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0.1 Some Notation

A+ = positive elements, P (A) = positive functionals,

Asa = self adjoint elements, S(A) = states,

U(A) = unitary elements, Pure(A) = pure states,

Inv(A) = invertible elements, Max(A) = maximal ideals
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1 Spectral Theory and Basic Tools

There are two theorems, which are both refered to as Gelfand-Naimark Theorem one holds for
commutative C∗-algebras only:

A ∼= C0(Â),

while the other:
A ∼= π(A) ⊂ L(Hπ),

holds for general C∗-algebras. That is any C∗-algebra A can be viewed as a subalgebra of L(H)
for some suitable Hilbert space H. Furthermore if A is commutative we can take it to be C0(X)
for some locally compact space X.

Just like the above two theorems carry the same name, also the following two quantities

A commutative : Â := {χ : A→ C | 0 6= χ algebra homomorphism}
A general : Â := {[π] |π : A→ L(H) irrep}

are given the same name. If the C∗-algebra is commutative both expressions coincide.

1.1 Banach Algebras

In this section we shall introduce the basic notion of Banach algebra, which shall lead us to the
von-Neumann series and finally the result, that the set of invertible elements Inv(A) are open in
the Banach algebra A.

Definition 1.1.1 Complex Algebra A complex algebra is a C-vector space A with a multiplica-
tion

m : A×A −→ A

that is a bilinear and associative mapping.

Definition 1.1.2 Banach Algebras (BA) A normed algebra is a normed space (A, || · ||) that
is a complex algebra such that

||ab|| ≤ ||a|| · ||b||.

A complete normed algebra is called a Banach algebra (BA).

Lemma 1.1.3 Continuity of the multiplication The relation ||ab|| ≤ ||a|| · ||b|| lets the multi-
plication in a normed algebra be continuous.

Proof: Let an → a, bn → b in (A, || · ||), then

||anbn − ab|| ≤ ||anbn − anb||+ ||anb− ab|| ≤ ||an|| · ||bn − b||︸ ︷︷ ︸
→0

+ ||an − a||︸ ︷︷ ︸
→0

·||b|| → 0.

�

Lemma 1.1.4 Unitalization The unitalization of a normed algebra is the normed unital
(1A1 := (0, 1)) algebra:

A1 := {(a, λ) | a ∈ A, λ ∈ C}, (a, λ)(b, µ) := (ab+ λb+ µa, λµ), ||(a, λ)||A1 := ||a||A + |λ|.

Proof: For example

||(a, λ)(b, µ)|| = ||ab+ λb+ µa||+ |λµ| ≤ ||a||||b||+ |λ|||b||+ |µ|||a||+ |λµ| = ||(a, λ)|| · ||(b, µ)||

�
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Remark 1.1.5 There are other possible choices for the norm on A1. For instance,
||(a, λ)||∞ := max{||a||, |λ|} would be a BA-norm on A1 which is equivalent to || · ||A1 defined
above.

Definition 1.1.6 Ideals A subalgebra I ⊆ A is called a right (left) ideal iff

ia ∈ I (ai ∈ I) ∀i ∈ I, a ∈ A

I ⊆ A is called an ideal iff it is a right and left ideal.

Example 1.1.7

1.) A ⊂ A1 is an ideal:

(a, 0)(b, λ) = (ab+ λa, 0) ∈ A, (b, λ)(a, 0) = (ba+ λa, 0) ∈ A.

2.) The compact operators K(B) ⊆ L(B) on a Banach space B form an ideal.

3.) Let X be locally compact and Hausdorff, then the following are ideals:

Ix := {f ∈ C0(X) | f(x) = 0} ⊂ C0(X).

Lemma 1.1.8 Quotient Space Let I ⊂ A be an ideal.

• Then the following is an algebra:

A/I := {a+ I | a ∈ A} with (a+ I)(b+ I) := ab+ I.

• If A was Banach, then the following norm lets A/I again be Banach :

||a+ I|| := inf{||a+ b|| | b ∈ I}.

Proof: The multiplication is well defined, since for a′ = a+ c, b′ = b+ d with c, d ∈ I:

(a′ + I)(b′ + I) := a′b′ + I = (a+ c)(b+ d) + I = ab+ (ad+ cb+ cd)︸ ︷︷ ︸
∈I

+I = ab+ I =: (a+ I)(b+ I)

If A was Banach, then we know that A/I is a Banach space also. So we only need to show that

||(a+ I)(b+ I)|| ≤ ||(a+ I)||||(b+ I)||.

For all c, d ∈ I we have

||(a+ I)(b+ I)|| = ||ab+ (ad+ cb+ cd) + I|| ≤ ||ab+ (ad+ cb+ cd)|| = ||(a+ c)(b+ d)||

and thus
||(a+ I)(b+ I)|| ≤ inf

c,d∈I
||(a+ c)||||(b+ d)|| = ||(a+ I)||||(b+ I)||.

�

Definition 1.1.9 Invertible Elements Let A be a unital algebra, we define

Inv(A) := {a ∈ A | a invertible}

Remark 1.1.10

• Inv(A) is a group, since (ab)−1 = b−1a−1.
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• If I ( A is a proper Ideal, then I ∩ Inv(A) = ∅ since

a ∈ I ∩ Inv(A), ⇒ 1A = aa−1 ∈ I, ⇒ A = 1AA ⊆ I.

Theorem 1.1.11 von−Neumann Series Let A be a unital BA and ||a|| < 1, then we have

(1− a) ∈ Inv(A), (1− a)−1 =

∞∑
n=0

an.

Proof: We know that in a Banach space

∞∑
n=0

||xn|| converges ⇒
∞∑
n=0

xn converges.

Thus, because of ||an|| ≤ ||a||n, it is clear that the von-Neumann series converges. And we have

(

∞∑
n=0

an)(1− a) = (1− a)

∞∑
n=0

an =

∞∑
n=0

an −
∞∑
n=1

an = a0 = 1.

�

Corollary 1.1.12 Inv(A) is open Let a ∈ Inv(A) and

b ∈ A with ||a− b|| < ||a−1||−1 ⇒ b ∈ Inv(A).

In particular Inv(A) ⊂ A is open.

Proof: ||a−1(a− b)|| ≤ ||a−1|| · ||a− b|| < 1, thus with Von-Neumann: (1− a−1(a− b)) ∈ Inv(A)
and since b = a(1− a−1(a− b)) we have b−1 = (1− a−1(a− b))−1a−1. �

1.2 Results from Complex Analysis

In this section, we shall give some central results from complex analysis.

Definition 1.2.1 Holomorphic Function Let U ⊆ C be open. A function f : U → C is called
complex differentiable in λ0 ∈ U , iff

f ′(λ0) := lim
λ→λ0

f(λ)− f(λ0)

λ− λ0

exists. f ′(λ0) is then called the complex derivative of f in λ0. f : U → C is called holomorphic, if
it is differentiable in all λ ∈ U.

Remark 1.2.2 All the usual rules of differentiation (product rules, chain rule, etc.) still apply
in the complex.

Theorem 1.2.3 Let U ⊆ C be open. A function f : U → C, then the following are equivalent

(1) f is holomorphic on U .

(2) To every λ0 ∈ U , there is a r > 0 and an ∈ C, n ∈ N such that

f(λ) =
∞∑
n=0

an(λ− λ0)n ∀λ ∈ Ur(λ0).

Furthermore it holds, that the series in (2) converges on every UR(λ0) ⊆ U to f(λ).
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Remark 1.2.4

• The last statement is very important, since it tells us, that we can maximally extend the
radius of convergence in U .

• As in real analysis, one can show that the derivative of a function given as a series
expansion

f : Ur(λ0) −→ C, f(λ) =

∞∑
n=0

an(λ− λ0)n

is obtained just by taking the derivative of each summand, i.e.

f ′(λ) =
∞∑
n=1

nan(λ− λ0)n−1

and by induction, we get

f (k)(λ) =

∞∑
n=k

n(n− 1) · · · (n− k + 1)an(λ− λ0)n−k ∀k ∈ N.

In particular, f is ∞-times complex differentiable, with

f (k)(λ0) = k!ak, so ak =
f (k)(λ0)

k!
.

Thus we have that the above series is the Taylor series of f .

Theorem 1.2.5 Entire Function Let f : C→ C be holomorphic (such a function is called

entire), λ0 ∈ C arbitrary. Then with an = f (n)(λ0)
n! , we have

f(λ) =
∞∑
n=0

an(λ− λ0)n ∀λ ∈ C.

If we choose λ0 = 0, then

f(λ) =
∞∑
n=0

anλ
n, an = f (n)(0)

n! .

Example 1.2.6 exp, cos, sin : C→ C are entire functions.

Definition 1.2.7 Complex Domain A complex domain (or simply domain) is a connected open
subset of C.

Definition 1.2.8 Let U ⊆ C be a domain, f : U → C holomorphic and

Nf := {λ ∈ U | f(λ) = 0}.

It then holds that if Nf has an accumulation point in U , then Nf = U , i.e.

f = 0 on U.

Proof: Let A be the set of all accumulation points of Nf . Then A is closed in U . That is since
f in continuous and thus f(λ0) for every accumulation point λ0 of Nf and thus also for every
point in A.
We now show that A is also open. Since then U = A ∪ U \A with A,U \A open, so A = ∅ or
A = U since U is connected.
Let λ0 ∈ A and r > 0 with Ur(λ0) ⊆ U and let f(λ) =

∑∞
n=0 an(λ− λ0)n be the series expansion

of f . We claim that an = 0 ∀n ∈ N (it then follows that Ur(z0) ⊆ A so A open.)
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We assume an 6= 0 for some n ∈ N. Let then n0 ∈ N be the minimal an such that an 6= 0. It
follows that n0 > 0, since a0 = f(λ0) = 0. We define

g : U −→ C, g(λ) =

{
an0 , if λ = λ0

(λ− λ0)−n0 , if λ 6= λ0.

Then g is holomorphic, since g is holomorphic on U \ {λ0} with the product rule and g
holomorphic in λ0, since ∀λ ∈ Ur(λ):

g(λ) = (λ− λ0)−n0

∞∑
n=n0

an(λ− λ0)n =
∞∑
n=0

an+n0(λ− λ0)n.

That is g has a series expansion in Ur(λ0). And thus g(λ0) = an0 6= 0. Now since g is continuous,
there is a ε > 0 such that g(λ0) 6= 0 on Uε(λ0). Since λ0 ∈ A there is a sequence (λn)n in U with
f(λn) = 0, λn → λ0. For a large enough n, it then follows, that λn ∈ Uε(λ0), so

0 6= g(λn) = (λ0 − λn)−n0 f(λn)︸ ︷︷ ︸
=0

= 0,

which is a contradiction. �

Corollary 1.2.9 Let U ⊆ C be a domain and f, g : U → C be holomorphic. Let λn, λ0 ∈ U with
λn → λ0 6= λn, g(λn) = f(λn) ∀n ∈ N. It then follows that f = g on U .

Proof: Apply the last theorem to h := f − g. �

Theorem 1.2.10 Mean Value Property Let f : U → C be holomorphic and λ0 ∈ U , r > 0
with Br(λ0) ⊆ U , then

f (n)(λ0) =
n!

2πrn

∫ 2π

0
f(λ0 + reit)e−intdt

Proof: Choose a 0 < r < R with UR(λ0) ⊆ U , since f is holomorphic, we have

f(λ) =
∞∑
k=0

ak(λ− λ0)k, ak = f (k)(λ0)
k! , ∀λ ∈ UR(λ0).

Since r < R, the series converges uniformly on Br(λ0). And thus for all n ∈ N0

1

2π

∫ 2π

0
f(λ0 + reit)e−intdt =

1

2π

∫ 2π

0
(

∞∑
k=0

akr
keikt)e−intdt

uniform conv.
=

1

2π

∞∑
k=0

akr
k

∫ 2π

0
ei(k−n)tdt

= anr
n =

f (n)(λ0)

n!
rn.

That is since
∫ 2π

0 ei(k−n)tdt = (2π)δnk. �

Theorem 1.2.11 Liouville Let f : C→ C be entire and bounded, then f is constant.

Proof: We have

f(λ) =

∞∑
n=0

anλ
n, an = f (n)(0)

n! , ∀λ ∈ C.

If we we take an arbitrary r > 0, then by the mean value property, we have

an =
1

2πrn

∫ 2π

0
f(λ0 + reit)e−intdt
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and thus

|an| ≤
1

2πrn

∫ 2π

0
|f(λ0 + reit)|︸ ︷︷ ︸

≤c

dt ≤ c

rn

if c ≥ 0 with |f(λ)| ≤ c ∀λ ∈ C. Since r > 0 was arbitrary, it follows that

|an| ≤
c

rn
−→
r→∞

0

so an = 0 ∀n > 0 and thus f(λ) = a0 = f(λ0) ∀λ ∈ C. �

Theorem 1.2.12 Let U ⊆ C be a domain and f : U → C be holomorphic. If |f | has a local
maximum on U , then f is constant.

Proof: Let w.l.o.g. λ0 ∈ U be a local maximum of f , then there is a r > 0 with Br(λ0) ⊆ U
and |f(λ)| ≤ |f(λ0)| ∀λ ∈ Br(λ0). Now multiplying f with µ = eiϕ for some ϕ ∈ [0, 2π), we can
w.l.o.g assume f(λ0) ≥ 0. We know that

f(λ0) =
1

2π

∫ 2π

0
f(λ0 + seit)dt ∀0 ≤ s ≤ r.

We assume that ∃0 ≤ s ≤ r and t0 ∈ [0, 2π]. with f(λ0 + seit) 6= f(λ0). We have

Ref(λ0 + seit) ≤ |f(λ0 + seit)| ≤ |f(λ0)| = f(λ0).

And it follows that

f(λ0) =
1

2π

∫ 2π

0
f(λ0 + seit)dt <

1

2π

∫ 2π

0
f(λ0)dt = f(λ0),

which is a contradiction. So we have that f(λ) = f(λ0) on Br(λ0) and thus f = f(λ0)1 on
Br(λ0). And finally, on U , it holds that f = f(λ0)1. �

Corollary 1.2.13 Let U ⊆ C be a domain with U compact and f : U → C continuous with f |U
holomorphic. Then the maximum of |f | lies on ∂U.

Proof: Since U is compact, |f | has a maximum on U . And due to the above theorem, it does
not lie on U . �

Lemma 1.2.14 Let r > 0 and U r := {λ ∈ C | |λ| > r}. If then 0 < r < R and f : U r → C
holomorphic, such that f has a series representation

f(λ) =

∞∑
n=0

an
1

λn
, λ ∈ UR,

then the series converges to f(λ) on all of U r ⊇ UR.

Proof: Define g : U1/r(0)→ C by

g(λ) :=

{
a0, if λ = 0

f(1/λ), if λ 6= 0.

Then g(λ) =
∑∞

n=0 anλ
n ∀λ ∈ U1/R(0), thus g is holomorphic in 0 and g is holomorphic on

U1/r(0) by the chain rule. We have seen, that the series representation for g then also holds on all
of U1/r(0). Thus we have

f(λ) = g(1/λ) =

∞∑
n=0

an
1

λn
, |λ| > r.

�

Theorem 1.2.15 Let U ⊆ C be open and fn, f : U → C be functions with fn holomorphic
∀n ∈ N and

||fn − f ||k = sup
x∈K
|fn(λ)− f(λ)| −→

n→∞
0

for every compact K ⊂ U . Then also f is holomorphic and f ′n → f ′ uniformly on all compact
subsets K ⊂ U .
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1.3 The Spectrum

The spectrum for a linear operator on an infinite dimensional vector space, is a generalization of
the set of eigenvalues of a linear operator F on a finite dimensional vector space V .

λ is eigenvalue of F ∈ End(V )

⇔ ∃0 6= x ∈ V : Fx = λx

⇔ ∃0 6= x ∈ V : (F − λ1)x = 0

⇔ ker(F − λ1) 6= {0}
⇔ (F − λ1) is not injective

dimV <∞⇔ (F − λ1) is not bijective

⇔ (F − λ1) is not invertible

Where by the open mapping theorem for T ∈ L(E):

(T − λ1) bijective ⇔ (T − λ1) ∈ Inv(L(E)).

This motivates the following definition:

Definition 1.3.1 Spectrum and Resolvent Let A be a BA and a ∈ A. The spectrum σA(a)
and the resolvent R(a) of an element a are defined to be the following quatities:

σA(a) := {λ ∈ C | (a− λ1) /∈ Inv(Ã)}, Ã :=

{
A1, if 1 /∈ A
A if 1 ∈ A

R(a) := C− σA(a).

The resolvent map is defined as:

Ra : R(a) −→ A

λ 7−→ Ra(λ) := (a− λ1)−1.

Remark 1.3.2 Spectrum is closed For all a ∈ A, we have

σA(a) ⊂ C is closed, R(a) ⊂ C is open.

since Inv(A) ⊂ A is open and λ 7→ (a− λ1) is continuous.

Theorem 1.3.3 Compactness of the Spectrum Let {0} 6= A be a C-BA, then we have

σA(a) 6= ∅, σA(a) ⊆ B||a||(0)

and thus σA(a) ⊂ C is compact.

Proof: We prove only the second assertion. The first needs more work. Let |λ| > ||a||, then
|| 1λa|| < 1 so with the von Neumann-series, we have

∃(1− 1
λa)−1 ⇔ (1− 1

λa) ∈ Inv(A)

⇒ (a− λ1) = −λ(1− 1
λa) ∈ Inv(A)

⇒ λ ∈ R(a) ∀|λ| > ||a||.

�

Remark 1.3.4 In a R-BA AR, we can have σ(AR) = ∅. E.g.: σMat2(R)

((
0 1
−1 0

))
= ∅.
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Definition 1.3.5 Spectral Radius The spectral radius is defined to be

ρ(a) := sup{|λ| |λ ∈ σA(a)}

Lemma 1.3.6 The spectrum commutes with complex polynomials:

p(z) =

n∑
k=0

akz
k, ⇒ σ(p(a)) = p(σ(a))

Proof: For any α ∈ C, one can write

p(a)− α1 = c
n∏
i=1

(a− λi1)

for some 0 6= c, λ1, . . . , λn ∈ C, depending on the chosen α. Thus

(p(a)− α1) ∈ Inv(A) ⇔ (a− λi1) ∈ Inv(A) ∀i,

and
α ∈ σ(p(a)) ⇔ ∃ at least one λi ∈ σ(a).

where the λi were chosen to be the zeros of p(λ)− α1 ⇔ p(λi) = α. �

Lemma 1.3.7 Spectral Radius Formula For the spectral radius ρ it holds that

ρ(a) = lim
n→∞

||an||1/n

Note that here the algebraic quantity ρ(a) is expressed in terms of the topological quantity || · ||.

Proof: We prove ρ(a) ≤ lim||an||1/n ≤ lim||an||1/n ≤ ρ(a):

• ρ(a) ≤ lim||an||1/n: If λ ∈ σ(a) then λn ∈ σ(an) and thus

|λ|n = |λn| ≤ ||an||, ⇒ |λ| ≤ ||an||1/n, ⇒ |λ| ≤ lim||an||1/n, ⇒ ρ(a) ≤ lim||an||1/n.

• lim||an||1/n ≤ ρ(a): If there exists a Cλ > 0 with

|λ|−n−1||an|| ≤ Cλ, ∀n

then ||an||1/n ≤ (Cλ|λ|)1/n|λ| and we have

lim||an||1/n ≤ lim(Cλ|λ|)1/n|λ| ≤ lim
n→∞

(Cλ|λ|)1/n|λ| = |λ|

as any x ∈ (0,∞) fulfills x1/n → 1. So it follows that lim||an||1/n ≤ ρ(a).

• We now prove the existence of such a Cλ. In order to do so, we show that { 1
λna

n |n ∈ N} is
weakly bounded. As explained, this gives boundedness. Let now ϕ ∈ A′. Consider again the
holomorphic function

ϕa : Ra −→ C, ϕa(λ) = ϕ(Rλ(a)) = ϕ((a− λ1)−1).

Since Uρ(a) := {λ ∈ C | |λ| > ρ(a)} ⊆ Ra, we have that ϕ is in particular holomorphic on
Uρ(a). If |λ| > ||a||, then

Ra(λ) = (a− λ1)−1 = − 1
λ(1− a

λ)−1 = − 1
λ

∞∑
n=0

an 1
λn = −

∞∑
n=0

an 1
λn+1

(since || 1λa|| < 1), and it thus holds that

ϕa(λ) = −
∞∑
n=0

ϕ(an) 1
λn+1 , ∀|λ| > ||a||.

