

Groupoids, Cocycles, and Homotopy

The class of *groupoids* includes many familiar mathematical objects groups, (topological) spaces, equivalence relations, and group actions, for example. Roughly speaking, a groupoid \mathcal{G} is a set with a partially defined multiplication. We write

 $\mathcal{G}^{(2)} \subseteq \mathcal{G} \times \mathcal{G} = \{(x, y) : \text{ the product } xy \in \mathcal{G} \text{ is defined.} \}$

We can think of elements of \mathcal{G} as arrows:

r(x)

Then, the product xy is defined iff s(x) = r(y):

$$r(x) \bullet s(x) = r(y) \bullet s(y)$$

xy

Reversing an arrow gives you its inverse:

Let

 $\mathcal{G}^{(0)} = \{ u \in \mathcal{G} : u = s(u) = r(u) \}.$

These are the *units* of \mathcal{G} . Note that

 $\forall x \in \mathcal{G}, \ s(x), r(x) \in \mathcal{G}^{(0)}$

Groupoid Cocycles

DEFINITION: Let \mathcal{G} be a groupoid. A 2-cocycle on \mathcal{G} is a function ω : $\mathcal{G}^{(2)} \to \mathbb{T}$ such that

$$\omega(x,yz)\omega(y,z)=\omega(xy,z)\omega(x,y)$$

whenever this makes sense.

A homotopy of 2-cocycles on \mathcal{G} is a 2-cocycle ω on the groupoid $\mathcal{G} \times [0,1]$ such that for each composable pair $(x, y) \in \mathcal{G}^{(2)}$, the function

 $t \mapsto \omega\left((x,t),(y,t)\right)$

is continuous.

Groupoid C^* -Algebras

Given a groupoid \mathcal{G} with a locally compact Hausdorff topology, a Haar system $\{\lambda^u\}_{u\in\mathcal{G}^{(0)}}$ and a continuous 2-cocycle ω , we can make $C_c(\mathcal{G})$ into a convolution algebra:

$$f *_{\omega} g(x) = \int f(y)g(y^{-1}x)\omega(y, y^{-1}x) \, d\lambda^{s(x)}(y).$$

By taking different completions of $C_c(\mathcal{G})$ we get the *full* and *reduced twisted* groupoid C^* -algebras

 $C^*(\mathcal{G},\omega), \quad C^*_r(\mathcal{G},\omega).$

K-theory and 2-Cocycles on Transformation Groups

Elizabeth Gillaspy Dartmouth College

Motivation

• Noncommutative Tori One way to think of the irrational rotation algebra A_{θ} is as a twisted group C*-algebra: $A_{\theta} = C^*(\mathbb{Z}^2, c_{\theta})$ where $c_{\theta}((m, n), (j, k)) = e^{2\pi i j n}$. Note that the map $\theta \mapsto c_{\theta}((m, n), (j, k))$ is continuous, so $\{c_{\theta}\}_{\theta \in [0, 1]}$ gives us a homotopy of 2-cocycles on \mathbb{Z}^2 . In 1980, Pimsner and Voiculescu proved in [3] that

 $\forall \theta, K_0(A_\theta) = \mathbb{Z} \oplus \mathbb{Z} = K_1(A_\theta).$

• Symplectic Vector Bundles Let $V \to M$ be a smooth even-dimensional vector bundle. A symplectic form ω on V is a skew-symmetric, nondegenerate map $\omega: V \times V \to \mathbb{R}$; if V admits a symplectic form then we say V is a symplectic vector bundle.

EXAMPLE: For any smooth manifold M, let $X = T^*M$. Then $TX \to X$ is a symplectic vector bundle. Note that we can think of $V := V \to M$ as a groupoid;

 $(v,w) \in V^{(2)} \Leftrightarrow \pi(v) = \pi(w); \quad vw = v + w.$

Moreover, the symplectic form ω gives us a homotopy σ of 2-cocycles on V:

 $\sigma\left((v,t),(w,t)\right) = e^{2\pi i t \omega(v,w)}.$

Here, σ_0 is the trivial cocycle.

