inverse:

r(x) = s(x−1) s(x) = r(x−1)

x

x−1

Let
G(0) = {u ∈ G : u = s(u) = r(u)}.

These are the units of G. Note that
∀ x ∈ G, s(x), r(x) ∈ G(0)

.
Groupoid Cocycles

Definition: Let G be a groupoid. A 2-cocycle on G is a function ω :
G(2)→ T such that

ω(x, yz)ω(y, z) = ω(xy, z)ω(x, y)
whenever this makes sense.

A homotopy of 2-cocycles on G is a 2-cocycle ω on the groupoid G × [0, 1]
such that for each composable pair (x, y) ∈ G(2), the function

t 7→ ω ((x, t), (y, t))
is continuous.

Groupoid C∗-Algebras
Given a groupoid G with a locally compact Hausdorff topology, a Haar sys-
tem {λu}

u∈G(0) and a continuous 2-cocycle ω, we can make Cc(G) into a
convolution algebra:

f ∗ω g(x) =
∫
f (y)g(y−1x)ω(y, y−1x) dλs(x)(y).

By taking different completions of Cc(G) we get the full and reduced twisted
groupoid C∗-algebras

C∗(G, ω), C∗r (G, ω).

Motivation

• Noncommutative Tori One way to think of the irrational rotation algebra Aθ is as a twisted group C∗-algebra:
Aθ = C∗(Z2, cθ) where cθ ((m,n), (j, k)) = e2πijn.

Note that the map θ 7→ cθ ((m,n), (j, k)) is continuous, so {cθ}θ∈[0,1] gives us a homotopy of 2-cocycles on Z2.

In 1980, Pimsner and Voiculescu proved in [3] that
∀ θ, K0(Aθ) = Z⊕ Z = K1(Aθ).

• Symplectic Vector Bundles Let V →M be a smooth even-dimensional vector bundle. A symplectic form ω on V is a skew-symmetric, nondegenerate
map ω : V × V → R; if V admits a symplectic form then we say V is a symplectic vector bundle.

Example: For any smooth manifold M , let X = T ∗M . Then TX → X is a symplectic vector bundle.

Note that we can think of V := V →M as a groupoid;

(v, w) ∈ V (2)⇔ π(v) = π(w); vw = v + w.

Moreover, the symplectic form ω gives us a homotopy σ of 2-cocycles on V :

σ ((v, t), (w, t)) = e2πitω(v,w).

Here, σ0 is the trivial cocycle.

Invoking Bott periodicity, and the dual Dirac element in KK(C, C∗(V )), we can construct a KK-equivalence between C∗(V, ω) = C∗(V, σ1) and
C∗(V ) = C∗(V, σ0). In particular, this implies that

K∗(C∗(V, σ1)) ∼= K∗(C∗(V, σ0)).

• Groups Satisfying the Baum-Connes Conjecture In a 2010 paper [1], Echterhoff, Lück, Phillips, and Walters proved a far-reaching generalization of
Pimsner and Voiculescu’s result:

Theorem: [ELPW, 2010] Let G be a LCH group that satisfies the Baum-Connes conjecture with coefficients K and
C([0, 1],K). Let ω be a homotopy of 2-cocycles on G. Then

K∗(C∗r (G,ω0)) ∼= K∗(C∗r (G,ω1)).

Our main Theorem is an extension of this result to the case of transformation groups; the outline of the proof and some of the main technical lemmas are the
same as in ELPW’s proof.

Homotopies & C([0, 1])-Algebras

Definition: A C∗-algebra A is a C0(X)-algebra if A admits a ∗-
homomorphism

Ψ : C0(X)→ ZM(A)
such that span{Ψ(f ) · a} = A.

Writing
Ix = span{Ψ(f ) · a : f ∈ C0(X\x), a ∈ A},

we see that Ix is an ideal in A, so we can define the fiber algebra Ax of A
at x by

Ax := A/Ix.