So the series expansion holds for all |λ| > ρ(a). In particular ϕ(an) 1
λn+1 → 0 and thus

{ϕ( 1
λn+1a

n) |n ∈ N} ⊂ C is bounded.
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�

Lemma 1.3.8 Let ϕ : A→ B be a unital homomorphism of algebras, then it holds that

σB(ϕ(a)) ⊆ σA(a)

In particular, if ϕ is the inclusion map of a subalgebra A ⊆ B with 1B ∈ A, then ∀a ∈ A :

σB(a) ⊆ σA⊆B(a)

Proof: If there is a a−1 ∈ A, then

ϕ(a−1)ϕ(a) = ϕ(a−1a) = ϕ(1A) = 1B

thus ϕ(a) ∈ Inv(B) and

RA(a) ⊆ RB(ϕ(a)) ⇔ σB(ϕ(a)) ⊆ σA(a).

�

Lemma 1.3.9 If we have A ⊆ B with 1B ∈ A, then it holds that

∂σA(a) ⊆ σB(a) ⊆ σA(a)

Proof: Let λ ∈ ∂σA(a) ⊂ σA(a) and (λn)n ⊂ RA(a) with λn → λ. Assume λ /∈ σB(a), then
λ ∈ RB(a) and

(a− λn1)−1︸ ︷︷ ︸
∈A⊂B

−→ (a− λ1)−1︸ ︷︷ ︸
∈A⊂B

since A ⊂ B closed. So, since λ ∈ σA(a) we have a contradiction. �

1.4 The Gelfand-Homomorphism for commutative BAs

The Gelfand-space Â is a subspace of the (topological) dual A′:

Â ⊂ BA′
1 (0) ⊂ A′ ⊂ A∗

The main results of this section hold for commutative BAs: We prove that Â is locally compact
and compact if A is unital. Furthermore we will see that Â is in bijection with the space of
maximal ideals Max(A).

Definition 1.4.1 Gelfand− Space (Structure Space): Let A be a commutative BA. We define
the Gelfand-space to be the quantity

Â := {χ : A→ C | 0 6= χ algebra homomorphism}

Example 1.4.2 Let A = C0(X) with X locally compact, then the evaluation map

δx : C0(X) −→ C
f 7−→ δx(f) := f(x)

is an algebra homomorphism.

Lemma 1.4.3 Let A be a commutative BA, then ∀χ̃ ∈ Â1 there is a χ ∈ Â : χ̃|A = χ and with
χ∞(a+ λ1) = λ we have

Â1 = {χ̃ |χ ∈ Â} t {χ∞}.
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Proof: Let χ̃ : A1 → C be a continuation of χ : A→ C, then

χ̃(a+ λ1) = χ̃(a) + λχ̃(1) = χ(a) + 1.

Vice versa: χ̃(a+ λ1) := χ(a) + λ is a continuation of χ.

Is µ ∈ Â1 with µ|A = 0, then µ(a+ λ1) = λµ(1) = λ = χ∞(a+ λ1) and so µ = χ∞. �

Lemma 1.4.4 Let A be a commutative BA, then for χ ∈ Â the following hold:

• χ is continuous and ||χ||op ≤ 1,

• ||χ||op = 1 if A is unital.

Proof: Let A be unital, then

χ(a− χ(a)1) = χ(a)− χ(a) = 0, ∀a.

Thus (a− χ(a)1) /∈ Inv(A) and therefor χ(a) ∈ σ(a). We know σ(a) ⊆ B||a||(0), so

|χ(a)| ≤ ||a||, ⇒ ||χ||op ≤ 1.

For A unital we have χ(1) = 1, which gives ||χ||op = 1. �

Remark 1.4.5 We have shown Â ⊂ BA′
1 (0) and endow Â with the weak-* topology τw∗ of A′.

Definition 1.4.6 Weak− ∗ topology (topology of pointwise convergence) τw∗ a net
(χn)n ⊂ (A′, τw∗) converges iff

χn(a)→ χ(a), ∀a ∈ A.

Theorem 1.4.7 Let A be a commutative BA, then (Â, τw∗) is

• locally compact and

• compact if A is unital.

Proof: Remember Banach-Alaoglou: BA′
1 (0) ⊂ (A′, τw∗) is compact. Therefor for A unital we

only need to show that
Â ⊂ (BA′

1 (0), τw∗) closed.

So let (χn)n ⊂ Â be a net with χn → χ ∈ A′, then

lim
n→∞

χn(ab) = χ(ab)

lim
n→∞

χn(a)χn(b) = χ(a)χ(b)

lim
n→∞

χn(1) = 1 = χ(1)

and thus χ ∈ Â. If A is not unital, then Â ⊂ Â1 = Â t {χ∞} open and Â1 compact Hausdorff,
thus Â is locally compact. �

Remark 1.4.8 Â1 = Â t {χ∞} is the one-point compactification.

Definition 1.4.9 Gelfand−Transform Let A be a commutative BA. The
Gelfand-transformation is defined to be

â : Â −→ C
χ 7−→ â(χ) := χ(a).
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Remark 1.4.10 â ∈ C0(X) since for χn → χ we have:

â(χn) := χn(a) −→ χ(a) = â(χ).

Theorem 1.4.11 Let A be a commutative BA, then the map

∧ : A −→ C0(Â)

a 7−→ â

is a continuous, norm decreasing (i.e. ||â||∞ ≤ ||a||) homomorphism of algebras.

Proof: If A is unital, then Â is compact and there with C0(Â) = C(Â). Let now

φ : A1 −→ C(Â1 = Â t {χ∞})

be the Gelfand-transform for A1, then

φ(a)(χ̃) = χ̃(a+ 01) = χ(a) = â(χ)

φ(a)(χ∞) = χ∞(a+ 01) = 0.

Thus â = φ(a) ∈ (Â t {χ∞}) with φ(a)(χ∞) = 0. I.e. â ∈ C0(Â), and since ||χ|| ≤ 1 for χ ∈ Â:

|â(χ)| = |χ(a)| ≤ ||a||, ∀a ∈ A.

So it holds that ||â||∞ ≤ ||a||. �

Remark 1.4.12 The Gelfand-Homomorphism need not be injective or surjective.
For example take a Banach space A with the multiplication a · b := 0 for all a, b ∈ A. Then Â = ∅
and C0(Â = ∅) = {0}. Here the Gelfand homomorphism is the zero mapping and thus not
injective.

Lemma 1.4.13 Gelfand−Mazur Let A be a unital BA, then all non zero element are
invertible:

Inv(A) = A− {0}, ⇒ A ∼= C

Proof: We know σ(a) 6= ∅ and

λ ∈ σ(a) ⇔ a− λ1 /∈ Inv(A)
assumption⇔ a− λ1 = 0 ⇔ a = λ1.

�

Theorem 1.4.14 Let A be a commutative, unital BA and Max(A) the space of maximal ideals
in A, then the following hold:

1.) We have a bijection Â ∼= Max(A) :

Â −→ Max(A)

χ 7−→ ker(χ).

2.) We have a ∈ Inv(A) ⇔ â ∈ Inv(C(Â)) ⇔ â(χ) 6= 0 ∀χ ∈ Â

3.) For all a ∈ A it holds that:

σ(a) = {â(χ) |χ ∈ Â}

Proof:
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1.) First: Iχ = Imχ ∈ A is a maximal ideal for all χ ∈ Â, since for an ideal J ⊆ A, with Iχ ⊆ J ,
we have χ(J) ⊆ C which is an ideal in C, due to the isomorphim A/Iχ ∼= C by
a+ Iχ → χ(a). Since C is a field, we have χ(J) = {0} and thus J ⊆ Iχ, i.e. J = Iχ.

– Injectivity: Let χ1, χ2 ∈ Â, with χ1 6= χ2, then kerχ1 6= kerχ2, since if
kerχ1 = kerχ2 = I, then ∀a ∈ A:

χ2(a− χ1(a)− 1) = χ2(a)− χ1(a) = 0, χ1(a− χ2(a)− 1) = χ1(a)− χ2(a) = 0

so χ1 = χ2. So the map is indeed injective.

– Surjectivity: If I ⊆ A is an arbitrary ideal, then Inv(A/I) = A/I \ {0 + I}, since if

a /∈ I and a+ I not invertible in A/I, then J̃ = {ab+ I | b ∈ A} is an ideal in A/I,
since 1 + I /∈ J̃ . And then J = (a+ I)A ⊆ A is an ideal in A with I ( J , which
contradicts maximality.
But if Inv(A/I) = (A/I) \ {0 + I}, then with Gelfand-Mazur A/I ∼= C. And with the
quotient map χ : A→ A/I ∼= C, we have χ ∈ Â with Im(χ) = I.

2.)”⇒ ” Is a ∈ Inv(A), then χ(a) 6= 0 ∀χ ∈ Â, since we have 1 = χ(a−1a) = χ(a−1)χ(a).

”⇐ ” Let now χ(a) 6= 0 ∀χ ∈ Â. Assume a /∈ Inv(A), then J = 〈a〉 = {ab | b ∈ A} is an ideal
in A and thus there exists a maximal ideal I ⊂ A with J ⊆ I. By (1) ∃χ ∈ Â with
Im(χ) = I ⊇ J. But then χ(a) = 0, since a ∈ J ⊆ I. A contradiction!

3.) First, if χ ∈ Â, then χ(a− χ(a)− 1) = 0, so (a− χ(a)− 1) /∈ Inv(A) and χ(a) ∈ σ(a), thus
â(χ) = χ(a) ∈ σ(a) ∀χ ∈ Â.
Let now λ ∈ σ(a), then a− λ1 /∈ Inv(A) and with (2) there is a χ ∈ Â such that

0 = χ(a− λ1) = χ(a)− λχ(1) = χ(a)− λ

so λ = χ(a) = â(χ).

�

1.5 C∗-Algebras and the Gelfand-Naimark Theorem

Amongst the main results of this sections are the uniqueness theorem for C∗-norm and the fact
that all commutative C∗-algebras are symmetric. The most important result however is the
Gelfand-Naimark theorem, i.e. that for commutative C∗-algebras A ∼= C0(Â).

Definition 1.5.1 Involution and ∗ −Algebra Let A be a C-algebra, then an involution is a
mapping ∗ : A→ A such that

(a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗, (λa)∗ = λa∗, (a∗)∗ = a.

(A, ∗) is called a ∗-algebra.

Definition 1.5.2 Banach− ∗ −Algebra A Banach -∗-algebra is a ∗-algebra (A, ∗) such that

||a∗|| = ||a||.

Definition 1.5.3 C ∗ −Algebra A C∗-algebra is a Banach-∗-algebra such that

||a∗a|| = ||a||2.

Example 1.5.4

1.) (C0(X), f∗ := f) is a C∗-algebra.

2.) (l1(Z), || · ||1, f∗(n) := f(−n)) is a Banach-∗-algebra. It is however not a C∗-algebra.
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3.) (L(H), T ∗ = adj.op.) is a C∗-algebra.

Theorem 1.5.5 Let A be a C∗-algebra without unity. Then the following is a C∗-algebra:

(A1, ||(a, λ)|| := ||Λ(a,λ)||op, (a, λ)∗ := (a∗, λ)),

where
Λ(a,λ)(b) := (a, λ) · b = ab+ λb.

Proof: It is obvious that Λ is a homomorphism of algebras.

• Show: Λ is injective. Let (a, λ) ∈ A1 with an+ λb = 0 ∀b ∈ A. If λ = 0, then aa∗ = 0 and
thus a = 0 since ||a||2 = ||a∗||2 = ||aa∗|| = 0.
If λ 6= 0, then − 1

λab = b ∀b ∈ A. Then e := − 1
λa is a left unity in A, and it follows, that

(ce− c)b = (ce)b− cb = c(eb)− cb = cb− cb = 0 ∀c, b ∈ A. and thus also (ce− c)(ce− c)∗ = 0
∀c ∈ A, which gives ce− c = 0, i.e. e is a unity in A, which stands in contradiction to the
assumptions.

• Set ||(a, λ)|| := ||Λ(a,λ)||op, then ||(a, 0)|| = ||a|| ∀a ∈ A since with
||Λ(a,0)(b)|| = ||ab|| ≤ ||a|| ||b||, we have ||(a, 0)|| = ||a|| and if a 6= 0 then due to

||Λ(a,0)(
1
||a||a

∗)|| = 1
||a|| ||aa

∗|| = 1
||a|| ||a||

2 = ||a||, we also have ||(a, 0)|| = ||a|| ∀a ∈ A.

• Show ||(a, λ)∗(a, λ)|| = ||(a, λ)||2 ∀(a, λ) ∈ A1. Let now ε > 0 and b ∈ A with ||b|| = 1 and
||ab− λb|| = ||Λ(a,λ)(b)|| ≥ ||(a, λ)||(1− ε), it then follows that

(1− ε)2||(a, λ)|| ≤ ||ab− λb||2 = ||(ab− λb)∗(ab− λb)|| = ||(b∗, 0)(a∗, λ)(a, λ)(b, 0)||
≤ ||b∗|| ||(a, λ)(a, λ)|| ||b|| = ||(a, λ)∗(a, λ)||.

Since ε > 0, we have

||(a, λ)||2 ≤ ||(a, λ)∗(a, λ)|| ≤ ||(a, λ)∗|| ||(a, λ)||, (∗)

and if we replace (a, λ) by (a∗, λ), then we also get

||(a, λ)∗||2 ≤ ||(a, λ)∗|| ||(a, λ)||.

So we have ||(a, λ)∗|| = ||(a, λ)|| and we have equality in (∗).

• It remains to prove completeness of A1. Let (an, λn)n be a Cauchy series in A1, then (λn)n
is a Cauchy series in A1/A ∼= C w.r.t. the quotient norm (since A ↪→ A1 is an isometry and
A is complete, we have A ⊂ A1 closed). Therewith we have λn → λ for a λ ∈ C. But then
also (an, 0) = (an, λn)− (0, λn) is a Cauchy series. Since A ∼= (A, 0) and A is complete, there
exists an a ∈ A with an → a, and then (an, λn)→ (a, λ).

�

Remark 1.5.6 A1 with ||(a, λ)|| = ||a||+ |λ| is usually not a C∗-algebra.

Remark 1.5.7

1.) Let A,B be C∗-algebras, then

(A⊕B, ||(a, b)|| := max{||a||, ||b||})

is a C∗-algebra with component wise addition, multiplication and involution.
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2.) If A is unital, then

A1 ∼=−→ A⊕ C
(a, λ) 7−→ (a+ λ1, λ).

So A1 is a C∗-algebra with respect to

||(a, λ)|| := max{||a+ λ1||, |λ|}.

So in any case we can view A1 as a C∗-algebra.

Definition 1.5.8 Selfadjoint Let A be a C∗-algebra. An element a ∈ A is called selfadjoint iff

a∗ = a.

Note that (a∗a) is selfadjoint for all a ∈ A.

Lemma 1.5.9 Spectral Radius for Selfadjoint Elements Let A be a C∗-algebra, then

a = a∗ ⇒ ρ(a) = ||a|| = sup{|λ| |λ ∈ σ(a)}

Proof: Assume w.l.o.g. that A is unital (if not then work in A1). We have

a = a∗ ⇒ ||a2|| = ||a∗a|| = ||a||2 Induction⇒ ||a2n || = ||a||2n

and thus with the spectral radius formula

ρ(a) = lim
n→∞

||an||1/n = lim
n→∞

||a2n ||1/2n = lim
n→∞

||a|| = ||a||.

�

Corollary 1.5.10 Norm of a C ∗ Algebra The norm of a C∗-algebra is fully determined by
the algebraic properties of A:

||a||2 = ||a∗a|| = ρ(a∗a) ⇒ ||a|| =
√
ρ(a∗a)

Corollary 1.5.11 Uniqueness of the C ∗ Norm It follows that there is only one norm,

namely ||a|| =
√
ρ(a∗a) that turns A into a C∗-algebra.

Lemma 1.5.12 Continuity of ∗ −Homomorphisms Let A be a Banach-∗-algebra and B a
C∗-algebra, then every ∗-homomorphism φ : A→ B is norm decreasing, i.e.

||φ(a)||B ≤ ||a||A.

In particular it holds that φ is continuous.

Proof: We have σB(φ(a)) ⊆ σA(a) and thus

||φ(a)||2 = ||φ(a)∗φ(a)|| = ||φ(a∗a)|| = ρB(φ(a∗a)) ≤ ρA(a∗a) ≤ ||a∗a|| ≤ ||a||2.

�

Definition 1.5.13 Symmetric Algebra A symmetric algebra is a commutative

Banach-∗-algebra in which for all χ ∈ Â it holds that

χ(a∗) = χ(a).
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Example 1.5.14

1.) C0(X) is symmetric, since Ĉ0(X) = {δx |x ∈ X} and δx(f) = f(x) = δx(f).

2.) l1(Z) with f∗(n) = f(−n) is symmetric, since

S1 ∼=−→ l̂1(Z)

z 7−→ χz, χz(f) = f̂(z).

Further we have, that

f̂∗(z) =
∑
n∈Z

f∗(n)zn =
∑
n∈Z

f(−n)zn
z=z−1

=
∑
n∈Z

f(−n)z−n
n 7→−n

=
∑
n∈Z

f(n)zn = f̂(z)

and thus χz(f
∗) = f̂∗(z) = f̂(z) = χz(f).

3.) The Disc algebra with the involution f∗(z) = f(z) is not symmetric.

Definition 1.5.15 Real− and Imaginary Part Let A be a C∗-algebra, then define the
selfadjoint elements

Re(a) := 1
2(a+ a∗), Im(a) := 1

2i(a− a
∗), ⇒ a = Re(a) + iIm(a)

Corollary 1.5.16 A Banach-∗-algebra is symmetric iff

a = a∗ ⇒ χ(a) ∈ R.

Proof: If A is symmetric, then

χ(a) = χ(a∗) = χ(a) ⇒ χ(a) ∈ R.

Vice versa if χ(a) ∈ R, then

χ(b) = χ(Re(b)) + iχ(Im(b)), χ(b∗) = χ(Re(b))− iχ(Im(b))

and thus χ(b∗) = χ(b). �

Corollary 1.5.17 Every commutative C∗-algebra is symmetric.

Proof: Assume w.l.o.g. that A is unital. Let χ ∈ Â and a = a∗ ∈ A. Now show that
χ(a) := x+ iy ∈ R, i.e. that y = 0.

at := a+ il1, t ∈ R, ⇒ a∗tat = (a+ il1)∗(a+ il1) = (a− il1)(a+ il1) = a2 + t21.

Further we have χ(at) = χ(a) + it = x+ i(y + t), so

x2 + (y + t)2 = |χ(at)|2 ≤ ||at||2 = ||a∗tat|| = ||a2 + t21|| ≤ ||a2||+ t2

and it follows that

x2 + y2 + 2yt = x2 + (y + t)2 − t2 ≤ ||a||2, ∀t ∈ R, ⇒ y = 0.

�

Remark 1.5.18 Not every commutative Banach ∗-algebra is symmetric.
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Theorem 1.5.19 Gelfand−Naimark (commutative case) Let A be a symmetric,
commutative Banach ∗-algebra, then

∧(A) ⊂ (C0(Â), || · ||∞) is dense.

If A is a commutative C∗-algebra, then

∧ : A
∼=−→ C0(Â)

a 7→ â

is an isometric *-isomorphism.

Proof: ∧ is a *-homomorphism since A is symmetric:

â∗(χ) = χ(a∗) = χ(a) = â(χ).

We will see that ∧(A) strictly separates the points of Â. Since χ 6= 0, there is an a ∈ A with
χ(a) = â(χ) 6= 0. Are now χ, µ ∈ Â with χ 6= µ, then there is an a ∈ A with χ(a)− µ(a) 6= 0.
With Stone-Weierstrass, we have ∧(A) ⊂ C0(Â) dense.
If A is C∗, then

||a2|| = ||a∗a|| = ρ(a∗a) = sup{|λ |λ ∈ σ(a∗a)}.

Further for all b ∈ A, we have

σ(b) = σA1(b) = {b̂(χ) |χ ∈ Â1} = {b̂(χ) |χ ∈ Â} t {b̂(χ∞)︸ ︷︷ ︸
=0

}.

It thus follows, that

||a||2 = ||a∗a|| = ρ(a∗a) = ||â∗a||∞ = ||ââ||∞ = ||â||2∞, ⇒ ||a|| = ||â||∞.

�

1.6 Functional Calculus

We shall develop a very strong tool for normal operators, called functional calculus. What
functional calculus establishes, is that for any normal operator a and for any continuous
f : σ(a)→ C, in some sense (made precise below) one can apply the function to the operator, i.e.
∃ f(a) ∈ A.
Normal operators are interesting, since C∗(a) is commutative for a normal, and thus one can

apply Gelfand-Naimark to C∗(a) ∼= C0(Ĉ∗(a)).

Definition 1.6.1 Let A be a C∗-algebra and S ⊂ A a set, then define

C∗(S) := ∩{B |B is C∗ subalgebra of A : S ⊆ B}

We always have

C∗(S) = C∗(S ∪ S∗) = LH{a1 · · · am |m ∈ N a1, . . . , am ∈ S ∪ S∗}

So C∗(S) is commutative iff [a, b] = 0 for all a, b ∈ S ∪ S∗.