Invoking Bott periodicity, and the dual Dirac element in $KK(\mathbb{C}, C^*(V))$, we can construct a KK-equivalence between $C^*(V, \omega) = C^*(V, \sigma_1)$ and $C^*(V) = C^*(V, \sigma_0)$. In particular, this implies that

 $K_*(C^*(V,\sigma_1)) \cong K_*(C^*(V,\sigma_0)).$

• Groups Satisfying the Baum-Connes Conjecture In a 2010 paper [1], Echterhoff, Lück, Phillips, and Walters proved a far-reaching generalization of Pimsner and Voiculescu's result:

THEOREM: [ELPW, 2010] Let G be a LCH group that satisfies the Baum-Connes conjecture with coefficients \mathcal{K} and $C([0,1],\mathcal{K})$. Let ω be a homotopy of 2-cocycles on \mathcal{G} . Then

 $K_*(C_r^*(G,\omega_0)) \cong K_*(C_r^*(G,\omega_1)).$

Our main Theorem is an extension of this result to the case of transformation groups; the outline of the proof and some of the main technical lemmas are the same as in ELPW's proof.

Homotopies & C([0,1])-Algebras

DEFINITION: A C^* -algebra A is a $C_0(X)$ -algebra if A admits a *homomorphism

 $\Psi: C_0(X) \to ZM(A)$

such that $\overline{\operatorname{span}}\{\Psi(f) \cdot a\} = A$.

Writing

 $I_x = \overline{\operatorname{span}}\{\Psi(f) \cdot a : f \in C_0(X \setminus x), a \in A\},$

we see that I_x is an ideal in A, so we can define the fiber algebra A_x of A at x by

 $A_x := A/I_x.$

PROPOSITION: [G.] Let \mathcal{G} be a locally compact Hausdorff groupoid and let ω be a homotopy of continuous 2-cocycles on \mathcal{G} . Then $C^*(\mathcal{G} \times [0,1], \omega)$ is a C([0, 1])-algebra, with fiber algebra $C^*(\mathcal{G}, \omega_t)$.

PROPOSITION: [G.] Let $G \ltimes X$ be a LCH transformation group and let ω be a homotopy of *continuous* 2-cocycles on $G \ltimes X$. Then $C^*(G \ltimes X \times [0, 1], \omega)$ is a C([0, 1])-algebra, with fiber algebra $C^*(G \ltimes X, \omega_t)$. If G is compact then

 $C^*(G \ltimes X \times [0,1], \omega) \cong C^*(G \ltimes X, \omega_t) \otimes C([0,1]).$

The Main Theorem

THEOREM: [G, 2013] Let ω be a homotopy of continuous 2cocycles on a LCH transformation group $G \ltimes X$ such that X is compact and G satisfies the Baum-Connes conjecture with coefficients. Then

 $K_*(C_r^*(G \ltimes X, \omega_0)) \cong K_*(C_r^*(G \ltimes X, \omega_1)).$

Moreover, the isomorphism is induced by the homotopy.

Proof sketch: To prove the Theorem, we show that the diagram

$KK^H_*(\mathbb{C}, C(X \times [0, 1], \mathcal{K}))$ —	$\#[ev_t]$	$\longrightarrow KK^H_*(\mathbb{C}, C(X, \mathcal{K}))$
KS	$\#[\rho_{\alpha},H]$	KS
$KK_*(\mathbb{C}, C(X \times [0, 1], \mathcal{K}) \rtimes_{\beta, r} H)$	$\#[ev_t]$	$KK_*(\mathbb{C}, C(X, \mathcal{K}) \rtimes_{\beta_t, r} H)$
$K_*(C(X \times [0,1], \mathcal{K}) \rtimes_{\beta,r} H) \longrightarrow$		$\longrightarrow K_*(C(X,\mathcal{K})\rtimes_{\beta_t,r} H)$
$(\Phi^{-1})_*$	(α)	$(\Phi_t^{-1})_*$
$K_*(C_r^*(H \ltimes X \times [0,1],\overline{\omega})) \longrightarrow$	$(q_t)_*$	$\longrightarrow K_*(C_r^*(H \ltimes X, \overline{\omega_t}))$

commutes for any compact subgroup H of G and any $t \in [0, 1]$. This tells us that the element