Proposition: [G.] Let G be a locally compact Hausdorff groupoid and let
ω be a homotopy of continuous 2-cocycles on G. Then C∗(G × [0, 1], ω) is a
C([0, 1])-algebra, with fiber algebra C∗(G, ωt).

Proposition: [G.] Let GnX be a LCH transformation group and let ω be
a homotopy of continuous 2-cocycles on GnX . Then C∗(GnX× [0, 1], ω)
is a C([0, 1])-algebra, with fiber algebra C∗(GnX,ωt).
If G is compact then

C∗(GnX × [0, 1], ω) ∼= C∗(GnX,ωt)⊗ C([0, 1]).

The Main Theorem

Theorem: [G, 2013] Let ω be a homotopy of continuous 2-
cocycles on a LCH transformation group GnX such that X is
compact and G satisfies the Baum-Connes conjecture with coef-
ficients. Then

K∗(C∗r (GnX,ω0)) ∼= K∗(C∗r (GnX,ω1)).
Moreover, the isomorphism is induced by the homotopy.

Proof sketch: To prove the Theorem, we show that the diagram

KKH
∗ (C, C(X × [0, 1],K)) KKH

∗ (C, C(X,K))
#[evt]

KK∗(C, C(X × [0, 1],K) oβ,r H) KK∗(C, C(X,K) oβt,r H)
#[evHt ]

K∗(C(X × [0, 1],K) oβ,r H) K∗(C(X,K) oβt,r H)

K∗(C∗r (H nX × [0, 1], ω)) K∗(C∗r (H nX,ωt))
(qt)∗
∼=

KS

(Φ−1)∗

KS

(Φ−1
t )∗

commutes for any compact subgroup H of G and any t ∈ [0, 1]. This tells
us that the element

[evt] = [(C(X,K), evt, 0)] ∈ KKH(C(X × [0, 1],K), C(X,K))
generated by the ∗-homomorphism evt : C(X × [0, 1],K) → C(X,K) sat-
isfies the hypotheses of Proposition 1.6 in [1]. To finish the proof of the
Theorem, we then follow the same arguments used in [1] to prove Theorem
1.9.

New Directions

The techniques used in [1] and in the proof of our Main Theorem seem unlikely
to be applicable to a larger class of groupoids. A very different approach was
used in [2] by Kumjian, Pask, and Sims to prove the following:

Theorem: [KPS, 2012] If a 2-cocycle ω on a higher-rank graph
Λ is given by

ω(λ, µ) = e2πiσ(λ,µ)

for some R-valued 2-cocycle σ, then
K∗(C∗(Λ, ω)) ∼= K∗(C∗(Λ)).

We have recently extended this result:
Theorem: [G, 2013] Let ω0, ω1 be homotopic cocycles on a
higher-rank graph Λ. Then

K∗(C∗(Λ, ω0)) ∼= K∗(C∗(Λ, ω1)).

To connect these results with groupoids, recall that from the space of infinite
paths Λ∞ in a higher-rank graph Λ of rank k, we can construct a groupoid
GΛ:

GΛ = {(x, n, y) : x, y ∈ Λ∞, n = m− ` ∈ Zk, σm(x) = σ`(y)}.
A related class of groupoids, the Deaconu-Renault groupoids, are built out
of a LCH space X and a local homeomorphism φ : X → X . The associated
Deaconu-Renault groupoid Gφ is

Gφ = {(x, n, y) : x, y ∈ X,n = m− ` ∈ Z, φm(x) = φ`(y)}.

We hope that similar proof techniques to those used in the k-graph case will
allow us to prove the following conjecture for Deaconu-Renault groupoids:

Conjecture: If G is a Deaconu-Renault groupoid, and ω0, ω1
are homotopic cocycles on G, then

K∗(C∗(G, ω0)) ∼= K∗(C∗(G, ω1)).
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