Definition 1.6.2 Normal Element A normal element is an element a ∈ A such that

aa∗ = a∗a.

If a is normal, then C∗(a), C∗(a,1) are commutative.
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Theorem 1.6.3 Functional Calculus Let A be a unital C∗-algebra (thus σ(a) compact), then
(for a normal) there is exactly one ∗-homomorphism such that

φ : C(σ(a)) −→ A, with φ(1σ(a)) = a.

Further
φ : C(σ(a))

∼=−→ C∗(a,1)

is an isometric *-isomorphism.

Proof: First show uniqueness. We know that φ is automatically continuous with ||φ|| ≤ 1. Now
define

Pa := {p : σ(a)→ C | p polynomial in z, z̄}

that is p ∈ Pa ⇔ p(z) =
∑N

k,m=0 αk,mz
kz̄m. Pa ⊂ C(σ(a)) is a subalgebra that separates the

points of σ(a), since 1σ(a) ∈ Pa. Also Pa = Pa. And thus with Stone-Weierstraß:

Pa ⊂ (C(σ(a)), || · ||∞) is dense.

We have φ(1) = a and φ(1) = 1 and thus

φ(p) =
∑
k,m

αk,ma
k(a∗)m, if p(z) =

∑
k,m

αk,mz
kz̄m.

So φ is uniquely determined on the dense subalgebra Pa ⊂ C(σ(a)). And thus, since φ is
continuous, on all of C(σ(a)).
It is important to observe the following

φ(Pa) ⊆ C∗(a, 1), ⇒ φ(C(σ(a))) ⊆ C∗(a, 1).

With the Gelfand-Naimark theorem (this is where we need a to be normal, in order to have
C∗(a,1) commutative) we have

C∗(a, 1) ∼= C(Ĉ∗(a, 1)).

We now claim that â : Ĉ∗(a, 1)→ σB(a) is a homeomorphism, for which, due to the continuity of

â and the compactness of Ĉ∗(a, 1) and σB(a), we only need to prove the injectivity of â.
Let χ1(a) = â(χ1) = â(χ2) = χ2(a) and thus χ1(a∗) = χ1(a) = χ2(a) = χ2(a∗), so

χ1(
∑
k,m

αk,ma
k(a∗)m) =

∑
k,m

αk,mχ1(a)kχ1(a)
m

=
∑
k,m

αk,mχ2(a)kχ2(a)
m

= χ2(
∑
k,m

αk,ma
k(a∗)m).

Since the polynomials are dense, we have χ1 = χ2 and thus injectivity.
We now have the isometric *-isomorphism

ϕa : C(σC∗(a,1)(a)) −→ C(Ĉ∗(a, 1)), ϕa(f) = f ◦ â.

Now with the inverse ∧−1 : C(Ĉ∗(a, 1))→ C∗(a, 1) of the Gelfand-homomorphism we have the
isometric *-isomorphism

φ := (∧−1 ◦ ϕa) : C(σC∗(a,1)(a)) −→ C∗(a, 1).

Note that
φ(1σC∗(a,1))(χ) = (∧−1 ◦ ϕa)(1σC∗(a,1))(χ) = ∧−1â(χ) = a(χ),

so indeed φ(1σC∗(a,1)) = a. Now the only piece missing is to show

σC∗(a,1)(a) = σA(a).
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We already know that σA(a) ⊆ σC∗(a,1)(a). We now assume ∃λ ∈ σC∗(a,1)(a)− σA(a). Then
(a− λ1) ∈ Inv(A) and c := (a− λ1)−1. For a > ||c|| define f : σC∗(a,1)(a)→ C as

f(z) :=

{
s, if |z − s| ≤ 1

s

|z − s|−1, if |z − s| ≥ 1
s .

Note that f is well defined, continuous and f(λ) = s, which gives ||f ||∞ ≥ s. Let g := (z − λ)f(z),
which is continuous with ||g||∞ ≤ 1. Take now φ : C0(σC∗(a,1)(a))→ C∗(a, 1) as defined above,
then we get

||c|| < s = f(λ) ≤ ||σC∗(a,1) = ||φ(f)|| = ||c(a− λ1)φ(f)|| = ||cφ(1− λ1)φ(f)||
= ||cφ(g)|| ≤ ||c|| ||φ(g)|| = ||c|| ||g||σC∗(a,1) ≤ ||c||.

So we have ||c|| < ||c||, a conradiction! This gives us σC∗(a,1) = σA(a) and completes the proof. �

Corollary 1.6.4 Let C ⊆ A be a C∗-subalgebra and a ∈ C normal, then

σC(a) ∪ {0} = σA(a) ∪ {0}

If A is unital with 1A ∈ C, then

σC(a) = σA(a) ⇒ σC∗(a,1)(a) = σA(a)

Proof: Let A be unital, then in the proof of the functional calculus theorem, we have seen, that

σC(a) = σC∗(a,1)(a) = σA(a).

In general we have the embedding C1 ↪→ A1 and the identity

σC(a) ∪ {0} = σC1(a) = σA1(a) = σA(a) ∪ {0}.

�

Theorem 1.6.5 Functional Calculus Let A be a C∗-algebra (not necessarily unital), then (for
a ∈ A normal) there is exactly one ∗-homomorphism such that

φ : C0(σ(a)) −→ A, with φ(1σ(a)) = a.

Further more it holds that

φ : C0(σ(a))
∼=−→ C∗(a)

is an isometric *-isomorphism.

Proof: Let Pa := {p : σ(a)→ C | p(z) =
∑N

k,m=0 αk,mz
kz̄m} and set Pa,0 = {p ∈ Pa |α0,0 = 0}.

Then Pa,0 a ∗-subalgebra of C0(σ(a)) that strongly separates the points of σ(a) \ {0}.
(1σ(a) ∈ Pa,0 and if z1 6= z2 ∈ σ(a) \ {0}, then 0 6= 1(z1) 6= 1(z2) 6= 0).
With Stone-Weierstrass we have that Pa,0 ⊂ C0(σ(a)) is dense w.r.t. || · ||∞. If φ : C0(σ(a))→ A
is an arbitrary ∗-homomorphism with φ(1) = a, then as in the prove of 1.6.3, we have that

φ(p) =
∑
k,m

αk,ma
k(a∗)m, ∀p =

∑
k,m

αk,mz
kz̄m ∈ Pa,0

and since φ is automatically continuous, we have that φ is uniquely determined on
Pa,0 = C0(σ(a)) and it follows

φ(C0(σ(a))) = φ(Pa,0) = {
∑
k,m

αk,mak(a∗)m | . . . } = C∗(a). (∗)

We shall show existence. If A is unital, and φ : C(σ(a))→ A as in 1.6.3, then φ0 := φ|C0(σ(a)) as
in the theorem. Since φ is an isometry, also φ0 is an isometry and with (∗) it follows that
φ0 : C0(σ(a))→ C∗(a) is an isometric ∗-isomorphism. If A is not unital, then let
φ : C0(σ(a))→ A1 be as in the theorem. It then follows that φ(C0(σ(a))) = C∗(a) ⊆ A, which
completes the proof.
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�

Definition 1.6.6 For A unital, take φa : C(σ(a)) −→ C∗(a,1) and for A not unital take
φa : C0(σ(a)) −→ C∗(a) both to be the above homomorphisms and set

f(a) := φa(f)

Lemma 1.6.7 Let A,B be unital C∗-algebras and ψ : A→ B a unital *-homomorphism, then
for all a ∈ A normal

ψ(f(a)) = f(ψ(a))

Proof: We have σB(ψ(a)) ⊆ σA(a), so the formula makes sense! Now look at the following
compositions

ϕ : C(σA(a))
φa−→ A

ψ−→ B

ϕ̃ : C(σA(a))
Res−→ C(σB(ψ(a)))

φψ(a)−→ B

where φa(g) = g(a), φψ(a)(g) = g(ψ(a)) and Res is the restriction map. Then ϕ, ϕ̃ are
∗-homomorphisms with

ϕ(1) = 1 = ϕ̃(1), ϕ(1) = ψ(a) = ϕ̃(1).

So it follows that ϕ = ϕ̃ on Pa and thus ϕ = ϕ̃ on C(σA(a)) since Pa is dense and ϕ continuous.
So finally we have

f(ψ(a)) = φψ(a)(Res(f)) = ϕ̃(f) = ϕ(f) = ψ(f(a)).

�

Lemma 1.6.8 Let A be a unital C∗-algebra, a ∈ A normal and f ∈ C(σ(a)), then

σ(f(a)) = f(σ(a)) ∀g ∈ C(σ(f(a))) : g(f(a)) = (g ◦ f)(a)

Proof: The first observation is, that also f(a) is normal, since due to the fact that C(σ(a))→
f 7→ f(a) is a ∗-homomorphism, we have f(a)∗ = f(a) and

f(a)∗f(a) = ff(a) = ff(a) = f(a)f(a) = f(a)f(a)∗.

Further more, because of C(σ(a)) ∼= C∗(a, 1) =: B, we have that

σA(f(a))
1.6.4
= σB(f(a)) = σC(σ(a))(f) = f(σ(a)).

We now consider the ∗-homomorphism φ : C(σ(a))→ A φ(g) := (g ◦ f)(a). It holds that
φ(1) = 1 and φ(1) = (1 ◦ f)(a). Due to uniqueness in 1.6.3, we have that φ is the functional
calculus for f(a), so it holds that

(g ◦ f)(a) = φ(g) = g(f(a)), ∀g ∈ C(σ(f(a))).

�

Corollary 1.6.9 Spectrum of a selfadjoint element Let a ∈ A be a selfadjoint element, then
the spectrum of a is real and it holds that:

σ(a) ⊆ [−||a||, ||a||]

and at least one of ±||a|| is in σ(a).
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Proof: W.l.o.g. let A be unital. Since a = a∗, it is normal. We have
1σ(a)(a) = a = a∗ = 1σ(a)(a) and thus

1σ(a) = 1σ(a), ⇒ z = 1σ(a)(s) = 1σ(a)(z) = z.

So σ(a) ⊂ R, but we also know σ(a) ⊂ B||a||(0), thus

σ(a) ⊂ R ∩B||a||(0) = [−||a||, ||a||].

We further know that ||a|| = ρ(a) = max{|λ| |λ ∈ σ(a)}, which concludes the proof. �

Corollary 1.6.10 Let A,B be C∗-algebras and ψ : A→ B an injective ∗-homomorphism, then

||ψ(a)|| = ||a||,

that is they are isometries. And in particular ψ(A) ⊂ B is a ∗-subalgebra.

Proof: With 1.5.12 we have that ||ψ(a)|| ≤ ||a|| ∀a ∈ A. We now assume that ∃a ∈ A with
||ψ(a)|| < ||a||. Let w.l.o.g. ||a|| = 1, set c = a∗a, then c is selfadjoint and ||c|| = ||a||2 = 1 as well
as

α := ||ψ(c)|| = ||ψ(a)∗ψ(a)|| = ||ψ(a)||2 < ||a||2 = ||c|| = 1.

Since c and ψ(c) are selfadjoint, it holds that σ(ψ(c)) ⊆ [−α, α] and σ(c) ⊆ [−1, 1] with 1 or −1 in
σ(c). Define f : [−1, 1]→ C

f(t) :=

{
0, if |t| ≤ α
|t|−α
1−α , if |t| ≥ α.

It then holds that f(c) 6= 0 since f(1) = f(−1) = 1 6= 0, so f 6= 0 on σ(c) and thus
||f(c)|| = ||f ||σ(a) 6= 0 and (since f(c) 6= 0 and ψ injective) it follows that

0 = f(ψ(c))
1.6.7
= ψ(f(c)) 6= 0,

which is a contradiction. �

1.7 Positive Elements

In this section the notion of positivity of elements in a C∗-algebra is introduced, which leads to an
equivalence relation on the space of selfadjoint elements Asa.

Definition 1.7.1 Positive functions A function f ∈ C0(X) for X locally compact is called
positive iff:

f(x) ≥ 0, ∀x ∈ X.

Due to σC0(X)(f) = f(X), this is equivalent to f = f and thus

σC0(X) ⊆ [0,∞).

Definition 1.7.2 Positive Element A positive element of a C∗-algebra A, is an element a ∈ A
with

a ≥ 0 :⇔ a = a∗, σ(a) ⊆ [0,∞)

Remark 1.7.3 For a selfadjoint a = a∗ its square is positive a2 ≥ 0, since

σ(a2) = σ(a)2.
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Lemma 1.7.4 Positive and negative part The positive and negative part of a selfadjoint
element a = a∗ ∈ A in a C∗-algebra are elements a+, a− ∈ A, such that

a+, a− ≥ 0, a = a+ − a− [a−, a] = 0 = [a+, a], a+a− = 0 = a−a+.

They exist for any a = a∗ ∈ A and are unique.

Proof:

• Existence: a = a∗ thus σ(a) ⊆ R. Define

f± : σ(a) −→ R, f±(x) := max{±x, 0}, a± := f±(a)

so a±, a ∈ C∗(a) and since C∗(a) commutative, we have that all products commute. Also
note

(f+ − f−)(x) = x, ⇒ a+ − a− = 1(a) = a, f+ · f− = 0, ⇒ a+a− = 0.

• Uniqueness: follows from the uniqueness of the decomposition f = f+ − f− which in turn is
unique due to f+ · f− = 0.

�

Lemma 1.7.5 Let A be a unital C∗-algebra and a = a∗ ∈ A, then the following hold:

1.) If ||1− a|| ≤ 1, then a ≥ 0.

2.) If ||a|| ≤ 1 and a ≥ 0 then ||1− a|| ≤ 1.

3.) a ≥ 0 ⇔ || ||a||1− a|| ≤ ||a||.

Proof:

1.) With 1.6.9 we have that σ(1− a) ⊆ [−1, 1] and with 1.6.8 it holds that σ(1− a) = 1− σ(a).
For x ∈ R we have

1− x ∈ [−1, 1] ⇔ x− 1 ∈ [−1, 1] ⇔ x ∈ [0, 2]

and thus σ(a) ⊆ [0, 2].

2.) If ||a|| ≤ 1 and a ≥ 0 ⇒ σ(a) ⊆ [0, 1], thus σ(1− a) ⊆ [−1, 1].

3.)”⇒ ” a ≥ 0
1.6.9⇒ σ(a) ⊆ [0, ||a||], and thus with 1.6.8 σ(||a||1− a) ⊆ ||a|| − [0, ||a||] = [0, ||a||]

1.6.9⇒ ||||a||1− a|| ≤ ||a||.
”⇐ ” Let w.l.o.g. a 6= 0, using b = a

||a|| , it follows ||1− b|| ≤ 1 and thus b ≥ 0 and thus also
a ≥ 0.

�

Theorem 1.7.6 Space of positive elements For the positive elements A+ ⊂ A of a C∗-algebra
the following hold

1.) A+ ⊂ A is closed .

2.) A+ is a positive cone, i.e.:

a, b ∈ A+, λ ≥ 0, ⇒ (a+ b), λa ∈ A+.

3.) A+ ∩ −A+ = {0}
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4.) For all a ∈ A there are a1, a2, a3, a4 ∈ A+ such that

a = (a1 − a2) + i(a3 − a4).

Proof: If A is not unital, then A+ = A ∩ (A1)+. Thus let w.l.o.g. A be unital.

1.) Let (an)n ⊂ A+ be a sequence with an → b ∈ A, thus

|| ||an||1− an|| → || ||b||1− b||, ||an|| → ||b||

and with part (3) of the last lemma, we get || ||b||1− b|| ≤ ||b|| and b ≥ 0.

2.) Due to σ(λa) = λσ(a), we have λa ≥ 0 if a ≥ 0 and λ ≥ 0. Let now a, b ≥ 0 with a, b 6= 0.
Switching to 1

ca,
1
c b with c := max{||a||, ||b||}, w.l.o.g. we can assume that ||a||, ||b|| ≤ 1 and

thus ||1− a||, ||1− b|| ≤ 1 which gives

||1− 1
2(a+ b)|| ≤ 1

2 ||1− a||+
1
2 ||1− b|| ≤ 1,

so we have 1
2(a+ b) ≥ 0 and thus also a+ b ≥ 0.

3.) If a ∈ A+ ∩ −A+, then a = a∗ with σ(a) = {0}, but also ||a|| = σ(a).

4.) Let b = Re(a) = 1
2(a+ a∗), c = Im(a) = 1

2i(a− a
∗) which are both selfadjoint and thus

b = b+ − b−, c = c+ − c− with b+, b−, c+, c− ≥ 0.

�

Lemma 1.7.7 Equivalence Relation on the space of selfadjoint elements On the space of
seladjoint elements Asa ⊂ A of a C∗-algebra, we define the following equivalence relation

a ≤ b :⇔ b− a ≥ 0.

Lemma 1.7.8 Let A be a C-algebra and a, b ∈ A, then

σ(ab) ∪ {0} = σ(ba) ∪ {0}

and if A is a C∗-algebra, then
ab ≥ 0 ⇔ ba ≥ 0.

Proof: Let w.l.o.g. A be unital and let 0 6= λ ∈ C. We need to show that

ab− λ1 ∈ Inv(A) ⇔ ba− λ1 ∈ Inv(A).

In order to do that, define u := (ab− λ1)−1, so that

abu = (ab− λ1)u+ λu = 1 + λu, ⇒

(ab− λ1)(bua− 1) = b(abu)a− ba− λbua+ λ1 = b(1 + λu)a− ba− λbua+ λ1 = λ1.

Analogously it holds that

(bua− 1)(ba− λ1) = b(uab)a− ba− λbua+ λ1 = b(1 + λu)a− ba− λbua+ λ1 = λ1.

Therefor we have 1
λ(bua− 1) = (ba− λ1)−1. �

Lemma 1.7.9 Let A be a C∗-algebra and a = a∗ ∈ A, then the following are equivalent:

1.) a ≥ 0

2.) ∃b ∈ A with a = b∗b
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3.) ∃!c ≥ 0 with c2 = a and [a, c] = 0. Denote c :=
√
a.

Proof:

1.)⇒ 3.) Since a ≥ 0 we have σ(a) ⊂ [0,∞) and the square root is well defined on it, which in turn by
functional calculus lets c :=

√
a be well defined. One can also show that c is unique.

2.)⇔ 3.) Let b = c.

2.)⇒ 1.) Let now a = b∗b for a b ∈ A. Let a+, a− ∈ A+ and u =
√
a+, v =

√
a− as in (3). It then

holds that u ∈ C∗(a+) ⊆ C∗(a), v ∈ C∗(a−) ⊆ C∗(a), i.e. all u, v, a+, a− commute. We
further have vu2v = v2u2 = a+a− = 0 and thus

(bv)∗(bv) = vb∗bv = v(u2 − v2)v = vu2v − v4 = −v4 ∈ A+.

Since the square of a selfadjoint element is positive. We set bv = x+ iy with selfadjoint x, y,
then

(bv)(bv)∗ = (x+ iy)(x− iy) + (x− iy)(x+ iy)− (bv)∗(bv)︸ ︷︷ ︸
=0

= 2x2 + 2y2 + v4 ≥ 0.

With 1.7.8 it also follows that (bv)∗(bv) = −v4 ≥ 0, but then v4 ∈ A+ ∩ −A+ = {0}, so
v4 = 0 and thus v2 = 0, which gives a = u2 − v2 = u2 ≥ 0.

�

Remark 1.7.10 Positivity does not depend on the subalgebra Let B ⊆ A be a subalgebra
with a = a∗ ∈ B, then σB(a) ∪ {0} = σA(a) ∪ {0} and therefor it holds that

σB(a) ⊂ [0,∞) ⇔ σA(a) ⊂ [0,∞).

In particular for â ∈ C0(σA(a)) :
a ≥ 0 ⇔ â ≥ 0.

Definition 1.7.11 Absolute Value We now see, that the following is well defined

|a| :=
√
a∗a.

Lemma 1.7.12 Positive Linear Operators Let T ∗ = T ∈ L(H), then

T ≥ 0 ⇔ 〈Tx, x〉 ≥ 0 ∀x ∈ H.

Proof:

”⇒” If T ≥ 0 then there is a S ∈ L(H): T = S∗S and thus

〈Tx, x〉 = 〈S∗Sx, x〉 = 〈Sx, Sx〉 ≥ 0∀x ∈ H

”⇐” From functional analysis, we know that

S = S∗ ⇒ ||S|| = sup
||x||=1

| 〈Sx, x〉 |.

Now let 〈Tx, x〉 ≥ 0 and w.l.o.g. ||T || = 1 (since for T = 0 it is trivial). It is now sufficient
to show ||1− T || ≤ 1. But if ||x|| = 1, then

0 ≤ 〈Tx, x〉 ≤ 1 ⇒ | 〈(1− T )x, x〉 | = 〈x, x〉 − 〈Tx, x〉 ≤ 〈x, x〉 = 1.