 $[ev_t] = [(C(X,\mathcal{K}), ev_t, 0)] \in KK^H(C(X \times [0,1],\mathcal{K}), C(X,\mathcal{K}))$

generated by the *-homomorphism $ev_t : C(X \times [0,1], \mathcal{K}) \to C(X, \mathcal{K})$ satisfies the hypotheses of Proposition 1.6 in [1]. To finish the proof of the Theorem, we then follow the same arguments used in [1] to prove Theorem

The techniques used in [1] and in the proof of our Main Theorem seem unlikely to be applicable to a larger class of groupoids. A very different approach was used in [2] by Kumjian, Pask, and Sims to prove the following: **THEOREM:** [KPS, 2012] If a 2-cocycle ω on a higher-rank graph Λ is given by $(\lambda \dots) = 2\pi i \sigma(\lambda, \mu)$

for som

We have recently extended this result: **THEOREM:** [G, 2013] Let ω_0, ω_1 be homotopic cocycles on a higher-rank graph Λ . Then

 \mathcal{G}_{Λ} :

A related class of groupoids, the *Deaconu-Renault groupoids*, are built out of a LCH space X and a local homeomorphism $\phi: X \to X$. The associated Deaconu-Renault groupoid \mathcal{G}_{ϕ} is

We hope that similar proof techniques to those used in the k-graph case will allow us to prove the following conjecture for Deaconu-Renault groupoids: **CONJECTURE:** If \mathcal{G} is a Deaconu-Renault groupoid, and ω_0, ω_1 are homotopic cocycles on \mathcal{G} , then

[1]	Sieg Wal <i>alge</i> ang
[2]	Alex twis
[3]	M. Exa Ope
[4]	Dan Sur

New Directions

$$\omega(\lambda, \mu) = e^{-\alpha \tau(\sigma, \mu)}$$

e \mathbb{R} -valued 2-cocycle σ , then
 $K_*(C^*(\Lambda, \omega)) \cong K_*(C^*(\Lambda)).$

 $K_*(C^*(\Lambda,\omega_0)) \cong K_*(C^*(\Lambda,\omega_1)).$

To connect these results with groupoids, recall that from the space of infinite paths Λ^{∞} in a higher-rank graph Λ of rank k, we can construct a groupoid

 $\mathcal{G}_{\Lambda} = \{ (x, n, y) : x, y \in \Lambda^{\infty}, n = m - \ell \in \mathbb{Z}^k, \sigma^m(x) = \sigma^\ell(y) \}.$

 $\mathcal{G}_{\phi} = \{ (x, n, y) : x, y \in X, n = m - \ell \in \mathbb{Z}, \phi^{m}(x) = \phi^{\ell}(y) \}.$

 $K_*(C^*(\mathcal{G},\omega_0)) \cong K_*(C^*(\mathcal{G},\omega_1)).$

References

gfried Echterhoff, Wolfgang Lück, N. Christopher Phillips, and Samuel lters, The structure of crossed products of irrational rotation ebras by finite subgroups of $SL_2(\mathbb{Z})$, Journal fur die reine und gewandte Mathematik **639** (2010), 173–221.

xander Kumjian, David Pask, and Aidan Sims, On the K-theory of sted higher-rank-graph C^* -algebras, arXiv:1211.1445v1 (2012).

Pimsner and D. Voiculescu, Exact sequences for K-groups and t-groups of certain crossed-product C^* -algebras, Journal of erator Theory **4** (1980), 93–118.

na P. Williams, Crossed products of C^* -algebras, Mathematical rveys & Monographs, vol. 134, AMS, 2007.