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0.1 Some Notation

AT = positive elements, P(A) = positive functionals,
Asq = self adjoint elements, S(A) = states,
U(A) = unitary elements, Pure(A) = pure states,
(4)

Inv(A) = invertible elements, Max(A) = maximal ideals
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1 Spectral Theory and Basic Tools

There are two theorems, which are both refered to as Gelfand-Naimark Theorem one holds for

commutative C*-algebras only: R
A= Co(A),

while the other:
A=n(A) C L(Hy),

holds for general C*-algebras. That is any C*-algebra A can be viewed as a subalgebra of L(H)
for some suitable Hilbert space H. Furthermore if A is commutative we can take it to be Cp(X)
for some locally compact space X.

Just like the above two theorems carry the same name, also the following two quantities

A commutative: A := {yx:A — C|0# x algebra homomorphism}
Ageneral: A = {[r]|m:A— L(H) irrep}
are given the same name. If the C*-algebra is commutative both expressions coincide.

1.1 Banach Algebras

In this section we shall introduce the basic notion of Banach algebra, which shall lead us to the
von-Neumann series and finally the result, that the set of invertible elements Inv(A) are open in
the Banach algebra A.

Definition 1.1.1 Complex Algebra A complex algebra is a C-vector space A with a multiplica-
tion

m:AxA— A

that is a bilinear and associative mapping.

Definition 1.1.2 Banach Algebras (BA) A normed algebra is a normed space (A,||-||) that
1s a complex algebra such that

[labl| < [lal - [[b]]
A complete normed algebra is called a Banach algebra (BA).

Lemma 1.1.3 Continuity of the multiplication The relation ||ab|| < ||al|| - ||b|| lets the multi-
plication in a normed algebra be continuous.

Proof: Let a, — a,b, — bin (A,||-||), then

llanbn — abl| < [lanbp — anbl| + |lanb — abl| < [lan|| - ||bn — bl + [lan — al] -[[b]] = 0.
—— N——

—0 —0

Lemma 1.1.4 Unitalization The unitalization of a normed algebra is the normed unital
(L1 :=(0,1)) algebra:

Al = {(a,\)|a € A\ € C}, (a, A)(b, p) :== (ab+ b+ pa, ), ||(a, N)|| a1 == ||alla + |\l
Proof: For example
[(a, A) (b, )| = llab + Ab + pal| + |Ap| < [[all[[o]| + MBI + [pllal] + [Aul = [[(a, NI - [|(b, w)]]

0



OPERATOR ALGEBRAS 3

Remark 1.1.5 There are other possible choices for the norm on A'. For instance,
l|(@, A\)||oo := max{]|al||, |\|} would be a BA-norm on A which is equivalent to || - || 41 defined
above.

Definition 1.1.6 Ideals A subalgebra I C A is called a right (left) ideal iff
ia€l (aiel) Viel,acA
I C A is called an ideal iff it is a right and left ideal.

Example 1.1.7
1.) Ac Al is an ideal:

(a,0)(b,\) = (ab+ Xa,0) € A, (b,N)(a,0) = (ba + Aa,0) € A.

2.) The compact operators K(B) C L(B) on a Banach space B form an ideal.

3.) Let X be locally compact and Hausdorff, then the following are ideals:

I, = {f S C()(X) ‘ f(m) = 0} C Co(X)

Lemma 1.1.8 Quotient Space Let I C A be an ideal.

e Then the following is an algebra:
A/l .={a+1I|lac A} with (a+I)(b+1):=ab+ 1.
e If A was Banach, then the following norm lets A/I again be Banach :
lla + I|| := inf{||a + b||| b € I}.
Proof: The multiplication is well defined, since for @’ = a + ¢, b’ = b+ d with ¢,d € I:

(@ +D® +1):=adb+I=(a+c)b+d)+I=ab+ (ad+cb+cd)+] =ab+1=:(a+1)(b+1)
| ——

el

If A was Banach, then we know that A/I is a Banach space also. So we only need to show that
I(a+1)(b+ D] < [[(a+ DI|I[(6+ D).
For all ¢,d € I we have
[|(a+I)(b+I)|| = ||lab+ (ad + cb+ cd) + I|| < ||ab+ (ad + ¢b + cd)|| = ||(a + ¢)(b+ d)|]

and thus
la+ Do+ DI < int ll@+ e+ = I+ DG+ D]

Definition 1.1.9 Invertible Elements Let A be a unital algebra, we define

’Inv(A) :={a € A|a invertible} ‘

Remark 1.1.10

e Inv(A) is a group, since (ab)~! =b"ta"t.
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o [fI C A is a proper Ideal, then ’ INnv(A) = @‘ since

1

aclInlnv(d), = 1ag=aa " €l, = A=14ACI.

Theorem 1.1.11 von — Neumann Series Let A be a unital BA and ||a|| < 1, then we have

(I-a)elnv(d), ([@A-a)'=> a"
n=0

Proof: We know that in a Banach space
[e.e] o0
g ||zn|| converges = an converges.

Thus, because of ||a™|| < ||a||™, it is clear that the von-Neumann series converges. And we have

(Zan)(]l —a)=(1 —a)Za" = Za" — Za" =a’=1.
n=0 n=0 n=0 n=1

Corollary 1.1.12 Inv(A) is open Let a € Inv(A) and

be A with |la—b|<|la”||7' = becInv(A).
In particular Inv(A) C A is open.

Proof: |la'(a—b)|| < |la7!|-|la —b]] <1, thus with Von-Neumann: (1 —a~*(a —b)) € Inv(4)
and since b = a(1 —a~'(a — b)) we have b! = (1 —a"'(a — b))~ la™L. 0

1.2 Results from Complex Analysis

In this section, we shall give some central results from complex analysis.

Definition 1.2.1 Holomorphic Function Let U C C be open. A function f: U — C is called
complex differentiable in \g € U, iff

F o) = lim L) =)

A= Ao A— Ao

exists. f'(N\o) is then called the complex derivative of f in X\g. f:U — C is called holomorphic, if
it s differentiable in all A € U.

Remark 1.2.2 Al the usual rules of differentiation (product rules, chain rule, etc.) still apply
in the complex.

Theorem 1.2.3 Let U C C be open. A function f: U — C, then the following are equivalent
(1) f is holomorphic on U.

(2) To every \g € U, there is ar > 0 and a,, € C, n € N such that
f()‘) = Zan()\ - )\O)n Ve Ur()\()).
n=0

Furthermore it holds, that the series in (2) converges on every Ur(X\g) C U to f(A).
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Remark 1.2.4

o The last statement is very important, since it tells us, that we can maximally extend the
radius of convergence in U.

o As in real analysis, one can show that the derivative of a function given as a series
expansion

fiU(0) —C, fA) = an(A— )"
n=0

is obtained just by taking the derivative of each summand, i.e.
') = i nan(A — Xo)" !
n=1
and by induction, we get
FR () = i nn—1)-(n—k+1a,(A— )" % VkeN.
n=k

In particular, f is co-times complex differentiable, with

f(k)()\o)

f(k)()\o) = klap, soap= o

Thus we have that the above series is the Taylor series of f.

Theorem 1.2.5 Entire Function Let f : C — C be holomorphic (such a function is called

. . . (n)
entire), Ao € C arbitrary. Then with a,, = fT(!)‘O), we have

FO) =) an(A=X)" VAeC.
n=0

If we choose A\g = 0, then
f(A) = Zan)\”, an = %.
n=0

Example 1.2.6 exp,cos,sin: C — C are entire functions.

Definition 1.2.7 Complex Domain A complex domain (or simply domain) is a connected open
subset of C.

Definition 1.2.8 Let U C C be a domain, f : U — C holomorphic and
Ny:={AeU|f(\) =0}
It then holds that if Ny has an accumulation point in U, then Ny = U, i.e.

f=0onU.

Proof: Let A be the set of all accumulation points of Ny. Then A is closed in U. That is since
f in continuous and thus f()g) for every accumulation point Ag of Ny and thus also for every
point in A.

We now show that A is also open. Since then U = AUU \ A with A,U \ A open, so A= & or

A = U since U is connected.

Let Ao € A and r > 0 with U, (\g) C U and let f(X) =Y 77 an(X — Xg)" be the series expansion
of f. We claim that a, =0 Vn € N (it then follows that U,(z9) C A so A open.)
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We assume a,, # 0 for some n € N. Let then ng € N be the minimal a,, such that a, # 0. It
follows that ng > 0, since ag = f(Ag) = 0. We define

. if A=\
g:U—C, g) =4 ! 0
(A= Xo)™0, if X # A.

Then ¢ is holomorphic, since ¢ is holomorphic on U \ {A\¢} with the product rule and ¢
holomorphic in Ag, since VA € U,.(\):

g = (A =20)7" D an(A = Ag)" EZ%MOA Ao)"

n=ng

That is ¢ has a series expansion in U,(\g). And thus g(A\o) = an, # 0. Now since g is continuous,
there is a € > 0 such that g(\g) # 0 on U-(\g). Since g € A there is a sequence (\,), in U with
f(An) =0, A\, = Xo. For a large enough n, it then follows, that A\, € U-(\g), so

07 g(An) = (Ao = An) ™ f(An) =
=0

which is a contradiction. 0

Corollary 1.2.9 Let U C C be a domain and f,g: U — C be holomorphic. Let \,, A\g € U with
An = Ao # A\, 9(An) = f(An) Yn € N. It then follows that f =g on U.

Proof: Apply the last theorem to h:= f — g. 0

Theorem 1.2.10 Mean Value Property Let f: U — C be holomorphic and A\g € U, r > 0
with By(Ao) C U, then

2w
fho +retye ™t

n!
2r™

f(n)()\o) —

Proof: Choose a 0 < r < R with Ur(\g) C U, since f is holomorphic, we have
= )
=Y ah =), ar =102 vae Ur(ho).

Since r < R, the series converges uniformly on B, (Ag). And thus for all n € Ny

1 27 ) 2w © " 1 0 2r
2— f(ho +retye ™ar = Z agr e’kt —int gy WO conv: o Z akrk/ eik=n)t gy
w T k=0 0
(n
= apr” f (o )r
n!
That is since fa% e =t dt = (27) 6. O

Theorem 1.2.11 Liouville Let f: C — C be entire and bounded, then f is constant.

Proof: We have

=Y @ e, =100 waec

If we we take an arbitrary » > 0, then by the mean value property, we have

1 2

Ap =

f(Xo + ret)e "t

2mrn
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and thus

lan] < 2mrn

27 ) c
/ |f( Ao +re™)|dt < —
0 ——— rr

<c
if ¢ >0 with [f(M\)| < ¢ VA € C. Since r > 0 was arbitrary, it follows that

80 ap = 0 Vn > 0 and thus f(A) =ag = f(Xo) VA € C. u

Theorem 1.2.12 Let U C C be a domain and f : U — C be holomorphic. If | f| has a local
mazximum on U, then f is constant.

Proof: Let w.lo.g. Ao € U be a local maximum of f, then there is a » > 0 with B,.(\g) C U
and |f(A)| < |f(Xo)| VA € Br()\o). Now multiplying f with p = €™ for some ¢ € [0, 27), we can
w.l.o.g assume f(Ag) > 0. We know that

1 21
f(Xo) = o

We assume that 30 < s < r and ¢ € [0, 27r]. with f(\o + set) # f(\o). We have
Ref(Xo + se') < [f(ho +se™)| < [f(Mo)| = f(o)-

fo +setydt Y0<s<r.

And it follows that

1 2 ) 1 2
Ao) = — A Ndt < — Ao)dt = f(A
FO0) = g [ FOw et < 5 [ f0de = 70)
which is a contradiction. So we have that f(A) = f(\g) on B,(X\g) and thus f = f(A9)1 on
B, (Xo). And finally, on U, it holds that f = f(Ao)1. O

Corollary 1.2.13 Let U C C be a domain with U compact and f : U — C continuous with f|y
holomorphic. Then the maximum of |f| lies on OU.

Proof: Since U is compact, |f| has a maximum on U. And due to the above theorem, it does
not lie on U. U

Lemma 1.2.14 Letr >0 and U" :={A € C||A| >r}. Ifthen0<r <R and f:U" = C
holomorphic, such that f has a series representation

= Zan%, AeUE,
n=0

then the series converges to f(A\) on all of U™ D U%.

Proof: Define g : Uy,,(0) — C by

o, ifA=0
9N = {f(l/)\), i\ £ 0.

Then g(\) = Y ;2o anA™ VA € Uy /(0), thus g is holomorphic in 0 and g is holomorphic on
Ui/,(0) by the chain rule. We have seen, that the series representation for g then also holds on all
of Uy/-(0). Thus we have

f) =g(1/)\) = Z I I\l > 7
= O
Theorem 1.2.15 Let U C C be open and fn, f : U — C be functions with f, holomorphic
Vn € N and
1fn — f\lkzsup [fn(A) = fF(N)] — 0

reK n—oo

for every compact K C U. Then also f is holomorphic and f], — f' uniformly on all compact
subsets K C U.
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1.3 The Spectrum

The spectrum for a linear operator on an infinite dimensional vector space, is a generalization of
the set of eigenvalues of a linear operator F' on a finite dimensional vector space V.

A is eigenvalue of F' € End(V)
SA0#x€eV: Fr=M
SF#£zxeV: (F-A)z=0
< ker(F — A1) # {0}
< (F — A1) is not injective

dmESe0 (B A1) is not bijective
& (F — A1) is not invertible

Where by the open mapping theorem for 7' € L(E):
(T — A1) bijective < (T — M) € Inv(L(E)).
This motivates the following definition:

Definition 1.3.1 Spectrum and Resolvent Let A be a BA and a € A. The spectrum o 4(a)
and the resolvent R(a) of an element a are defined to be the following quatities:

o 5 - AL if1¢A
oala) = {AeC|(a— A1) ¢Inv(A)}, A= {A F1ed

R(a) = C—o04(a).
The resolvent map is defined as:

R,:R(a) — A
A — Ry(\) = (a— 1)L,

Remark 1.3.2 Spectrum is closed For all a € A, we have

oa(a) C C is closed, R(a) C C is open.
since Inv(A) C A is open and X\ — (a — A1) is continuous.

Theorem 1.3.3 Compactness of the Spectrum Let {0} # A be a C-BA, then we have

oala) #@,  oala) C By (0)

and thus o4(a) C C is compact.

Proof: We prove only the second assertion. The first needs more work. Let |A| > ||a||, then
||$a|| < 1 so with the von Neumann-series, we have

1 —1a)' & (1-31a)€lnv(4)
= (a—Al) = -1 — }a) € Inv(A)
= A€ R(a) YA > ||a]|.

Remark 1.3.4 In a R-BA Ag, we can have 0(AR) = &. E.g.: O\fagy(w) (( 0 1 )) = .



OPERATOR ALGEBRAS 9

Definition 1.3.5 Spectral Radius The spectral radius is defined to be

pla) = sup{|A[|A € 0a(a)} |

Lemma 1.3.6 The spectrum commutes with complex polynomials:

p(z) = az, = alp(a) =plola))
k=0

Proof: For any a € C, one can write
pla) —al = cH(a — A1)
i=1
for some 0 # ¢, A1, ..., A\, € C, depending on the chosen «. Thus
(p(a) —al) € Inv(A) & (a—N\1) €lInv(A) Vi,

and
a € o(p(a)) < T at least one \; € o(a).

where the \; were chosen to be the zeros of p(A\) — al < p(\;) = a. U

Lemma 1.3.7 Spectral Radius Formula For the spectral radius p it holds that

pla) = lim [|a"|['"

Note that here the algebraic quantity p(a) is expressed in terms of the topological quantity || - ||.
Proof: We prove p(a) < lim||a”||"/™ < Tim||a™||" < p(a):
o pla) < lim||a™||}/™: If A € o(a) then \" € o(a™) and thus
A=< )l = A< Y = A < liml[a”||Y", = p(a) < lim]|a”|[V™.
o lim||a"||" < p(a): If there exists a Cy > 0 with
AT < G, Vn
then ||a”||'/™ < (Cx|A])'/"|A| and we have
Tl [/ < Tm(CoIA)M"A| < lim (CaJA)Y7 1A = |

as any = € (0,00) fulfills /™ — 1. So it follows that lim||a”||*/™ < p(a).

e We now prove the existence of such a Cy. In order to do so, we show that {{-a" |n € N} is
weakly bounded. As explained, this gives boundedness. Let now ¢ € A’. Consider again the
holomorphic function

va:Ra—C,  pa(N) = ¢(Ra(a) = ¢((a—A1)7H).
Since UP(@) := {\ € C||\| > p(a)} € Ra, we have that ¢ is in particular holomorphic on

U@ 1f || > ||al|, then
[NV ) S VRIS S S N o
n=0 n=0
(since ||3al| < 1), and it thus holds that

Pa(N) == (@), YIA> lall.
n=0

So the series expansion holds for all |A| > p(a). In particular ¢(a™)smFr — 0 and thus
{¢(5ra™) |n € N} C C is bounded.
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O
Lemma 1.3.8 Let ¢ : A — B be a unital homomorphism of algebras, then it holds that
o5(¢(a) C 0a(a)]
In particular, if ¢ is the inclusion map of a subalgebra A C B with 1p € A, thenVa € A :
op(a) € oacp(a)
Proof: If there is a a~! € A, then
pla™pla) = p(a™"a) = p(1a) =15
thus ¢(a) € Inv(B) and
Ra(a) € Rp(p(a)) & oplp(a)) Coala).
O
Lemma 1.3.9 If we have A C B with 1g € A, then it holds that
’00,4(&) Copla) C GA(a)‘
Proof: Let A € do4(a) C 04(a) and (A,)n, C Ra(a) with A, = A. Assume A ¢ op(a), then
A € Rp(a) and
(a—XA1) 1 — (a— A1)~
€ACB €ACB
since A C B closed. So, since A € o4(a) we have a contradiction. 0

1.4 The Gelfand-Homomorphism for commutative BAs

The Gelfand-space A is a subspace of the (topological) dual A’:

Ac B{0)c A c A

The main results of this section hold for commutative BAs: We prove that Ais locally compact
and compact if A is unital. Furthermore we will see that A is in bijection with the space of
maximal ideals Max(A).

Definition 1.4.1 Gelfand — Space (Structure Space): Let A be a commutative BA. We define
the Gelfand-space to be the quantity

A:={x:A— C|0# y algebra homomorphism}

Example 1.4.2 Let A = Cy(X) with X locally compact, then the evaluation map

(5I:CO(X) — C
[ 6:(f) = f(z)

is an algebra homomorphism.

Lemma 1.4.3 Let A be a commutative BA, then VY € Al there is a X € A X|a = x and with
Xoo(a + A1) = X we have

A= (7| x € A} U {xo).
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Proof: Let ¥ : A! — C be a continuation of x : A — C, then
@+ A1) = Y(a) + AY(1) = x(a) + 1.

Vice versa: x(a + A1) := x(a) + A is a continuation of .
Is p € Al with pla =0, then p(a + A1) = Au(1) = X = xoo(a + A1) and so 4 = Xoo- ]

Lemma 1.4.4 Let A be a commutative BA, then for x € A the following hold:
o x is continuous and ||x|lop < 1,

o ||x|lop =1 if A is unital.
Proof: Let A be unital, then
x(a —x(a)1) = x(a) — x(a) =0, Va.
Thus (a — x(a)1) ¢ Inv(A) and therefor x(a) € o(a). We know o(a) C Bjjq)(0), so
x(@) <llall, = xllop <1.
For A unital we have x(1) = 1, which gives ||x||op = 1. ]
Remark 1.4.5 We have shown A C Bf‘/(()) and endow A with the weak-* topology Tuws of A'.

Definition 1.4.6 Weak — * topology (topology of pointwise convergence) Ty, a net
(Xn)n C (A, Tws) converges iff

Xn(a) = x(a), Vae A
Theorem 1.4.7 Let A be a commutative BA, then (A, Ty,) is

e locally compact and

e compact if A is unital.

Proof: Remember Banach-Alaoglou: B{*' (0) C (A/, 7yx) is compact. Therefor for A unital we
only need to show that
A C (BY(0), Tws)  closed.

So let (xn)n C A be a net with y, — x € A, then

Jim xn(ab) = x(ab)
Jim xn(a)xn(b) = x(a)x(b)
Jim x (1) = 1= x(1)

and thus y € A. If A is not unital, then Ac Al = Ay {Xoo} open and Al compact Hausdorff,
thus A is locally compact. ]

Remark 1.4.8 Al = AL {Xoo} is the one-point compactification.

Definition 1.4.9 Gelfand — Transform Let A be a commutative BA. The
Gelfand-transformation is defined to be

H
— a(x) = x(a).
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Remark 1.4.10 a € Cy(X) since for x, — x we have:
&(Xn) = Xn(a) — X(a) = d(X)
Theorem 1.4.11 Let A be a commutative BA, then the map

AN:A — Co(4)

A~

a — a
is a continuous, norm decreasing (i.e. ||a||loo < ||a||) homomorphism of algebras.
Proof: If A is unital, then A is compact and there with Co(A) = C(A). Let now
¢ Al —>C(A\1:AU{XOO})
be the Gelfand-transform for A', then

H(a)(X) = Xla+01)=x(a) = a(x)
$(a)(Xo) = Xoola+01)=0.

Thus & = ¢(a) € (AU {xoo}) With ¢(a)(xeo) = 0. Le. a € Cy(A), and since ||x|| < 1 for y € A:
[a(x)| = Ix(a)| < [lal|, Va € A.

So it holds that ||a||e < ||all. 0

Remark 1.4.12 The Gelfand-Homomorphism need not be injective or surjective.

For example take a Banach space A with the multiplication a -b:= 0 for all a,b € A. Then A = @
and Cy(A = @) = {0}. Here the Gelfand homomorphism is the zero mapping and thus not
mjective.

Lemma 1.4.13 Gelfand — Mazur Let A be a unital BA, then all non zero element are
tnvertible:

v(4)=A-{0}, = A=C

Proof: We know o(a) # @ and

assumption

A€o(a) & a— Al ¢Inv(A) a—A1=0 < a=A
(|

Theorem 1.4.14 Let A be a commutative, unital BA and Max(A) the space of mazimal ideals
in A, then the following hold:

1.) We have a bijection | A = Max(A) |:

>

—
—  ker(x).

2.) We have|a € Inv(A) & aeInv(C(A) < a(x) #0Vxe A

3.) For all a € A it holds that:

o(a) = {a(x) | x € 4}

Proof:
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1.) First: I, = Imyx € A is a maximal ideal for all x € E, since for an ideal J C A, with I, C J,
we have x(J) C C which is an ideal in C, due to the isomorphim A/I, = C by
a+ I, — x(a). Since C is a field, we have x(J) = {0} and thus J C I, i.e. J =1I,.