�
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Definition 1.7.13 Unitary Elements A unitary element u ∈ A in a C∗-algebra is an element
such that

uu∗ = 1 = u∗u ⇔ u∗ = u−1.

We set
U(A) := {u ∈ A |u unitary}.

Lemma 1.7.14 Unitary Linear Operators Let u ∈ L(H), then it holds that

u∗ = u−1 ⇔ uH = H, and 〈ux, uy〉 = 〈x, y〉 .

That is a linear operator is unitary iff it is surjective and an isometry.

Proof:

”⇒” If u = u−1, so since an inverse exists, it is bijective and further

〈ux, uy〉 = 〈u∗ux, y〉 = 〈x, y〉 .

”⇐” Let uH = H, and 〈ux, uy〉 = 〈x, y〉, then u is bijective and continuous, thus (by the open
mapping theorem) invertible. Further

〈u∗ux, y〉 = 〈ux, uy〉 = 〈x, y〉 ⇒ 〈u∗ux− x, y〉 = 0 ∀x, y ∈ H.

That is u∗u = 1.

�

Theorem 1.7.15 Polar Decomposition: Let A be a unital C∗-algebra, then

a ∈ Inv(A) ⇒ ∃! u ∈ U(A) : a = u|a|.

Proof: a ∈ Inv(A) thus also a∗a = |a|2 ∈ Inv(A). Now take u := a|a|−1 and thus

u∗u = |a|−1a∗a|a|−1|a|−1|a|2|a|−1 = 1.

�

Remark 1.7.16 If a is not invertible, a polar decomposition does not necessarily exist.

Lemma 1.7.17 Let A be a C∗-algebra, a, b ∈ Asa, then

a ≤ b ⇔ x∗ax ≤ x∗bx ∀x ∈ A.

Further, if A is unital, then

a, b ∈ Inv(A), and 0 ≤ a ≤ b ⇒ 0 ≤ b−1 ≤ a−1.

1.8 Approximate Unities and Quotient Spaces

After discussing functional calculus, we now come to a second major tool in the theory of
C∗-algebras: approximate unities.

Definition 1.8.1 Approximate Unity An approximate unity in a normed algebra A is a net
(un)n ⊂ A, that is both an approximate left unity:

una −→ a, ∀a ∈ A

and a approximate right unity: aun −→ a, ∀a ∈ A.
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Theorem 1.8.2 Let A be a C∗-algebra and J ⊆ A a dense ideal in A, it then holds that

1.) There exists an approximate unity (un)n in A with

a) 0 ≤ un, ||un|| ≤ 1 and for all n: un ∈ J
b) λ ≤ µ then uλ ≤ uµ.

2.) If A is seperable, then there is a sequence with the above properties 1.a) and 1.b).

3.) Let I be a right ideal (IA ⊆ I), then there is a net (un)n in I ∩A+ which fulfills properties
1.a) and 1.b) and unb→ b for all b ∈ I.

4.) The same as in 3.) holds also for left ideals.

Proof:

1.a) Let Λ := {F ⊆ J |F finite} with F1 ≤ F2 ⇔ F1 ⊆ F2. For λ = {x1, . . . , xl} ∈ Λ set

vλ = x1x
∗
1 + · · ·+ xlx

∗
l ≥ 0.

With vλ ≥ 0 we have σ(1
l + vλ) ⊆ [1

l ,∞), so (1
l + vλ) is invertible (since 0 6= σ(1

l + vλ)) in
A1 and we set

uλ := vλ(1
l + vλ)−1 = fl(vλ), fl(t) = t(1

l + t)−1.

Then uλ ∈ J , since vλ ∈ J and J is an ideal in A and thus also in A1. Due to 0 ≤ fl ≤ 1 we
have 0 ≤ uλ ≤ 1 in A1 and so ||uλ|| ≤ 1. Further, for λ = {x1, . . . , xl}, we have

l∑
i=1

[(uλ − 1)xi][(uλ − 1)xi]
∗ = (uλ − 1)(

l∑
i=1

xix
∗
i )(uλ − 1) = (uλ − 1)vλ(uλ − 1) = gl(vλ)

with gl(t) = (fl(t)− 1)2t. It follows, that

fl(t)− 1 =
t

1
l + t

− 1 =
−1
l

1
l + t

= 1
l (

1
l + t)−1

and (1
l + t)2 ≥ 2

l t, so l
2t ≥ (1

l + t)−2. We thus have

gl(t) = t
l2

(1
l + t)−2 ≤ t

l2
l
2t = 1

2l

and in A1 we get
0 ≤ [(uλ − 1)xi][(uλ − 1)xi]

∗ ≤ g(vλ) ≤ 1
2l1.

So it holds, that
||(uλ − 1)xi||2 ≤ 1

2l ∀1 ≤ i ≤ l.

We now get ||uλx− x|| → 0 ∀x ∈ J , since for ε > 0 we take λ0 = {x1, . . . , xl} ∈ Λ with
x = x1 and 1√

2l
< ε it follows, that ||uλx− x|| < ε ∀λ ≥ λ0.

It now also holds that ||uλa− a|| → 0 for a general a ∈ A, since for ε > 0, there exists an
x ∈ J with ||a− x|| < ε

3 and λ0 ∈ Λ with ||uλx− x|| < ε
3 ∀λ ≥ λ0 and we have

||uλa− a|| ≤ ||uλ(a− x)||+ ||uλx− x||+ ||x− a|| < ε
3 + ε

3 + ε
3 = ε ∀λ ≥ λ0.

So we can conclude, that ||auλ − a|| = ||uλa∗ − a∗|| → 0 ∀a ∈ A.
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1.b) Let λ ≤ µ, i.e. λ = {x1, . . . , xl}, µ = {x1, . . . , xl, xl+1, . . . , xm}, then

vλ =

l∑
i=1

xix
∗
i ≤

m∑
i=1

xix
∗
i = vµ

and thus 1
l + vλ ≤ 1

l + vµ and (1
l + vµ)−1 ≤ (1

l + vλ)−1, since for a t ≥ 0 the map s 7→ s
s+t is

monotonically increasing. It follows, that

1
l (

1
l + vµ)−1 ≤ 1

m( 1
m + vµ)−1.

Due to fm(t) = t( 1
m + t)−1 = 1− 1

m( 1
m + t)−1, we now conclude, that

uλ = fl(vλ) = 1− 1
l (

1
l + vλ)−1 ≤ 1− 1

l (
1
l + vµ)−1 ≤ 1− 1

m( 1
m + vλ)−1 = uµ.

2.) If A is separable, then so is J . Let (x1, x2, . . . ) be a dense sequence in J and set un = uλ
with λ = {x1, . . . , xn} as in 1.). Then as in 1.) it follows that (un)n is an approximate unity
with the desired properties.

3.) Let now Λ be the set of all finite subsets in I and uλ as in 1.) ∀λ = {x1, . . . , xl} ∈ Λ. The
proof then proceeds as the proof of 1.).

�

Corollary 1.8.3 Let I ⊆ A be a closed ideal, then I = I∗ and thus I is a ∗-ideal and a
C∗-subalgebra.

Proof: Let (un)n ⊆ I ∩A+ like in the above theorem, then for all x ∈ I, we have

||x∗un − x∗|| = ||unx− x|| → 0.

Since x∗un ∈ I, also x∗ ∈ I, since I is closed. �

Lemma 1.8.4 Let A be a C∗-algebra and I ⊆ A a closed ideal. And (uλ)λ like in 3.) above, then

||a+ I|| = lim
λ→∞

||a− uλa||.

Proof: Let (uλ)λ be an approximate unity as in 1.8.2(3). Because of uλ ≥ 0 and ||aλ|| ≤ 1, we
have ||1− uλ|| ≤ 1 and thus ||a− uλa|| ≤ ||a|| ∀λ ∈ Λ. So the following exists

lim sup
λ
||a− uλa||.

Due to ||uλb− b|| → 0 ∀b ∈ I it follows for all b ∈ I, that

lim sup
λ
||a− uλa|| = lim sup

λ
||a− uλa+ b− uλb|| = lim sup

λ
||(1− uλ)(a+ b)||

≤ sup
λ
||(1− uλ)(a+ b)|| ≤ ||a+ b||.

We thus have, that

||a+ I|| = inf
b∈I
||a+ b|| ≥ lim sup

λ
||a− uλa|| ≥ lim inf

λ
||a− uλa||

≥ inf
λ
||a− uλa|| ≥ inf

b∈I
||a+ b|| = ||a+ I||.

So we have equalities everywhere, which proves the claim. �
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Lemma 1.8.5 Quotient C ∗ −Algebra Let A be a C∗-algebra and I ⊆ A a closed ideal. Then
A/I is a Banach-algebra with

||a+ I|| = inf{||a+ c|| | c ∈ I}, (a+ I)(b+ I) = ab+ I.

Since we now know that I∗ = I, we have a well defined involution

(a+ I)∗ := a∗ + I,

turning A/I into a C∗-algebra

Proof: We have to show that ||a∗a+ I|| = ||a+ I||2.

”≥” Let (un)n be a sequence like in 3.), then for all b ∈ I:

||(1− un)b(1− un)|| ≤ ||(1− un)b||︸ ︷︷ ︸
→0

||1− un||︸ ︷︷ ︸
≤1

→ 0.

So with the previous lemma, we have

||a+I||2 = lim
n→∞

||(1−un)a||2 = lim
n→∞

||(1−un)a∗a(1−un)|| = lim
n→∞

||(1−un)(a∗a+b)(1−un)|| ≤ ||a∗a+b||,

so we get ||a+ I||2 ≤ infb∈I ||a∗a+ b|| = ||a∗a+ I||.

”≤” Since A/I is a Banach algebra, we also have

||a∗a+ I|| ≤ ||a∗ + I|| ||a+ I|| = ||a+ I||2.

�

Corollary 1.8.6 If φ : A→ B ia a homomorphism of C∗-algebras, then φ(A) ⊆ B is a
C∗-subalgebra.

Proof: That is since I := kerφ is a closed ideal and so

φ̃ : A/I −→ B, φ̃(a+ I) := φ(a)

is an injective *-homomorphism. Since A/I is a C∗-algebra, φ̃ is isometric and thus
φ(A) = φ̃(A/I) is a C∗-subalgebra. �

Corollary 1.8.7 Let B ⊆ be a C∗-subalgebra and I ⊂ A a closed ideal, then

B + I ⊆ A is a C∗−subalgebra and (B + I)/I ∼= B/(B ∩ I).

Lemma 1.8.8 Let A be a C∗-algebra, then A2 = A.

Proof: That is since ∃a1, a2, a3, a4 ≥ 0 :

a = (a1 − a2) + i(a3 − a4).

So the square root is defined on positive elements. �
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2 States and Representaions of C∗-Algebras

In quantum mechanics, a state of a (quantum) system (e.g. a hydrogen atom) is described by a
vector x ∈ H in some Hilbert space (H, 〈·, ·〉). Physical quantities, such as position, momentum or
energy are assigned (selfadjoint) operators that act on the Hilbert space H. Their eigenvalues
constitute the different possible measurement outcomes, when measuring a certain physical
quantity. The expectation value for the outcome of a measurement of the physical quantity T of a
(quantum) system in the state x ∈ H is given by 〈Tx, x〉.
A different approach to quantum (field) theory (QFT) is so called Algebraic QFT (AQFT), in
which states are defined as positive functionals ϕ (on a C∗-algebra A) of unit norm, as below.
The bridge between these two descriptions are the so called vector states: ϕx(T ) := 〈Tx, x〉 with
||x|| = 1. So, intuitively speaking, in AQFT one calls a state of T , what in regular quantum
mechanics was referred to as the expectation value of T .
So we can define expectation values without making use of Hilbert spaces. The worry is now: do
these states give rise to a unique representation (and thus a unique Hilbert space), or to a whole
set of inequivalent quantum system, making the new AQFT formulation inherently different to
the usual approach? The answer to this question is the so called GNS-construction.

2.1 Positive Linear Functionals and States

Definition 2.1.1 Positive Functional Let A be a C∗-algebra. A linear functional

ϕ : A −→ C is positive :⇔ ϕ(a∗a) ≥ 0 ∀a ∈ A.

P (A) := {ϕ : A→ C |ϕ(a∗a) ≥ 0 ∀a ∈ A}.

Definition 2.1.2 State A state is a positive functional of unit norm. The state space is

S(A) := {ϕ ∈ P (A) | ||ϕ|| = 1}.

Remark 2.1.3 Semi− definite Hermitian Form Any ϕ ∈ P (A) defines a semi-definite
Hermitian form on A:

〈·, ·〉ϕ : A×A −→ C, 〈a, b〉ϕ := ϕ(b∗a)

To see 〈a, b〉ϕ = 〈b, a〉ϕ, we need the following

Lemma 2.1.4 For ϕ ∈ P (A) we have that ϕ(a) = ϕ(a∗).

Proof: Let x ∈ Asa, then it holds that x = u− v with u, v ∈ A+, so we have
ϕ(x) = ϕ(u)− ϕ(v) ∈ R since ϕ(u), ϕ(v) ≥ 0 holds and therefor

ϕ(a∗) = ϕ(x− iy) = ϕ(x)− iϕ(y) = ϕ(x) + iϕ(y) = ϕ(a).

�

Lemma 2.1.5 Continuity of positive Functionals Let ϕ ∈ P (A), then ϕ is continuous. I.e.
P (A) ⊂ A′.

Proof: Let a ∈ A, then there are u, v, u′, v′ ∈ A+ all with norm smaller or equal to ||a|| such
that

a = (u− v) + i(u′ − v′).

It thus suffices to show that there exists a M ≥ 0 such that

ϕ(a) ≤M ||a|| ∀a ∈ A+.
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We assume this does not hold. Then there is a sequence (an)n in A+ with ||an|| = 1 and
ϕ(an) ≥ 2n ∀n. If we now set a :=

∑∞
n=1

1
2nan ∈ A+, it follows for all N ∈ N, that

N ≤ ϕ(

N∑
n=1

1
2nan) ≤ ϕ(

∞∑
n=1

1
2nan) = ϕ(a) <∞,

which is a contradiction. �

Corollary 2.1.6 Let ϕ ∈ P (A), then it holds that |ϕ(a)|2 ≤ ||ϕ||ϕ(a∗a).

Proof: Let (un)n be an approximate unity like in 2.), then 0 ≤ uλ ≤ uµ for all λ ≤ µ and
||un|| ≤ 1. So

|ϕ(a)|2 continuity
= lim

n→∞
|ϕ(una)|2 un=u∗n= lim

n→∞
| 〈a, un〉ϕ |

2

≤ sup
n
〈un, un〉ϕ 〈a, a〉ϕ = sup

n
ϕ(u2

n)ϕ(a∗a)

||un||2≤1

≤ ||ϕ||ϕ(a∗a).

�

Lemma 2.1.7 Let A be a C∗-algebra and ϕ ∈ A′, then the following are equivalent:

(1) ϕ is positive.

(2) There exists an approximate unity (un)n with 0 ≤ uλ ≤ uµ for all λ ≤ µ and ||un|| ≤ 1, such
that

||ϕ|| = lim
n→∞

|ϕ(un)|.

(3) For every approximate unity like (2), ||ϕ|| = limn→∞ |ϕ(un)| holds.

Proof: Let w.l.o.g. ||ϕ|| = 1

”(1)⇒ (3)” Let (uλ)λ be as in (2) and let ϕ ≥ 0, then (ϕ(uλ))λ is monotonically increasing and bounded
by 1 since λ ≤ µ ⇒ uµ − uλ ≥ 0 ⇒ ϕ(uµ)− ϕ(uλ) = ϕ(uµ − uλ) ≥ 0. So limλ ϕ(uλ) ≤ 1
exists. Let now ε > 0 and a ∈ A with ||a|| = 1 and |ϕ(a)|2 ≥ 1− ε. Due to 0 ≤ uλ ≤ 1 (in
A1) we have u2

λ ≤ uλ, since if c =
√
uλ, then u2

λ = cuλc ≤ c1c = uλ. We finally have

1−ε ≤ |ϕ(a)|2 = lim
λ
|ϕ(uλa)|2

C−S
≤ sup

λ
ϕ(u2

λ)ϕ(a∗a) ≤ sup
λ
ϕ(uλ)ϕ(a∗a) ≤ sup

λ
ϕ(uλ)

monot.
= lim

λ
ϕ(uλ).

Since ε > 0 is arbitrary, it follows that limλ ϕ(uλ) = 1 = ||ϕ||.

”(3)⇒ (2)” is obvious.

”(2)⇒ (1)” We first show, that ϕ(a) ∈ R ∀a ∈ Asa. Let a = a∗ with ||a|| = 1 and let ϕ(a) = x− iy with
x, y ∈ R. Assume y 6= 0. Then w.l.o.g. y > 0 (if not, we just work with −a). For all n ∈ N
we have

||a− inuλ||2 = ||(a+ inuλ)a− inuλ|| = ||a2 +n2u2
λ+ in(uλa−auλ)|| ≤ 1 +n2 +n||uλa−auλ||.

Since ϕ(uλ)→ 1 = ||ϕ||, it follows that

|ϕ(a)− in|2 = lim
λ
|ϕ(a)− inϕ(uλ)|2 = lim

λ
|ϕ(a− inuλ)|2

||ϕ||≤1

≤ lim
λ

(1 + n2 + n ||auλ − uλa||︸ ︷︷ ︸
→0

) = 1 + n2.
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Then: |ϕ(a)− in|2 = |x− i(y + n)| = x2 + (y + n)2 = x2 + y2 + n2 + 2yn and it follows that
x2 + y2 + 2yn ≤ 1 ∀n ∈ N, which is a contradiction to y > 0.
Let now a ≥ 0 with ||a|| = 1, then ||1− a|| ≤ 1 and with 1.7.5 we have that

|ϕ(a)− 1| = lim
λ
|ϕ(auλ)− ϕ(uλ)| = lim

λ
|ϕ((a− 1)uλ)| ≤ ||(a− 1)uλ|| ≤ ||a− 1|| ||uλ|| ≤ 1.

Where we work in A1 if A is not unital. Finally since ϕ(a) ∈ R and |ϕ(a)− 1| ≤ 1 we have
ϕ(a) ≥ 0.

�

Corollary 2.1.8 If A is unital and ϕ ∈ A′, then

ϕ ≥ 0 ⇔ ϕ(1) = ||ϕ||

Proof: If A is unital un := 1 is an approximate unity and the claim follows directly from the
previous lemma. �

Corollary 2.1.9 Let ϕ,ψ ∈ P (A), then we have ||ϕ+ ψ|| = ||ϕ||+ ||ψ||.

Proof: ϕ+ ψ is positive and thus

||ϕ+ ψ|| = lim
n→∞

(ϕ+ ψ)(un) = lim
n→∞

[ϕ(un) + ψ(un)] = ||ϕ||+ ||ψ||.

�

Theorem 2.1.10 Let A be a nonunital C∗-algebra, then for every ϕ ∈ P (A) there is exactly one
ϕ̃ ∈ P (A1) such that

ϕ̃|A = ϕ, ||ϕ̃|| = ||ϕ||.

It follows that
ϕ̃(a+ µ1) = ϕ(a) + µ||ϕ||.

Proof: Since ϕ̃ is positive, we get ϕ̃(1) = ||ϕ̃||. If we assume ||ϕ̃|| = ||ϕ||, then due to ϕ̃|A = ϕ
and the linearity of ϕ, we have ϕ̃(a+ µ1) = ϕ(a) + µ||ϕ||.
Now show that ||ϕ̃|| = ||ϕ||, since it then follows that ϕ̃(1) = ||ϕ̃|| and ϕ̃ is positive.
Let (un)n an approximate unity like above, then ||ϕ|| = limn→∞ ϕ(un) and

||ϕ̃(a+ µ1)|| = |ϕ(a) + µ||ϕ|| | = lim
n→∞

|ϕ(aun) + µϕ(un)| = lim
n→∞

|ϕ(a+ µ1)un|

≤ ||ϕ|| ||(a+ µ1)un|| ≤ ||ϕ|| ||a+ µ1||.

So we have ||ϕ̃|| ≤ ||ϕ||. Because of ϕ̃|A = ϕ we also have ||ϕ̃|| ≥ ||ϕ||. So indeed ||ϕ̃|| = ||ϕ||. �

Example 2.1.11 States on C∗-algebras. Remember: a state was a pos. functional of unit norm.

1.) A = C(X) for X compact, then states are just probability-measures on X, i.e. positive
Radon integrals with

µϕ(X) = ϕ(1X) = 1.

2.) A = L(HC) then for every x ∈ HC we have a positive functional ϕx : L(HC)→ C defined by

ϕx(T ) := 〈Tx, x〉 , ⇒ ||ϕx|| = ϕx(1H) = 〈x, x〉

so ϕx is a state iff ||x|| = 1. These states are called vector states of L(HC).

Remark 2.1.12 Convexity of the State Space For the state space S(A) the following hold:
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1.) If A is not unital, then the continuation map

S(A) −→ S(A1), ϕ 7→ ϕ̃

(defined as above) is an embedding.

2.) S(A) is convex: For ϕ1, ϕ2 ∈ S(A) and λ ∈ [0, 1]:

||λϕ1 + (1− λ)ϕ2|| = ||λϕ1||+ ||(1− λ)ϕ2|| = λ||ϕ1||+ (1− λ)||ϕ2|| = 1.

Theorem 2.1.13 Let A be a C∗-algebra, then for every a ∈ A normal, there exists a ϕ ∈ S(A)
with |ϕ(a)| = ||a||. Furthermore for every a ∈ A there is a ϕa ∈ S(A) such that

ϕ(a∗a) = ||a||2.

Proof: W.l.o.g. let A be unital. Let B := C∗(1, a) ∼= C(B̂). Since B̂ is compact, there is a
χ ∈ B̂ :

||a|| = ||â||∞ = |â(χ)| = |χ(a)|.

Since χ : B → C is a ∗-homomorphism, we also have

χ(b∗b) = χ(b)χ(b) = |χ(b)|2 ≥ 0, ∀b ∈ B.

We get χ ∈ P (B) with ||χ|| = χ(1) = 1, so χ ∈ S(B) with |χ(a)| = ||a||. Above we have already
seen, that there is a ϕ ∈ S(B) with ϕ|B = χ. It follows, that |ϕ(a)| = ||a||. Since a was general,
we can apply the same reasoning to a∗a. �

2.2 Representations, Gelfand-Naimark Theorem and the GNS-Construction

Definition 2.2.1 Representation A representation of a C∗-algebra A on a C-Hilbert space H
is a ∗-homomorphism

π : A −→ L(H).

A representation is called:

• Faithful iff π is injective.

• Nondegenerate iff π(A)H = H.

• Cyclic iff there exists a so called cyclic vector ξ, that is a ξ ∈ H such that

π(A)ξ ⊂ H dense.

• Irreducible iff π(A)H 6= {0} and for every closed subspace E:

π(A)E ⊆ E, ⇒ E = {0}, or E = H.

Remark 2.2.2 We have the following implications:

irreducible ⇒ cyclic ⇒ nondegenerate.

Where the first one is part of Schur’s lemma and the second is obvious.

Definition 2.2.3 Equivalence of Representations Two representations

π : A −→ L(H), π̃ : A −→ L(H̃)

are called equivalent, if there exists a unitary operator U : H → H̃ such that for all a ∈ A the
following commutes
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H H̃

H H̃

-U

?

π(a)

?
π̃(a)

-
U

Remark 2.2.4 Faithful Representations are isometric ∗-Isomorphisms onto their image:

π : A
∼=−→ π(A) ⊆ L(Hπ).

Thus it is our goal to construct faithful representations of all C∗-algebras.

Remark 2.2.5 Let π = ⊕i∈Iπi be a ∗-representation of A on H = ⊕i∈IHi, then

π(a) = 0 ⇔
∑
i∈I

πi(a)ξi ∀ξ =
∑
i

ξi ∈ H

and
π(a) = 0 ⇔ πi(a) = 0 ∀i ∈ I ⇔ kerπ = ∩i∈I kerπi.

So in order to get π to be faithful (kerπ = {0}), we just need to find sufficiently many πi, so that
for each a ∈ A, there is a πi such that πi(a) 6= 0, since then ∩i∈I kerπi = {0} and π = ⊕i∈Iπi is a
faithful representation.

Lemma 2.2.6 Nondegenerate Representations and approximate Unities: Let
π : A→ L(H) be a nondegenerate representation and (un)n an approximate unity with ||un|| ≤ 1,
then

π(un)ξ −→ ξ ∀ξ ∈ H.

Proof: Let η :=
∑l

k=1 π(ak)ηk, then

π(un)η =
l∑

k=1

π(unak)ηk −→
l∑

k=1

π(ak)ηk = η

since unak → ak and π is continuous. Let now ξ ∈ H, ε > 0, so by assumption, there is a
η ∈ π(A)H with ||ξ − η|| < ε

3 and thus

||π(un)ξ − ξ|| ≤ ||π(un)(ξ − η)||︸ ︷︷ ︸
<ε/3

+ ||π(un)η − η||︸ ︷︷ ︸
→0

+ ||η − ξ||︸ ︷︷ ︸
<ε/3

.

�

Definition 2.2.7 A ∗-representation π : A→ L(H) and a vector ξ ∈ H define a positive linear
functional

ϕπ,ξ ∈ P (A), ϕπ,ξ(a) := 〈π(a)ξ, ξ〉 .

Lemma 2.2.8 The above positive linear functional fulfills ||ϕπ,ξ|| ≤ ||ξ||2.

Proof: We have

ϕπ,ξ(a
∗a) = 〈π(a∗a)ξ, ξ〉 = 〈π(a∗)π(a)ξ, ξ〉 = 〈π(a)ξ, π(a)ξ〉 ≥ 0

|ϕπ,ξ(a)| = | 〈π(a)ξ, ξ〉 |
Cauchy−Schwarz

≤ ||π(a)ξ|| ||ξ|| ≤ ||π(a)|| ||ξ||2 ≤ ||a|| ||ξ||2.

Where in the last step we have used that every ∗-homomorphism between C∗-algebras is norm
decreasing. �
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Lemma 2.2.9 Nondegenerate Representations give Vector States If π : A→ L(H) is
nondegenerate, we have ||ϕπ,ξ|| = ||ξ||2. It thus follows, that

||ξ|| = 1 ⇔ ϕπ,ξ(·) := 〈π(·)ξ, ξ〉 ∈ S(A)

Proof: By the lemma above, for a nondegenerate representation, we have an approximate unity
(un)n with ||un|| ≤ 1 and π(un)ξ → ξ ∀ξ ∈ H, and thus

||ϕπ,ξ|| = lim
n→∞

ϕπ,ξ(un) = lim
n→∞

〈π(un)ξ, ξ〉 = 〈ξ, ξ〉 = ||ξ||2.

�

Theorem 2.2.10 GNS−Construction Let A be a C∗-algebra and ϕ ∈ S(A), then the
following hold:

• Existence: there exists a cyclic representation πϕ : A→ L(Hϕ) and a cyclic vector ξϕ for
πϕ with ||ξϕ|| = 1 such that

ϕ = ϕπϕ,ξϕ , i.e. : ϕ(a) = 〈πϕ(a)ξϕ, ξϕ〉 .

• Uniqueness: If ρ : A→ L(H) is another representation, η ∈ H with ρ(A)η = H and

ϕ(a) = 〈ρ(a)η, η〉 ,

then it is equivalent to πϕ, i.e.: ρ ∼= πϕ. That is, there is a unitary operator V : Hϕ → H
with V ξϕ = η and

ρ(a)V = V πϕ(a).

That is all states are vector states of a unique (up to equivalence) cyclic representation.

Proof:

• Let A be unital and we define

H0 := A/N, N := {a ∈ A |ϕ(a∗a) = 0},

〈·, ·〉 : H0 ×H0 −→ C, 〈a+N, b+N〉 := ϕ(b∗a).

Then 〈·, ·〉 is a scalar product on H0. We define

Hϕ := H0
〈·,·〉

• For a ∈ A we define

πϕ(a) : H0 −→ H0, πϕ(a)(b+N) := ab+N

Because of 0 ≤ a∗a ≤ ||a||21 it follows that b∗a∗ab ≤ b∗||a||2b = ||a||2b∗b and thus

||πϕ(a)(b+N)||2 = 〈ab+N, ab+N〉 = ϕ(b∗a∗ab) ≤ ||a||2ϕ(b∗b) = ||a||2||b+N ||2.

So πϕ is a continuous operator on H0 and thus has a unique continuation to Hϕ := H0. One
can easily show that πϕ is a ∗-homomorphism, e.g. πϕ(a∗) = πϕ(a)∗ since:

〈πϕ(a∗)(b+N), c+N〉 = 〈a∗b+N, c+N〉 = ϕ(c∗a∗b) = 〈b+N, ac+N〉 = 〈b+N, πϕ(a)(c+N)〉 .
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• Let now
ξϕ := 1 +N ∈ H0 ⊆ Hϕ ⇒ ϕ = ϕπϕ,ξϕ

since

ϕ(a) = ϕ(1∗a) = 〈a+N,1 +N〉 = 〈πϕ(a)(1 +N),1 +N〉 = 〈πϕ(a)ξϕ, ξϕ〉

and furthermore πϕ(A)ξϕ = H0 = Hϕ so ξϕ is a cyclic vector: 1 = ||ϕ|| = ϕ(1) = ||ξϕ||2.

• Let now A be nonunital. We consider the continuation ϕ̃ ∈ S(A1), do the same construction
as above and take

Hϕ := Hϕ̃, πϕ := πϕ̃|A.

The only property that needs to be varified is that ξϕ is again a cyclic vector in this context.

For this it suffices to show, that πϕ(A)ξϕ = πϕ(A1)ξϕ holds. So we need to show

ξϕ = πϕ̃(1)ξϕ ∈ πϕ(A)ξϕ

that is since πϕ̃(A1)ξϕ = πϕ(A)ξϕ + Cξϕ. Inserting an approximate unity (uλ)λ with
||uλ|| ≤ 1, we get

||πϕ(uλ)ξϕ = ξϕ||2 = ||πϕ(uλ)ξϕ||2 − 〈πϕ(uλ)ξϕ, ξϕ〉 − 〈ξϕ, πϕ(uλ)ξϕ〉+ ||ξϕ||2

= 〈uλ +N, uλ +N〉 − 〈uλ +N,1 +N〉 − 〈1 +N, uλ +N〉+ 〈1 +N,1+N〉
= ϕ(u2

λ)︸ ︷︷ ︸
→||ϕ||

−2ϕ(uλ)︸ ︷︷ ︸
→||ϕ||

+ ϕ̃(1)︸︷︷︸
→||ϕ||

→ 0.

That is since if (uλ)λ is an approximate unity, then also u2
λ is an approximate unity of A.

We thus get πϕ(uλ)ξϕ → ξϕ and finally ξϕ ∈ πϕ(uλ)ξϕ.

• Uniqueness: Let now ρ : A→ L(H ′) be another such representation, η ∈ H ′ with ϕ = ϕρ,η,
then define

V : H0 → H ′, V (a+N) := ρ(a)η.

V is linear and isometric, since:

〈V (a+N), V (b+N)〉 = 〈ρ(a)η, ρ(b)η〉 = 〈ρ(b∗a)η, η〉 = ϕ(b∗a) = 〈(a+N), (b+N)〉

and because of V (H0) := ρ(A)η = H ′ we know that V has a unitary continuation with

V πϕ(a)(b+N) = V (ab+N) = ρ(ab)η = ρ(a)ρ(b)η = ρ(a)V (b+N).

We conclude V πϕ(a) = ρ(a)V .
�

Theorem 2.2.11 Gelfand−Naimark Let A be a C∗-algebra. Then there is a faithful,
nondegenerate ∗-representation π : A→ L(H) for some C-Hilbert space H. If A is separable, then
H can be chosen to be separable (i.e. H ∼= Cn, l2(H)).

Proof:
π :=

⊕
ϕ∈S(A)

πϕ, H :=
⊕

ϕ∈S(A)

Hϕ

• π is nondegenerate: π(A)H = H, since πϕ(A)Hϕ = Hϕ.

• π is faithful: Let 0 6= a ∈ A, then there exists a ϕ ∈ S(A) with

||a||2 = ϕ(a∗a) = 〈a+N, a+N〉 = 〈πϕ(a)ξϕ, πϕ(a)ξϕ〉 = ||πϕ(a)ξϕ||2.

Thus we have ||πϕ(a)ξϕ|| ≥ ||a||||ξϕ|| which for the operator norm means ||πϕ(a)|| ≥ ||a|| and
thus ||πϕ(a)|| = ||a|| since πϕ is a ∗-homomorphism. In particular we have πξ(a) 6= 0.
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• Let now A be separable. Choose a dense sequence (an)n in A and ϕn ∈ S(A) with
||ϕn(a∗nan)|| = ||an||2. Then also π̃ = ⊕n∈Nπϕn is a faithful representation on the separable
Hilbert space ⊕n∈NHϕn . This is shown in the following two steps:

– 0 6= a ∈ A be arbitrary, choose an with ||an − a|| < ||a||
2 . It follows that

||πϕn(an)− πϕn(a)|| < ||a||
2 and ||πϕn(an)|| = ||an|| > ||a||

2 , so
||πϕn(a)|| ≥ ||πϕn(an)|| − ||πϕn(a)− πϕn(an)|| > 0. And thus also π(a) 6= 0.

– Every Hϕn is separable, since {an +N |n ∈ N} is dense in Hϕn

(||an +N − a+N ||2 = ϕ((an − a)∗(an − a)) ≤ ||an − a||2, since ||ϕ|| = 1) and thus
every Hϕn has a countable ONB. The countable union of all these ONB is a countable
ONB of H0.

�

2.3 Pure States, Irreps and Schurs Lemma

In this section, we shall see that pure states are exactly the states belonging to irreducible
representations.
In quantum Mechanics, a pure state is a state, that is not a linear combination of other states.
This is reflected in the following definition:

Definition 2.3.1 Pure States A state ϕ ∈ S(A) is called pure iff for all ψ1, ψ2 ∈ P (A) with
||ψi|| ≤ 1 and λ ∈ [0, 1] it follows, that

If ϕ = λψ1 + (1− λ)ψ2, ⇒ ψ1 = ϕ = ψ2.

Pure(A) := {ϕ ∈ S(A) |ϕ is pure}

Theorem 2.3.2 Krein−Milman Let (E, τ) be a locally convex K-VS and ∅ 6= K ⊆ E
compact, then

Ext(K) 6= ∅, K ⊆ conv(Ext(K)).

If K ⊆ E is compact and convex, then

K = conv(Ext(K)).

Remark 2.3.3 Together with the next theorem, Krein-Milman not only proves the existence of
pure states, but also proves that there are ”sufficiently many.”

Theorem 2.3.4 Let A be a C∗-algebra and K := {ψ ∈ P (A) | ||ψ|| ≤ 1}. Then K is a compact
and convex subset of A′ in the weak *-topology, and

Ext(K) = Pure(A) ∪ {0}, K = conv(Pure(A) ∪ {0}).

Proof: Let (ϕn)n be a net in K with ϕn → ϕ ∈ A′. It follows that
ϕ(a∗a) = limn→∞ ϕn(a∗a) ≥ 0 so ϕ ∈ P (A) with ||ϕ|| ≤ 1. Thus K is closed and thus, with
Banach-Alouglu, compact.
If ϕ ∈ Ext(K), it follows that ||ϕ|| = 0 or ||ϕ|| = 1. If ||ϕ|| = 1 then ϕ ∈ Pure(A) by the definition
of Pure(A). Thus we have Ext(K) = Pure(A) ∪ {0}, and K = conv(Pure(A) ∪ {0}). �

Theorem 2.3.5 Let A be unital, then S(A) is compact and convex with

Ext(S(A)) = Pure(A), S(A) = conv(Pure(A))

Proof: Analogous to the previous theorem. �
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Corollary 2.3.6 Let A be a C∗-algebra, it then holds that

||a||2 = sup
ϕ∈Pure(A)

ϕ(a∗a)

Proof: If a ∈ A, then with 2.1.13 there is a ψ ∈ S(A) with ||a||2 = ψ(a∗a). With 2.3.4 for every
ε > 0 there are ϕ1, . . . , ϕl ∈ Pure(A), λ1, . . . , λl ≥ 0 with

∑l
i=1 λi ≤ 1 and

l∑
i=1

λiϕi(a
∗a) ≥ ψ(a∗a)− ε = ||a||2 − ε.

But then there is at least one i ∈ {1, . . . , l} with ϕi(a
∗a) ≥ ||a||2 − ε. And since ε > 0 the claim

follows. �

Lemma 2.3.7 Characterization of Pure States Let ϕ ∈ S(A), then ϕ ∈ Pure(A) iff for all
ψ ∈ P (A) with 0 ≤ ψ ≤ ϕ there exists λ ∈ [0, 1] with ψ = λϕ.

Proof:

”⇒ ” Let ϕ ∈ Pure(A) and 0 ≤ ψ ≤ ϕ. Then ϕ = ψ + (ϕ− ψ) with ϕ− ψ ≥ 0 and with 2.1.8 it
follows that 1 = ||ϕ|| = ||ψ||+ ||ϕ− ψ||. If ψ 6= 0 and ψ 6= ϕ, then set λ := 1

1−λ(ϕ− ψ). It
then follows that ||ψ1|| = ||ψ2|| = l and ϕ = λψ1 + (1− λ)ψ2, so ϕ = ψ1 = ψ2, since
ϕ ∈ Pure(A). We have, that ϕ = ψ1 = 1

λψ, i.e. ψ = λϕ.

”⇐ ” It now holds that 0 ≤ ψ ≤ ϕ ⇒ ψ = λϕ for a λ ∈ [0, 1]. Let ψ1, ψ2 ∈ Pure(A) with
||ψ1||, ||ψ2|| ≤ 1 and t ∈ (0, 1) with ϕ = tψ1 + (1− t)ψ2. Due to
1 = ||ϕ|| = t||ψ1||+ (1− t)||ψ2||, it already follows that 1 = ||ψ1|| = ||ψ2|| and further

0 ≤ tψ1 ≤ ϕ, 0 ≤ (1− t)ψ2 ≤ ϕ.

Thus there exist λ, µ ∈ [0, 1] with

tψ1 = λϕ, (1− t)ψ2 = µϕ.

Because of t = ||tψ1|| = ||λϕ|| = λ (analogously for ψ2) it holds that t = λ, (1− t) = µ, so
ψ1 = ϕ = ψ2.

�

Lemma 2.3.8 Let A be a C∗-algebra, π : A→ L(H) a ∗-representation, ξ ∈ H with ||ξ|| = 1 and
ϕ ∈ S(A) defined by

ϕ(a) = 〈π(a), ξ, ξ〉 ⇔ ϕ = ϕπ,ξ.

Then the following hold:

(1) Let T = T ∗ ∈ L(H) with 0 ≤ T ≤ 1 and [T, π(a)] = 0 for all a ∈ A, then

0 ≤ ψT,ξ(·) := 〈π(·)Tξ, Tξ〉 ≤ ϕ.

(2) If ξ is a cyclic vector, then T 7→ ψT,ξ(·) := 〈π(·)Tξ, Tξ〉 is injective.

(3) For all 0 ≤ ψ ≤ ϕ we have ψ = ψT,ξ for some 0 ≤ T ≤ 1 with [T, π(a)] = 0.

Proof:

(1) Let T ∈ L(H) with ||T || ≤ 1. It then holds that

ψT (a∗a) = 〈π(a∗a)Tξ, Tξ〉 = 〈π(a)Tξ, π(a)Tξ〉 = ||π(a)Tξ||2

= ||Tπ(a)ξ||2 ≤ ||π(a)ξ||2 = 〈π(a∗a)ξ, ξ〉 = ϕ(a∗a).
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(2) Let 0 ≤ T, T ′ ≤ 1 with ψT = ψT ′ , we will show that T 2 = (T ′)2 , since it then follows that
T =

√
T 2 =

√
(T ′)2 = T ′.

For all a ∈ A it holds that〈
π(a)ξ, T 2ξ

〉 T=T ∗
= 〈Tπ(a)ξ, T ξ〉 = 〈π(a)Tξ, Tξ〉 = ψT (a) = ψT ′(a) =

〈
π(a)ξ, (T ′)2ξ

〉
.

Since π(A)ξ = H, it follows that T 2ξ = (T ′)2ξ and then

T 2(π(a)ξ) = π(a)T 2ξ = π(a)(T ′)2ξ = (T ′)2(π(a)ξ).

I.e. T 2 = (T ′)2 on π(A)ξ ⊆ H, and since π(A)ξ = H, the claim follows.

(3) Let 0 ≤ ψ ≤ ϕ and w.l.o.g. π(A)ξ = H (since if not, we can just work on π(A)H). Set
H0 := π(A)ξ ⊆ H, then

〈·, ·〉ψ : H0 ×H0 −→ C, 〈π(a)ξ, π(b)ξ〉ψ = ψ(b∗a)

is a semidefinite hermitian form on H0, with

| 〈π(a)ξ, π(b)ξ〉ψ |
2 = |ψ(b∗a)|2

CS
≤ ψ(b∗b)ψ(a∗a) ≤ ϕ(b∗b)ϕ(a∗a) = ||π(b)ξ||2||π(a)ξ||2.