— Injectivity: Let x1,x2 € X, with x1 # x2, then ker y1 # ker xa, since if
ker y; = ker xo = I, then Va € A:

x2(a@ —xi(a) = 1) = xa(a) = xa1(a) =0, xi(a —xa(a) = 1) = xa(a) = x2(a) = 0

SO X1 = X2. S0 the map is indeed injective.

— Surjectivity: If I C A is an arbitrary ideal, then Inv(A/I) = A/I \ {0+ I}, since if
a ¢ I and a + I not invertible in A/I, then J = {ab+ I |b e A} is an ideal in A/I,
since 1 + 1 ¢ J. And then J = (a + I)A C A is an ideal in A with I € .J, which
contradicts maximality.
But if Inv(A/I) = (A/I)\ {0+ I}, then with Gelfand-Mazur A/I = C. And with the
quotient map y : A — A/I = C, we have x € A with Im(y) = 1.

2) =7 Is a € Inv(A), then y(a) # 0 Vx € A, since we have 1 = x(a~'a) = x(a ) x(a).

7 <7 Let now x(a) # 0 Vx € A. Assume a ¢ Inv(A), then J = (a) = {ab|b € A} is an ideal
in A and thus there exists a maximal ideal I C A with J C I. By (1) 3x € A with
Im(x) =1 O J. But then x(a) =0, since a € J C I. A contradiction!

3.) First, if x € A, then x(a —x(a) —1) =0, s0 (a — x(a) — 1) ¢ Inv(A4) and x(a) € o(a), thus
a(x) = x(a) € o(a) Vx € A. R
Let now A € o(a), then a — A1 ¢ Inv(A) and with (2) there is a x € A such that
0= x(a—Al) = x(a) = Ax(1) = x(a) = A

so A = x(a) = a(x)-

1.5 (C*-Algebras and the Gelfand-Naimark Theorem

Amongst the main results of this sections are the uniqueness theorem for C*-norm and the fact
that all commutative C*-algebras are symmetric. The most important result however is the

Gelfand-Naimark theorem, i.e. that for commutative C*-algebras A = Cjy(A).

Definition 1.5.1 Involution and *x —Algebra Let A be a C-algebra, then an involution is a
mapping * : A — A such that

(@+b)* =a*+0b*, (ab)* =b*a*, (Aa)*=XIa*, (a*)" =a.
(A, x) is called a x-algebra.

Definition 1.5.2 Banach — x — Algebra A Banach -x-algebra is a x-algebra (A, *) such that

la*[| = [lal].
Definition 1.5.3 C x —Algebra A C*-algebra is a Banach-x-algebra such that
lla*al| = [|al*.

Example 1.5.4
1.) (Co(X), f* := f) is a C*-algebra.

2.) (INZ),|| - |l1, f*(n) := f(=n)) is a Banach-+-algebra. It is however not a C*-algebra.
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3.) (L(H),T* = adj.op.) is a C*-algebra.
Theorem 1.5.5 Let A be a C*-algebra without unity. Then the following is a C*-algebra:

(A17 H(a7 )‘)H = HA(a,)\)H0p7 (av)‘)* = (CL*,X)),

where

Ao, (0) := (a,A) - b=ab+ \b.
Proof: It is obvious that A is a homomorphism of algebras.

e Show: A is injective. Let (a,\) € A with an + b =0 Vb € A. If A =0, then aa* = 0 and
thus a = 0 since ||a||? = [|a*||? = ||aa*|| = 0.
If A # 0, then —%ab =bVbe A. Then e:= —%a is a left unity in A, and it follows, that
(ce —c)b = (ce)b—cb = c(eb) — cb = cb—cb =0 Ve, b € A. and thus also (ce — ¢)(ce — ¢)* =0
Ve € A, which gives ce — ¢ =0, i.e. e is a unity in A, which stands in contradiction to the

assumptions.

e Set [[(a, N)]| := |[A@,lop, then [[(a,0)]| = [|a]| Va € A since with
1A (a,0) ()| = [labl| < [[al[ |b]], we have [[(a,0)|| = [[a]| and if a # O then due to
180 (an el = mapllaa*ll = g llall* = llall, we also have [|(a,0)|| = |lal| Ya € A.

e Show [[(a, A\)*(a, N)|| = ||(a, N)||> ¥(a,\) € AL, Let now ¢ > 0 and b € A with ||b|| = 1 and
[[ab — Ab|[ = [[Aan) (B)]] > [|(a, M)]|(1 — ¢), it then follows that

(1= )ll(a, N [lab = Mb|[* = [|(ab — Ab)*(ab — Ab)[| = [|(b*,0)(a", X)(a, A) (b, 0)]]

<
< [[o*II1I(a, A) (@, M H[bl] = [[(a; A)*(a, M.
Since € > 0, we have
[1a, VI < 1@, A)* (@, NI < 1@, M) IHI@, ML (%)
and if we replace (a, \) by (a*,\), then we also get
[1Ga, A1 < 1l a AT, M-
So we have ||(a, A\)*|| = ||(a, A)|| and we have equality in ().

e It remains to prove completeness of Al. Let (ay, A\n)n be a Cauchy series in A, then (\,)n
is a Cauchy series in A'/A = C w.r.t. the quotient norm (since A < A! is an isometry and
A is complete, we have A C A! closed). Therewith we have A, — \ for a A € C. But then
also (an,0) = (an, A\n) — (0, A,) is a Cauchy series. Since A = (A,0) and A is complete, there
exists an a € A with a,, — a, and then (a,, A\,) — (a, A).

[l

Remark 1.5.6 A' with ||(a,)\)|| = ||a|| + |\| is usually not a C*-algebra.

Remark 1.5.7

1.) Let A, B be C*-algebras, then
(A® B, ||(a,b)|] := max{]|al], [[]|})

is a C*-algebra with component wise addition, multiplication and involution.
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2.) If A is unital, then

Al = AecC
(a,A) — (a+ AL, N).

So A is a C*-algebra with respect to
[[(a; M)[] == max{]a + AT||, [A[}.
So in any case we can view A' as a C*-algebra.
Definition 1.5.8 Selfadjoint Let A be a C*-algebra. An element a € A is called selfadjoint iff
a* = a.
Note that (a*a) is selfadjoint for all a € A.

Lemma 1.5.9 Spectral Radius for Selfadjoint Elements Let A be a C*-algebra, then

[a=a" = pla) = llal = sup{A| A € a(@)}]

Proof: Assume w.l.o.g. that A is unital (if not then work in A!). We have

a=a" = |l =llaall =lal” "E" ("] = [la]*
and thus with the spectral radius formula
_ nl/n _ 1: 2" 11/2™ s _
pla) = lim [la"|["/" = lim [|a™"[|'/*" = Tim ]| = |lal|.

O

Corollary 1.5.10 Norm of a C x Algebra The norm of a C*-algebra is fully determined by
the algebraic properties of A:

lal[* = lla*all = p(a*a) = |llall = V/p(a*a)

Corollary 1.5.11 Uniqueness of the C x Norm [t follows that there is only one norm,
namely ||a|| = v/p(a*a) that turns A into a C*-algebra.

Lemma 1.5.12 Continuity of * —Homomorphisms Let A be a Banach-x-algebra and B a
C*-algebra, then every x-homomorphism ¢ : A — B is norm decreasing, i.e.

l¢(a)ll B < llal] a-

In particular it holds that ¢ is continuous.
Proof: We have op(¢(a)) C 0a(a) and thus

16(a)|I* = ll¢(a)*¢(a)]] = ll¢(a*a)l| = pr(¢(a*a)) < pal(a*a) < |la"al| < [la]|*.

Definition 1.5.13 Symmetric Algebra A symmetric algebra is a commutative
Banach-x-algebra in which for all x € A it holds that

x(a”) = x(a).
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Example 1.5.14
1.) Co(X) is symmetric, since Co(X) = {6, |x € X} and 5.(f) = f(x) = 5.(f)
2.) IMZ) with f*(n) = f(—n) is symmetric, since
st = 1(z)
2 — X x:()=1(2)
Further we have, that
Fe) =Y rrm = Y Fm)e" =0y flem)en MET Y fm)en = (2)
nez nez nez nez
and thus X-(f*) = F*(2) = f(2) = x-(f).
3.) The Disc algebra with the involution f*(z) = f(Z) is not symmetric.
Definition 1.5.15 Real — and Imaginary Part Let A be a C*-algebra, then define the
selfadjoint elements
Re(a) := 3(a+a*), Im(a):=5(a—a*), = a=Re(a)+ilm(a)
Corollary 1.5.16 A Banach-x-algebra is symmetric iff
a=a" = x(a)eR
Proof: If A is symmetric, then
x(a) = x(a*) = x(a) = x(a) eR
Vice versa if x(a) € R, then
x(b) = x(Re(b)) +ix(Im(b)),  x(b*) = x(Re(b)) — ix(Im(b))
and thus x(v*) = x(b). ]
Corollary 1.5.17 FEvery commutative C*-algebra is symmetric.
Proof: Assume w.l.o.g. that A is unital. Let y € A and a = a* € A. Now show that
x(a) :=z+iy € R, i.e. that y = 0.
apr=a+ill, teR, = aja = (a+ill)*(a+ill)=(a—ill)(a+ill) = a®+¢1.
Further we have y(a;) = x(a) +it =z + i(y + t), so
2’ + (y +1)° = [x(a)|? < llacl? = llajac|| = |la* + 21| < [|a?]| + ¢
and it follows that
2+t oyt =2+ (y+t)? > <o, VteR, = y=0.
O

Remark 1.5.18 Not every commutative Banach x-algebra is symmetric.
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Theorem 1.5.19 Gelfand — Naimark (commutative case) Let A be a symmetric,
commutative Banach x-algebra, then
A(A) C (Co(A), ]| - |oe) is dense.
If A is a commutative C*-algebra, then
AA = Cy(Ad)
a = a
s an isometric *-isomorphism.
Proof: A is a *-homomorphism since A is symmetric:
a*(x) = x(a*) = x(a) = a(x)-
We will see that A(A) strictly separates the points of A. Since y # 0, there is an a € A with
x(a) = a(x) # 0. Are now x, u € A with x # p, then there is an a € A with x(a) — u(a) # 0.
With Stone-Weierstrass, we have A(A) C Cy(A) dense.
If Ais C*, then
la®||l = ||la*al| = p(a*a) = sup{|A | X € o(a"a)}.
Further for all b € A, we have
a(b) = o41(b) = {b(x) | x € A} = {b(x) | x € A} U {b(xo0)}
——
=0
It thus follows, that
lall* = lla"all = p(a*a) = |la*alls = llad|lo = [lal3%. = llall = ||al|.
O

1.6 Functional Calculus

We shall develop a very strong tool for normal operators, called functional calculus. What
functional calculus establishes, is that for any normal operator a and for any continuous

f:o(a) = C, in some sense (made precise below) one can apply the function to the operator, i.e.

df(a) € A.

Normal operators are interesting, since C*(a) is commutative for a normal, and thus one can

——

apply Gelfand-Naimark to C*(a) = Co(C*(a)).

Definition 1.6.1 Let A be a C*-algebra and S C A a set, then define

’C*(S) :=N{B| B is C* subalgebra of A :

S C B}|

We always have

C*(S)=C*(SuS*)=LH{a1- -am|meNay,..

S am € SUS*}

So C*(95) is commutative iff [a,b] =0 for all a,b € SUS*.

Definition 1.6.2 Normal Element A normal element is an element a € A such that

If a is normal, then C*(a),C*(a,1) are commutative.
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Theorem 1.6.3 Functional Calculus Let A be a unital C*-algebra (thus o(a) compact), then
(for a normal) there is exactly one x-homomorphism such that

¢:C(o(a)) — A, with ¢(1,(,)) = a.
Further N
6: Clo(a) = C*(a,1)

is an isometric *-isomorphism.

Proof: First show uniqueness. We know that ¢ is automatically continuous with ||¢|| < 1. Now
define
P, :={p:0(a) - C|p polynomial in z, z}

that isp € P, < p(z) = Zi\[m o Qkmz¥Z™. P, C C(o(a)) is a subalgebra that separates the
points of o(a), since L5(q) € Pa- Also P, = P,. And thus with Stone-Weierstraf:
P, C (C(o(a)),]|] - |leo) is dense.

We have ¢(1) = a and ¢(1) = 1 and thus

p) = Zakmak(a*)m, if p(z Z g2 E™
k,m

So ¢ is uniquely determined on the dense subalgebra P, C C(o(a)). And thus, since ¢ is
continuous, on all of C(c(a)).
It is important to observe the following

¢(Fa) € C%(a,1), = ¢(C(o(a))) € C¥(a,1).

With the Gelfand-Naimark theorem (this is where we need a to be normal, in order to have
C*(a,1) commutative) we have

o —

C*(a,1) = C(C*(a, 1)).

We now claim that a : C*/(crl) — op(a) is a homeomorphism, for which, due to the continuity of
a and the compactness of C*(a, 1) and op(a), we only need to prove the injectivity of a.
Let x1(a) = a(x1) = a(xz) = x2(a) and thus x1(a”) = x1(a) = x2(a) = x2(a”), so

k
1(5 agma” (a®)™ E agpmXxi(a E agmx2(a) x2(a)" § agma”(a*
k,m

Since the polynomials are dense, we have y; = x2 and thus injectivity.
We now have the isometric *-isomorphism

—

Pa - C(UC*(a,l)(a)) — C(C*((l, 1))7 Qpa(f) = foa.

Now with the inverse A~! : C(C*/(crl)) — C*(a, 1) of the Gelfand-homomorphism we have the
isometric *-isomorphism

¢ = (/\71 0 Qg) : C(UC*(a,l)(a)) — C*(a,1).
Note that

¢(ﬂgc*(a71))(X) = (/\_1 ° @a)(]lUc*(a,l))(X) = /\_ld(X) = a(X)7

so indeed ¢(1 = a. Now the only piece missing is to show

Uc*<a,1))

oc(a1)(a) = cala).
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We already know that o4(a) C 0¢=(q,1)(a). We now assume I\ € 0¢(q,1)(a) — 0a(a). Then
(a— A1) € Inv(A) and ¢ := (a — A1), For a > ||¢[| define f : o¢w(q1)(a) = C as

£(2) = {s, if |z —s| <

|z —s|7Y, if |z — 8| >

@ = o =

Note that f is well defined, continuous and f(\) = s, which gives ||f||cc > s. Let g := (z — A) f(2),
which is continuous with ||g||sc < 1. Take now ¢ : C°(o¢x(4,1y(a)) = C*(a, 1) as defined above,
then we get

lell < 5= FA) <lloce(uny = 6N = llela = A)S(f)]] = [led(T = A1)o(f)]]
=gl < llell eI = llelH 19llocn < llell-

So we have |[|c[| < ||¢||, a conradiction! This gives us o¢«(q,1) = 04(a) and completes the proof. [

Corollary 1.6.4 Let C C A be a C*-subalgebra and a € C' normal, then

(o0(a) U{0} = oa(a) U{0}|

If A is unital with 14 € C, then

oc(a) =oala) = oc=@n(a)=o0ca(a)

Proof: Let A be unital, then in the proof of the functional calculus theorem, we have seen, that
oc(a) = ocx(a)(a) = oala).
In general we have the embedding C' < A' and the identity
Uc(a) @] {0} =0 (CL) =0 1 (a) = aA(a) U {0}
O

Theorem 1.6.5 Functional Calculus Let A be a C*-algebra (not necessarily unital), then (for
a € A normal) there is exactly one x-homomorphism such that

¢:Co(o(a)) — A, with ¢(1,(,) = a.

Further more it holds that

¢ : Co(o(a)) — C*(a)

s an isometric *-isomorphism.

Proof: Let P,:={p:0(a) = C|p(z) = fomzo mz¥2™} and set P,o = {p € P,|app = 0}.
Then P, a *-subalgebra of Cy(c(a)) that strongly separates the points of o(a) \ {0}.

(Iy(q) € Pao and if 21 # 22 € 0(a) \ {0}, then 0 # 1(21) # 1(22) # 0).

With Stone-Weierstrass we have that P, o C Cy(o(a)) is dense w.r.t. || - ||oo. If ¢ : Cp(c(a)) = A
is an arbitrary s*-homomorphism with ¢(1) = a, then as in the prove of 1.6.3, we have that

60) = Y arna @), Vo= Y gt € Pug
k,m k,m
and since ¢ is automatically continuous, we have that ¢ is uniquely determined on

P, = Co(o(a)) and it follows

$(Co(0(a))) = ¢(Pa) = {D_ armak(a)™| ...} =C*(a). (¥
k,m

We shall show existence. If A is unital, and ¢ : C(o(a)) — A as in 1.6.3, then ¢ := | (s(a)) 35
in the theorem. Since ¢ is an isometry, also ¢¢ is an isometry and with (k) it follows that

oo : Co(o(a)) — C*(a) is an isometric *-isomorphism. If A is not unital, then let

¢ : Co(o(a)) — A! be as in the theorem. It then follows that ¢(Co(c(a))) = C*(a) C A, which
completes the proof.
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Definition 1.6.6 For A unital, take ¢, : C(o(a)) — C*(a,1) and for A not unital take
¢a : Co(o(a)) — C*(a) both to be the above homomorphisms and set

| f(a) = ¢a(f)]

Lemma 1.6.7 Let A, B be unital C*-algebras and v : A — B a unital *-homomorphism, then
for all a € A normal

Proof: We have op(¢(a)) C oa(a), so the formula makes sense! Now look at the following
compositions

v :C(oa(a)) Pa, A B
51 Cloala) B3 Clop((a) “9 B

where ¢4(g) = g(a), dy(a)(9) = g(1(a)) and Res is the restriction map. Then ¢, @ are
*-homomorphisms with

p(1) =1=0¢(1), ¢(1)=v(a) = &(1).

So it follows that ¢ = @ on P, and thus ¢ = ¢ on C(04(a)) since P, is dense and ¢ continuous.
So finally we have

f((a)) = by (Res(f)) = ¢(f) = o(f) = ¥(f(a)).

Lemma 1.6.8 Let A be a unital C*-algebra, a € A normal and f € C(o(a)), then

0(f(a)) = f(o(a))|  |Vg€C(o(f(a): g(f(a)=(go f)(a)]

Proof: The first observation is, that also f(a) is normal, since due to the fact that C(o(a)) —
f — f(a) is a *-homomorphism, we have f(a)* = f(a) and

fa) fla) = ff(a) = ff(a) = f(a)f(a) = f(a)f(a)".
Further more, because of C(c(a)) = C*(a,1) =: B, we have that

1.6.4

oa(f(a)) =" oB(f(a)) = oc(o(a)(f) = f(o(a)).

We now consider the #-homomorphism ¢ : C(o(a)) = A ¢(g) :== (g o f)(a). It holds that
¢(1) =1 and ¢(1) = (1 o f)(a). Due to uniqueness in 1.6.3, we have that ¢ is the functional
calculus for f(a), so it holds that

(g0 f)la) = d(g9) = g(f(a)), Vg€ Clo(f(a)))
O

Corollary 1.6.9 Spectrum of a selfadjoint element Let a € A be a selfadjoint element, then
the spectrum of a is real and it holds that:

o(a) € [~lal], |lall]|

and at least one of £||al| is in o(a).
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Proof: W.l.o.g. let A be unital. Since a = a*, it is normal. We have

Ty(q)(a) = a=a" = 1,4)(a) and thus
Lo = To@), = 2=15q(s)=T50(2) =2
So o(a) C R, but we also know o(a) C Bjjq(0), thus
o(a) C RN Byjq(0) = [=|lal], [[al].

We further know that ||a|| = p(a) = max{|\|| A € o(a)}, which concludes the proof. ]

Corollary 1.6.10 Let A, B be C*-algebras and ¢ : A — B an injective x-homomorphism, then

(@)l = llal],

that is they are isometries. And in particular 1)(A) C B is a x-subalgebra.

Proof: With 1.5.12 we have that ||¢(a)|| < ||a|| Ya € A. We now assume that Ja € A with
l[¥(a)|| < |la||. Let w.lo.g. ||a|]| =1, set ¢ = a*a, then c is selfadjoint and ||c|| = ||a||* = 1 as well
as

o= |l(e)l] = [[¥(a) (@)l = [P (@)|[* < llal|* = ||| = 1.
Since ¢ and (c) are selfadjoint, it holds that o(¢(c)) C [~a,a] and o(c) C [-1,1] with 1 or —1 in
o(c). Define f: [-1,1] - C
0, if [t| <«
1) = {i'_c‘j, if [t > a.

It then holds that f(c) # 0 since f(1) = f(—=1) =1# 0, so f # 0 on o(c) and thus
[ ()] = l|fllo@a) # 0 and (since f(c) # 0 and % injective) it follows that

1.6.7

0= f((c)) = ¥(f(c)) #0,

which is a contradiction. 0

1.7 Positive Elements

In this section the notion of positivity of elements in a C*-algebra is introduced, which leads to an
equivalence relation on the space of selfadjoint elements Ag,.

Definition 1.7.1 Positive functions A function f € Cy(X) for X locally compact is called
positive iff:

f(z) >0, VrelX.
Due to ogy(x)(f) = f(X), this is equivalent to f = f and thus

ocy(x) € [0, 00).

Definition 1.7.2 Positive Element A positive element of a C*-algebra A, is an element a € A
with

’aZO = a=a", U(G)Q[0,00)‘

Remark 1.7.3 For a selfadjoint a = a* its square is positive a®> > 0, since
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Lemma 1.7.4 Positive and negative part The positive and negative part of a selfadjoint
element a = a* € A in a C*-algebra are elements ay,a_ € A, such that

ar,a- >0, a=ay—a_- [a_,al=0=]at,a], ara_=0=a_a;.
They exist for any a = a* € A and are unique.
Proof:
e Existence: a = a* thus o(a) C R. Define
fr:o(a) — R, fi(z) == max{£x,0}, ag := fi(a)

s0 ax,a € C*(a) and since C*(a) commutative, we have that all products commute. Also
note

(f+ = f)@) =2, = ay—a =1(a)=aq, f+-f-=0, = aja_=0.

e Uniqueness: follows from the uniqueness of the decomposition f = fy — f_ which in turn is
unique due to fi - f— = 0.
O

Lemma 1.7.5 Let A be a unital C*-algebra and a = a* € A, then the following hold:
1.) If |1 —al| <1, then a > 0.
2.) If ||la|| <1 and a > 0 then ||1 —al| < 1.
3.) a =0 < |[|la|[T - al| < lall.