So 〈·, ·〉ψ is continuous and has a continuous continuation to H with | 〈η, η̃〉ψ | ≤ ||η|| ||η̃||
∀η, η̃ ∈ H. By a theorem from functional analysis, there is now a T̃ ∗ = T̃ ≥ 0 with ||T̃ || ≤ 1
with

〈η, η̃〉ψ =
〈
T̃ η, η̃

〉
, ∀η, η̃ ∈ H.

In particular

ψ(b∗a) = 〈π(a)ξ, π(b)ξ〉ψ =
〈
T̃ π(a)ξ, π(b)ξ

〉
, ∀a, b ∈ A.

For arbitrary a, b, z ∈ A we then have〈
π(a)ξ, T̃ π(z)π(b)ξ

〉
= ψ((b∗z∗)a) = ψ(b∗(z∗a)) =

〈
π(z∗a)ξ, T̃ π(b)ξ

〉
=
〈
π(a)ξ, π(z)T̃ π(b)ξ

〉
and since π(A)ξ = H, it follows that π(z)T̃ = T̃ π(z) ∀z ∈ A. For A = (̃T )1/2, it also holds
that π(z)T = Tπ(z) ∀z ∈ A, and

ψ(b∗a) =
〈
π(a)ξ, T̃ π(b)ξ

〉
=
〈
π(a)ξ, T 2π(b)ξ

〉
= 〈Tπ(a)ξ, Tπ(b)ξ〉 = ψT (b∗a).

Since A = A2 = A∗A, we have ψ = ψT .
�

Remark 2.3.9 If π : A→ L(H) a ∗-representation, and E ⊆ H an invariant subspace, then

π|E , π|E⊥ are ∗ −representations and : π = π|E ⊕ π|E⊥ .

That is since for ξ ∈ E, η ∈ E⊥ :

〈π(a)ξ, η〉 = 〈ξ, π(a∗)η〉 = 0, since π(a∗)η ∈ E.

Lemma 2.3.10 Schur Let π : A→ L(H) be a ∗-representation, then the following are equivalent:

(1) π is irreducible.

(2) All 0 6= ξ ∈ H are cyclic vectors: π(A)ξ = H.

(3) If [T, π(a)] = 0 for all a ∈ A, then T = λ1 for a λ ∈ C.

Proof:
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”(1)⇒ (2)” First let π be nondegenerate, then E : π(A)H ⊆ H, {0} 6= E and π(A)E ⊆ π(A)H ⊆ E,
thus E = H. If 0 6= ξ ∈ H, then we have for Eξ := π(A)ξ, that 0 6= Eξ, since
ξ = limπ(uλ)ξ ∈ Eξ. It follows, that

π(A)Eξ ⊆ π(A)π(A)ξ = π(A2)ξ = π(A)ξ = Eξ

and thus Eξ = H, i.e. H = E.

”(2)⇒ (1)” If 0 6= E is a closed linear subspace with π(A)E ⊆ E, then H = π(A)ξ ⊆ π(A)E ⊆ E = E
for all 0 6= ξ ∈ E and so H = E.

”(1)⇒ (3)” Let T ∈ L(H) with Tπ(a) = π(a)T ∀a ∈ A, then π(a)T ∗ = (Tπ(a∗))∗ = (π(a∗)T )∗ = T ∗π(a)
∀a ∈ A. Switching to Re(T ), Im(T ), we can w.l.o.g. assume, that T = T ∗. We now show
that σ(T ) = {λ} for a λ ∈ R. It then follows that T = λ1, since on σ(T ) it holds that
λ1 = {id}, so T = id(T ) = λ1(T ) = λ1.
Since Tπ(a) = π(a)T ∀a ∈ A, we also have f(T )π(a) = π(a)f(T ) ∀a ∈ A, f ∈ C(σ(T )). We
assume that ∃µ, λ ∈ σ(T ) with µ 6= λ. Then there are f, g ∈ C(σ(T )) with f(λ) = g(µ) = 1
f · g = 0 and it follows that

f(T ) 6= 0 6= g(T ), f(T )g(T ) = (f · g)(T ) = 0.

Set E := f(T )H 6= {0}, then

π(A)E ⊆ π(A)f(T )H = f(T )π(A)H ⊆ f(T )H = E.

So E = H since E 6= 0 and π irreducible. But we have g(T )E ⊆ g(T )f(T )H = 0H = {0}
and thus E 6= H (since g(T ) 6= 0), which is a contradiction.

”(3)⇒ (1)” Let 0 6= E ⊆ H be a closed linear subspace with π(A)E ⊆ E. Let

P : H −→ E, Pξ := ξ1, for ξ = ξ1 + ξ2, ξ1 ∈ E, ξ2 ∈ E⊥

be the orthogonal projection onto E. Then for all a ∈ A, ξ1 ∈ E, ξ2 ∈ E⊥ we have

Pπ(a)(ξ1 + ξ2) = P (π(a)ξ1︸ ︷︷ ︸
∈E

+π(a)ξ2︸ ︷︷ ︸
∈E⊥

) = π(a)ξ1 = π(a)(P (ξ1 + ξ2)).

so Pπ(a) = π(a)P for all a ∈ A. So it follows, that P = λ1 for some λ ∈ C. Due to
P ∗ = P 2 = P we have λ = λ2 = λ, i.e. λ ∈ {0, 1}. Since P 6= 0 (since E 6= 0), we have
λ = 1, and thus P = 1 and E = 1H = H.

�

Theorem 2.3.11 Pure States are Irreducible Representations Let A be a C∗-algebra,
π : A→ L(H) a ∗-representation, ϕ ∈ S(A) and ξ ∈ H a cyclic vector such that

ϕ(a) = 〈π(a)ξ, ξ〉 .

Then the following hold

(1) π is irreducible ⇔ ϕ ∈ Pure(A).

(2) If π is irreducible and 0 6= ξ, η ∈ H with 〈π(a)ξ, ξ〉 = 〈π(a)η, η〉, then η = λξ, with λ ∈ S1.

(3) If π, ρ are irreducible and ξ ∈ Hπ, η ∈ Hρ and 〈π(a)ξ, ξ〉 = 〈π(a)η, η〉, then π ∼= ρ.

Proof:

(3) Since π, ρ are irreducible, they are in particular nondegenerate, so
||ξ||2 = ||ϕπ,ξ|| = ||ϕρ,η|| = ||η||2. W.l.o.g. we shall assume that ||ξ|| = ||η|| = 1 and thus
ϕπ,ξ = ϕρ,η is a state and (3) follows form the GNS-construction.
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(1)”⇒ ” Let 0 6= E ⊆ H be a π(A) invariant subspace and P : H → E the orthogonal projection
onto E. Then Pπ(a) = π(a)P for all a ∈ A and 0 ≤ P ≤ 1. With 2.3.8 we have
0 ≤ ψP ≤ ϕ. Since ϕ is pure, with 2.3.7 we have a λ ∈ [0, 1] such that ψP = λϕ and it
follows that

ψP (a) = 〈π(a)Pξ, Pξ〉 = λ 〈π(a)ξ, ξ〉 =
〈
π(a)
√
λξ,
√
λξ
〉
.

Since ξ is a cyclic vector for π, we have with 2.3.8, that P =
√
λ1 and since P = P 2,

we have
√
λ = λ ∈ [0, 1]. Since E 6= 0 we have λ = 1 and E = H.

”⇐ ” With 2.3.7 it is enough to show 0 ≤ ψ ≤ ϕ, so that ψ = λϕ for a λ ∈ [0, 1]. With 2.3.8
there is a 0 ≤ T ≤ 1 with Tπ(a) = π(a)T ∀a ∈ A and ψ = ψT . Since π is irreducible, it
holds that T = λ1 for a λ ∈ C and since 0 ≤ T ≤ 1, we have λ ∈ [0, 1], and thus for all
a ∈ A:

ψ(a) = ψT (a) = 〈π(a)λξ, λξ〉 = |λ|2 〈π(a)ξ, ξ〉 = λ2ϕ(a).

(2) Using (3), we have a unitary U : H → H with Uξ = η and π(a)U = Uπ(a) and thus with
Schur U = λ1. Unitarity U∗ = U−1 gives λ̄ = λ−1, so λ ∈ S1 and in particular η = λξ.

�

Remark 2.3.12 Summary For a C∗-algebra, define:

Cycl(A) := {(π, ξ) |π : A→ L(H) cyclic rep, ξ cyclic vec, ||ξ|| = 1},
Irrep(A) := {(π, ξ) |π : A→ L(H) irreducible rep, ξ ∈ H, ||ξ|| = 1}.

And we have the following mappings

Cycl(A) −→ S(A), S(A)
GNS−→ Cycl(A)

(π, ξ) 7−→ ϕπ,ξ ϕ 7−→ (πϕ, ξϕ)

where the second is given by the GNS-construction. We now define an equivalence relation on
Cycl(A) by

(π, ξ) ∼ (ρ, η), :⇔ ∃V ∈ U(Hπ, Hρ) : V ξ = η and V π(a) = ρ(a)V.

So we get the following two bijections

Cycl(A)/ ∼ ←→ S(A)

which follows from the GNS-construction. And by the map [(π, ξ)] 7→ ϕπ,ξ we have

Irrep(A)/ ∼ ←→ Pure(A)

with the inverse map ϕ 7→ [(πϕ, ξϕ)].

Definition 2.3.13 Structure Space We define the structure space to be

Â := {[π] |π : A→ L(H) irrep}

Remark 2.3.14 Â is also called the spectrum of A and denoted Spec(A).

Theorem 2.3.15 Let A be a C∗-algebra, it then holds that

||a|| = sup{||π(a)|| | [π] ∈ Â}
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Proof:

||a||2 = sup
ϕ∈Pure(A)

ϕ(a∗a) = sup
(π,ξ)∈Irrep(A)

〈π(a∗a)ξ, ξ〉 = sup
(π,ξ)∈Irrep(A)

〈π(a)ξ, π(a)ξ〉

= sup
(π,ξ)∈Irrep(A)

||π(a)ξ||2
||ξ||=1

≤ sup
[π]∈Â

||π(a)||2 ≤ ||a||2

So we get ||a|| ≤ sup[π]∈Â ||π(a)||, but since π is a *-homomorphism, we always have

||π(a)|| ≤ ||a||. �

Corollary 2.3.16 Let π ∈ [π] ∈ Â, then the following is a faithful, nondegenerate representation
of A:

τ := ⊕[π]∈Âπ : A −→ L(⊕[π]∈ÂHπ).

2.4 The Spaces Â and Prim(A)

Definition 2.4.1 Let A be a C∗-algebra and I ⊆ A a closed ideal, then define

ÂI := {[π] ∈ Â |π(I) 6= 0},
ÂA/I := {[π] ∈ Â |π(I) = 0}.

So we have
Â = ÂI t ÂA/I .

Theorem 2.4.2 We have the following bijections

ÂI
∼=−→ Î , Â/I

∼=−→ ÂA/I

[π] 7−→ [π|I ] [π] 7−→ [π ◦ q]

with the quotient map q.

Proof: We only prove the injectivity of ÂI → Î. Its surjectivity is a consequence of the next
lemma. The bijectivity of the second map is left as an exercise.
It holds that π : A→ L(H) is irreducible with π(I) 6= 0 and thus 0 6= E := π(I)H is a π(A)
invariant closed subspace of H since π(A)π(I)H ⊂ π(A)π(I)H = π(AI)H ⊆ π(I)H. Now since π
is irreducible, it follows that π(I)H = H.
We now show that π|I : I → L(H) is irreducible. Let T ∈ L(H) with Tπ(b) = π(b)T ∀b ∈ I. We
show that T = λ1H (which with Schur gives the irreducibility of π|I). For all a ∈ A, b ∈ I, we have

Tπ(a)(π(b)ξ) = Tπ(ab)ξ
ab∈I
= π(ab)Tξ = π(a)(π(b)Tξ) = π(a)(Tπ(b)ξ) = π(a)T (π(b)ξ).

Since π(I)H = H, we get Tπ(a) = π(a)T ∀a ∈ A and because of the irreducibility of π, with
Schur, we get that T = λ1H for a λ ∈ C.
Now show that if π, ρ : A→ L(Hπ), L(Hρ) are irreducible with π(I) 6= 0 6= ρ(I), then

π ∼= ρ ⇔ π|I ∼= ρ|I .

Once we have this result, it is obvious, that the map ÂI → Î , [π] 7→ [π|I ] is well defined and
injective.

”⇒ ” If V : Hπ → Hρ is an equivalence for π and ρ, then it is also an equivalence for π|I and ρ|I .

”⇐ ” Let V : Hπ → Hρ be unitary with V π(b) = ρ(a)V ∀a ∈ A. Let a ∈ A, then ∀b ∈ I, ξ ∈ Hπ:

V π(a)(π(b)ξ) = V π(ab)ξ = ρ(ab)V ξ = ρ(a)(ρ(b)V )ξ = ρ(a)(V ρ(b))ξ = ρ(a)V (ρ(b)ξ)

and since π(A)H = H, the claim follows.
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�

Remark 2.4.3 With the above bijections we have

Â ∼= Î t Â/I as sets

Lemma 2.4.4 Let A be a C∗-algebra and I ⊆ A a closed ideal, then for a nondegenerate
∗-representation π : I → L(H) there exists exactly one continuation

π̃ : A→ L(H), π̃|I = π.

Proof: If π̃ is such a continuation, then for a ∈ A, b ∈ I we have

π̃(a)(π(b)ξ) = π̃(ab)ξ = π(ab)ξ.

Since π(I)H = H we get uniqueness. For a η =
∑m

i=1 π(bi)ξi ∈ π(A)H it holds that

π̃(a)η =

m∑
i=1

π(abi)ξi.

We now show that this defines a well defined operator π̃(a) ∈ L(H), such that π̃ : A→ L(H) is a
∗-representation of A.

1. Well defined: Let η be as before and (un)n an approximate unity for I, then:

π̃(a)η =
m∑
i=1

π(abi)ξi = lim
n→∞

m∑
i=1

π(aunbi)ξi = lim
n→∞

π(aun)
m∑
i=1

π(bi)ξi = lim
n→∞

π(aun)η.

Thus π̃(a)η does not depend on the specific representation of η. I.e. π̃(a) is well defined on
π(A)H. For η ∈ π(A)H we then have

||π̃(a)η||2 = lim
n→∞

||π(aun)η||2 ≤ sup
n
||π(aun)η||2 ≤ sup

n
||π(aun)||2||η||2

≤ sup
n
||aun||2||η||2 ≤ ||a||2||η||2.

Thus π̃(a) is continuous and therefor has a unique continuation to H = π(A)H.

2. π̃ :→ L(H) is a ∗-representation: linearity and multiplicativity are easy to show. We only
prove π̃(a∗) = π̃(a)∗.
Let ξ, η ∈ π(A)H, then

〈π̃(a)ξ, η〉 = lim
n→∞

〈π(aun)ξ, π(un)η〉 = lim
n→∞

〈π(un)ξ, π(a∗un)η〉 = 〈ξ, π̃(a∗)η〉 .

So π̃ is indeed a ∗-representation.

3. Finally if b ∈ I, η ∈ π(I)H, then

π̃(b)η = lim
n→∞

πbunη = π(b)η,

thus π̃|I = π.

�

Definition 2.4.5 Hull Ker Let A be a C∗-algebra and E ⊆ Â a subset, then define

kerE := ∩[π]∈E kerπ,

hull(J) := {ρ ∈ Â | J ⊆ ker ρ}.
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Remark 2.4.6 We have already shown, that for commutative A, we always have

E = hull(kerE), ∀E ⊆ Â.

Theorem 2.4.7 Hull−Kernel Topology (Jacobsen Topology or Zariski Topology) for a (not

neccessaily commutative) C∗-algebra A is the unique topology on Â such that

E = hull(kerE), ∀E ⊆ Â

Proof: Let A := {hull(I) | I ⊆ A closed ideal}.

• We first show that A fulfills the axioms for closed subsets of a topological space.

1. hull(∅) = Â and hull(A) = ∅, so ∅, A ∈ A.

2. Show: If {Ii | i ∈ Λ} is a system of closed ideals in A, then there is a closed ideal J ⊆ A
with

∩i∈Λhull(Ii) = hull(J).

This is fulfilled by J := LH{∪i∈ΛIi}.
3. Show hull(I1) ∪ hull(I2) ∈ A. Consider the closed ideal I := I1 ∩ I2 for which we have
I1 ∩ I2 = I1 · I2 since I = I2 ⊆ I1 · I2.

• Uniqueness: It now follows that ρ ∈ hull(I1) ∪ hull(I2) ⇔ ρ(I1) = 0 or ρ(I2) = 0, thus
ρ(I1 · I2) = ρ(I) = 0, so ρ ∈ hull(I).
Vice versa, if ρ ∈ hull(I) and e.g. ρ(I2) 6= 0, then ρ(I1) = 0, since ρ(I2) 6= 0 ⇒
ρ|I2 ∈ Irrep(I2) and thus ρ(I2)H = H.
If also ρ(I1) 6= 0, applying the same argument, we would get ρ(I1)H = H and thus

0 = ρ(I)H = ρ(I1 · I2)H = ρ(I1)ρ(I2)H = H,

a contradiction. So there is only one topology on Â, such that the elements of A form the
closed subsets of Â.

• We also show that if E ⊆ Â, then

ρ ∈ E ⇔ ρ ∈ hull(kerE).

Since kerE ⊆ A is a closed ideal, we have that hull(kerA) ⊂ Â closed with E ⊆ hull(kerE).
Vice versa if F = hull(I) ⊂ Â is any closed subset with E ⊆ F, then I = kerF ⊆ kerE and
thus hull(kerE) ⊆ hull(I) = F. So we conclude that hull(kerE) is the smallest closed subset
in Â that contains E.

�

Remark 2.4.8 Closed Ideals If I ⊆ A is a closed ideal, then

hull(I) = ÂA/I ∼= ÂI .

This follows from the last result of the last section, which gives

∩
σ∈Â/I kerσ = ker(⊕

σ∈Â/Iσ) = {0 + I} ⊆ A/I.

Thus for the quotient map it holds, that

∩σ∈hull(I) kerσ = ∩
σ∈Â/I ker(σ ◦ q) = ker q = I.
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Remark 2.4.9 Closed Sets The closed sets in Â are of the following form:

K ⊂ Â closed ⇔ K = hull(I) ∼= Â/I

for some closed ideal I ⊆ A. The open sets are exactly the complements.

Remark 2.4.10 The hull-kernel topology on Â does not necessarily fulfill any of the separation
axioms:

1. The hull-kernel topology on Â is generally not Hausdorff. For example take A = L(H), with
H = l2(N). Then 1A : L(H)→ L(H) is irreducible and

{1A} = hull(ker1A) = hull({0}) = L̂(H).

Since K(H) ( L(H) is a closed ideal, there exists an irreducible representation

ρ ∈ ̂L(H)/K(H). We then have

ρ 6= 1A, ρ ∈ {1A} = L̂(H).

But points in a Hausdorff space need to be closed.

2. The hull-kernel topology on Â need not even be T0.

Definition 2.4.11 Primitive Ideals and Prim(A) Let A be a C∗-algebra. An Ideal P ⊂ A is
called primitive iff

∃π ∈ Irrep(A) : P = kerπ.

We set
Prim(A) := {P ⊂ A |P is primitive ideal}.

And there is a surjective map

φ : Â −→ Prim(A).

[π] 7−→ kerπ

The topology on Prim(A) is defined by

U ⊂ Prim(A) is open iff φ−1(U) ⊆ Â open

and is also refered to as hull-kernel topology.

Remark 2.4.12 An equivalent definition of the topology on Prim(A) is by defining

kerE := ∩Q∈EQ, hull(J) = {P ∈ Prim(A) | J ⊆ P}

and again demanding
E = hull(kerE), ∀E ⊆ Prim(A).

Theorem 2.4.13 Prim(A) is always a T0 space and the following are equivalent

1. Â is a T0 space.

2. If π, ρ ∈ Irrep(A) with kerπ = ker ρ, then π ∼= ρ.

3. φ : Â→ Prim(A) is a homeomorphism.
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Proof: We only show that Prim(A) is always a T0 space and leave the rest as an exercise.
Let P1 6= P2 ∈ Prim(A), then hull(P1) 6= hull(P2), since otherwise

P1 = ker(hull(P1)) = ker(hull(P2)) = P2.

Now if P2 ∈ hull(P1), then P2 ⊃ P1. Since P2 6= P1 we have P2 * P1 and thus

P1 6= hull(P2).

So for U := Prim(A)/hull(P2) we have P1 ∈ U and P2 6= U . �

Theorem 2.4.14 (locally) compact Prim(A) and Â are always locally compact. If A is unital,

then Prim(A) and Â are compact.