Proof:

1.) With 1.6.9 we have that (1 —a) C [—1,1] and with 1.6.8 it holds that o(1 —a) =1 — o(a).
For z € R we have

l-z€e[-1,1] & zxz-1€[-1,1] & =z€]0,2]
and thus o(a) C [0,2].
2.) If ||a|]| <1 and a > 0 = o(a) C [0,1], thus o(1 —a) C [-1,1].

37 =" a>0"2" g(a)C0,all], and thus with 1.6.8 o(||a|[1 — @) C [ja|| — [0, ||al|] = [0, ]|al|]
1.6.9
= MlallL = al| < [lal]-
7 <7 Let w.lo.g. a# 0, using b = ﬁ, it follows ||1 — b|| < 1 and thus b > 0 and thus also
a>0.
0

Theorem 1.7.6 Space of positive elements For the positive elements AT C A of a C*-algebra
the following hold

1.) AT C A is closed .
2.) AT is a positive cone, i.e.:

a,be AT, A>0, = (a+b), acA".

3.) At n—At ={0}
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4.) For all a € A there are ay,az,a3,ay € A* such that
a= (a1 —az) +ilaz — aq).

Proof: If A is not unital, then AT = AN (A!)". Thus let w.l.o.g. A be unital.
1.) Let (an)n C A" be a sequence with a,, — b € A, thus
[Hanl[T = an|| = [H[b[[L =0, [lan|l = [l0]]
and with part (3) of the last lemma, we get || ||b]|1 — b|| < ||b]| and b > 0.

2.) Due to o(Aa) = Ao(a), we have Aa > 0 if a > 0 and A\ > 0. Let now a,b > 0 with a,b # 0.
Switching to 2a, 1b with ¢ := max{||a||,|[b||}, w.l.o.g. we can assume that ||a||,||b|| < 1 and
thus [|1 — al],||1 — b]| < 1 which gives

11— 5(a+0)| < 3llL —all +3l[L-b][ <1,
so we have %(a +b) > 0 and thus also a + b > 0.
3.) Ifae AT N—A", then a = a* with o(a) = {0}, but also ||a|| = o(a).

4.) Let b = Re(a) = 3(a+ a*), ¢ = Im(a) = 5:(a — a*) which are both selfadjoint and thus
b=by —b_,c=cy —c_ with by,b_,cy,c_ > 0.

O

Lemma 1.7.7 Equivalence Relation on the space of selfadjoint elements On the space of
seladjoint elements Asq C A of a C*-algebra, we define the following equivalence relation

a<b &= b—a>0.

Lemma 1.7.8 Let A be a C-algebra and a,b € A, then

o(ab) U {0} = o (ba) U {0}

and if A is a C*-algebra, then
ab>0 <  ba>0.

Proof: Let w.lo.g. A be unital and let 0 # A € C. We need to show that
ab— A1 € Inv(A) < ba— Al € Inv(A).
In order to do that, define u := (ab — A\1)~!, so that
abu = (ab—Al)u + A u =1+ Au, =
(ab — A1) (bua — 1) = b(abu)a — ba — Abua + A1 = b(1 + Au)a — ba — Xbua + A1 = A1.
Analogously it holds that
(bua — 1)(ba — A1) = b(uab)a — ba — Abua + A1 = b(1 + Au)a — ba — Abua + A1 = A1.
Therefor we have }(bua — 1) = (ba — A1)~1. ]
Lemma 1.7.9 Let A be a C*-algebra and a = a* € A, then the following are equivalent:
1.)a>0
2.) 3b € A with a =b*b
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3.) Ale > 0 with ¢ = a and [a,c] = 0. Denote c := \/a.
Proof:

1.) = 3.) Since a > 0 we have o(a) C [0,00) and the square root is well defined on it, which in turn by
functional calculus lets ¢ := y/a be well defined. One can also show that ¢ is unique.

2.)<3.) Let b=c.

2.) = 1.) Let now a =b*b forab € A. Let ar,a_ € AT and u = \/at,v = \/a_ as in (3). It then
holds that v € C*(a4+) € C*(a),v € C*(a—) C C*(a), i.e. all u,v,ay,a_ commute. We
further have vu?v = v?u? = a;a_ = 0 and thus

(bv)* (bv) = vb*bv = v(u? — v*)v = vu®v — vt = —vt € AT,

Since the square of a selfadjoint element is positive. We set bv = x + iy with selfadjoint z, y,
then

(bw)(bv)* = (z + iy)(x — iy) + (x —iy)(z +iy) — (bv)* (bv) = 222 + 2y* + v > 0.
=0

With 1.7.8 it also follows that (bv)*(bv) = —v* > 0, but then v* € A* N —A+ = {0}, so
v* = 0 and thus v? = 0, which gives a = u? — v? = u? > 0.
g

Remark 1.7.10 Positivity does not depend on the subalgebra Let B C A be a subalgebra
with a = a* € B, then op(a) U{0} = 04(a) U{0} and therefor it holds that

og(a) C[0,00) < oa(a) C0,00).

In particular for a € Co(oa(a)) :
a>0 < a>0.

Definition 1.7.11 Absolute Value We now see, that the following is well defined

la| := Va*a.

Lemma 1.7.12 Positive Linear Operators Let T* =T € L(H), then

T>0 & (Twa)>0vVzeH |

Proof:

"=" If T > 0 then there is a S € L(H): T = S*S and thus

(Tx,z) = (S*Sz,x) = (Sz,Sz) > OVex € H

7<” From functional analysis, we know that

§=5" = [[Sll= sup [(Sz,z)].
]| =1

Now let (T'z,x) > 0 and w.l.o.g. ||T|| =1 (since for T'= 0 it is trivial). It is now sufficient
to show ||1 — T'|| < 1. But if ||z|| = 1, then

0<(Tz,z) <1 = |[(1-T)z,z)|=(x,z)— (Tz,x) < (x,z)=1.
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Definition 1.7.13 Unitary Elements A unitary element u € A in a C*-algebra is an element

such that
w=1T=v"'y & v =u

We set

=
=
i

{u € A|u unitary}.

Lemma 1.7.14 Unitary Linear Operators Let u € L(H), then it holds that

w=u' & uH=H and (uz,uy) = (z,y).

That is a linear operator is unitary iff it is surjective and an isometry.
Proof:

1

?=" If u =wu"", so since an inverse exists, it is bijective and further

(uz, uy) = (W uz,y) = (z,y) .

"< Let uH = H, and (uz,uy) = (x,y), then u is bijective and continuous, thus (by the open

mapping theorem) invertible. Further
(Wuzx,y) = (uz,uy) = (z,y) = (Wur—=x,y)=0Vr,ye H.

That is v*u = 1.

Theorem 1.7.15 Polar Decomposition: Let A be a unital C*-algebra, then

a€c€lnv(d) = FueU(A): a=ulal
Proof: a € Inv(A) thus also a*a = |a]? € Inv(A). Now take u := ala|~! and thus

uw*u = |a|"ta*ala] " a| 7Y al?la| Tt = 1.

Remark 1.7.16 If a is not invertible, a polar decomposition does not necessarily exist.

Lemma 1.7.17 Let A be a C*-algebra, a,b € Ay, then
a<b & zfax <z*bx Vz € A.
Further, if A is unital, then

a,b€nv(A), and0<a<b = 0<b'<al

1.8 Approximate Unities and Quotient Spaces

After discussing functional calculus, we now come to a second major tool in the theory of

C*-algebras: approximate unities.

Definition 1.8.1 Approximate Unity An approximate unity in a normed algebra A is a net

Un)n C A, that is both an approximate left unity:
Yy
upa — a, Va € A

and a approrimate right unity: au, — a, Va € A.
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Theorem 1.8.2 Let A be a C*-algebra and J C A a dense ideal in A, it then holds that
1.) There exists an approximate unity (uy)n in A with

a) 0 <up, ||uy|| <1 and for all n: u, € J
b) A< then uy < uy,.

2.) If A is seperable, then there is a sequence with the above properties 1.a) and 1.b).

3.) Let I be a right ideal (IA C I), then there is a net (uy)y, in I N AT which fulfills properties
1.a) and 1.b) and up,b — b for allb € 1.

4.) The same as in 3.) holds also for left ideals.

Proof:
l.a) Let A :={F C J|F finite} with F1} < Fy & F} C Fy. For A = {x1,..., 21} € A set
vy =z12] + - +xE] > 0.

With vy > 0 we have o(7 + v)) C [f,00), so (7 +vy) is invertible (since 0 # o(} +v,)) in
Al and we set
uyi=oa(7 o)t = filvn),  filt) =G+

Then uy € J, since vy € J and J is an ideal in A and thus also in A'. Due to 0 < f; < 1 we
have 0 < uy < 1in A' and so ||uy|| < 1. Further, for A = {z1,...,2;}, we have

l l

Y lun = Daif(ur = Da]* = (ur = DO miw)(un = 1) = (un = Dva(uy = 1) = gi(vy)

=1 i=1

with g;(t) = (fi(t) — 1)?t. It follows, that

and in A' we get
0 < [(ur — Daall(ur — Dil” < g(ox) < H1.

So it holds, that
(uy — Dl < 5 VI<i<L
We now get ||uyz — z|| — 0 Va € J, since for € > 0 we take \g = {z1,...,2;} € A with
x =z and ﬁ < ¢ it follows, that ||uyz —z|| <e VA > .
It now also holds that ||uya — a|| — 0 for a general a € A, since for € > 0, there exists an
r € J with [la — z|| < § and A\ € A with [Juxz —2|| < § VA > Ao and we have

[luxa —al| < [lux(a — z)|| + [Jlurz —z[| + ||z —a|| < S+ 5+ 5 =€ VA= Ao

So we can conclude, that |Jauy — a|| = [|lupa® — a*|| = 0 Va € A.
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1.b) Let A < p, ie. A={x1,...,z}, p={x1,..., 2, 2141, .., Tm}, then

l m
vy = g rixy < E TiT; = vy
i=1 =1

and thus } + vy < 7+, and (7 +v,)"! < (3 +vy)7!, since for a t > 0 the map s — pee it
monotonically increasing. It follows, that

101 -1
o (o 0u)

Due to f,(t) =t(X +t)7' =1 - L(L +¢)7! we now conclude, that

= filo) =1— (G o) <S1= (G +u) T S 1= (o) =

2.) If A is separable, then so is J. Let (z1,x2,...) be a dense sequence in J and set u,, = uy
with A = {z1,...,2,} asin 1.). Then as in 1.) it follows that (uy)y, is an approximate unity
with the desired properties.

3.) Let now A be the set of all finite subsets in I and uy as in 1.) YA = {x,...,2;} € A. The
proof then proceeds as the proof of 1.).

O
Corollary 1.8.3 Let I C A be a closed ideal, then I = I* and thus I is a *-ideal and a
C*-subalgebra.
Proof: Let (uy), CIN AT like in the above theorem, then for all x € I, we have
l|z*uy, — x*|| = ||upz — x|| — 0.
Since z*u, € I, also x* € I, since I is closed. 0

Lemma 1.8.4 Let A be a C*-algebra and I C A a closed ideal. And (uy)y like in 3.) above, then

lla+I|| = lim |la — upal|.
A—ro0

Proof: Let (uy)) be an approximate unity as in 1.8.2(3). Because of uy > 0 and ||ay|| < 1, we
have ||1 — uy|| < 1 and thus ||a — upa|| < ||a|| VA € A. So the following exists

limsup ||a — upall.
A

Due to |luxb —b|| — 0 Vb € I it follows for all b € I, that
limsup ||a —uya|| = lmsup ||la —upra + b — upb|| = limsup ||(1 — uy)(a + b)||
A A A

< Slipl\(l —ux)(a+b)[| < [la+b]].

We thus have, that

lla+1I|| = inf|la+b|| > limsup||la — upa|| > liminf|ja — urall
bel I\ )

v

inf || — uyal| > inf ||a + b|| = ||a + I||.
A bel

So we have equalities everywhere, which proves the claim. 0
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Lemma 1.8.5 Quotient C x —Algebra Let A be a C*-algebra and I C A a closed ideal. Then
A/I is a Banach-algebra with

lla+I|| =inf{|la+¢|||ce I}, (a+I)(b+1I)=ab+ 1.
Since we now know that I'* = I, we have a well defined involution
(a+ 1) :=a"+1,
turning A/I into a C*-algebra
Proof: We have to show that ||a*a + I|| = ||a + I||*.
">" Let (un)n be a sequence like in 3.), then for all b € I:

(1 = un)b(1 = )| < [[(1 = wn)bl| [[1 = unl| = 0.
—_——

—0 <1

So with the previous lemma, we have
st 2J? = tim [|(1—ug)al? = Tim [[(1—u)a*a(l—u)]| = lim [[(1-w,)(aa+D)(1-u,)]| < [la"a-+)],
so we get ||a + I||> < infyer [la*a +b|| = ||a*a + I||.

”<” Since A/I is a Banach algebra, we also have

la*a +1|] < [la* + || [|la+ I|| = [la + I||*.

O
Corollary 1.8.6 If ¢: A — B ia a homomorphism of C*-algebras, then ¢(A) C B is a
C*-subalgebra.
Proof: That is since I := ker ¢ is a closed ideal and so
¢: A/l — B, é(a+1):=¢(a)
is an injective *-homomorphism. Since A/I is a C*-algebra, 6 is isometric and thus
¢(A) = ¢(A/I) is a C*-subalgebra. 0

Corollary 1.8.7 Let B C be a C*-subalgebra and I C A a closed ideal, then
B+ 1C AisaC*—subalgebra and (B+1)/I = B/(BNI).
Lemma 1.8.8 Let A be a C*-algebra, then A? = A.
Proof: That is since Jaq, a9, a3,a4 > 0 :
a = (a1 —az) +i(az — aq).

So the square root is defined on positive elements. 0
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2 States and Representaions of C*-Algebras

In quantum mechanics, a state of a (quantum) system (e.g. a hydrogen atom) is described by a
vector x € H in some Hilbert space (H, (-,-)). Physical quantities, such as position, momentum or
energy are assigned (selfadjoint) operators that act on the Hilbert space H. Their eigenvalues
constitute the different possible measurement outcomes, when measuring a certain physical
quantity. The expectation value for the outcome of a measurement of the physical quantity T of a
(quantum) system in the state x € H is given by (T'z,x).

A different approach to quantum (field) theory (QFT) is so called Algebraic QFT (AQFT), in
which states are defined as positive functionals ¢ (on a C*-algebra A) of unit norm, as below.
The bridge between these two descriptions are the so called vector states: ¢, (T') := (T'z, z) with
||z|| = 1. So, intuitively speaking, in AQFT one calls a state of 7', what in regular quantum
mechanics was referred to as the expectation value of T'.

So we can define expectation values without making use of Hilbert spaces. The worry is now: do
these states give rise to a unique representation (and thus a unique Hilbert space), or to a whole
set of inequivalent quantum system, making the new AQFT formulation inherently different to
the usual approach? The answer to this question is the so called GNS-construction.

2.1 DPositive Linear Functionals and States

Definition 2.1.1 Positive Functional Let A be a C*-algebra. A linear functional

¢: A— Cis positive =  ¢(a"a) >0 Va € A.
P(A):={p: A— C|yp(a*a) > 0Va e A}.
Definition 2.1.2 State A state is a positive functional of unit norm. The state space is
S(A) :=A{p e P(A)|[lell = 1}

Remark 2.1.3 Semi — definite Hermitian Form Any ¢ € P(A) defines a semi-definite
Hermitian form on A:

(), AxA—C, (a,b), = ¢(ba)

To see (a,b), = (b,a),,, we need the following

(p7

Lemma 2.1.4 For ¢ € P(A) we have that p(a) = ¢(a*).

Proof: Let x € Ag,, then it holds that x = u — v with u,v € AT, so we have
o(z) = @(u) — p(v) € R since (u), p(v) > 0 holds and therefor

p(a*) = p(z —1y) = p(x) —ip(y) = ¢(x) +ip(y) = p(a).
O

Lemma 2.1.5 Continuity of positive Functionals Let ¢ € P(A), then ¢ is continuous. Ie.
P(A) Cc A.

Proof: Let a € A, then there are u,v,u’,v" € A, all with norm smaller or equal to [|a|| such
that
a=(u—v)+i(u —).

It thus suffices to show that there exists a M > 0 such that

pla) < Mllal| Va e Ay
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We assume this does not hold. Then there is a sequence (ay, ), in A with ||a,|| = 1 and
p(ay) > 2" Vn. If we now set a:= > o0 swa, € Ay, it follows for all N € N, that

N 00
N < ‘P(Z Q%Qn) < ‘P(Z QL"CL") = ¢(a) < oo,
n=1 n=1
which is a contradiction. m

Corollary 2.1.6 Let p € P(A), then it holds that |¢(a)|?> < ||¢||le(a*a).

Proof: Let (uy), be an approximate unity like in 2.), then 0 < uy < u, for all A <y and
[lun|| < 1. So
(@) Y dim [p(ua) = lim | (a,un), 2

n—00 n—00 ¥
< Sup (Un, un),, (a, @), = sup (u;,)p(a*a)
n n
lun] <1 .
< lellp(a*a).

Lemma 2.1.7 Let A be a C*-algebra and ¢ € A’, then the following are equivalent:
(1) ¢ is positive.

(2) There exists an approximate unity (un)n with 0 < uy < uy for all X < pand ||uy|| < 1, such
that

lopl] = lim. [ (un)]-
(8) For every approximate unity like (2), ||¢|| = limy— oo | (un)| holds.

Proof: Let w.lo.g. ||¢|| =1

7(1) = (3)” Let (ux)x be as in (2) and let ¢ > 0, then (¢(uy))x is monotonically increasing and bounded
by 1 since A < = uy —uy >0 = p(uy) — o(uy) = @(uy —uy) > 0. So limy p(uy) <1
exists. Let now ¢ > 0 and a € A with ||a]| =1 and |p(a)|* > 1 —¢. Due to 0 < uy <1 (in
A') we have u?\ < uy, since if ¢ = /uy, then u%\ = cuyc < clc = uy. We finally have

c-S

? < sgpw(ﬁ)cp(a*a) < sgpw(w)w(a*a) < sgpso(ux) et lim o (u)-

L—¢ < |¢(a)]* =1lim [p(ura)
Since £ > 0 is arbitrary, it follows that limy p(uy) =1 = ||¢||.
”(3) = (2)” is obvious.

7(2) = (1)” We first show, that ¢(a) € R Va € Agq. Let a = a* with ||a|]| = 1 and let ¢(a) = = — iy with
x,y € R. Assume y # 0. Then w.l.o.g. y > 0 (if not, we just work with —a). For all n € N
we have

lla —inuy||* = ||(a+inuy)a —inuy|| = ||a® +n®u3 +in(ura —auy)|| < 14+n2+n|luya —auyl|.
Since ¢(uy) — 1 = ||¢||, it follows that

lp(a) —in|> = li{n lo(a) — inp(uy)|® = liin lo(a — inuy)|?

i<t , ,
< 11}\11(1+n + n|lauy —uyal]) =14 n”.
—_———

—0
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Then: |p(a) —in|? = |z —i(y +n)| = 2% + (y + n)? = 2% + y? + n? + 2yn and it follows that
x? +y? 4+ 2yn < 1 Vn € N, which is a contradiction to y > 0.
Let now a > 0 with ||a|| = 1, then ||1 — a|| < 1 and with 1.7.5 we have that

lp(a) = 1] = lim [p(aun) — p(un)] = lim fp((a = Dun)| < [[(a = Duall < Jla = L[ [Jur]] < 1.

Where we work in A! if A is not unital. Finally since ¢(a) € R and |p(a) — 1| < 1 we have

p(a) = 0.
0
Corollary 2.1.8 If A is unital and p € A’, then
e>0 & (1) =]l
Proof: If A is unital u, := 1 is an approximate unity and the claim follows directly from the
previous lemma. 0
Corollary 2.1.9 Let ¢,9 € P(A), then we have ||o + ¥|| = |[|¢|| + ||[¥]].
Proof: ¢+ v is positive and thus
o+ [ = lim (o +9)(un) = lim [p(un) + ¢ (un)] = [lo]] + [[¢]].
n—oo n—oo
O

Theorem 2.1.10 Let A be a nonunital C*-algebra, then for every ¢ € P(A) there is exactly one
@ € P(AY) such that

Sla=¢, gl =1l
It follows that
$la+ pnl) = ¢(a) + ullel]-

Proof: Since ¢ is positive, we get ¢(1) = ||@||. If we assume ||@|| = ||¢]|, then due to @|a = ¢
and the linearity of ¢, we have @(a + ul) = p(a) + ul|el|.
Now show that ||@¢|| = ||¢]|, since it then follows that ¢(1) = [|p]| and @ is positive.

Let (uy), an approximate unity like above, then ||p|| = limy,— o ¢(uy,) and
pla+pDll = lpla) + pllell| = lim |@(aun) + pp(un)| = lim |o(a+ pl)un|

< lellli(a+ pl)unl| < [lell lla + pl]].

So we have ||| < [|¢]|. Because of ¢|4 = ¢ we also have ||@]| > ||¢]]. So indeed ||@]| = ||¢l|. O

Example 2.1.11 States on C*-algebras. Remember: a state was a pos. functional of unit norm.

1.) A=C(X) for X compact, then states are just probability-measures on X, i.e. positive
Radon integrals with

pp(X) = p(lx) = 1.
2.) A= L(Hc) then for every x € Hc we have a positive functional @, : L(Hc) — C defined by
0o(T) = (Tw,x), = |lpall = pa(ln) = (z, )
50 @y is a state iff ||x|| = 1. These states are called vector states of L(Hc).

Remark 2.1.12 Convexity of the State Space For the state space S(A) the following hold:
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1.) If A is not unital, then the continuation map
S(A) — S(AY), o= ¢
(defined as above) is an embedding.
2.) S(A) is convex: For p1,99 € S(A) and X € [0,1]:

[1Ae1 + (1 = Nepall = [[Apall + [[(1 = Mgzl = Allpa || + (1 = M|zl = 1.

Theorem 2.1.13 Let A be a C*-algebra, then for every a € A normal, there exists a ¢ € S(A)
with |p(a)| = ||a||. Furthermore for every a € A there is a ¢, € S(A) such that

pla*a) = lall*.

Proof: W.lo.g. let A be unital. Let B := C*(1,a) = C(B). Since B is compact, there is a
XEDB:

llal] = [lallec = la00)] = [x(a)].
Since x : B — C is a x-homomorphism, we also have

X (b"0) = x(b)x(b) = [x(b)]* = 0, Vbe B.

We get x € P(B) with ||x|| = x(1) =1, so x € S(B) with |x(a)| = ||a||. Above we have already
seen, that there is a ¢ € S(B) with ¢|p = x. It follows, that |¢(a)| = [|a||. Since a was general,
we can apply the same reasoning to a*a. 1

2.2 Representations, Gelfand-Naimark Theorem and the GNS-Construction

Definition 2.2.1 Representation A representation of a C*-algebra A on a C-Hilbert space H
1 a *-homomorphism

m:A— L(H).
A representation is called:

e Faithful iff 7w is injective.

e Nondegenerate iff T(A)H = H.
e Cyclic iff there exists a so called cyclic vector &, that is a £ € H such that

m(A)§ C H dense.

e Irreducible iff 7(A)H # {0} and for every closed subspace E:
m(A)E C E, = FE={0}, or E=H.
Remark 2.2.2 We have the following implications:
irreducible = cyclic = nondegenerate.
Where the first one is part of Schur’s lemma and the second is obvious.

Definition 2.2.3 Equivalence of Representations Two representations

m:A— L(H), 7:A— L(H)

are called equivalent, if there exists a unitary operator U : H — H such that for all a € A the
following commutes
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U
_—

H H
7r(G){ Jff(a)
H T’ H

Remark 2.2.4 Fuaithful Representations are isometric x-Isomorphisms onto their image:
7 A n(A) C L(Hy).
Thus it is our goal to construct faithful representations of all C*-algebras.

Remark 2.2.5 Let m = @;cm; be a x-representation of A on H = ®,c1H;, then

ma)=0 & Y m@gVe=) &GeH

icl 7

and
ma)=0 < ma)=0Viel <& kerm = Ncskerm;.

So in order to get w to be faithful (ker m = {0}), we just need to find sufficiently many m;, so that
for each a € A, there is a m; such that m;(a) # 0, since then Nierkerm; = {0} and m = Qierm; is a
faithful representation.

Lemma 2.2.6 Nondegenerate Representations and approximate Unities: Let
m: A — L(H) be a nondegenerate representation and (uy), an approzimate unity with ||u,|| <1,
then

m(up)§ — § V€ € H.

Proof: Let n:= Zggzl 7(ak)nk, then

T(un)n =Y w(unar)m, — Y w(ar)m =1

l l
=1 k=1

since unpar — ag and 7 is continuous. Let now £ € H,e > 0, so by assumption, there is a
n € n(A)H with ||{ —n|| < § and thus

[l (un)§ =&l < [[7(un) (€ = n)l| + || (un)n —nl| + |In — €] -
—_——
<e/3 —0 <e/3
([l

Definition 2.2.7 A x-representation w: A — L(H) and a vector £ € H define a positive linear
functional

Pre € P(A)7 ‘1071',5(@) = <7T(a)f,§> :
Lemma 2.2.8 The above positive linear functional fulfills ||¢x¢|| < ||€]]2.

Proof: We have

prela’a) = (m(a*a)§, &) = (m(a”)m(a)E, &) = (r(a)§; m(a)§) = 0

Cauchy—Schwar

|prela)] = [(m(a), &) | < @l il < @)l < llal 1]

Where in the last step we have used that every x-homomorphism between C*-algebras is norm
decreasing. 0
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Lemma 2.2.9 Nondegenerate Representations give Vector States If 7 : A — L(H) is
nondegenerate, we have ||y ¢|| = ||€||%. It thus follows, that

Ell=1 & pre() = (w()§;€) € S(A)

Proof: By the lemma above, for a nondegenerate representation, we have an approximate unity
(un)pn with ||u,|| <1 and 7(u,)§ — & V€ € H, and thus

lprell = Hm gre(un) = lim (m(un)€, &) = (§,€) = |l¢]1*-

Theorem 2.2.10 GNS — Construction Let A be a C*-algebra and p € S(A), then the
following hold:

e Existence: there exists a cyclic representation m, : A — L(H,) and a cyclic vector &, for
7, with ||§,]| =1 such that

P = Pry.lpr Le.: C)O(CL) = <7r<,0(a)£goa 5‘,0> .

e Uniqueness: If p: A — L(H) is another representation, n € H with p(A)n = H and

p(a) = (pla)n,n),

then it is equivalent to m,, i.e.. p = m,. That is, there is a unitary operator V : H, — H
with V&, =n and
pla)V =Vr,(a).

That is all states are vector states of a unique (up to equivalence) cyclic representation.
Proof:
e Let A be unital and we define
Hy:=A/N, N :={a€ A|p(a’*a)=0},

(,-): Hyx H)— C, (a+ N,b+ N) :=¢(b*a).
Then (-, ) is a scalar product on Hy. We define

e For a € A we define

mo(a) : Ho — Hy, |mp(a)(b+N):=ab+ N

Because of 0 < a*a < ||a||*1 it follows that b*a*ab < b*||a|?b = ||a||?b*b and thus
17 (a)(b+ N[ = (ab+ N,ab+ N) = p(b"a*ab) < ||al[*p(b*b) = [[al[*||b + N |*.

So 7, is a continuous operator on Hy and thus has a unique continuation to H, := Hy. One
can easily show that 7, is a *-homomorphism, e.g. 7,(a*) = m,(a)* since:

(mp(a*)(b+ N),c+ N) = (a*b+ N,c+ N) = ¢(c*a’b) = (b+ N,ac+ N) = (b+ N, m,(a)(c+ N)) .
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e Let now

o =1+N€eHCH, = ¢=¢n¢,

since
p(a) = p(1%a) = {a + N, T+ N) = (mp(a)(L + N), 1 + N) = (mp(a)Sp, &p)
and furthermore 7,(A)¢, = Hy = H, so &, is a cyclic vector: 1= |[p|| = (1) = ||&,] %

e Let now A be nonunital. We consider the continuation ¢ € S(A!), do the same construction
as above and take
H,:=Hz, m,:=mgla.

The only property that needs to be varified is that {, is again a cyclic vector in this context.
For this it suffices to show, that m,(A)&, = m,(A!)E, holds. So we need to show

§p = mp(1)&y € Ww(A)fso

that is since m3(AY)E, = m,(A)E, + C&,. Inserting an approximate unity (uy)y with
[luxl| <1, we get

Imo(un)ée = &olI? = lImp(un)&oll® = (mp(ur)ép, €o) — (Epr mp(ur)é) + 1€,
= (ux+ N, ux+N) = (ux+ N, 1+ N) = (I + N,uy+ N) + (L + N, 1+ N)
= p(u}) —2p(ux) + ¢(1) = 0.
—— e~

—|lell =llell =l

That is since if (uy)y is an approximate unity, then also u?\ is an approximate unity of A.
We thus get m,(uy)é, — &, and finally &, € 7, (u))Ep.

e Uniqueness: Let now p: A — L(H') be another such representation, n € H' with ¢ = ¢, ,,
then define
V:Hy— H', V(a+ N):= p(a)n.

V is linear and isometric, since:
(V(a+N),V(b+N)) = (pla)n, p(b)n) = (p(b”a)n,n) = ¢(b"a) = {(a+ N), (b+ N))

and because of V(Hy) := p(A)n = H' we know that V has a unitary continuation with

Vrp(a)(b+ N) =V(ab+ N) = p(ab)n = p(a)p(b)n = p(a)V (b+ N).
We conclude V7, (a) = p(a)V.

Theorem 2.2.11 Gelfand — Naimark Let A be a C*-algebra. Then there is a faithful,
nondegenerate x-representation w: A — L(H) for some C-Hilbert space H. If A is separable, then
H can be chosen to be separable (i.e. H = C" [*(H)).

Proof:
mi= Ty, H:= @ H,
pES(A) pES(A)
e 7 is nondegenerate: m(A)H = H, since 7,(A)H, = H,.
e 7 is faithful: Let 0 # a € A, then there exists a ¢ € S(A) with

lal[* = ¢(a”a) = (a + N,a + N) = (r,(a)ép, mp(a)Ep) = [Imp(a)éy .

Thus we have ||7,(a)&,|| > ||al|||¢e|| which for the operator norm means ||7,(a)|| > ||a|| and
thus ||m,(a)|| = ||a|| since 7, is a *-homomorphism. In particular we have m¢(a) # 0.
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e Let now A be separable. Choose a dense sequence (a,), in A and ¢, € S(A) with
|lon(atan)|| = |lan||?. Then also & = Benm,, is a faithful representation on the separable
Hilbert space @&,enH,,,. This is shown in the following two steps:

— 0 # a € A be arbitrary, choose a,, with ||a, — a|| < @ It follows that

1Tn (@n) — T ()| < 121 and |7y, (an)|| = ||an|| > 121, so

7Ten (@ 2 lI7g, (@n)]| = [I7, (@) = 7p, (an)[| > 0. And thus also 7(a) 7 0.
— Every H,,, is separable, since {a, + N |n € N} is dense in H,,,
(llan + N —a+ N> = o((an — a)*(an — a)) < ||a, — al|?, since ||¢|| = 1) and thus
every H,, has a countable ONB. The countable union of all these ONB is a countable
ONB of Hy.
U

2.3 Pure States, Irreps and Schurs Lemma

In this section, we shall see that pure states are exactly the states belonging to irreducible
representations.

In quantum Mechanics, a pure state is a state, that is not a linear combination of other states.
This is reflected in the following definition:

Definition 2.3.1 Pure States A state ¢ € S(A) is called pure iff for all 11,19 € P(A) with
[|¥ill <1 and X € [0,1] it follows, that

Ifo=M1+1-Np2, = 1 =p=1p
Pure(A) := {¢ € S(A) | ¢ is pure}

Theorem 2.3.2 Krein — Milman Let (E,T) be a locally conver K-VS and @ # K C E
compact, then

Ext(K) # @, K C conv(Ext(K)).
If K C E is compact and convex, then

K = conv(Ext(K)).

Remark 2.3.3 Together with the next theorem, Krein-Milman not only proves the existence of
pure states, but also proves that there are ”sufficiently many.”

Theorem 2.3.4 Let A be a C*-algebra and K := {¢ € P(A)|||¢|| <1}. Then K is a compact
and convex subset of A’ in the weak *-topology, and

Ext(K) = Pure(4) U {0}, K = conv(Pure(4)uU{0}).

Proof: Let (¢,), be a net in K with ¢, — ¢ € A’. Tt follows that

p(a*a) = limy, o0 pn(a*a) > 0 so ¢ € P(A) with ||¢|| < 1. Thus K is closed and thus, with
Banach-Alouglu, compact.

If ¢ € Ext(K), it follows that ||¢|| = 0 or ||¢|| = 1. If ||¢|| = 1 then ¢ € Pure(A) by the definition
of Pure(A). Thus we have Ext(K) = Pure(4) U {0}, and K = conv(Pure(A) U {0}). ]

Theorem 2.3.5 Let A be unital, then S(A) is compact and convex with

|Ext(S(A)) = Pure(4), 8(4) = conv(Pure(A)) |

Proof: Analogous to the previous theorem. 0
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Corollary 2.3.6 Let A be a C*-algebra, it then holds that

lall* = sup p(a*a)
p€EPure(A)

Proof: If a € A, then with 2.1.13 there is a 1 € S(A) with ||a||> = ¢(a*a). With 2.3.4 for every
e > 0 there are ¢1,...,¢; € Pure(A4), \,...,\; > 0 with 22:1 Ai <1 and

!
Y dipi(ata) > y(ata) —e = |[[al* — <.

=1

But then there is at least one i € {1,...,1} with p;(a*a) > ||a||*> — . And since ¢ > 0 the claim
follows. N

Lemma 2.3.7 Characterization of Pure States Let ¢ € S(A), then ¢ € Pure(A) iff for all
P € P(A) with 0 <1 < ¢ there exists A € [0, 1] with 1 = .

Proof:

7 =7 Let ¢ € Pure(A) and 0 <9 < ¢. Then ¢ =¥ + (¢ — ) with ¢ — ¢ > 0 and with 2.1.8 it
follows that 1 = ||o|| = |[¢|| + || — |- If ¢ # 0 and ¢ # ¢, then set A == 1 (p —¥). It
then follows that ||¢1]] = ||2|| =1 and ¢ = A1 + (1 — A)1ha, s0 ¢ = b1 = 1o, since
¢ € Pure(A4). We have, that ¢ = ¢ = %@/}, ie. Y= dp.

7 <7 Tt now holds that 0 < ¢ < ¢ = 1p = Ap for a A € [0,1]. Let 91,19 € Pure(A) with
[|Y1]],]]2]| < 1and t € (0,1) with ¢ =t + (1 — t)h2. Due to
1= ||oll = t||1]] + (1 —t)||12]|, it already follows that 1 = |[11]|| = ||¢2]| and further

0<th1 <o, 01—t <o
Thus there exist A, i € [0, 1] with
thr = Ap, (1= t)ihs = pp.

Because of t = [[ty1|| = ||\p|| = A (analogously for 15) it holds that t = A, (1 —¢) = pu, so

1 =@ = .
OJ

Lemma 2.3.8 Let A be a C*-algebra, m: A — L(H) a x-representation, & € H with ||¢|]| = 1 and
v € S(A) defined by

pla) = (m(a),§,§) & ©=¢ne
Then the following hold:

(1) Let T =T* € L(H) with 0 <T <1 and [T,7(a)] =0 for all a € A, then
0 <¢re() == (r()TE TE) < .
(2) If € is a cyclic vector, then T — Ype(-) := (w(-)TE, TE) is injective.
(3) For all 0 <1 < ¢ we have ¢ = g for some 0 < T < 1 with [T, mw(a)] = 0.
Proof:

(1) Let T' € L(H) with ||T|| < 1. It then holds that

Yr(a'a) = (r(a*a)T€ T€) = (n(a)T€, 7(a)T€) = ||m(a)TE||*
= [|Tn(a)é]]* < [|m(a)é]]* = (m(a*a). &) = p(aa).
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(2) Let 0 < T,T" < 1 with 97 = 7/, we will show that T2 = (T")? , since it then follows that

—VI2C TR =T

For all ¢ € A it holds that
(r(a)e, T%€) "= (Tn(a)€, T€) = (m(a)TE, TE) = Pr(a) = ¥ (a) = (m(a)é, (T')€) .
Since w(A)é = H, it follows that T2¢ = (T')%¢ and then
T2(r(a)§) = m(a)T% = w(a)(T")%¢ = (T')*(n(a)¢).
Le. T? = (T")? on w(A)¢ C H, and since 7(A)¢ = H, the claim follows.

(3) Let 0 < ) < ¢ and w.lo.g. 7(A)¢ = H (since if not, we can just work on 7(A)H). Set
Hy:=n(A)¢ C H, then

() Hox Ho — C, (m(a)§, m(b)E),, = ¥(b%a)

is a semidefinite hermitian form on Hy, with

| (m(a)¢, w(b)€),, [* = [ (b"a)|? < v ha*a) < pb™b)e(a*a) = [|m(b)E] 2l lm(a)e] .

So (-, ), is continuous and has a continuous continuation to H with | (n,7),, | < ||n]|[|7]|

Vn,7 € H. By a theorem from functional analysis, there is now a T* = T > 0 with ||T|| < 1
with
i)y = (Tnir), Vi€ H.
In particular
V(v a) = (r(@)¢, 7(0)8),, = (Tr(@)¢, ()¢ ), Vabe A
For arbitrary a,b,z € A we then have

(n(@)¢. Tr(2)m(b)¢) = v((b"2")a) = ¥(b* (")) = (w(z*a)é, Tr(b)€) = (n(@)&, 7(x)Tw(b))

and since 7(A)E = H, it follows that 7(2)T = T'w(z) Vz € A. For A = (T)'/2, it also holds
that 7(2)T = Tn(z) Vz € A, and

v a) = (r(@), Tr(b)€) = (m(@)&, T*w(b)€) = (Tr(a)é, Tr(b)E) = r(b*a).

Since A = A%? = A* A, we have 1) = 9.

Remark 2.3.9 Ifn: A — L(H) a *-representation, and E C H an invariant subspace, then
7|p, gL are % —representations and : T =7|p O 7w|pL.
That is since for € € E,n € B+ :
(r(a)¢,n) = (&, m(a™)n) =0, since w(a™)n € E.
Lemma 2.3.10 Schur Let m: A — L(H) be a x-representation, then the following are equivalent:
(1) 7 is irreducible.
(2) All0 # &€ H are cyclic vectors: m(A)¢E = H.
(3) If [T,7(a)] =0 for alla € A, then T = A1 for a X € C.

Proof:
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T(1) = (2)7

First let 7 be nondegenerate, then E : 7(A)H C H, {0} # F and n(A)E C n(A)H C E,
thus £ = H. If 0 # £ € H, then we have for E¢ := m(A)¢, that 0 # E, since
¢ =lim7(uy)§ € Ee. It follows, that

7(A)Ee C m(A)r(A)E = n(A%)E = 7(A)E = F

and thus F¢ = H,ie. H=F.

If 0 # E is a closed linear subspace with 7(A)E C E, then H = n(A){ Cn(A)ECE=F
forall 0 #& € F andso H =F.

Let T € L(H) with Tnw(a) = m(a)T Va € A, then w(a)T* = (Tn(a*))* = (7(a*)T)* = T*n(a)
Va € A. Switching to Re(T),Im(7"), we can w.l.o.g. assume, that 7' = T". We now show
that o(T') = {\} for a A € R. It then follows that 7' = A1, since on o(T) it holds that

AL = {id}, so T = id(T) = AL(T) = AL.

Since T'r(a) = w(a)T Va € A, we also have f(T)n(a) =n(a)f(T)Va € A, f € C(a(T)). We
assume that 3u, A\ € o(T") with u # A. Then there are f,g € C(o(T")) with f(A) = g(p) =1
f g =0 and it follows that

) #0#9(T), f(T)g(T) = (f-9)(T)=0.
Set E := f(T)H # {0}, then

(A)VE C 7(A)[(TVH = f(D)x(A)H C [(T)H = E.

So E = H since E # 0 and 7 irreducible. But we have g(T)E C g(T)f(T)H = 0H = {0}
and thus F # H (since g(T') # 0), which is a contradiction.

Let 0 # E C H be a closed linear subspace with 7(A)E C E. Let
P:H-—E, P&=¢&, for E€=6+6&, GeE&LeE!
be the orthogonal projection onto E. Then for all a € A,&; € E, & € E+- we have
Pr(a)(& + &) = P(rla)é + 1(0)6) = m(a)tr = m(a) (P& + &2))-
€E eEt

so Pr(a) = m(a)P for all a € A. So it follows, that P = A1 for some A € C. Due to
P* = P? = P we have A = A2 = )\, i.e. A € {0,1}. Since P # 0 (since E # 0), we have
A=1,and thus P=1and FE=1H = H.

Theorem 2.3.11 Pure States are Irreducible Representations Let A be a C*-algebra,
m:A— L(H) a *-representation, ¢ € S(A) and £ € H a cyclic vector such that

p(a) = (r(a)§; &) .

Then the following hold

(1) m is irreducible < ¢ € Pure(A).

(2) If w is irreducible and 0 # &,m € H with (w(a)¢, &) = (w(a)n,n), then n = X, with A € St

(3) If m, p are irreducible and £ € Hy, n € H, and (w(a)§, &) = (w(a)n,n), then ™ = p.

Proof:

3)

Since m, p are irreducible, they are in particular nondegenerate, so
EN1? = |lenell = [l@pnll = |In]|>. W.Lo.g. we shall assume that ||¢|| = ||n|| = 1 and thus
©re = Ppn is a state and (3) follows form the GNS-construction.
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(17 =7 Let 0 # E C H be a m(A) invariant subspace and P : H — E the orthogonal projection
onto E. Then Pr(a) = m(a)P for all a € A and 0 < P < 1. With 2.3.8 we have
0 <p < p. Since ¢ is pure, with 2.3.7 we have a A € [0, 1] such that ©p = A¢ and it
follows that

¥p(a) = (r(@)PE, PE) = A (r(@)&, &) = (n(a)VAg VAS).

Since € is a cyclic vector for 7, we have with 2.3.8, that P = v/A1 and since P = P2,
we have VX = A € [0,1]. Since F # 0 we have A = 1 and E = H.

7 <7 With 2.3.7 it is enough to show 0 <1 < ¢, so that ©» = Ap for a A € [0,1]. With 2.3.8
there is a 0 < T < 1 with T'n(a) = 7(a)T Ya € A and ¢ = vp. Since 7 is irreducible, it
holds that "= A1 for a A € C and since 0 < T < 1, we have A € [0, 1], and thus for all
a € A:

¥(a) = ¢r(a) = ((a)AE, AE) = [A]* (m(a)§, &) = Np(a).

(2) Using (3), we have a unitary U : H — H with U§ =7 and 7(a)U = Un(a) and thus with
Schur U = A1. Unitarity U* = U~! gives A = A™!, so A € S! and in particular n = \¢.

Remark 2.3.12 Summary For a C*-algebra, define:

Cycl(A) := {(m,&)|n:A— L(H) cyclic rep, § cyclic vec, |[¢]] =1},
Irrep(A) = {(m,&)|7m: A — L(H) irreducible rep, & € H, ||{|| = 1}.
And we have the following mappings
Cycl(A) — S(A), S(A) ¥ Cyel(A)
(7T7§) — Pre Y= (Tr@a&p)

where the second is given by the GNS-construction. We now define an equivalence relation on
Cycl(A) by

(m,&) ~(p,m), & IV eU(Hxr Hy): VE=nand Vr(a) = pa)V.

So we get the following two bijections

(Cycl(4)/ ~ «—  S(4)]

which follows from the GNS-construction. And by the map [(7,£)] — or ¢ we have

’Irrep(A)/N — Pure(A)‘

with the inverse map ¢ — [(74,&,)].

Definition 2.3.13 Structure Space We define the structure space to be

A:={[r]|x: A— L(H) irrep}

Remark 2.3.14 A is also called the spectrum of A and denoted Spec(A).

Theorem 2.3.15 Let A be a C*-algebra, it then holds that

llal| = sup{l|n(a)|| | [x] € 4}
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Proof:
lal = sup g(a'a)= = sup (n(a*a)§,&)=  sup (m(a)¢,m(a)§)
p€ePure(A) (m, f)elrrep(A) (m,6)€lrrep(A)
II3 |
= sup [[m(a)¢|* < SUlI{HW(a)H2 < [lalf?
(m,§)€lrrep(A) [r]eA

So we get ||al| < SUDc 4 || (a)|], but since 7 is a *-homomorphism, we always have
I (a)[] <{lall. O

Corollary 2.3.16 Letw € [r] € fl, then the following is a faithful, nondegenerate representation
of A:
T = @[W]EAT( A — L(@[W]GAHW)

2.4 The Spaces A and Prim(A)
Definition 2.4.1 Let A be a C*-algebra and I C A a closed ideal, then define

A; = {[r] € A|=(I) # 0},
Ayr = {lr] € Alx(I) =0}

So we have

with the quotient map q.