Proof: We only prove the statement for unital algebras. And since Prim(A) is the continuous
image of Â, it is enough to prove the claim for Â.
We will prove that Â hat the finite intersection property for closed sets, i.e. if {Ei | i ∈ Λ} a
system of closed subsets of Â with nonempty intersection ∩i∈FEi 6= ∅, then for any finite subset
F ⊂ Λ, then also ∩i∈ΛEi 6= ∅.
Now let Ii ⊆ A a closed ideal with Ei = hull(Ii). Assume ∩i∈ΛEi = ∅. In a previous proof, we
have already shown that

∩i∈ΛEi = ∩i∈Λhull(Ei) = hull(J) with J = LH{∪i∈ΛIi}.

Because of ∅ = hull(J) ∼= Â/J we get that A/J = {0} so A = J. Then J̃ = LH{∪i∈ΛIi} ⊂ A is a
dense ideal and since A is unital we already have that J̃ = A = hull(A) = ∅. A contradiction! �

2.5 C∗-Algebras of Compact Operators

In this section we shall study a class of operators for which the irreducible representations
determine all of the representation theory. Every ∗-representation is given as a direct sum:

A ⊆ K(H), ⇒ A =
⊕
ρ∈Â

K(Hρ).

Definition 2.5.1 Projection Let A be a C∗-algebra. p ∈ A is called a projection iff

p = p2 = p∗.

Lemma 2.5.2 Spectral Decomposition If T ∈ K(H) with T = T ∗, then

T =
∑

λ∈σp(T )

λPλ, H =
⊕

λ∈σp(T )

Eλ

with σp(T ) = {λ ∈ R |λ eigenvalue of T} and Pλ : H → Eλ the orthogonal projection onto the
eigenspace Eλ := ker(T − λ1). It then further holds, that

dimEλ <∞ ∀λ 6= 0, Eλ⊥Eµ, PλPµ = 0 for µ 6= λ

The point spectrum σp(T ) is either finite or countable and σp(T ) has an accumulation point that
is not 0. That is since if {λn |n ∈ N} is a counting of σp(T ) \ {0}, then λn → 0 (if σp(T ) is not
finite).

Lemma 2.5.3 Point Spectrum of Compact Operators If T ∈ K(H) with T = T ∗, then

σ(T ) ∪ {0} = σp(T ) ∪ {0}, Pλ = 1{λ}(T ) ∀λ ∈ σ(T ) ∪ {0}

where 1{λ}(µ) = δλµ.
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Proof: We shall only prove the first assertion. It trivially holds that σp(T ) ⊆ σ(T ). We thus
take 0 6= µ ∈ σ(T ) \ σp(T ) and the idea is to prove that (T − µ1) is bijective, since then it is
invertible and µ /∈ σ(T ), which completes the prove.

• Injectivity: Let 0 6= ξ ∈ H, then ξ =
∑

λ∈σp(T ) ξλ with ξλ ∈ Eλ and ξλ 6= 0 for at least one
λ. It follows that Pλξ = ξλ and

(T − µ1)ξ =
∑

λ∈σp(T )

(λξλ − µξλ) =
∑

λ∈σp(T )

(λ− µ)ξλ.

This gives ||(T − µ1)ξ||2 =
∑

λ∈σp(T ) |λ− µ|2||ξλ||2 > 0, since (λ− µ) 6= 0 ∀λ and ||ξλ||2 > 0

for at least one λ. So we see ker(T − µ1) = {0}.

• Surjectivity: Again take ξ =
∑

λ∈σp(T ) ξλ ∈ H and define

η :=
∑

λ∈σp(T )

1

λ− µ
ξλ, ⇒ (T − µ1)η = ξ.

The sum is well defined, since µ is not an accumulation point of σp(T ) and we know that
{ 1
|λ−µ| |λ ∈ σp(T )} is bounded. So the sum converges in H.

�

Corollary 2.5.4 Let A ⊆ K(H) be a C∗-subalgebra and a = a∗ ∈ A. Let 0 6= λ ∈ σ(a), then the
orthogonal projections onto Eλ are in the subalgebra:

a =
∑

06=λ∈σ(a)

λPλ, with Pλ ∈ A ∀λ.

Proof: This is an immediate consequence of Pλ = 1{λ}(a) ∈ A. �

Remark 2.5.5 If p ∈ K(H) is an arbitrary projection, then dim(p(H)) <∞. That is since

p|p(H) = 1p(H) : p(H) −→ p(H)

and thus B
p(H)
1 (0) = p(B

p(H)
1 (0)) ⊆ p(BH

1 (0)) is compact. Subsets of the unit ball in an infinite
dimensional Hilbert space are compact iff they are finite dimensional.

Remark 2.5.6 If A ⊆ L(H), then being a projection is equivalent to being an orthogonal
projection. Due to p = p2 = p∗, we have p ≥ 0 for every projection p ∈ A.

Lemma 2.5.7 Let A be a C∗-algebra and p, q ∈ A. The following are equivalent

(1) q ≤ p

(2) qp = pq = q

(3) (if A ⊆ L(H)) q(H) ⊆ p(H)

Proof: With Gelfand-Naimark: w.l.o.g. we can assume that A ⊆ L(H), then

a ≥ 0 ⇔ 〈aξ, ξ〉 ≥ 0 ∀ξ ∈ H.

(1)⇒ (3) q ≤ p ⇔ 〈qξ, ξ〉 ≤ 〈pξ, ξ〉 ∀ξ ∈ H. We further assume ∃ξ ∈ q(H) with ξ /∈ p(H). We
decompose ξ = ξ1 + ξ2 with ξ1 ∈ p(H), ξ2 ∈ p(H)⊥. It then follows, that

||ξ||2 = ||ξ1||2 + ||ξ2||2

with ||ξ2||2 6= 0 and

||ξ||2 = 〈ξ, ξ〉 = 〈qξ, ξ〉 ≤ 〈pξ, ξ〉 = 〈ξ1, ξ1 + ξ2〉 = ||ξ1||2 < ||ξ||2,

which is a contradiction.
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(3)⇒ (1) is obvious.

(3)⇔ (2) is left as an exercise.
�

Definition 2.5.8 Minimal projection A minimal projection in a C∗-algebra A is an element
0 6= p ∈ A for which for every other projection 0 6= q ∈ A, we have

q ≤ p ⇒ q = p.

Example 2.5.9

1.) One dimensional projections in L(H).

2.) Let A := {
(
T 0
0 T

)
|T ∈M2(C)} ⊆M4(C), then P =


(

1 0
0 1

)
0

0

(
1 0
0 1

)
 is a

minimal projection in A, since M2(C) ∼= A and

(
1 0
0 1

)
is minimal in M2(C).

Lemma 2.5.10 Let A ⊆ K(H) be a C∗-subalgebra. If 0 6= p ∈ A, then

p minimal ⇔ pAp = Cp

Proof:

”⇐ ” Let pAp = Cp if now q is a projection in A with q ≤ p, then

q = pq = pqp ∈ pAp = Cp.

So we have q = λp for some λ ∈ C and we have either q = 0 or q = p.

”⇒ ” Let now p be minimal. We will show that if a ∈ A, then pap = λp for some λ ∈ C.
Decomposing a = Re(a) + iIm(a), we can assume w.l.o.g. that a = a∗. We then also have
(pap)∗ = pap and

pap =
∑

06=λ∈σ(pap)

λPλ.

If we can prove Pλ ≤ p ∀0 6= λ ∈ σ(pap), we will get Pλ = p ∀λ and the claim is proved since
then σ(pap) \ {0} = {λ} for some λ and thus pap = λp. Pλ ≤ p is seen as follows: We know

p(H)⊥ = ker p ⊆ ker(pap) ⊆ ker(Pλ) = Pλ(H)⊥

and thus Pλ(H) ⊆ p(H), i.e. Pλ ≤ p.
�

Lemma 2.5.11 Projections are sums of minimal projections Let A ⊆ K(H) be a
C∗-subalgebra, then every projection p ∈ A is a finite sum of minimal projections pi ∈ A:

p = p1 + · · ·+ pl, pipj = 0 ∀i 6= j.

Proof: We prove the lemma by induction on the dimension n := dim(p) := dim(p(H)) <∞.

• n = 1 : Clearly for n = 1 the projection p is minimal.

• n→ n+ 1 : If p is minimal, we are done. If not, then there exists another projection q ∈ A
with 0 6= q 6= p and q ≤ p (since if such a q did not exist p would be minimal). We then have
q(H) ( p(H) and dim(q) < dim(p) = n+ 1, i.e. dim(q) ≤ n. Furthermore p− q is the
projection onto q(H)⊥ ∩ p(H) and we also have dim(p− q) ≤ n. So we can apply the
induction hypothesis to p− q and q, which gives the desired decomposition of p = (p− q) + q.
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�

Theorem 2.5.12 If A ⊂ K(H) is irreducible (i.e. the representation 1A is irreducible), then it
holds that A = K(H).

Proof: The strategy of the proof is proving the first point of the following

1) A contains all projections p of rank 1, i.e. dim(p) = 1.

2) A thus contains all projections.

3) With the spectral decomposition T ∗ = T =
∑

06=λ∈σ(T ) λPλ ∈ K(H), we get that A contains
all self adjoint compact operators.

4) The decomposition T = Re(T ) + iIm(T ) ∈ A+ iA = A, shows that all operators are in A.

• We show, that there exists a minimal projection p ∈ A
The existence of some projection p̃ ∈ A is assured since A 6= {0} due to irreducibility and for
0 6= a∗ = a ∈ A we have σ(a) 6= {0} and for 0 6= λ ∈ σ(a) we have 0 6= Pλ ∈ A. We know
that every projection is an orthogonal sum of minimal projection in A, in particular
minimal projections in A exist.

• For the minimal projection p ∈ A, it holds that dim(p) = 1.
Let 0 6= ξ ∈ p(H) and let η ∈ p(H) arbitrary with η⊥ξ, we will show that η = 0. Since p is
minimal: pAp = Cp, thus for all a ∈ A :

〈aξ, η〉 = 〈apξ, pη〉 = 〈papξ, η〉 = 〈λpξ, η〉 = 〈λξ, η〉 ξ⊥η= 0.

Since A ⊂ L(H) is irreducible, we have Aξ = H, so we get η ∈ H⊥ = {0}.

• It remains to show that every projection q ∈ K(H) of rank 1 lies in A.
Let η ∈ q(H) with ||η|| = 1, then qξ = 〈ξ, η〉 η ∀ξ ∈ H. Then take a p as above. So for a
ξ ∈ p(H) with ||ξ|| = 1, due to Aξ = H, there exists a sequence (an)n in A with anξ → η
and ||an|| = 1 ∀n ∈ N. We then have anpa

∗
n ∈ A ∀n ∈ N and

||(anpa∗n − q)v|| = ||anp(a∗nv)− 〈v, η〉 η|| = ||an(〈a∗nv, ξ〉 ξ)− 〈v, η〉 η||
= || 〈a∗nv, ξ〉 anξ − 〈v, η〉 η|| = || 〈v, anξ〉 anξ − 〈v, η〉 η||
= || 〈v, anξ − η〉 anξ − 〈v, η〉 (anξ − η)||
≤ 2||v||||anξ − η||.

Where the last inequality holds due to ||anξ|| = ||η|| = 1. It follows, that

||anpa∗n|| ≤ 2||anξ − η|| −→ 0

and thus q ∈ A.
�

Definition 2.5.13 Simple algebra A simple algebra A is a C∗-algebra in which the only closed
ideals are {0} and A.

Lemma 2.5.14 K(H) is simple.

Proof: If 0 6= I ⊆ K(H) is an ideal, then I ⊆ K(H) is irreducible, since 1K(H) is irreducible
and thus also 1K(H)|I :→ K(H). It then follows that I = K(H). �

Corollary 2.5.15 Irreducible subalgebras contain no or all compact operators If
B ⊆ L(H) is an irreducible C∗-subalgebra with B ∩K(H) 6= {0}. Then K(H) ⊆ B.
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Proof: {0} = B ∩K(H) is a closed ideal in B. Since 1 : B → L(H) is irreducible, 1B∩K(H) is
too. With the last lemma, we get B ∩K(H) = K(H). �

Lemma 2.5.16 Let A ⊆ K(H) be a C∗-subalgebra with AH = H and let p ∈ A be a minimal
projection. Let ξ ∈ p(H) with ||ξ|| = 1 and H0 := Aξ ⊆ H, then

A|H0 = K(H0).

Proof: Let T ∈ L(H0) with Ta = aT ∀a ∈ A|H0 . We will show that T = λ1 for some λ ∈ C,
since then, due to Schur, we get A|H0 is irreducible. Then the above lemma lets us conclude that
A|H0 = K(H0).
We shall show T = 〈Tξ, ξ〉1, for which we define T := (T − 〈Tξ, ξ〉1). It follows, that

〈Tξ, ξ〉 = 〈Tξ, ξ〉 − 〈Tξ, ξ〉 〈ξ, ξ〉 ||ξ||
2=1

= 0.

Now let a, b ∈ A and observe
pb∗T = pb∗|H0T = Tpb∗|H0 .

Since p is minimal ∃µ ∈ C: pb∗ap = µp and we get

〈Taξ, bξ〉 = 〈Tapξ, bpξ〉 = 〈pb∗Tapξ, ξ〉 = 〈Tpb∗apξ, ξ〉 = µ 〈Tξ, ξ〉 = 0

So, since Aξ = H0, we have indeed proved that T = 0 and thus T = λ1 for λ = 〈Tξ, ξ〉 ∈ C. �

Example 2.5.17 Let H = C4, A = {
(
T 0
0 T

)
|T ∈M2(C)} ⊆M4(C),

P =


(

1 0
0 1

)
0

0

(
1 0
0 1

)
 and ξ = e1, then H0 = spanC{e1, e2} ∼= C2 and A|H0

∼= M2(C).

We now come to one of the central theorems on the decomposition of A ⊆ K(H) into irreps:

Theorem 2.5.18 Decomposition into Irreps Let A ⊆ K(H) such that AH = H and let

π : A→ L(H̃) be any nondegenerate representation of A, then there exist irreducible
representations πi : A→ L(Hi) such that

H̃ ∼=
⊕
i∈I

Hi, π ∼=
⊕
i∈I

πi

Furthermore: it holds that each πi is equivalent to an irreducible sub-representation of
1 : A ↪→ K(H).

Proof:

• First, there is a minimal projection p ∈ A with π(p) 6= 0, since otherwise all projections q
would be zero π(q) = 0 in L(H̃), since every projection is a sum of minimal ones. And finally
we would get π(A) = 0, due to the spectral decomposition theorem π(a) =

∑
λ λπ(Pλ) = 0

for all a = a∗ ∈ A and the decomposition T = Re(T ) + iIm(T ) for any T ∈ A.

• For a minimal projection p ∈ A with π(p) 6= 0, we know that pAp = Cp and thus there is a
linear functional f : A→ C such that pap = f(a)p ∀a ∈ A. Choose an η ∈ π(p)H̃ with
||η|| = 1 and a ξ ∈ pH with ||ξ|| = 1. Set

H̃0 := π(A)η, H0 := Aξ.
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• Now if π0 : A→ L(H̃0) is a sub-representation of π on H̃0 and 10 : A→ L(H0) is the
sub-representation of 1 on H0, then π0

∼= 10. This is proved as follows: define

V |Aξ : Aξ
dense
⊆ H0 −→ H̃0, V aξ := π(a)η.

Then for all aξ, bξ ∈ Aξ we have

〈V aξ, V bξ〉 = 〈π(a)η, π(b)η〉 = 〈π(b∗a)η, η〉
= 〈π(b∗a)π(p)η, π(p)η〉 = 〈π(pb∗ap)η, η〉
= 〈π(f(b∗a)p)η, η〉 = f(b∗a) 〈η, η〉 = f(b∗a)

= 〈f(b∗a)ξ, ξ〉 = 〈pb∗apξ, ξ〉
= · · · = 〈aξ, bξ〉 .

So V is unitary and due to

V a(bξ) = V (ab)ξ = π(ab)η = π(a)π(b)η = π0(a)V (bξ)

we have V 10(a) = π0(a)V ∀a ∈ A, thus π0
∼= 10.

• All together we have shown

(1) Every nontrivial representation π : A→ L(H̃) has an irreducible sub-representation
(since we know that 10(A) = A|H0 is irreducible).

(2) Every such representation is equivalent to an irreducible sub-representation of
1 : A ↪→ K(H)

A simple application of Zorn’s lemma to the sub-representations of π that can be written as
a direct sum of irreducible representations, proves the claim.

�

Definition 2.5.19 Let α be a cardinal number, I a set of cardinality α and H a Hilbert space.
Set

α ·H :=
⊕
i∈I

H, ⇒ for n ∈ N : n ·H =

n⊕
i=1

H

If π : A→ L(H) is a ∗-representation, then set

α · π := ⊕i∈Iπ : A −→ L(α ·H)

These constructions do not depend on the choice of I (up to equivalence).

Lemma 2.5.20 Every nondegenerate ∗-representation π : K(H)→ L(H̃) is equivalent to α · 1
for some α.

Proof: According to the last lemma π ∼= ⊕i∈Iπi and πi is equivalent to an irreducible
sub-representation of 1 : K(H)→ K(H). But we know that 1 itself is irreducible, thus πi ∼= 1

∀i ∈ I and we have
⊕i∈Iπi ∼= ⊕i∈I1 = α · 1,

which proves the claim. �

Corollary 2.5.21 Classification of ∗ −Isos of K(H) Let ϕ : K(H)→ K(H) be an arbitrary
∗-automorphism of K(H) (and thus a ∗-isomorphism), then there is a unitary operator U ∈ L(H)
such that ∀T ∈ K(H):

ϕ(T ) = Ad(U)(T ) := UTU∗

Furthermore if U = V ∈ L(H) is unitary with Ad(U) = Ad(V ), then there exists a λ ∈ S1 ⊂ C
such that U = λV . So for the unitary operators U(H) on H:

Aut(K(H)) ∼= P (U(H)) := U(H)/S1.
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Proof: A ∗-automorphism ϕ : K(H)→ K(H) ⊂ L(H) is also an irreducible representation,
since K(H) = ϕ(K(H)) is irreducible in L(H). Thus ϕ ∼= 1, i.e. there is a unitary U : H → H
with ϕ(T )U = U1(T ) ∀T ∈ K(H), thus ϕ(T ) = UTU∗.
If V : H → H is another such operator, with V TV ∗ = UTU∗, then V ∗UT = TV ∗U , i.e. V ∗U
commutes with all T ∈ K(H) and thus with Schur there exists a λ ∈ C with V ∗U = λ1, thus
U = λV , and since V ∗U is unitary we have |λ| = 1. �

Corollary 2.5.22 ∗ − Irreps send subalgebras of K(H) to K(H′) If A ⊆ K(H) is a

∗-subalgebra, then for every irreducible representation π : A→ L(H̃) it holds that π(A) = K(H̃)

Proof: By working in H0 := AH w.l.o.g. we can assume that AH = H. According to the above
decomposition theorem, there exists a closed A invariant subspace H1 ⊆ H with π ∼= 1|H1 . Due to
a|H1 compact ∀a ∈ A ⊆ K(H), we have that {a|H1 | a ∈ A} ⊆ K(H1) is an irreducible subalgebra
and it follows that A|H1

∼= K(H1).
If now U : H̃ → H1 is unitary with Uπ = 1|H1U, then it follows that

π(A) = U∗(A|H1)U = U∗K(H1)U = K(H̃).

That is since ∀T ∈ L(H1) it holds that T ∈ K(H1) ⇔ U∗TU ∈ K(H̃). �

Lemma 2.5.23 Let A ⊆ K(H) with AH = H and let p ∈ A be a minimal projection. Then for
ρ ∈ Â it holds that

(1) ρ(p) = 0 or ρ(p) is a projection of rank 1.

(2) There is exactly one ρ ∈ Â with ρ(p) 6= 0.

(3) If ρ(p) 6= 0, then ρ(ApA) = ρ(A) = K(Hρ) and τ(ApA) = {0} ∀τ ∈ Â \ {ρ}.

Proof:

(1) We have already shown that if ρ : A→ L(Hρ) is irreducible and p ∈ A minimal with
ρ(p) 6= 0, then ρ ∼= 1|Aξ, where ξ ∈ p(Hρ) is arbitrary with ||ξ|| = 1. Now, because of

pAξ = pApξ = Cpξ = Cξ,

we have that 1|Aξ is a rank 1 projection. Due to ρ ∼= 1|Aξ we get the same result for ρ.

(2) If τ is another irreducible representation with τ(p) 6= 0, then as above, it follows that
τ ∼= 1|Aξ ∼= ρ, i.e. [τ ] = [ρ] ∈ Â.

(3) It holds that
ρ(ApA) = ρ(A)ρ(p)ρ(A) = K(Hρ)ρ(p)K(Hρ) =: I.

Since ρ(p) 6= 0 we have that 0 6= I is a closed ideal in K(Hρ) and it follows that I = K(Hρ).
If now τ ∈ Â \ {ρ}, then (2) gives us τ(p) = 0, we also get τ(ApA) = τ(A)τ(p)τ(A) = {0}.