Proof: We only prove the injectivity of ;1; — 1. Tts surjectivity is a consequence of the next
lemma. The bijectivity of the second map is left as an exercise.

It holds that w : A — L(H) is irreducible with 7(I) # 0 and thus 0 # E := w([)H is a w(A)
invariant closed subspace of H since w(A)w(I)H C n(A)w(I)H = n(AI)H C n(I)H. Now since 7
is irreducible, it follows that 7(I)H = H.

We now show that «|; : I — L(H) is irreducible. Let T" € L(H) with T'w(b) = 7(b)T Vb € I. We
show that 7" = A1y (which with Schur gives the irreducibility of 7|;). For all a € A,b € I, we have

abel

Tr(a)(m(b)§) = Tr(ab)¢ "=" m(ab)TE = m(a)(x(b)T€) = m(a)(Tm(b)¢) = m(a)T (7 (b)S).

Since 7(I)H = H, we get Tm(a) = n(a)T Ya € A and because of the irreducibility of 7, with
Schur, we get that T'= A g for a A € C.
Now show that if 7,p: A — L(H;), L(H,) are irreducible with 7(I) # 0 # p(I), then

T=Ep & W’[gp‘[.

Once we have this result, it is obvious, that the map A; — I, [7] ~— [r|;] is well defined and
injective.
"=" IfV:H; — H, is an equivalence for m and p, then it is also an equivalence for 7|; and p|;.
7«7 Let V: Hr — H, be unitary with V7 (b) = p(a)V Va € A. Let a € A, then Vb € I,§{ € Hy:
V(a)(m(b)§) = Vr(ab)§ = p(ab)VE = p(a)(p(b)V)E = p(a)(Vp(b))€ = p(a)V (p(b)S)

and since m(A)H = H, the claim follows.
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Remark 2.4.3 With the above bijections we have

A%’fl_lfT/\Iassets

Lemma 2.4.4 Let A be a C*-algebra and I C A a closed ideal, then for a nondegenerate
x-representation m: I — L(H) there exists exactly one continuation

7:A— L(H), 7|f=m.
Proof: If 7 is such a continuation, then for a € A,b € I we have

7(a)(m(b)§) = 7(ab)€ = m(ab)S.
Since 7(I)H = H we get uniqueness. For a n=>"", m(b;))§ € m(A)H it holds that

We now show that this defines a well defined operator 7(a) € L(H), such that 7: A — L(H) is a
x-representation of A.

1. Well defined: Let 7 be as before and (u, ), an approximate unity for I, then:
w(a)n =) m(ab)& = nl;n;OZW(aunbi)fi = lim 7(auy,) Zw(bi)& = lim 7(au,)n.

=1 =1 =1

Thus 7(a)n does not depend on the specific representation of 7. Le. 7(a) is well defined on
m(A)H. For n € m(A)H we then have

[7(@)nl? = lim [|7(aun)n||* < sup || (awa)nl* < sup ||m(au,)|?||n]|*
n n

n—oo

IN

sup ||awa|[*[|7]* < [al*[|n]]*.
n

Thus 7(a) is continuous and therefor has a unique continuation to H = w(A)H.

2. 7:— L(H) is a x-representation: linearity and multiplicativity are easy to show. We only

prove 7(a*) = 7(a)*.

Let &,n € m(A)H, then
(T(a)€m) = lim (7(aun)&,m(un)n) = lim (7(un), 7(a”un)n) = (€, 7(a”)n) -

n—o0

So 7 is indeed a *-representation.

3. Finally if b € I, € n(I)H, then
7(b)n = lim mp,,n = m(b)n,
n—oo

thus 7|7 = 7.

Definition 2.4.5 Hull Ker Let A be a C*-algebra and E C A a subset, then define

ker B = Nppepkerm,
hull(J) = {pe A|J Ckerp}.
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Remark 2.4.6 We have already shown, that for commutative A, we always have
E =hull(ker E), VYEC A.

Theorem 2.4.7 Hull — Kernel Topology (Jacobsen Topology or Zariski Topology) for a (not

neccessaily commutative) C*-algebra A is the unique topology on A such that

E=hull(ker E), VECA

Proof: Let A := {hull(Z)|I C A closed ideal}.
e We first show that A fulfills the axioms for closed subsets of a topological space.

1. hull(@) = A and hull(4) = @, so @, A € A.

2. Show: If {I;|i € A} is a system of closed ideals in A, then there is a closed ideal J C A
with
Nieahull(Z;) = hull(.J).

This is fulfilled by J := LH{U;eal; }.

3. Show hull(;) U hull(/2) € A. Consider the closed ideal I := I; N I for which we have
Lhnly=1-Iysince I =1 C Iy - .

e Uniqueness: It now follows that p € hull(/;) U hull(l2) < p(I1) = 0 or p(I2) = 0, thus
p(I1 - Is) = p(I) =0, so p € hull(I).
Vice versa, if p € hull(I) and e.g. p(I2) # 0, then p(I;) = 0, since p(I3) # 0 =
plr, € Irrep(I2) and thus p(I2)H = H.
If also p(I1) # 0, applying the same argument, we would get p(I1)H = H and thus

0=p(I)H = p(l1 - I2)H = p(11)p(I2)H = H,

a contradiction. So there is only one topology on A, such that the elements of A form the
closed subsets of A.

e We also show that if E C A, then
peEE << pechulllkerE).

Since ker E C A is a closed ideal, we have that hull(ker A) C A closed with E C hull(ker E).
Vice versa if F' = hull(I) C A is any closed subset with E C F, then I = ker F C ker E and
thus hull(ker F') C hull(I) = F. So we conclude that hull(ker E) is the smallest closed subset
in A that contains E.

O

Remark 2.4.8 Closed Ideals If I C A is a closed ideal, then

hull(I) = A, = A;.
This follows from the last result of the last section, which gives

N __—kero = ker(®

oeA/l )={0+1} C A/IL

Vi
Thus for the quotient map it holds, that

Noehul(r) kero = ey ker(ocoq) =kerq = I.
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Remark 2.4.9 Closed Sets The closed sets in A are of the following form:

K CAclosed <« K=nhul(I)=A/l

for some closed ideal I C A. The open sets are exactly the complements.

Remark 2.4.10 The hull-kernel topology on A does not necessarily fulfill any of the separation
azrioms:

1. The hull-kernel topology on A s generally not Hausdorff. For example take A = L(H ), with
H =1%N). Then 14 : L(H) — L(H) is irreducible and

{14} = hull(ker 1 4) = hull({0}) = L(H).

Since K( ) € L(H) is a closed ideal, there exists an irreducible representation
peL(H )/K(H) We then have

p#La, pe{la}=L(H).
But points in a Hausdorff space need to be closed.

2. The hull-kernel topology on A need not even be T.

Definition 2.4.11 Primitive Ideals and Prim(A) Let A be a C*-algebra. An Ideal P C A is
called primitive iff

dm € Irrep(A) : P =kerm.

We set
Prim(A) := {P C A| P is primitive ideal}.

And there is a surjective map

The topology on Prim(A) is defined by
U C Prim(A) is open iff ¢~*(U) C A open
and is also refered to as hull-kernel topology.
Remark 2.4.12 An equivalent definition of the topology on Prim(A) is by defining
ker B := Ngep@, hull(J)={P € Prim(A)|J C P}

and again demanding
E = hull(ker E), VE C Prim(A).

Theorem 2.4.13 Prim(A) is always a Ty space and the following are equivalent
1. Aisa To space.
2. If m,p € Irrep(A) with ker ™ = ker p, then ™ = p.

3. ¢: A — Prim(A) is a homeomorphism.
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Proof: We only show that Prim(A) is always a Tj space and leave the rest as an exercise.
Let Py # P> € Prim(A), then hull(P;) # hull(P), since otherwise

Py = ker(hull(Py)) = ker(hull(P)) = Ps.
Now if P € hull(Py), then P, D P;. Since P» # Py we have P, ¢ Py and thus
Py # hull(Py).
So for U := Prim(A)/hull(P,) we have P € U and P, # U. O

Theorem 2.4.14 (locally) compact Prim(A) and A are always locally compact. If A is unital,

then Prim(A) and A are compact.

Proof: We only prove the statement for unital algebras. And since Prim(A) is the continuous
image of fl, it is enough to prove the claim for A.

We will prove that A hat the finite intersection property for closed sets, i.e. if {Ei|li €A} a
system of closed subsets of A with nonempty intersection N;cpF; # &, then for any finite subset
F C A, then also Njep B # @.

Now let I; C A a closed ideal with E; = hull(Z;). Assume N;epF; = @. In a previous proof, we
have already shown that

NieaF; = ﬂiEAhuu(Ei) = hLlH(J) with J = LH{UleAIZ}
Because of @ = hull(J) = /T/\J we get that A/J = {0} so A= J. Then J=LH{Ujeal} C Ais a
dense ideal and since A is unital we already have that J = A = hull(A) = @. A contradiction! [

2.5 (C*-Algebras of Compact Operators

In this section we shall study a class of operators for which the irreducible representations
determine all of the representation theory. Every x-representation is given as a direct sum:

ACK(H), =  A=PK(H,).
pEA

Definition 2.5.1 Projection Let A be a C*-algebra. p € A is called a projection iff
p=p"=p"
Lemma 2.5.2 Spectral Decomposition If T' € K(H) with T =T*, then

T= > AP, H= P E\

A€o, (T) Aeop(T)

with 0,(T) = {\ € R| X eigenvalue of T'} and Py : H — E) the orthogonal projection onto the
eigenspace Ey :=ker(T — A\1). It then further holds, that

’dimEA <ooVA#0, EyLEu, P\P,=0 for y# A\

The point spectrum o,(T') is either finite or countable and o,(T) has an accumulation point that
is not 0. That is since if {\, |n € N} is a counting of op(T) \ {0}, then A, = 0 (if 0,(T) is not
finite).

Lemma 2.5.3 Point Spectrum of Compact Operators If T € K(H) with T = T*, then

o(T)U{0} = 0,(T)U{0}, Py =1;(T) YA € o(T) U {0}

where 13y (1) = dxp-
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Proof: We shall only prove the first assertion. It trivially holds that o,(T") C o(T"). We thus
take 0 # pu € o(T) \ 0p(T) and the idea is to prove that (7" — p1) is bijective, since then it is
invertible and p ¢ o(T), which completes the prove.

e Injectivity: Let 0 £ & € H, then £ = ZAeop(T) &\ with €, € E), and &), # 0 for at least one
A. It follows that Py & = &) and

(T—-pl)E= > A& —p&)= > (A—pké.

Aeop(T) Aeap(T)

This gives (T — p1)€]° = ey iy A — i2lIEIE > 0, since (A — 1) # 0 VA and [[&][2 > 0
for at least one A. So we see ker(T — 1) = {0}.

e Surjectivity: Again take £ = ZAEUP(T) &\ € H and define

1
Y T = @Towm=c¢
Xeop(T)

The sum is well defined, since p is not an accumulation point of ¢,(T") and we know that

{ﬁ |\ € 0p(T)} is bounded. So the sum converges in H. -

Corollary 2.5.4 Let A C K(H) be a C*-subalgebra and a = a* € A. Let 0 # X € o(a), then the
orthogonal projections onto E) are in the subalgebra:

a= Y AP, with Py€ AVA
0#£1eo(a)

Proof: This is an immediate consequence of Py = 11y1(a) € A. 0
Remark 2.5.5 Ifp € K(H) is an arbitrary projection, then dim(p(H)) < oo. That is since
Plprry = Lperry - p(H) — p(H)

and thus Bf(H)(O) = p(BIf(H)(O)) C p(BH(0)) is compact. Subsets of the unit ball in an infinite
dimensional Hilbert space are compact iff they are finite dimensional.

Remark 2.5.6 If A C L(H), then being a projection is equivalent to being an orthogonal
projection. Due to p = p? = p*, we have p > 0 for every projection p € A.

Lemma 2.5.7 Let A be a C*-algebra and p,q € A. The following are equivalent
(1) ¢<p
(2) ap=pq=q
(3) (if AC L(H)) q(H) € p(H)
Proof: With Gelfand-Naimark: w.l.o.g. we can assume that A C L(H), then
a>0 & (a&,§) >0 V&€ H.

(1)=3) g<p<e (¢&¢ < (p§,&) V¢ € H. We further assume 3¢ € q(H) with £ ¢ p(H). We
decompose & = & + & with & € p(H), & € p(H)*L. Tt then follows, that

€N = [|&]] + ||&2|?
with |[&][? # 0 and
€17 = (6,8 = (46, &) < (€, &) = (&1, & + &) = |Gl < I€]?,

which is a contradiction.
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(3) = (1) is obvious.

(3) & (2) is left as an exercise.
([l

Definition 2.5.8 Minimal projection A minimal projection in a C*-algebra A is an element
0 # p € A for which for every other projection 0 # q € A, we have

q<p = q=p
Example 2.5.9

1.) One dimensional projections in L(H).

0

1o is a
0 1

minimal projection in A, since M2(C) = A and ( (1) (1) ) is minimal in Ms(C).

(0 1)
2')LetA::{<€;>|T€M2(C)}§M4(C),thenP: 01 (

0

Lemma 2.5.10 Let A C K(H) be a C*-subalgebra. If 0 # p € A, then

’ p minimal < pAp = (Cp‘

Proof:

7 <=7 Let pAp = Cp if now ¢ is a projection in A with ¢ < p, then

q = pq = pgp € pAp = Cp.
So we have ¢ = Ap for some A € C and we have either ¢ = 0 or ¢ = p.

”? =7 Let now p be minimal. We will show that if a € A, then pap = Ap for some A\ € C.
Decomposing a = Re(a) 4 ilm(a), we can assume w.l.o.g. that a = a*. We then also have
(pap)” = pap and
pap = Z APy
0#\€o(pap)

If we can prove Py < p V0 # \ € o(pap), we will get Py = p VA and the claim is proved since
then o(pap) \ {0} = {A} for some A and thus pap = Ap. P\ < p is seen as follows: We know

p(H)* = kerp C ker(pap) C ker(Py) = Py(H)*

and thus P\(H) C p(H), i.e. P\ <p.

Lemma 2.5.11 Projections are sums of minimal projections Let A C K(H) be a
C*-subalgebra, then every projection p € A is a finite sum of minimal projections p; € A:

p=p1+-+p, pip; = 0 Vi # j.
Proof: We prove the lemma by induction on the dimension n := dim(p) := dim(p(H)) < oc.
e n =1 : Clearly for n = 1 the projection p is minimal.

e n —n+1:If pis minimal, we are done. If not, then there exists another projection ¢ € A
with 0 # ¢ # p and ¢ < p (since if such a ¢ did not exist p would be minimal). We then have
q(H) € p(H) and dim(q) < dim(p) =n + 1, i.e. dim(qg) < n. Furthermore p — ¢ is the
projection onto ¢(H)* Np(H) and we also have dim(p — ¢) < n. So we can apply the
induction hypothesis to p — ¢ and ¢, which gives the desired decomposition of p = (p —q) +q.
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0

Theorem 2.5.12 If A C K(H) is irreducible (i.e. the representation 14 is irreducible), then it
holds that A = K(H).

Proof: The strategy of the proof is proving the first point of the following

1)
2)
3)

"

A contains all projections p of rank 1, i.e. dim(p) = 1.
A thus contains all projections.

With the spectral decomposition T =T' =} e, (1) AP € K(H), we get that A contains
all self adjoint compact operators.

The decomposition T'= Re(T') 4+ iIm(T") € A+ iA = A, shows that all operators are in A.

We show, that there exists a minimal projection p € A

The existence of some projection p € A is assured since A # {0} due to irreducibility and for
0+# a* =a € A we have o(a) # {0} and for 0 # X\ € o(a) we have 0 # Py € A. We know
that every projection is an orthogonal sum of minimal projection in A, in particular
minimal projections in A exist.

For the minimal projection p € A, it holds that dim(p) = 1.
Let 0 # £ € p(H) and let n € p(H) arbitrary with 71L&, we will show that n = 0. Since p is
minimal: pAp = Cp, thus for all a € A :

1
(a&,n) = (ap€, pn) = (papt,n) = (\p€,n) = (A&, 7) =" 0.
Since A C L(H) is irreducible, we have A¢ = H, so we get n € H+ = {0}.

It remains to show that every projection ¢ € K(H) of rank 1 lies in A.

Let n € q(H) with ||n|| =1, then ¢ = (¢,n)n V& € H. Then take a p as above. So for a
¢ € p(H) with [|¢|| = 1, due to AE = H, there exists a sequence (a,), in A with a,& — 7
and ||ay|| = 1 ¥n € N. We then have appa) € A ¥n € N and

(anpaz, —q)vll = llanp(ayv) — (v, n) nl| = llan((a,v, §) §) — (v, n) 7]
= [[{anv, &) ang — (v, m) nl| = || (v, anf) ang — (v, n) 1|
= |[(v,an€ —n) an§ — (v, ) (an€ — n)||
< 2lpolllang — nl|-

Where the last inequality holds due to ||a,&|| = ||n]| = 1. It follows, that
|lanpag || < 2[lang —nl| — 0

and thus ¢ € A.
O

Definition 2.5.13 Simple algebra A simple algebra A is a C*-algebra in which the only closed
ideals are {0} and A.

Lemma 2.5.14 K(H) is simple.

Proof: 1If0# 1 C K(H) is an ideal, then I C K(H) is irreducible, since 1 g is irreducible
and thus also 1 g g)|7 :— K(H). Tt then follows that [ = K(H). O

Corollary 2.5.15 Irreducible subalgebras contain no or all compact operators If
B C L(H) is an irreducible C*-subalgebra with BN K(H) # {0}. Then K(H) C B.
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Proof: {0} = BN K(H) is a closed ideal in B. Since 1 : B — L(H) is irreducible, 1 g g is
too. With the last lemma, we get BN K(H) = K(H). 0

Lemma 2.5.16 Let A C K(H) be a C*-subalgebra with AH = H and let p € A be a minimal
projection. Let & € p(H) with ||€]| =1 and Hy := A C H, then

Alp, = K(Hyp).

Proof: Let T € L(Hy) with Ta = aT Ya € A|p,. We will show that "= A1 for some A € C,
since then, due to Schur, we get A|p, is irreducible. Then the above lemma lets us conclude that
Alp, = K(Ho).

We shall show T = (T¢, ) 1, for which we define T := (T — (T&,£) 1). It follows, that

(Te,€&) = (T¢, &) — (T€,€) (£,6) =70,

Now let a,b € A and observe
pb*T = pb*]HOT = pr*‘HO'

Since p is minimal p € C: pb*ap = up and we get
(Tag, b§) = (Tapg, bps) = (pb"Tapg, §) = (Tpb ap, §) = p(TE, &) =0

So, since A = Hy, we have indeed proved that T = 0 and thus T = A1 for A = (T¢,¢) € C. ]

Example 2.5.17 Let H=C* A= {( g ; > | T € My(C)} € My(C),
(b7)
P = 10 and £ = ey, then Hy = spanc{ey,ea} =2 C? and A|p, = My (C).
(o)
01

We now come to one of the central theorems on the decomposition of A C K(H) into irreps:

Theorem 2.5.18 Decomposition into Irreps Let A C K(H) such that AH = H and let

m: A — L(H) be any nondegenerate representation of A, then there exist irreducible
representations w; : A — L(H;) such that

Q. =D
el

il

q

I

Furthermore: it holds that each m; is equivalent to an irreducible sub-representation of
1:A— K(H).

Proof:

e First, there is a minimal projection p € A with 7(p) # 0, since otherwise all projections ¢
would be zero 7(q) = 0 in L(H), since every projection is a sum of minimal ones. And finally
we would get m(A) = 0, due to the spectral decomposition theorem 7w(a) = >, Ar(Py) =0
for all a = a* € A and the decomposition T' = Re(T') + iIm(7T") for any T € A.

e For a minimal projection p € A with 7(p) # 0, we know that pAp = Cp and thus there is a
linear functional f : A — C such that pap = f(a)p Va € A. Choose an n € n(p)H with
IIn]| =1 and a £ € pH with ||¢|]| = 1. Set

Hy = 7w(A)n, Hy := A¢.
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e Now if mg: A — L(ﬁo) is a sub-representation of 7 on Hy and 1y : A — L(Hy) is the
sub-representation of 1 on Hy, then my = 1. This is proved as follows: define

dense ~
Viag : A& € Hy — Ho, Va¢ = m(a)n.
Then for all a&, b§ € A¢ we have

(Vag,vog) = (m(a)n, m(b)n) = (x(b"a)n, n)
(m(b"a)m(p)n, m(p)n) = (w(pb*ap)n, n)
= (w(f(b"a)p)n,n) = f(0%a) (n,n) = f(b"a)
= (f(b7a)§, &) = (pb*apg, &)

= .= (a&,bE).
So V is unitary and due to
Va(bs) = V(ab)§ = m(ab)n = m(a)m(b)n = mo(a)V (b)
we have V1y(a) = mp(a)V Va € A, thus mp = 1.
e All together we have shown

(1) Every nontrivial representation 7 : A — L(H) has an irreducible sub-representation
(since we know that 19(A) = A|g, is irreducible).

(2) Every such representation is equivalent to an irreducible sub-representation of
1:A— K(H)

A simple application of Zorn’s lemma to the sub-representations of 7 that can be written as

a direct sum of irreducible representations, proves the claim. 0

Definition 2.5.19 Let « be a cardinal number, I a set of cardinality o and H a Hilbert space.
Set

a-H:= @H = forn e N: n-H:éH

If m: A — L(H) is a x-representation, then set

’a-ﬂ::@ielw:AHL(a-H)‘

These constructions do not depend on the choice of I (up to equivalence).

Lemma 2.5.20 Every nondegenerate x-representation m : K(H) — L(H) is equivalent to o - 1
for some a.

Proof: According to the last lemma 7 = ®;c;m; and 7; is equivalent to an irreducible
sub-representation of 1 : K(H) — K(H). But we know that 1 itself is irreducible, thus m; = 1
Vi € I and we have

Dicrmi = Dierl = a- 1,

which proves the claim. O
Corollary 2.5.21 Classification of * —Isos of K(H) Let ¢ : K(H) — K(H) be an arbitrary

x-automorphism of K(H) (and thus a x-isomorphism), then there is a unitary operator U € L(H)
such that VT € K(H):

(p(T) = Ad(U)(T) := UTU"

Furthermore if U =V € L(H) is unitary with Ad(U) = Ad(V), then there exists a A € S* € C
such that U = AV. So for the unitary operators U(H) on H:

Aut(K(H)) = P(U(H)) :=U(H)/S".
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Proof: A x-automorphism ¢ : K(H) — K(H) C L(H) is also an irreducible representation,
since K(H) = ¢(K(H)) is irreducible in L(H). Thus ¢ = 1, i.e. there is a unitary U : H - H
with o(T)U = UL(T) VT € K(H), thus o(T) = UTU*.

If V: H — H is another such operator, with VI'V* = UTU*, then V*UT =TV*U, i.e. V*U
commutes with all 7' € K(H) and thus with Schur there exists a A € C with V*U = A1, thus

U = AV, and since V*U is unitary we have || = 1. 0

Corollary 2.5.22 x — Irreps send subalgebras of K(H) to KH') If AC K(H) is a

x-subalgebra, then for every irreducible representation m: A — L(H) it holds that m(A) = K(H)

Proof: By working in Hy := AH w.l.o.g. we can assume that AH = H. According to the above
decomposition theorem, there exists a closed A invariant subspace Hy C H with 7 = 1|g,. Due to
a|m, compact Va € A C K(H), we have that {a|g, |a € A} C K(H;) is an irreducible subalgebra
and it follows that A|py, = K(H;).

If now U : H — H; is unitary with Ur = 1|z, U, then it follows that

m(A) = U*(A|lg,)U = U*K (H\)U = K(H).

That is since VI' € L(H;) it holds that T € K(H;) & U*TU € K(H). 0

Lemma 2.5.23 Let A C K(H) with AH = H and let p € A be a minimal projection. Then for
p € A it holds that

(1) p(p) =0 or p(p) is a projection of rank 1.

(2) There is exactly one p € A with p(p) # 0.

(3) If p(p) # 0, then p(ApA) = p(A) = K(H,) and 7(ApA) = {0} V7 € A\ {p}.
Proof:

(1) We have already shown that if p : A — L(H,) is irreducible and p € A minimal with
p(p) # 0, then p = 1|z, where £ € p(H,) is arbitrary with [[{|| = 1. Now, because of

pAE = pAp¢ = Cp¢ = C¢,
we have that ]l|A—€ is a rank 1 projection. Due to p & ]l|A—€ we get the same result for p.

(2) If 7 is another irreducible representation with 7(p) # 0, then as above, it follows that
Tl = p, e 1] =[p] € A

(3) It holds that

p(ApA) = p(A)p(p)p(A) = K(H,)p(p)K(H,) =: .

Since p(p) # 0 we have that 0 # I is a closed ideal in K (H)) and it follows that I = K(H)).
If now 7 € A\ {p}, then (2) gives us 7(p) = 0, we also get 7(ApA) = 7(A)7(p)7(A) = {0}.
([l

Remark 2.5.24 [If A C K(H) is a C*-subalgebra and 7 : A — L(H) is an arbitrary
x-representation, then we have the decomposition

T = Picrmi, m; € Irrep(A).
If p € A, I, :={iel|m=p} andn, = |I,|, it holds, that
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If now p € A is a minimal projection and p € A with p(p) # 0 (which exists since

Noci ker p = {0} ), then by the last lemma, it follows that p(p) is a projection of rank 1.

Furthermore, due to T(p) =0 V7 € A\ {p}, it follows that
dim(r(p) H) = dim((nyp) (p) (1, H,)) = .
Thus the cardinality n, of p in 7 is uniquely determined, i.e.
D e illpP ~ D e AP & n,=m, Vp € A.
Definition 2.5.25 Index set An index set is a topological space I with discrete topology.

Definition 2.5.26 Direct Sum If I is an index set and A; a C*-algebra for every i € I. Define
the direct sum

B Ai = {(ai)ier | a; € Ai¥i, [i — [Jas]]] € Co(I)}.

el
Where addition, multiplication and involution being defined component wise. The direct sum is
given the norm

[1(@i)ierlloo = sup [[as]].
iel

Remark 2.5.27 In the following A is an index set, so in particular it does not carry its usual
Jacobson topology.

We now come to the main theorem of this section.

Theorem 2.5.28 Decomposition of subalgebras of the compact operators Let
A C K(H) a C*-subalgebra with AH = H. Let further A]l = D pe AP be the decomposition of
1A — K(H) C L(H) as above, then 0 # n, € NVp e A and

A = PKH,).
pEA
a — (pa)),e4

Proof: Let p € A, then there is a minimal projection p € a with p(p) # 0 since p is irreducible.
So if now 0 # p € A is minimal, then

0 # n, = dim(pH) = rank (p) € N
since p compact. Consider now the representation
Ti=@,c a0t A— L(@HP)
pEA
which is injective. We shall now show
m(4) =P c LEP H,).
pEA pEA

This we will acomplish in two steps:

(1) 7(4) C D, 4 K(H,), te. o+ [[p(a)[] € Co(A) Va € A,
(2) m(A) € D, K(H,) is dense.
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(1) We will first show that if p € A is an arbitrary projection, then [p — [|p(p)||] € Co(A). We
know that there are minimal projections p1,...,p; € A such that

p=pi+--+n

According to the last lemma, to every p; there corresponds a unique p; € A with pi(pi) # 0.
It then follows that

A~

p(p) =0Vp & {p1,...,p}, inparticular [p+ [[p(p)|[] € Co(A).

Let now a = a* € A, then a = 3 o_\c ) APa. Since 7(Py) € @, 4 K (H),) and the sum is

norm convergent, we conclude that also

(o) € D K(H,).

peA

pGA

With a = Re(a) + ilm(a) the first claim follows.

(2) We shall show that for an arbitrary b = (b,), € @peA K(H,) and an € > 0, there exists an
a € A with ||r(a) — b|| < e.
First, due to [p+— ||b,]|] € Co(A), there exists a finite F C A with ||b,|| < SVp¢ F.
Now we show that for every p € F there is a a, € A with ||p(a,) — b,|| <€, and 7(a,) =0
V1 % p. Because of the last lemma, for every p we have a minimal projection p € A such
that p(p) # 0. We then also have p(ApA) = K(H,), and thus the existence of an a, € ApA
with ||p(a,) — b,|| < €. Further, also with the previous lemma, we follow that 7(ApA) =0
V1 % p. Now

a::Zap = llp(a) —b,l] < € Vp € A.
pEF

This concludes the proof of (2).

Last but not least, observe that images of x-representations are closed, so with (1) + (2) +
injectivity of m we conclude m(A) = @peA K(H,). O

Definition 2.5.29 GCR and CCR A C*-algebra is called
GCR, iff r(A) N K(H;) # {0} Vr € Irrep(A4),

CCR, iff m(A) = K(H;) VY € Irrep(A).
Remark 2.5.30
o [t follows for GCR-algebras that K(H,) C w(A).

e CCR stands for “completely continuous representation”, the "G” in GCR stands for
?generalized.”

o (C'CR-algebras are also called liminary algebras and GCR-algebras are also called
postliminary algebras.

Theorem 2.5.31 Let A be a GCR-algebra, then Aisa To-space and the map A Prim(A)
7 — ker(m) is a homeomorphism. Further if A is GCR, then

Ais CCR & Aisa Ty — space (i.e. points are closed).

Iil‘\OOf: Let m,p € A with ker 7 = ker p = J, we need to show that m = p. Note that
AJJ > {m, p}, so wlo.g. kerm =kerp={0}, 7: A— L(H;) K(H;) C7w(A). Set
I:=7"Y(K(H,)) C A a closed ideal and since ker 7 = ker p = {0} we have that p(I) # {0}. Now
observe N

7:1 — K(H;) = wm%pl;] = nX=ponA.
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7 =7 Let now A be a CCR. LetWeg,peﬁ@kerﬁgkerpandifJ:kerp:>,06Z/\J. If Ais
a CCR, then n(A) = w(A/J) = K(H,) and thus m = p.

” <7 Abea Ti-space. Let m € A. We will assume K (H,) C m(A). Define I := 7 (K (H;)) C A
which is a closed ideal and = {0} # A/I = A/I # @. Then kerp C I C kerm = p € T with
pET.

(|
Theorem 2.5.32 If A is seperable, then the following are equivalent:
(1) A — Prim(A) is bijective (<> is homeomorphism,).
(2) A is a GCR-algebra.
(3) A is a Typ-I-algebra.

3 Locally Compact Groups, Group Algebras and Universal
Algebras

The unitary representations of a locally compact group G are in bijection with the
s-representations of its C*-group algebra C*(G).
3.1 Locally compact Groups and the Haar Integral

Definition 3.1.1 Topological Group A topological group is a group G with a topology T, such
that the following maps are continuous

m:GxG— G, 1:G— G.

(9,h) — gh gr—g!
If (G, 1) is locally compact, one speaks of a locally compact group.

Example 3.1.2
e Any (finite dimensional) Lie group: R™, GL(n,R),SL(n,R),O(n),U(n),...
e Discrete groups
Remark 3.1.3 If G is a topological group, then the following hold
(1) If 4 is a neighborhood basis of 1 € G, then
{zU|U € U}

s a neighborhood basis of x € G. This follows directly from the fact that g — gz, g — xg are
homeomorphisms G — G.

(2) If V is a neighborhood of 1 € G, then there is a neighborhood U of 1 € G, such that
U=, Uvlcv.

If G is locally compact, one can choose U to be compact. That is since, with the continuity
of the multiplication, we can choose a U of 1 with m(U x U) = U% C 'V and then set
U=UnU".
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(3) If H is another topological group and ¢ : G — H a homomorphism, then
(o continuous & (¢ continuous in 1g.

This is seen by taking g € G, V. C H a neighborhood of h := ¢(g). Then there is a
neighborhood W of 1y with hW C V. Since ¢ is continuous in 14, there exists a
neighborhood U of 1 with p(U) C W. It then holds that

p(gU) = (9)p(U) = hp(U) ChW C V.

Lemma 3.1.4 Existence of modular functions Let G be a locally compact group and
f € C.Q), then f is uniformly continuous, i.e. there exists a neighborhood U of 14 with

|f(gh) — f(g)l, |f(hg) — f(g)l <e YgeG,hel.

Proof: Let K :=supp(f) and € > 0. For € K choose neighborhoods V,, of 15 with

|f(xh) — f(x)| < € Vh € V. Further choose a neighborhood U, = U ! of 1 with U2 C V. Since
K is compact, there exists x1,...,x; € K with K C Uizlinxi- Now set U := ﬂélexi. Then U is
a neighborhood of 1.

If g € G arbitrary and h € U, then g € K = 3¢ with g € z;U,, = gh € inin C z;V,,, and thus
also g, gh € x;V,,. Analogously: If gh € K, then 3i such that gh € 2;U,, =

g € a:iUin_l - a:iUi. C z;V,,, thus also g, gh € x;V,,. We have

[f(gh) = f(9)l < [f(gh) — f(@i)| + [f(zi) = fl9)| <5+ 5 =e

Similarly we find a neighborhood W of 1¢ with |f(hg) — f(g)| < e Vh € W. Finally define

U=UnW.
O

Definition 3.1.5 Haar — integral Let G be a locally compact group. A (left) Haar-integral on
G is a nontrivial left invariant, positive Radon-integral

I1:C.(G)—C.
That is Vf € Co(G) and h € G it holds that
Inf)=1(f), wfl9):=F(r""g).

Remark 3.1.6 The above condition I(,f) = I(f) is also written as

/G f(hLg)dg = /G 1(g)dg.

Example 3.1.7
(1) The Lebesgue-integral is a Haar-integral on R™.
(2) On GL(n,R) we can define a Haar-integral by

1
= A)——dA
1(4) /GL(n,lR) i )\A|nd

With the Lebesgue-measure dA on M, (R).
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(8) On a discrete group G the counting measure
I(f) =) f(@)
zelG

defines a Haar-integral on G.

The following we shall state without proof.

Theorem 3.1.8 Every locally compact group G has a Haar-integral I : C.(G) — C, which is
unique up to multiplication with a ¢ > 0. That is if J : C.(G) — C is another Haar-integral, then
Je>0:1=cJ.

Definition 3.1.9 Measurable subset A subset A C G is called measurable, iff 1 4 is locally
integrable. L.e. 1 ank K locally integrable for all K C G compact. We then write

pr(A) = /G]lAdg € [0, o).

Remark 3.1.10

(1) If V is a compact neighborhood of 1¢ then (V) > 0.
Since if K C G compact, then there are x1,...,x; € G with K C Uézlxiv and thus

l

z
pr(K) € (V) = (V) = lpr(V).
=1

i=1

(2) Due to ur(V) > 0, it follow for 0 # f € CHG), that I(f) > 0.
If f(x) # 0, then there is a neighborhood V' of 1G, € > 0 with € > 0 and with el,y < f, thus
I(f) > I(elyy) = epr(V) > 0.

Remark 3.1.11 Let I : C.(G) — C be a Haar-integral on a locally compact group G. For h € G,
we can define

I =10 = [ fahg. fula) = Fiah).

This is another left invariant Radon-integral on G. That is since
- B B . B . B s
fup = [stans = [ 10 tomds = [ 50 ada = | oo = 1(0)

Due to the uniqueness of the Haar-integral, we know that there is a positive constant A(h) > 0
with

1(f) = /G f(9)dg = A(h) /G Flgh)dg = AWI(f) Y € Co(C).

Definition 3.1.12 Modular function The function A : G — RT, h— A(h) is called modular
function of the group G.

Definition 3.1.13 Unimodular group A group G for which A =1 is called unimodular.

Example 3.1.14
(1) Every abelian group is unimodular, since left and right multiplication coincide.
(2) Every discrete group is unimodular, since the counting measure is right invariant.

(8) Every compact group is unimodular.
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(4) The (ax+b) group G is defined as
G::{< ; ’ ) la,b € R,a £ 0} C GL(2,R)

with the Haar-integral

_ 1 b\ 1 1Y _
I(f)—/R\{O}/Rf<Oa>’a‘dbda = A<0a> lal-

Theorem 3.1.15 The modular function A : G — R is a continuous homomorphism.

Proof: Choose f € Cf with [, f(g)dg = 1, then
A(hi) /G flghl)dg = /G f(g)dg = A) /G f(gl)dg = AQ) /G fil9)dg
NOING /G filgh)dg = AQ)A(R) /G f(ght)dg.

and it follows that A(hl) = A(h)A(I). In order to prove continuity, choose an arbitrary
neighborhood V of 1 and set p := pr(KV) € (0,00) with K = supp(f).
Let € > 0 and choose a neighborhood U = U~! of 1 with U C V, such that

1f(gh) — f(g)] < Z Vh e U.

We get that
A=At = A6 -1 =|A0 [ fo)ds - [ F(ad
G G
~ | /G F(gh) — F(g)dg| < /G |F(gh) — F(g)ldg
= / 1f(gh) = f(g)ldg < —p =e.
KV 1
With U = U1 it follows, that |[A(h™!) — 1| < e Vh € U. O

Corollary 3.1.16 FEvery compact group G is unimodular.

Proof: Since A : G — RT is a continuous homomorphism, we have that A(G) C R" is a
compact subgroup of R*. Thus we have A(G) = {1}. U

Lemma 3.1.17 Let G be a locally compact group, then

/ f(g)dg = / flo YA g Vf € LY(G).
G G

Proof: We will show that the above equation holds for all f € C.(G). The full statement then
follows by approximation.

e We show that the following is a Haar-integral:
T:CU@) =T ()= [ Ha DA
This is due to

J0f) = /G W g DA ) dg = /G F(h gAY dg
ac A(h‘l)/gf(g‘l)A(hg‘l)dgz /Gf(g‘l)A(g‘l)dg
J(f).

So J is a left invariant Radon-integral and the uniqueness of the Haar-integral gives us:
I(f) =cJ(f) Vf and some ¢ > 0.
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o We will see that ¢ = 1. Let 0 # f € C(G) Set f(g) := f(9) + f(g"HA(g™!) € CH(G). So
)

f+#0and f(g_l)A(g_l) = f(g) Vg € G, it follows cJ(f) = I(f) = J(f ) thus indeed ¢ = 1D

Definition 3.1.18 Convolution and Involution Let G be a locally compact group. We define
the convolution and involution for f1, f» € L*(G)

fixfoim /G fi) folh~ g)dh,  f7(g) = g DA™Y

Theorem 3.1.19 Involution Let G be a locally compact group, then the above convolution and
involution turns (L'(G), || - ||1) into a Banach-+-algebra.

Proof: Let fi, fo € L'(G), then f1 ® fa(h,g) = fi(h)f2(g) is integrable over G x G, where the
product integral is the Haar-integral on G x G. consider the transformation

GxG—GxG, (hg) r— (h,h1g).
This conserves the integral on C.(G x G) (by Fubini) and thus also on L'(G x G). So we have that
(h,g) — fi(h)f2(h""g)
is integrable on G x G and, again with Fubini, we have the existence of

foxfo = /G Fr(h) fo(h = g)dh

for almost every g € G. We find that

/‘/fl(h)fz(hlg)dh\dg
G JG
< /G/G’fl(h)fQ(h_lg”dhdgFugini/G/G|f1(h>f2(h_1g)‘dgdh

720 [l [ 1f)lds = 1AL A

The equation || f*||1 = ||f||1 follows from the last lemma. Everything else (associativity, etc)
follows from lengthy calculations. O

/1 fall

Theorem 3.1.20 LY(G) is commutative < G is abelian.
Theorem 3.1.21 L'(G) is unital < G is discrete.

Proof: We only prove ” <= 7: Let G be discrete and

1, ifg=1q
1) =
1(9) {O, other.

Then, for all g € G, it follows that

Fxo0)(g) = S Foi(h"g) = F(g) = (61 % )(g)-

heG

Lemma 3.1.22 Let 1 <p < oo and f € LP(G), then there is a € > 0 and a neighborhood
V =V~1 of 1 with
g — g0 fllp < Vg€ goV
(fg = foollp <€ Vg € Vo respectively). In particular the mapping G — LP(G), g 4f (9= fq
resp.) is continuous.
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Proof: Let f € C.(G), W C G an arbitrary compact neighborhood of 14 and let
K = Wsupp(f), so we know that f is uniformly continuous, i.e. there is a neighborhood V = V1!
of 1g with V.C W and |f(g~th) — f(h)] < )1/p for all g € V,h € G. Let now gp € G be

arbitrary and g € ggV/, then

P _ p h%goh -1 p eP _ .
g f = a0 flI5 /If flgo 'h)|Pdg /|f 9o 19)"th) — f(h)] dh</GM(K)dh eP.

Where ”<” holds due to supp(galgf — f) C K since VC W.

If now f € LP(G), choose ¢ € C.(G) with |[f — ||, < § and further choose a V' as above with

llgp — gollp < € Vg € goV. For all Vg € goV', we then have

lof = aofllo < llaf = el + s = soillo + llaot = o fllp < 5+ 5 +2 =¢
And ||fy — follp <€ Vg € Vg follows in the same manner. O
Theorem 3.1.23 For functions f1, fo : G — C the following hold:
(1) If f1, f2 € Ce(G), then also fi * fo € Ce(G) and supp(f1 * f2) < supp(f1)supp(f2).
(2) If fr € LY(G), f2 € L®(G), then f1 * fa exists and f1 = f2 € C*(G).

(3) For all f € LY(G) and £ > 0 there exists a neighborhood V.=V ~! of 15 with

1f*o—flinllos f—flli <e Vo€ CHG) with supp(¢) C V and /Gso<g>dg=1.

Proof:

(2) f1 € LYG), fo € L=(G) Hoglder ) > f1(h)fa(h~lg) is integrable Vg € G and thus f1 * f2(g)
exists for all g € G and it holds that

_ h h
fo % falg /f1 Vol _)g/flgth Ndh
It follows, that

s folg) — fos Falgo)] < /G [Fulgh) — fi(goh) || fo(h™ ) dh

Hoider
<l fu— o Al felloe =2 0

(1) Continuity follows from (2) and if

0# fi* fa29) =€q fi(h)f2(h~" g)dh
then there exists an h € G with h € supp(f1) and h='g € supp(/f2), thus

= h(h™'g) € supp(f1)supp(f2).

(3) There is a neighborhood V; = Vl_1 of 1g with ||.f — f|l1 <& Vz € V4. If now ¢ € CF(G)
with supp(¢) € V1 and [, ¢(g)dg = 1, then

loxf—fllh = / 0% £(g) — £(g)ldg = /G ( /G () (1" g)dh) — (g)|dg

B Fubini
- /G | /G (o(h)f(h1g) — f(g))dhldg < / / F(hg) - f(g)\dgdh

/ o(W)Inf — fllidh < < / o(h)dh = <.
Vi \%

Analogously there exists a nelghborhood Vo = V5 ! of Ig with ||fx ¢ — f]|1 < e Vo € CF(G)
with supp(¢) C Vo and fv ©(g)dg = 1. Setting V' = Vi N V4 concludes the proof.
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Corollary 3.1.24 Let G be a locally compact group, then there is a net (py)x in C(G) with
[lox* f— flli = 0, i.e. (or)x i an approximate unity.

Proof: Set A := {V |V = V! neighborhood of 1}, which is orderes by V1 >V, & V1 C
and for every V € A we choose a ¢y € CF (G) with supp(¢y) €V and [, ¢v(g)dg = 1. The rest
follows from (2) of the last theorem. O

3.2 Unitary Representations and C*-Group Algebras

The main result of this section is the bijection
unitary representations of G ¢+ nondegenerate * —representations of L'(G).

Definition 3.2.1 Strongly continuous A strongly continuous homomorphism is a unitary
representation

m:G— U(Hy)
of the locally compact group G. Strongly continuous means that for all € € H; the map

g — m(g)¢

1S continuous.

Example 3.2.2
(1) The trivial representation 1g : G — U(C) 1g(g9) =1 Vg € G.

(2) The left regular representation
A:G—ULXG)), (M@)E)(h) = &g~ h).

This is strongly continuous and \(g) € U(L*(Q)), since for all £,m € L*(G) :
_ h—gh —
Mo = [ et it Ran =" [ ewtian = ).

(8) The right regular representation
p:G—ULG)), (p9)€)(h) = VAR)E(gh).

Remark 3.2.3 p= )\ by U : L%(G) — L*(Q), (U&)(g) :== VA(g1)E(g™Y), which is unitary:

= A 1 1 d = d =
(Ug,Un) /G (97)E(g )dg = / &(g)n(g)dg = (&;n)
and indeed an equivalence

(UX9)O) () = VA HA9E (™) =VAlgHe(g™
= VAg)VAMgE((hg)™") = VA(9)(UE)(hg) = (p(9)UE)(h).

Lemma 3.2.4 If7:G — U(Hy) is a unitary representation and E C Hy a closed
7(G)-invariant subspace, then E+ C H, is also invariant.

Proof: Let £ € E+,nc E, then m(g)* = n(g~ "), and, since w(¢g~ ")y € E:

(m(9)¢,m) = (& m(g™)n) =0
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Definition 3.2.5 Irreducible Representation A unitary representation m: G — U(Hy) is
called irreducible iff {0}, Hr C Hy are the only closed invariant subspaces. The set of equivalent
classes of irreducible representations of G is denoted G.

Lemma 3.2.6 Schur Let 7 : G — U(Hy) be a unitary representation of G, then the following
are equivalent

(1) m e @G, i.e. m is irreducible.

(2) Every vector 0 # & € Hy is cyclic, i.e. LH{n(9)¢|g € G} = H.

(3) If T € L(H) with Tn(g) = n(9)T Vg € G, then T = 1.
Remark 3.2.7 Note that in part (3) we have T' = c1, with ¢ = 1 due to unitarity of T'.
Lemma 3.2.8 Let f: G — L(H) be a function such that

(1) g+ (f(g)€,m) is measurable VE,n € H,

(2) g —||f(g)|| is integrable.

Then there is exactly one operator Ty € L(H) such that V§,n € H:

(Tyem) = /G (f(@)en)dg, Ty = /G f(9)dg € L(H)

For the integral it holds that
(a) |l Jo f(9)dgll < [ I1f(9)lldg = [|f]l1,
(b) VS e L(H) : SfG dgffGSf )dg, fG g)Sdg = fG 9)dgSs.

Proof: The map (§,71) — [ (f(9)&,m) dg is well defined and sesqui-linear. It holds, that

[ §ndg!</\ D€ ldg < [ 117(@)ldg el

Thus there exists exactly one operator Ty € L(H), as stated above, with ||T¢|| < [, [|f(g)||dg.
Part (b) follows easily from identities like

<TSf§777>:/G<Sf(9)§ﬂ7>d9:/G<f(9)575*77>d9:<Tf§75*77>:<5Tf§a77>~

In order to prove the main theorem of this section, we need one last

Lemma 3.2.9 Let X be a set, H, H Hilbert spaces and p,p: X — H, H maps with

H = LH{p(z) |z € X}, (p(x), 0(y)) = (6(x),6(y)), Vr,ye€ X.

Then there is exactly one linear isometry U : H — H with U(p(z)) = ¢(z) Vo € X. If additionally

H =LH{p(x) [z € X},

then U 1is unitary.
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d ~
Proof: Let Hy = LH{y(z)|z € X} “C H. Define U : Hy — H by

U dip(@i) = > Nig(wi).
i=1 =1

Now we need to show that U is a well defined isometry. We have

<Z Ai@(wi),zki¢($i)> = D AN (@), Blai) = Y Ay (), (xi)
i=1 i=1 1,j=1

ij=1
m m
= <Z Xig(ai), >\z'90($z')> :
i=1 i=1
This shows that U is a well defined isometry, since
m l m
Y oNip(w) = (), = 0= Nip(w) Zuzso ;)
i=1 i=1 i=1
and with this the above calculation shows, that
m l
0= Z Aip(w;) — ZH@@(%)
i=1 i=1

So the value of U¢ does not depend on the specific representation of £ € Hy.
Functional analysis tells us that there is a unique isometric continuation A : H = Hy — H, thus
U is surjective and thus unitary. O

We now get to the main theorem of this section.
Theorem 3.2.10 Let G be a locally compact group. It then holds, that
(1) If m: G — U(Hz) is a unitary representation of G, then

7: LYG) — L(H, /f

defines a nondegenerate x-representation of L*(G) on H,.

(2) Vice versa: to every nondegenerate *-representation 11 : L' (G) — L(H) there corresponds
exactly one unitary representation w: G — U(H), such that I1 = 7.

That is, the map ™ +— T s a bijection.

Proof: Let fi, f» € LY(G) and &,m € H,. We first prove (1):
e Multiplicativity of f +— 7(f) is proved as follows:

Ghox f)Em) = /G (Fo % f2)(g) (m(g)€, m) dg = /G /G f1(R) F2(h~Yg) (m(g)€, m) dhdg
Fubini /G /G F1(h) Fa(h1g) (m(9)€, m) dgdh
a2gh /G /G F1(R) fa(g) (m(hg)€. ) dgdh
— / / F1(1) fa(g) ()€, w(h~1Yn) dgdh
GJG

- / f1(h) / fog) (m(g)€, m(h=")n) dgdh

- / f1(1) (7 (f2)E, w(h™ " Yn) dgdh
=  (7(fu)7 (f2)§7 n) .
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e Compatability with the involution:

R / A YT (r(g)€, )

/ 7(9) (n(g™ )6, n) dg = / £(9) {m(g=1).€) dg
G

{@(F)m &) = (& 7(FHm = (F(f)&m).

e Nondegeneracy: Let (¢))a be an approximate unity as above and £ € Hy, then 7(p))& — &
since

7o =l = 1| [ er@(rlo)s ol < | enla)lirta)e —€lldg < | max [lw(a)é =L

For an € > 0 choose a neighborhood V' of 1¢ with ||7(g)§ — || < e Vg € V and Ay € A with
supp(ex) € V VA > Ag. It then follows that |[7(px)€ — &|| < e VA > A.

We now prove (2):
e First show that (y¢)* * of = ¢* x f YV and Vg € G:

(o) +gN)h) = / ()" (Dp f (1 D)l = / AU,y 0 )l
/Al Yo(g= =N f(g i th)dl
=g~ ! 71 /Agl 1) (- l)f(l 1h)dl

e Let now IT: L'(G) — L(H) be a nondegenerate *representation of L*(G). Set
X := LY(G) x H and define ¢, % : X — H by

o(f, &) =1 o(f,&) =1 f)E
Then for all f,p € LY(G) and &, € H, we have

(T4 )€, T(gp)m) = (TL((g)" * g £)E,m) = (T(* * £)E,n) = (T(f)E, T(w)n) -

Now, due to the last lemma, there exists exactly one unitary operator 7(g) : H — H with

m(g)(IL(f)€) = U(yf)é, Vf e LY(G), €€ H.

Because of 1, f = f and gnf = 4(1f), we have 7(1g) = 1y and w(gh) = n(g)m(h) Vg,h € G.
So we have that 7 : G — U(H) is a homomorphism of groups. Since I : L}(G) — L(H) is
norm decreasing and g — 4f is continuous, it follows that also g — m(g)(II(f)§) = (4 f)€ is
continuous Vn € Hy and after a £/3 argument, continuity holds for all n € H.

We thus have that 7 : G — U(H) is a strongly continuous unitary representation of G.

e It remains to show that IT = 7, for this it suffices to show that Vf,p € L'(G),&,n € H :

(T(HT(p)E,n) = (TL(f * )&, n) = (T(f)T(@)E, n)

that is, since with II(L1(G))H = H we get 7(f) = II(f).
For fixed &, € H the linear functional ¢ + (II()&,7n) is continuous on L!(G). Because of
LYG) = L*(G), there exists a ¢ € L°(G), such that

()€ n) = /G ool Vg€ LV(G).



OPERATOR ALGEBRAS 64

With this we conclude that Vf, ¢ € L'(G) it holds that

(F()TI(p) / £(9) (T, 0)€, ) dg = / e / o(D)d(l)dldg
Fbind / f(g / “U)dg (1)l = /G (f * @) (DDl
I(f * )&, m) .

Remark 3.2.11 [t is easy to see, that the bijection w — T preserves all important
characteristics, like e.g. unitary equivalence, irreducibility, direct sums, etc. In particular we have
the bijection

—

G« LY(G)

Theorem 3.2.12 Let \: G — U(LQ(G)) be the left reqular representation of G, i.e.
(Mg)€)(h) = £(g~ h). It then holds that

ANNE=fxé VfeLNG), £ €C(G) C L*(G)
and X is faithful on LY(G), i.e. A(f) =0 = f=0.

Proof: For all £,1 € C.(G) C L*(G) we have

OGP /f gndg_/f /é n()didg
Fubini /G(/G F(9)E(g  Ddg)nDydl = (f x€,7).

Since C.(G) is dense in L?(G), it follows that A(f)¢ = f * €. If now f € LY(G) with A(f) =0,
then fx & =0V € C.(G), since f * ¢ is continuous. If then (¢) )y is an approximate unity as
above, it then follows that f = limy f * oy = 0 € L}(G). ]

Theorem 3.2.13 The maximal group algebra Let G be a locally compact group. The
following is a norm on L'(G)

[[fllc == {||m(f)]| | = is nondegenerate * —representation of L'(G)}

With this norm the following (called mazimal group algebra) is a C*-algebra

C*(G) = mll'\\c*

Furthermore the restriction of a *-representation ©: C*(G) — L(H) to the dense subalgebra
LYG):
™ W’Ll(G)

18 a bijection and conserves unitary equivalence, direct sums, etc. In particular

—

C*(G) = L1(G)

G

1

Proof: We know that for every *-representation 7 : L'(H) — L(H) we have ||7(f)|| < ||f]]1-
Thus there exists a || f||c= = sup, ||7(f)|| < ||f||l1. Since f > ||7(f)|| is a semi norm for all 7, we
also get that || - ||c+ is a semi norm, and since

flles = IA(A)]] and A(f) =0 = f=0
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we have that || - ||+ is a norm. For f € L'(G) we have

17 fllo= = sup ||m(f* * )l = sup [z ()7 (H)]] = sup I (HIF = IIFI2.

Thus C*(G) := Ll(G)H'”C* is indeed a C*-algebra.

If 7 : LY(H) — L(H,) is an arbitrary *-representation of L!(G), then ||7(f)|| < ||f]|c+ and thus 7
is continuous w.r.t. || - [|c=. Then there is a unique contiuation 7 : C*(G) — L(H). This proves,
that the restriction map 7 ~ 7|11 is bijective. The rest is easily checked. O

Definition 3.2.14 Reduced group algebra The reduced group algebra is defined using the
faithful left reqular representation X\ : L*(G) — L(L'(QG)). Setting

Al = M

we define the reduced group algebra to be

(6 =116 "

which is also a C*-algebra.
Lemma 3.2.15 The continuation of X to C*(G) gives a surjective x-homomorphism
\: C*G) — CHG) C L(LY(@)).

Definition 3.2.16 Amenable group A group G is called amenable, iff the above surjection is
also an injection, i.e. iff

C*(G) = C*(G).

Remark 3.2.17

All abelian and all compact groups are amenable.

GL(n,R) is not amenable.

Since C}(G) = C*(G)/ ker(X) is a quotient, we can identify C; with a closed subset

—

C*(G).

~

Gr C

)
1

One can choose the topology on G such that the bijection G C*(G) becomes a
homeomorphism.

3.3 Duality Theorem of Abelian Groups

The duality we shall establish in this section is

G abelian locally compact = GG

Lemma 3.3.1 Let G be an abelian locally compact group and 7 : G — L(H) an irreducible
unitary representation, then

G = {x: G — S*|x continuous homomorphism}.

Proof: Since G is abelian, we have 7(g)n(h) = w(h)7(g) and thus with Schur 7(g) = x(¢9)1x,
for some x(g) € S*, since 7 is unitary. But then Vg every subspace of H is 7(g) invariant and we
have dim(H,) = 1. 0
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Definition 3.3.2 Dual Group Let G be an abelian locally compact group, then

G ={x:G — S|y continuous homomorphism}, (x-)(g) == x(9)ulg) Yx,p€G
1s called the dual group, which is a group with neutral element and inverse:
1s:G — {1}, x =7

Remark 3.3.3 Fourier Transformation In the last section, we established the isomorphism

—

G=1{x:G -8 = LYG)=C*(G)
X — % ) = /G £(9)x(9)dg.

Where the second isomorphism is given by unique extension. The Gelfand-transformation

dense C*(G) i CO(C/*-(E)) = CO(@)

f—  f

LY(G)
gives the following isomorphism, called the Fourier transformation:
C*(G) = (@)

[

f Fo)=xH) = [ fl9)x(9)dg.
N2

It holds that ]T*\fz(x) =x(f1* f2) = x(f1)x(f2) = fl(X) 2(x) and the following commutes

>

(@)

So we can identify C*(G) with Co(@), where G is given the topology of C'/*(\G), i.e. the topology of
pointwise convergence.

Remark 3.3.4 Problem We need to check if with the above topology Gisa locally compact
group. In particular, we need to assure that multiplication and the inverse map are continuous.
Lemma 3.3.5 The map C*(G) — LY(G) x = X|11(q) is a homeomorphism, where both spaces
are taken to carry the weak-x-topology.

Proof: It suffices to show that if (xx)xea is @ net in G and y € G with xa(f) = x(f)
Vf € LY(@), then also
xa(z) = x(z) Vo e C*(G).

But if z € C*(G) and £ > 0, then there exists a f € L}(G) with ||f — z|
with [[xx(f) = x(f)|| < § VA > Ao, then VA > Ag:

o+ < 5. If then A\p € A

[Dea(@) =x (@) < [hea(@) =xa (DD () =x D+ () =x(@)]] < \Iw—fllc*Jr%HIf—ch* <e.
O

We shall now give an alternative description of the topology on G:
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Lemma 3.3.6 Let G be an abelian locally compact group, (xx)aea @ net in G and X € é, then
the following are equivalent:

(1) x» = xo0 in L(G) = C*(G).

(2) Ve >0 and VK C G compact there is a A € A with |xx(g9) — x0(9)| <e Vg e K

(i.e. xXx — Xxo uniformally convergent on compact subsets of G).

Proof:

(2) = (1)

If (2) holds and 0 # ¢ € C.(G), then choose a € > 0 and a Ao € A with
xa(9) = x(9)| < ey for all g € K :=supp(yp) and A > Ag. Then for all A > Ao it
follows, that

@) — xo@) = | / ~ volg))dg| < / () 1xA(9) — x0(9)]dg

< pEelloo g =<
< wE)||elloo—mr— =&
= K| lloo
Since C.(G) is dense in L'(G), we also have an analogous statement for f € L'(G).

—

We now have x) — xo in L(G) & C'/*(\G), then xaXo = XoXo =1 € L/l(a), since for
feLiQ):

oXolf) = /G F@)x(@)%0(9)dg = x2(FX0) = X0(/X0) = xoXo(f) = 1(/)-

And due to xa(9) — x0(9) = [xa(9)Xo(g) — 1] it holds that xx — X0 in the sense of (2)
Xx(9)Xo — 1 in the sense of (2). By using the net (xxXp)x € G w.l.o.g. we can assume that

Xo = 1. We thus take xy —> 1in Ll(G) Let K C G be compact and € > 0.
Select ¢ € Ce(G) with 1(¢) = [ ¢(g)dg = 1, then there exists a neighborhood W of 1¢

with [[g — go0l[1 < § for all g,90 € G with g € goW. If then x € G with

» Ix(gotp) —

Wl m

Ix(p) = L) | <
—~~

S
1(5]090)’ < g
=1 =1

So for all g € goW it follows that

Ix(9) =11 = [x(9) — x(@)x(@)| + [x(9)x(¥) — x(g0)x(¢)| + [x(g0)x(¢) — 1|
= !x(g)lll—x(w)H!x(gw) X(go )|+ Ix(gotp) — 1]
g ‘|‘ 3 + g =c.

Where x(9)x(¢) = x(g¢) Vg € G follows from inserting and left invariance of the
Haar-integral.
Since K is compact, there are ¢g1,...,g; € G such that K = UﬁzlgiW Define

fO)"'?fleLl(G)v fO = 9017 fz =g

If then Ao € A such that |x(fi) — 1(fi)| < § V0 <i <l and A > Ao, then with |x(p) — 1| <,
we have that |xx(p) — 1| <e Vg € K and A > .
O

Corollary 3.3.7 If G is a locally compact abelian group, then its dual group G is also locally
compact abelian.
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Proof: Let xn — x pux — p be in G and K C G compact and € > 0, then there exists A\g € A
such that |xy — x| < § and [uy —p| < § Vg€ K,A > A\g. For g € K and A > ) it then holds, that

() = xa(9)] < a@)llaa(g) = n@)l + |a@)lxalg) = x(9) < 5 + 5 ==.

It follows that the multiplication is continuous. And due to [\y(9) — X(9)] = |xara(g) — xu(9)l,
we also have the continuity of the map y — X. O

Theorem 3.3.8 Let G be a locally compact abelian group, then

(1) G compact = G discrete.

(2) G discrete = G compact.
Proof:

(1) If G is compact, then w.lo.g. [, 1dg =1 and thus [, x(g)dg =0V1 # x € G, since if

go € G with x(go) # 1, then
(g0)#1
| X0 = [ x(mads =xta) [ xtodg [ xigpdg=o.
G G G G

Let now (x»)x — 1 is a net in G. We know that (xy)x — 1 converges uniformly and thus
xx = 1 for all A > g, since [, xa(9)dg = [, 1dg = 1. Thus {1} C G is open, and since G is
a topological group, we also have {x} C G is open for all x € G.

(2) Let now G be discrete. Then & * f = f x 61 = f Vf € L(G), so L'(G) is unital, but then

= L/(\G) is compact. O

Lemma 3.3.9 Let G =Gy X --- X Gy, be a locally compact abelian group, then

o)

GixxGp —
(X17"'7X7l) —

=<
=

X

with (x1---Xn)(9) = x1(9) - - xn(9)-

Lemma 3.3.10 Let H C G be a closed subgroup of the locally compact abelian group G. Then
G/H={xeC|xlu=1)}

Proof: Fundamental theorem on homomorphisms. ]

Lemma 3.3.11 Let G be compact abelian. If A C G separates the points of G, then (A) = G.

~ ~

Proof: Let w.lo.g. A= (A) and let D C C(G) the subalgebra of C(G) generated by A. Since
1€ Aandif y € A, then also Y = x ! € A. Since A (and thus also D) separates the points of G,
we have that D C C(@A) is dense w.r.t. || - ||oo by Stone-Weierstrafi.

We assume that Iy € G/A. Then p-x # 1 Vu € A. We have already shown that

/Gu-x(g)dgz() Vu € A

Every element in D is of the form Y ;" a;x; with oy € C, x; € A and thus

| na)etarg =0 voe .
Since D C C(G) is dense w.r.t. || - ||os, we also have

/Gu(g)w(g)dg =0 Vpe (@)

In particular is follows that 1 = [ 1dg =€g u(g)a(g)dg = 0, which is a contradiction.
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Example 3.3.12

(1) It holds that

14

n

St 7, oz s, Xz(n) =z

) = x(1)" = 2", i.e. X =X, and thus Z — Sy x(1) is a continuous bijection and
since Z,S' are compact, it is a homeomorphism.

If x(n)

(2) It holds that

7 =5 ﬁ, N Xn,  Xn(2) :=2"

X1 separates the points of S*, and since S* is compact, it follows that
St =) ={xnln € Z}.

(3) It holds that

o

R—HIA{, s Xs,  Xs(t) = e 18t

Let x € R be arbitrary. Then A :=kery is a closed subgroup of R, thus A € {{0}, R, bZ}.

— if A= {0}, then 1 = x(0) # x(1) := z and since x is continuous, x([0,1]) is connected
and contains a true arch in S', which spans from 1 to z, so x(na) = 1 with na # 0,
which is in contradiction to A = {0}.

— IfA=R, then x =1, i.e. x = Xxo-

— If A=bZ, b >0, then X(t + A) = x(t) defines a character on R/A and R/A = S* via

t+ A efit27r/b. So we get a X € Sl by setting X(*Z’tQﬂ'/b) — (7it27r/b)n _—it2mn/b_ Xs(t)

with s = 2”7”

(4) It holds that

n

I

Ly = Cypy = {w681|wm=1} izm, W = Xw, Xw([n]) =W

Theorem 3.3.13 Structure Theorem for finitely generated Abelian Groups If G is
finitely generated abelian, then there exist I,mq,...,m, € N such that

G2 X Ly X - X Lo, = @%(Sl)lemlx---mer

Definition 3.3.14 Elementary Group A locally compact abelian group such that

G=R"x (SH!' x2Z" x F
with some finite group F is called elementary.
Lemma 3.3.15 Elementary groups G = R" x (S1)! x Z" x F are reflexive:
G2R"xZ' x (SY x F, = 5%’G

Theorem 3.3.16 Pontrjagin + Plancherel 1940 Let G be a locally compact abelian group,
then the following hold

with ¢(g9)(x) == x(9), x € G is a topological

1w
Qn»

(1) (Pontrjagin Theorem) | : G
isomorphism of groups.
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(2) (Inversion frormula) The Haar integral on G can be normalized such that for f € LY(G) we
have

flg) = /éf(x)x(g)dx for almost all g € G.

(3) (Plancherel Theorem) Let f € L*(G) N L%(G), then f € L*(G) with ||f||2 = ||f||2. This
defines an isometry

F:LNG)NIA(G) — LX(G), F(f):=f,

which has a unique continuation F : L2(G) — L*(G). If
P I2(0) — 12(G) = IX(G)
is the corresponding Fourier transform for é, then
FoF(f)=f(9)=1fg™") VfeL*G)
Corollary 3.3.17 Let G be a locally compact abelian group, then the regular representation
A CHG) = C*(G)
s an tsomorphism.

Proof: We want to use the Pointrjagin-Plancherel theorem to prove the assertion. We consider
the following diagram

Co(G)

where M : Co(G) — L(L2(G)) is the multiplicative representation (Mg)¢ = ¢ - £. Of all arrows,
but A, we know that they are isomorphisms, thus we only need to prove commutativity of the
diagram.

dense
For all ¢ € C.(G) C L?*(G) and f € C.(G), we have

A)E = f=*E.
And thus

— A A ~

FA§) = [ &= fE=M()F(©).
This gives A(f) = F- M (F)F, i.e. M(f) = FA(f)F~. This gives Co(G) " &° C*(G) and
everything is continuous the claim follows.

3.4 Universal C*-Algebras and the noncommutative 2-Torus

One of the main lessons of this sections is, that the noncommutative 2-torus Ay has a very
different structure, depending of wether # € Q or § € R\ Q.

There are many mathematical objects, to which one can assign C*-algebra in a natural way, such
that the algebra mirrors the properties of these objects:

e (C*)-dynamical systems

e Foliations of manifolds
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e Semigroups
e Groupoids
e Rings (see Cuntz and Xin Li)

Many of these constructions are of universal nature. E.g. for a discrete group G, the group
algebra C*(G) is the universal C*-algebra generated by G.

Definition 3.4.1 Representation of a set X with relations Let X be a set and R a set of
relations on X. A map

v:(X,R)— B
is called a representation of (X, R) if ¢ preserves all relations R of X in B.
Example 3.4.2 X = {u,v}, R={u* =u"!, v* =07 v =vu}

Remark 3.4.3 Not all pairs (X, R) are representable. Not all relations make sense in a
C*-algebra, e.g. they could be contradictory to the defining relations of a C*-algebra.

Definition 3.4.4 Universal C x —algebra A C*-algebra is called universal for (X, R), if the
following hold:

(1) Existence: There exists a representation ix : (X, R) — A.
(2) Minimality: A = C*(ix (X)), i.e. there is no true C*-subalgebra of A, which includes
ix(X).

(3) Universality: If ¢ : (X,R) — B is an arbitrary other representation, then there exists
exactly one x-homomorphism ¢ : A — B such that the following commutes:

(X,R) —X+ 4
D31
;

B

We denote the universal algebra of (X, R) by ’ A= C*(X,R)‘

Remark 3.4.5 Existence It is not always clear if for a given pair (X, R), there exists
corresponding a universal C*-algebra. However, a necessary condition is that there exists some

representation ¢ : (X,R) — B.
Lemma 3.4.6 Uniqueness If A, B are both universal for (X, R), then A= B.

Proof: Letix:X — A, jx : X — B be representations, as in (1). According to the
universality of A (3), there exists a unique *-homomorphism ¢ : A — B such that

¢(ix(z)) = jx(x) Yo € X. By the universality of B there is also a unique *-homomorphism

¥ : B — A such that ¢(jx(z)) =ix(z) Vo € X. Thus po¢: A — A is a x-homomorphism with
Yo pix(x)) =ix(x) and due to uniqueness in (3) we get 1 o ¢ = 1 4. Analogously o) =1p

Example 3.4.7
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(i) Group algebras Let G be a discrete group. We give G the relations coming from the group
operation and g* = g~'. A representation ¢ : (G,R) — B is then a homomorphism

¢ :G— U(B) := {u € B|u unitary}.

It then follows that
C*(G,R) = C*(G).

That is since
(1) ic : G = C*(G) ic(g) = dg.

ens ense

dense d
(2) Since LH{S,|g € G} C IYG), we also have LH{S,|g € G} C C*(G).

(8) If o : G — U(B) is an arbitrary representation of (G, R), then, with Gelfand-Naimark,
we can interprete B C L(H) for some Hilbert space H, so

¢v:G— BCL(H)
as a unitary representation of G. And then there is exactly one x-representation
¢:C*"(G) — L(H), suchthat ¢(dq) = ¢(g).
Since ¢(LH{d, |g € G}) C B, it also holds that $(C*(G)) C B.
(i) X :={u}, R :={u*u=uu* =1}, then

C*({u},R) = C(SY).

(1) Let v € C(SY) given by v(z) = 2, then ix(u) = v is a representation of (X,R).
(2) With Stone-Weierstrafs, we have that C(S') = C*(v).

(3) If B is an arbitrary C*-algebra and w € B unitary (i.e. fulfills R), then o(w) C S*.
Consider the x-homomorphism ¢ : C(S') — B given by the composition

C(SY) — C(o(w)) — C*(w) C B.
fr— flow) +— f(w)
Due to v =1g1 it holds that ¢p(v) = 1(w) = w.

(i1i) Alternative to (i) If w € B is unitary, then so is w™ Vn € Z. Every unitary element w € B
then generates a unitary representation ¢ : Z — B, ¢(n) = w" and it thus follows, that

C*({u},R) = C*(2) = Cy(Z) = C(S").

(iv) X :=A{u,v}, R :={u*u=wu*=1=v*v =vv* uv = vu}, then

C*({u, v}, R) = C*(Z?) = Co(Z?) = C(S* x S1).

That is since every pair {u,v} with the relations R induces a representation ¢ : Z* — B
o(n,m) = u"v™ and vice versa: every representation ¢ gives the unitary elements

U = cP(CS(LO)), V= 80(5(0,1))-

Definition 3.4.8 Noncommutative 2 — Torus is the universal algebra

’Aa 1= C*(Xe,Re)‘

for the set and relations

Xg:={u,v}, Ry:={uu=uwu*=1=vv=0v0" uw = epul.
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Remark 3.4.9 Observe that we have already treaded the case Ay above:
Ag = C*({u,v},Ro) = C(S* x Sh).

This is just the commutative algebra of the continuous functions on the 2-torus S* x S, we thus
understand why Ag is referred to as the noncommutative 2-torus.

Remark 3.4.10 The noncommutative 2-torus is a standard example in noncommutative
geometry.

Remark 3.4.11 Constructive Definition Let f € C.(Z?) = {f : Z* — C |supp(f) = finite},
then take the formal sums

Ag = {Z f(n,m)u™™ | f € C(Z*)}.
ZQ

The above relations Rg hold, so

unvmulvk — 6—27r2€mlun+lvm+k: 7

thus Ay is an algebra with

anmuv Zgnmuv Z(f*gg)(n,m)u"vm

7,2

and the product

(f *0 9)( = Z f(k,Dgn —k,m— l)e—Qﬂ'i@l(n—k)‘
(k,1)EZ?

Because of
(Z f(n,m)unvm)* — Z f(n, m)v—mu—n — Zf(n’ m)e—ZwiGmnu—nU—m’
72 72 72

we get that Ay is a x-algebra. For an arbitrary representation ¢ : {u,v} — B of (Xg,Rg), we have
that

¢:Ag— B, ¢ Zf n,m)uv™) ==Y fn,m)p(u)"e(v)"
7.2
is a *x-representation of Ay with

chz.fnmuv |<Z|\fnm )" mII—ZIfnmI—IIle

So we can define

1Y, m)u™ ™| = sup 16 f(n,m)u™v™)]],
72 72

which exists if there is such a ¢. Finally we set

:IGH'HC*

From this constructive definition, it follows that Ag together with the embedding ix : {u,v} < Ay
fulfills the conditions (1)-(3), if the relations Ry are realizable in at least one C*-algebra, since
otherwise || - ||c+ does not exist.
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Example 3.4.12 Let B = L(I*(Z?)), define U,V € L(I*(Z?)) by

(Ué)(nvm) = f(n.'i_lvm)’
(VE)(n,m) = 7¢(n,m+1).

Then U,V are unitary with
(UVE)(n,m) = (VE)(n+1,m) = 2™ Ve(nt1, m+1) = ™0 (UE) (n, m+1) = 2™ (VUE) (n, m).
Thus UV = e2™VU and we have found a representation

1 (Xo,Ro) — L(*(2%)), ¢(u) =T, ¢(v) :=V.

Lemma 3.4.13

0e0,i] = Ag=Ay

Proof: Let u,v € Ag be the generators of Ay and 4,0 € A1_g the generators of A;_g. Thus in

particular
b0 =e 2% =  ou =™,

There is exactly one #-homomorphism ¢ : Ay — A;_gy such that p(u) = v, p(v) = 4. Analogously,

due to

there is exactly one x-homomorphism v : A;_g — Ay such that ¥ (@) = v, ¥(0) = u. It follows that
Yop(u)=u,popv)=uv
and thus 1 o ¢ = 14,. Analogously it follows that o =14, ,. O

Remark 3.4.14 Finite dimensional representations From the construction of Ay it follows,
that

However, for 0 = g with ged(p, q) = 1, we can define a family of finite dimensional representations
Tzw) : Ag — My(C), (2,w) € St x st

Let A\ = 2™ gnd let

Lo 0 00 1 0
0 A 0
i 0 1
qg—1
0 A 10
Then U,V are unitary with
0 1 0 - 0 0 x 0 0
0 0 X - 0 0 0 X 0
ov=| o | vu= | :
0 N2 0 N1
A1 o ... L 0 1 0 0

That is since N = e*™01 = ¢27P = 1. So there is exactly one x-homomorphism m : Ag — M,(C)
with w(u) = U, w(v) =V, one can prove that w is irreducible.
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If now (z,w) € S' x S1, then zU,wV are unitary, with

(zU)(wV) = 20(UV) = 20e™(VU) = ™ (wV)(2U)
so there is a representation

T(zw) @ Ao — M,(C), TM(z0) (u) = 2U, T(z0) (v) =wV.

One can then show, that all 7(, ., are irreducible and

.1
2 =
Tow) EMww) & 2z=87 w=¢€8u, E=e""4, kel

And it holds that every irreducible representation of Ag is equivalent to some 7, ).
The moral of the story is, that for 0 € Q we have that Ay is a CCR and it holds that

Ap = Prim(Ag) = (S' x S1)/ ~ .

Where ~ is the above relation used in (, ) = 7(. o). In particular it follows that Ag has a lot of
different ideals.

We shall now study the case # € R\ Q:
Lemma 3.4.15 Let § € R, then for every (z,w) € S' x S1 there is exactly one *-automorphism
Bzw) s Ao — Ag,  Bzw)(u) = 2u, B ) (v) = wo.

Proof: It holds that (zu)(wv) = €*™(wv)(zu) and thus there exists exactly one
*-homomorphism S, ) : Ag — Ag as in the lemma. Due to

Bzw) © Bzw) (W) = B (2u) = (Zzu) = u

and the analogous statement for v, we have Bz 5) = ﬁ(z,W)' 0
Remark 3.4.16 The map

B8t xSt — Aut(4y), (z,w)r— Bz w)
18 a homomorphism of groups.

Definition 3.4.17 Inner Automorphism Let A be a unital C*-algebra and v € A unitary, then

’u — Ad(u)(a) := uau®

18 a x-automorphism, called inner automorphism.
Lemma 3.4.18 Let 6 € R and A\ = >, then

Bonpmy = Ad(v™"u™), Vn,m € Z
In particular Byn xmy s an inner automorphism Yn,m € Z.

Proof:  Since Ay = C*(u,v), it suffices to show that Biyn ym)(a) = (v "u™)a(v""u™)* for
a = u,v. We shall only prove the case a = u, the other is done in the exact same way.

(0" ™) u(v " u™)* = v MMM = v ™ = €20y = Ny = Ban amy (w)
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Theorem 3.4.19 If H C R is a closed subgroup, then H € {{0},R,aZ} for some a > 0.

Proof: Let H # {0} and a :=inf{b € H|b > 0}.

a =0 We will show that if a = 0, then H = R. Let x € R arbitrary and ¢, :=sup{b € H |b < z},
then ¢, € H, since H closed. Assume ¢, < x, then z — ¢, > 0 and there is a b € H with
0<b<x—cz. Butthenc, <b+c, <z and b+ c, € H, since b,c, € H, which is a
contradiction to ¢, = sup{b € H|b < z}.

a>0 If0<a€ H we have aZ C H. Assume that there is a b € H \ (aZ), then there isan € Z
with an < b < a(n+1),1e. 0 <b—an < a. But since b —an € H we have a contradiction
to the definition of a.

O
Corollary 3.4.20 Let § € R\ Q, A = 2™ then the following holds
(1) Z+ 0Z is a dense subgroup of R.
(2) {\"|n € Z} is a dense subgroup of S*.
(3) {(A",A\™) | (n,m) € Z*} is a dense subgroup of Z2.
Proof:
(1) Z+ 6Z is a closed subgroup of R. Assume Ja > 0 : Z + 0Z = aZ. Then there are n,m € Z
with an = 1, am = 0. Thus % = % and ™ = @ which is in contradiction to § € R\ Q.
(2) Consider ¢ : R — S! ¢(x) = €™, then {*™" |n € Z} = p(Z + 07) which is dense in
¢(R) = St.
(3) If D C X dense, then D x D C X x X dense.
O

Lemma 3.4.21 For all a € Ay is holds that the following map is continuous:
Sl X Sl — Ag (Z,w) — B(Z,w)’

Proof: Due to f(; ) (u"v™) = (zu)"(wv)™ = 2"w™ (u"v™) continuity follows for a = u"v™ and
thus also for all

b= Z f(n,m)u™™, f e C(Z).

If now a € Ag arbitrary and (z,,wn) — (2,w) € St x S1, then there is a e > 0 and a
b=">,m f(n,m)uv™ with [|b —a|| < §. Choose N € N with [|3,, w,)b — Bwbl| < §, then

13 g g
1B(znwn)@ = Bzw) @l < 1Bz wn) (@ = O + [z )0 = Bz )bl + 1Bz0) (0 — a)|] < 3tgtg=¢
]

Definition 3.4.22 With Gelfand-Naimark there exists a faithful representation Ag C L(H) for
some Hilbert space H. Then (z,w) = B, (a) is a continuous, operator valued function and we

can define
1 rl
Eg(a) ::/ ,B(Z’w)(a)d(z,w):/ / ﬁezms’ezmtdsdt
Slx st 0 Jo

Approximating the integral by Riemannian sums, shows that Fg(a) € Ag Ya € Ay.
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Theorem 3.4.23 Let Ey: Ag — Ay as in the definition, then there is a state 79 : Ag — C such
that

(1) Ey(a) = 9(a)l Va € Ay.

(2) 19(ab) = 19(ba) Va,b € Ay.

(3) T9(a*a) >0 V0 # a € Ayp.
Proof:

(1) For a = u"v™ it holds that

Bow's™) = [ B = [ G o))

= (/ 2"wMd(z,w) | u"o™ </ / Zmisn 2mtmdsdt>
Slx St
1, if (n,m) # (0,0)
0, if (n,m) = (0,0).

Thus Ey(}_,, ,, f(n,m)u"v™) = f(0,0)1. a+— Ey(a) is continuous since
Ag — C(ST x S, Ag); a s [(z,w) +]B(zw) (@) is continuous as a *-homomorphism and
f51X31 : C(St x S, Ay) — Ay is continuous. The continuity of a — Ey(a) and the fact that
C1 is closed in Ay give Ey(a) € C1 Va € Ayp.

So we have Ey(a) = 19(a)l Va € Ay, but we still need to show that 74 is a positive
functional. Let a =Y, f(n,m)u™v™, f € C.(Z?%), then

ata = (Z f(n,m)unvm)*(z f(n,m)unvm) _ Z Wf(ka l>e2m’9(k—n)uk’—nvl—m.

n,m,k,l

It thus follows that 7p(a*a) =Y f(n,m)f(n,m) > 0 if f # 0. Since 7y is continuous (Ej
continuous) we have my(a*a) > 0 Va € Ay.

(2) Hfa=3,, f(n,mu™™ b=>%" . g(n,mu"v™, then

ab = Z(f xg g)(n, m)u"v™.

So it holds that
i (k1) k 1) i
mo(ab) = (f %6.9)(0,0) = 3 F(k,g(—k, —D)e2r VLR S p g g (s, ettt
= (g%0 £)(0,0) = 19(ba).
And since 7y is continuous, it follows that 7y(ab) = 19(ba) Va,b € Ay.

(3) Let 0 # a € Ag and let ¢ : Ag — C is a linear functional with ¢(a*a) > 0 (which exists by
the GNS construction), then

ewa)=¢ ([ ea@adee) 22 [ o)) > 0
SlxSt SxS1
since /B(z,w) (a*a) = (B(Z,w ( )) ﬁ(z w)( ) 0 v(sz) e St x 517 and thus Qp(ﬁ(z,w) (a*a)) >0

V(z,w) € ST x ST and B 1)(a*a) = ¢(a*a) > 0. It follows that Ey(a*a) # 0 and thus also
To(a*a) # 0.
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Remark 3.4.24 Traces

A positive functional T : A — C with 7(ab) = 7(ba) Ya,b € A is called a trace on A. E.g.
tr : M, (C) — C is such a trace.

A trace T : A — C with 7(1) =1 is called trace state or a normalized trace.

If r(a*a) =0 = a =0 then 7 is called a faithful trace.

The above trace Ty : Ag — C is a sort of Lebesgue-integral on the noncommutative torus Ag.
For 6 =0 19 is the usual Lebesque-integral on Ag = C(S' x S1).

Theorem 3.4.25 Uniqueness Let 6 € (0,1) be irrational, then 79 : Ag — C is the only
normalized trace on Ay, i.e. if T: Ag — C is an arbitrary state with 7(ab) = 7(ba) Va,b € Ay,
then ™ = 1.

Proof: Let A =e?™ and Hy = {(\*,\™)|n,m € Z} C S* x S', then Hy is dense in S' x S*
and we have

T(Boan amy(a)) = 7((0™"u™)" alv™"u™)") = 7(be) = 7(cb) = T(a(v™"u™) (v"u™)") = 7(a).

=:b =:c

Since (z,w) — B, ) (a) and T are continuous, we have 7(5(, ) (a)) = 7(a) ¥(z,w) € ST x S and
finally

@) = [ @) = [ rBem@ee) = ([ @)
= 7(Ep(a)) = 7(9(a)1) = 79(a)7(1) = 9(a).

Theorem 3.4.26 Let 0 € (0,1) be irrational, then Ay is simple, i.e. {0} and Ay are the only
ideals in Agy.

Proof: Let I # {0} be an ideal in Ag und let 0 # a € I. Let
Hp = {(\",A\™)|n,m € Z} C S' x S1, then

Bowm amy(a®a) = (v "u™)a*a(v "u™)" € T
for all (X", \™) € Hy. Now since I closed and Hy dense in S' x S, we also have f, ,)(a*a), for

all (z,w) € S x St Tt follows that

o)L, = Eoa'a) = [ feulaadzw) € L
S1x St
Since 7y is faithful, we have my(a*a) # 0, and it follows that 14, € I, thus I = Ay. O
Remark 3.4.27 We have seen that that the structure of Ay is very different, depending on

wether 0 is rational or irrational. Le. in the irrational case there are no nontrivial ideals, whereas
in the rational case, there are many. In particular

QEQaé¢Q, = AQ?:UAé
We already know

The question:
When is Ag = A5 ?

in solved with K-theory.
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A Results from Topology

Theorem A.0.28 Tietze Extension Theorem if X is a normal topological space, A C X
closed and f: A C X — R continuous, then there exists a continuous extension

F:X —R, Fla=Ff

Lemma A.0.29 Urysohn Let X be a locally compact Hausdorff space. Let K C X be compact
and A C X closed with K N A = &. Then the following hold

(i) There exists a relatively compact open neighborhood U of K such that K CU C U C X \ A.

(i) There exists a continuous function of compact support f : X — [0,1] with f|x =1 and
fla=0.

Lemma A.0.30 Let K, X be Hausdorff spaces, K be compact, f : K — X continuous and
bijective. Then f~1 is continuous also. Le. f is a homeomorphism.

B Results from Functional Analysis

Definition B.0.31 Separates Points

o ' C XY is said to separate points in X iff
Ve, € X with o Aa9 Jp € F o p(x1) # p(x2)
o ' C XK js said to strongly separate points in X iff it separates points in X and
Vee X dJpeF: ox)#0
Remark B.0.32 Note: if 1 € F C XX, then F separates points in X.

Theorem B.0.33 Stone — Weierstrafl Let X be a locally compact Hausdorff space and
F C Cy(X,C) separates points in X, then the unital x-algebra (F) C Cy(X,C) is dense.

Theorem B.0.34 Hahn — Banach Continuation Theorem Let E be a topological K-vector
space and p : E — [0,00) a halfnorm on it. F C E a linear subspace and g : F' — K a linear
functional on F such that |g(z)| < p(z) Yo € F, then there ezists a linear continuation §: E — K
such that

gr=g9, l9(z)| <plxz) Vzelk.

Theorem B.0.35 Banach — Alaoglu Theorem Let (E,||-||) be a normed space, then

B.(f) C E' compact, VfeE, >0
in the weak x-topology.

Theorem B.0.36 Banach — Steinhaus Theorem Let E be a Banach space and F be a
normed space. @ # I an arbitrary index set and T; € L(E, F) Vi € I. If for all x € E there exists
a cx > 0 such that

|Tiz|| <ecp Viel
then there is a ¢ > 0 such that ||T;|| < c Vi€ I. Le. {T;|i € I} is point wise bounded, then it is

also norm bounded.

Theorem B.0.37 Open Mapping Theorem Let E, F' be Banach spaces. T € L(E, F)
surjective, then T is open, i.e. if U C E open, then T(U) C F open.
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C Examples of Normed Algebras
(1) Co(X), X locally compact
— Multiplication: (f - g)(z) := f(x) - g(x)
— Involution: f*:=f
Banach *-algebra: ||f||oc = ||f]]oo
C*-algebra: ||f flloo = |[1f[*[loc = IIf]IZ

— Commutative: obvious

Gelfand-space Az~ X , with the homeomorphism

5.0 X =5 {8, Co(X) = Cla € X, 6,(f) == f(a)} = Co(X)
— Spectrum for X compact: o¢(x)(f) = f(X) since
fev(C(X)) & f(z)#0Vze X, thenf™! =3

(2) Disc-algebra A = AP¢ .= {f € C(D)| f holomorphic on int(D)}

— Multiplication: obvious
— Involution: f*(z) := f(Z)

— Banach x-algebra:

— C*-algebra: AP is not a C*-algebra, that is since every commutative C*-algebra is
symmetric and AP®¢ is not symmetric:

1e AP = 1*2)=1EF) =%z=2 = 1=1*

and 04(1) = 1(D) = D ¢ R, but symmetric algebras fulfill 04(a) C R.
— Commutative: obvious

— Gelfand-space:
A = D
o — @(z)€0a(z)=2(D)=D

— Spectrum: o4(f) = f(D), if fline(p) is holomorphic, then so is %|mt(D).

(3) Convolution algebra (I'(Z),||f|l1 :== ez |f(n)])

— Multiplication = Convolution: (f * g)(n) := >, ., f(m)g(n —m)
— Involution: f*(n):= f(—n)

— Banach x-algebra:

(fxg9)* = (Fxg)(=n)=)_flm)g(-n—m)=>_ f(=m)g(—n+m)

m

= 3 m)gt(n—m) = (f* % ) (n) “TETW (gt ) (n)

Ll =220 [f (=)l =22, ) = f]]
— C*-algebra: [1(Z) is not a C*-algebra. There exist counter examples f € [*(Z) with
£+ fll # [ fII5.



OPERATOR ALGEBRAS

81

— Commutative:

(f*g)(n) = flm)g(n —m) "= Y " g(m) f(n —m) = (g% f)(n)

m m

— Gelfand-space:

z — P, 0. (f) = f(z) = Zf(n)z”

— Spectrum: op1(z)(f) = F(S1), since f € Inv(I*(Z)) iff f(z) #0Vze S!