�

Remark 2.5.24 If A ⊆ K(H) is a C∗-subalgebra and π : A→ L(H) is an arbitrary
∗-representation, then we have the decomposition

π = ⊕i∈Iπi, πi ∈ Irrep(A).

If ρ ∈ Â, Iρ := {i ∈ I |πi ∼= ρ} and nρ = |Iρ|, it holds, that

π ∼= ⊕ρ∈Â(⊕i∈Iρρ) ∼= ⊕ρ∈Ânρρ.
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If now p ∈ A is a minimal projection and ρ ∈ Â with ρ(p) 6= 0 (which exists since
∩ρ∈Â ker ρ = {0}), then by the last lemma, it follows that ρ(p) is a projection of rank 1.

Furthermore, due to τ(p) = 0 ∀τ ∈ Â \ {ρ}, it follows that

dim(π(p)H) = dim((nρρ)(p)(nρHρ)) = nρ.

Thus the cardinality nρ of ρ in π is uniquely determined, i.e.

⊕ρ∈Ânρρ ∼= ⊕ρ∈Âmρρ ⇔ nρ = mρ ∀ρ ∈ Â.

Definition 2.5.25 Index set An index set is a topological space I with discrete topology.

Definition 2.5.26 Direct Sum If I is an index set and Ai a C∗-algebra for every i ∈ I. Define
the direct sum ⊕

i∈I
Ai := {(ai)i∈I | ai ∈ Ai ∀i, [i 7→ ||ai||] ∈ C0(I)}.

Where addition, multiplication and involution being defined component wise. The direct sum is
given the norm

||(ai)i∈I ||∞ := sup
i∈I
||ai||.

Remark 2.5.27 In the following Â is an index set, so in particular it does not carry its usual
Jacobson topology.

We now come to the main theorem of this section.

Theorem 2.5.28 Decomposition of subalgebras of the compact operators Let

A ⊆ K(H) a C∗-subalgebra with AH = H. Let further 1 ∼= ⊕ρ∈Ânρρ be the decomposition of

1A ↪→ K(H) ⊂ L(H) as above, then 0 6= nρ ∈ N ∀ρ ∈ Â and

A
∼=−→

⊕
ρ∈Â

K(Hρ).

a 7−→ (ρ(a))ρ∈Â

Proof: Let ρ ∈ Â, then there is a minimal projection p ∈ a with ρ(p) 6= 0 since ρ is irreducible.
So if now 0 6= p ∈ A is minimal, then

0 6= nρ = dim(pH) = rank (p) ∈ N

since p compact. Consider now the representation

π := ⊕ρ∈Âρ : A −→ L(
⊕
ρ∈Â

Hρ)

which is injective. We shall now show

π(A) ∼=
⊕
ρ∈Â

⊆ L(
⊕
ρ∈Â

Hρ).

This we will acomplish in two steps:

(1) π(A) ⊆
⊕

ρ∈ÂK(Hρ), i.e. [ρ 7→ ||ρ(a)||] ∈ C0(Â) ∀a ∈ A.

(2) π(A) ⊆
⊕

ρ∈ÂK(Hρ) is dense.
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(1) We will first show that if p ∈ A is an arbitrary projection, then [ρ 7→ ||ρ(p)||] ∈ C0(Â). We
know that there are minimal projections p1, . . . , pl ∈ A such that

p = p1 + · · ·+ pl.

According to the last lemma, to every pi there corresponds a unique ρi ∈ Â with ρi(pi) 6= 0.
It then follows that

ρ(p) = 0 ∀ρ /∈ {ρ1, . . . , ρl}, in particular [ρ 7→ ||ρ(p)||] ∈ C0(Â).

Let now a = a∗ ∈ A, then a =
∑

06=λ∈σ(T ) λPλ. Since π(Pλ) ∈
⊕

ρ∈ÂK(Hρ) and the sum is
norm convergent, we conclude that also

π(a) ∈
⊕
ρ∈Â

K(Hρ).

With a = Re(a) + iIm(a) the first claim follows.

(2) We shall show that for an arbitrary b = (bρ)ρ ∈
⊕

ρ∈ÂK(Hρ) and an ε > 0, there exists an
a ∈ A with ||π(a)− b|| < ε.
First, due to [ρ 7→ ||bρ||] ∈ C0(Â), there exists a finite F ⊆ Â with ||bρ|| < ε

2 ∀ρ /∈ F.
Now we show that for every ρ ∈ F there is a aρ ∈ A with ||ρ(aρ)− bρ|| < ε, and τ(aρ) = 0
∀τ /∼= ρ. Because of the last lemma, for every ρ we have a minimal projection p ∈ A such
that ρ(p) 6= 0. We then also have ρ(ApA) = K(Hρ), and thus the existence of an aρ ∈ ApA
with ||ρ(aρ)− bρ|| < ε. Further, also with the previous lemma, we follow that τ(ApA) = 0
∀τ /∼= ρ. Now

a :=
∑
ρ∈F

aρ ⇒ ||ρ(a)− bρ|| < ε ∀ρ ∈ Â.

This concludes the proof of (2).

Last but not least, observe that images of ∗-representations are closed, so with (1) + (2) +
injectivity of π we conclude π(A) =

⊕
ρ∈ÂK(Hρ). �

Definition 2.5.29 GCR and CCR A C∗-algebra is called

GCR, iff π(A) ∩K(Hπ) 6= {0} ∀π ∈ Irrep(A),

CCR, iff π(A) = K(Hπ) ∀π ∈ Irrep(A).

Remark 2.5.30

• It follows for GCR-algebras that K(Hπ) ⊆ π(A).

• CCR stands for ”completely continuous representation”, the ”G” in GCR stands for
”generalized.”

• CCR-algebras are also called liminary algebras and GCR-algebras are also called
postliminary algebras.

Theorem 2.5.31 Let A be a GCR-algebra, then Â is a T0-space and the map Â→ Prim(A)
π 7→ ker(π) is a homeomorphism. Further if A is GCR, then

A is CCR ⇔ Â is a T0 − space (i.e. points are closed).

Proof: Let π, ρ ∈ Â with kerπ = ker ρ = J , we need to show that π ∼= ρ. Note that

Â/J 3 {π, ρ}, so w.l.o.g. kerπ = ker ρ = {0}, π : A→ L(Hπ) K(Hπ) ⊆ π(A). Set
I := π−1(K(Hπ)) ⊆ A a closed ideal and since kerπ = ker ρ = {0} we have that ρ(I) 6= {0}. Now
observe

π : I
∼=−→ K(Hπ) ⇒ πI ∼= ρ|I ⇒ π ∼= ρ on A.
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”⇒ ” Let now A be a CCR. Let π ∈ Â, ρ ∈ π ⇔ kerπ ⊆ ker ρ and if J = ker ρ ⇒ ρ ∈ Â/J . If A is
a CCR, then π(A) = π(A/J) ∼= K(Hπ) and thus π ∼= ρ.

”⇐ ” Â be a T1-space. Let π ∈ Â. We will assume K(Hπ) ( π(A). Define I := π−1(K(Hπ)) ( A

which is a closed ideal and ⇒ {0} 6= A/I ⇒ Â/I 6= ∅. Then ker ρ ⊆ I ( kerπ ⇒ ρ ∈ π with
ρ ∼= π.

�

Theorem 2.5.32 If A is seperable, then the following are equivalent:

(1) Â→ Prim(A) is bijective (↔ is homeomorphism).

(2) A is a GCR-algebra.

(3) A is a Typ-I-algebra.

3 Locally Compact Groups, Group Algebras and Universal
Algebras

The unitary representations of a locally compact group G are in bijection with the
∗-representations of its C∗-group algebra C∗(G).

3.1 Locally compact Groups and the Haar Integral

Definition 3.1.1 Topological Group A topological group is a group G with a topology τ , such
that the following maps are continuous

m : G×G −→ G, I : G −→ G.

(g, h) 7−→ gh g 7−→ g−1

If (G, τ) is locally compact, one speaks of a locally compact group.

Example 3.1.2

• Any (finite dimensional) Lie group: Rn, GL(n,R), SL(n,R), O(n), U(n), . . .

• Discrete groups

Remark 3.1.3 If G is a topological group, then the following hold

(1) If U is a neighborhood basis of 1G ∈ G, then

{xU |U ∈ U}

is a neighborhood basis of x ∈ G. This follows directly from the fact that g 7→ gx, g 7→ xg are
homeomorphisms G→ G.

(2) If V is a neighborhood of 1G ∈ G, then there is a neighborhood U of 1G ∈ G, such that

U = U−1, U2 ⊆ V.

If G is locally compact, one can choose U to be compact. That is since, with the continuity
of the multiplication, we can choose a Ũ of 1G with m(Ũ × Ũ) = Ũ2 ⊆ V and then set
U := Ũ ∩ Ũ−1.
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(3) If H is another topological group and ϕ : G→ H a homomorphism, then

ϕ continuous ⇔ ϕ continuous in 1G.

This is seen by taking g ∈ G, V ⊆ H a neighborhood of h := ϕ(g). Then there is a
neighborhood W of 1H with hW ⊆ V . Since ϕ is continuous in 1g, there exists a
neighborhood U of 1G with ϕ(U) ⊆W . It then holds that

ϕ(gU) = ϕ(g)ϕ(U) = hϕ(U) ⊆ hW ⊆ V.

Lemma 3.1.4 Existence of modular functions Let G be a locally compact group and
f ∈ Cc(G), then f is uniformly continuous, i.e. there exists a neighborhood U of 1G with

|f(gh)− f(g)|, |f(hg)− f(g)| < ε ∀g ∈ G, h ∈ U.

Proof: Let K := supp(f) and ε > 0. For x ∈ K choose neighborhoods Vx of 1G with
|f(xh)− f(x)| < ε ∀h ∈ Vx. Further choose a neighborhood Ux = U−1

x of 1G with U2
x ⊆ Vx. Since

K is compact, there exists x1, . . . , xl ∈ K with K ⊆ ∪li=1xiUxi . Now set Ũ := ∩li=1Uxi . Then Ũ is
a neighborhood of 1G.
If g ∈ G arbitrary and h ∈ U , then g ∈ K ⇒ ∃i with g ∈ xiUxi ⇒ gh ∈ xiUxiŨ ⊆ xiVxi , and thus
also g, gh ∈ xiVxi . Analogously: If gh ∈ K, then ∃i such that gh ∈ xiUxi ⇒
g ∈ xiUxiŨ−1 ⊆ xiU2

xi ⊆ xiVxi , thus also g, gh ∈ xiVxi . We have

|f(gh)− f(g)| ≤ |f(gh)− f(xi)|+ |f(xi)− f(g)| < ε
2 + ε

2 = ε.

Similarly we find a neighborhood W of 1G with |f(hg)− f(g)| < ε ∀h ∈ W̃ . Finally define

U := Ũ ∩ W̃ .

�

Definition 3.1.5 Haar− integral Let G be a locally compact group. A (left) Haar-integral on
G is a nontrivial left invariant, positive Radon-integral

I : Cc(G) −→ C.

That is ∀f ∈ Cc(G) and h ∈ G it holds that

I(hf) = I(f), hf(g) := f(h−1g).

Remark 3.1.6 The above condition I(hf) = I(f) is also written as∫
G
f(h−1g)dg =

∫
G
f(g)dg.

Example 3.1.7

(1) The Lebesgue-integral is a Haar-integral on Rn.

(2) On GL(n,R) we can define a Haar-integral by

I(f) :=

∫
GL(n,R)

f(A)
1

|A|n
dA

With the Lebesgue-measure dA on Mn(R).
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(3) On a discrete group G the counting measure

I(f) :=
∑
x∈G

f(x)

defines a Haar-integral on G.

The following we shall state without proof.

Theorem 3.1.8 Every locally compact group G has a Haar-integral I : Cc(G)→ C, which is
unique up to multiplication with a c > 0. That is if J : Cc(G)→ C is another Haar-integral, then
∃c > 0 : I = cJ .

Definition 3.1.9 Measurable subset A subset A ⊆ G is called measurable, iff 1A is locally
integrable. I.e. 1A∩KK locally integrable for all K ⊆ G compact. We then write

µI(A) :=

∫
G
1Adg ∈ [0,∞].

Remark 3.1.10

(1) If V is a compact neighborhood of 1G then µI(V ) > 0.
Since if K ⊆ G compact, then there are x1, . . . , xl ∈ G with K ⊆ ∪li=1xiV and thus

µI(K) ⊆
l∑

i=1

µI(xiV ) =

l∑
i=1

µI(V ) = lµI(V ).

(2) Due to µI(V ) > 0, it follow for 0 6= f ∈ C+
c (G), that I(f) > 0.

If f(x) 6= 0, then there is a neighborhood V of 1G, ε > 0 with ε > 0 and with ε1xV ≤ f , thus
I(f) ≥ I(ε1xV ) = εµI(V ) > 0.

Remark 3.1.11 Let I : Cc(G)→ C be a Haar-integral on a locally compact group G. For h ∈ G,
we can define

Ĩ(f) := I(fh) =

∫
G
f(gh)dg, fh(g) := f(gh).

This is another left invariant Radon-integral on G. That is since

Ĩ(lf) =

∫
G
lf(gh)dg =

∫
G
f(l−1gh)dg =

∫
G
fh(l−1g)dg =

∫
G
fh(g)dg = Ĩ(f).

Due to the uniqueness of the Haar-integral, we know that there is a positive constant ∆(h) > 0
with

I(f) =

∫
G
f(g)dg = ∆(h)

∫
G
f(gh)dg = ∆(h)Ĩ(f) ∀f ∈ Cc(G).

Definition 3.1.12 Modular function The function ∆ : G→ R+, h 7→ ∆(h) is called modular
function of the group G.

Definition 3.1.13 Unimodular group A group G for which ∆ = 1 is called unimodular.

Example 3.1.14

(1) Every abelian group is unimodular, since left and right multiplication coincide.

(2) Every discrete group is unimodular, since the counting measure is right invariant.

(3) Every compact group is unimodular.
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(4) The (ax+b) group G is defined as

G := {
(

1 b
0 a

)
| a, b ∈ R, a 6= 0} ⊂ GL(2,R)

with the Haar-integral

I(f) =

∫
R\{0}

∫
R
f

(
1 b
0 a

)
1

|a|
dbda ⇒ ∆

(
1 b
0 a

)
= |a|.

Theorem 3.1.15 The modular function ∆ : G→ R+ is a continuous homomorphism.

Proof: Choose f ∈ C+
c with

∫
G f(g)dg = 1, then

∆(hl)

∫
G
f(ghl)dg =

∫
G
f(g)dg = ∆(l)

∫
G
f(gl)dg = ∆(l)

∫
G
fl(g)dg

= ∆(l)∆(h)

∫
G
fl(gh)dg = ∆(l)∆(h)

∫
G
f(ghl)dg.

and it follows that ∆(hl) = ∆(h)∆(l). In order to prove continuity, choose an arbitrary
neighborhood V of 1G and set µ := µI(KV ) ∈ (0,∞) with K = supp(f).
Let ε > 0 and choose a neighborhood U = U−1 of 1G with U ⊆ V , such that

|f(gh)− f(g)| < ε

µ
, ∀h ∈ U.

We get that

|∆(h−1)−∆(1G)| = |∆(h−1)− 1| = |∆(h−1)

∫
G
f(g)dg −

∫
G
f(g)dg|

= |
∫
G
f(gh)− f(g)dg| ≤

∫
G
|f(gh)− f(g)|dg

=

∫
KV
|f(gh)− f(g)|dg ≤ ε

µ
µ = ε.

With U = U−1 it follows, that |∆(h−1)− 1| < ε ∀h ∈ U. �

Corollary 3.1.16 Every compact group G is unimodular.

Proof: Since ∆ : G→ R+ is a continuous homomorphism, we have that ∆(G) ⊂ R+ is a
compact subgroup of R+. Thus we have ∆(G) = {1}. �

Lemma 3.1.17 Let G be a locally compact group, then∫
G
f(g)dg =

∫
G
f(g−1)∆(g−1)dg ∀f ∈ L1(G).

Proof: We will show that the above equation holds for all f ∈ Cc(G). The full statement then
follows by approximation.

• We show that the following is a Haar-integral:

J : Cc(G)→ C J(f) :=

∫
G
f(g−1)∆(g−1)dg.

This is due to

J(hf) =

∫
G
hf(g−1)∆(g−1)dg =

∫
G
f(h−1g−1)∆(g−1)dg

g→gh−1

= ∆(h−1)

∫
G
f(g−1)∆(hg−1)dg =

∫
G
f(g−1)∆(g−1)dg

= J(f).

So J is a left invariant Radon-integral and the uniqueness of the Haar-integral gives us:
I(f) = cJ(f) ∀f and some c > 0.
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• We will see that c = 1. Let 0 6= f ∈ C+
c (G) Set f̃(g) := f(g) + f(g−1)∆(g−1) ∈ C+

c (G). So
f̃ 6= 0 and f̃(g−1)∆(g−1) = f̃(g) ∀g ∈ G, it follows cJ(f̃) = I(f̃) = J(f̃), thus indeed c = 1.

�

Definition 3.1.18 Convolution and Involution Let G be a locally compact group. We define
the convolution and involution for f1, f2 ∈ L1(G)

f1 ∗ f2 :=

∫
G
f1(h)f2(h−1g)dh, f∗(g) := f(g−1)∆(g−1)

Theorem 3.1.19 Involution Let G be a locally compact group, then the above convolution and
involution turns (L1(G), || · ||1) into a Banach-∗-algebra.

Proof: Let f1, f2 ∈ L1(G), then f1 � f2(h, g) = f1(h)f2(g) is integrable over G×G, where the
product integral is the Haar-integral on G×G. consider the transformation

G×G −→ G×G, (h, g) 7−→ (h, h−1g).

This conserves the integral on Cc(G×G) (by Fubini) and thus also on L1(G×G). So we have that

(h, g) 7−→ f1(h)f2(h−1g)

is integrable on G×G and, again with Fubini, we have the existence of

f1 ∗ f2 :=

∫
G
f1(h)f2(h−1g)dh

for almost every g ∈ G. We find that

||f1 ∗ f2|| =

∫
G
|
∫
G
f1(h)f2(h−1g)dh|dg

≤
∫
G

∫
G
|f1(h)f2(h−1g)|dhdg Fubini

=

∫
G

∫
G
|f1(h)f2(h−1g)|dgdh

g→hg
=

∫
G
|f1(h)|dh

∫
G
|f2(g)|dg = ||f1||1||f2||1.

The equation ||f∗||1 = ||f ||1 follows from the last lemma. Everything else (associativity, etc)
follows from lengthy calculations. �

Theorem 3.1.20 L1(G) is commutative ⇔ G is abelian.

Theorem 3.1.21 L1(G) is unital ⇔ G is discrete.

Proof: We only prove ”⇐ ”: Let G be discrete and

δ1(g) :=

{
1, if g = 1G

0, other.

Then, for all g ∈ G, it follows that

(f ∗ δ1)(g) =
∑
h∈G

f(h)δ1(h−1g) = f(g) = (δ1 ∗ f)(g).

�

Lemma 3.1.22 Let 1 ≤ p <∞ and f ∈ Lp(G), then there is a ε > 0 and a neighborhood
V = V −1 of 1G with

||gf − g0f ||p < ε ∀g ∈ g0V

(||fg − fg0 ||p < ε ∀g ∈ V g0 respectively). In particular the mapping G→ Lp(G), g 7→ gf (g 7→ fg
resp.) is continuous.
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Proof: Let f ∈ Cc(G), W ⊆ G an arbitrary compact neighborhood of 1G and let
K = W supp(f), so we know that f is uniformly continuous, i.e. there is a neighborhood V = V −1

of 1G with V ⊆W and |f(g−1h)− f(h)| < ε
µ(K)1/p

for all g ∈ V, h ∈ G. Let now g0 ∈ G be

arbitrary and g ∈ g0V , then

||gf − g0f ||pp =

∫
|f(g−1h)− f(g−1

0 h)|pdg h→g0h=

∫
G
|f((g−1

0 g)−1h)− f(h)|pdh <
∫
G

εp

µ(K)
dh = εp.

Where ”<” holds due to supp(g−1
0 gf − f) ⊆ K since V ⊆W.

If now f ∈ Lp(G), choose ϕ ∈ Cc(G) with ||f − ϕ||p < ε
3 and further choose a V as above with

||gϕ− g0ϕ||p < ε ∀g ∈ g0V . For all ∀g ∈ g0V , we then have

||gf − g0f ||p ≤ ||gf − gϕ||p + ||gϕ− g0ϕ||p + ||g0ϕ− g0f ||p <
ε

3
+
ε

3
+
ε

3
= ε.

And ||fg − fg0 ||p < ε ∀g ∈ V g0 follows in the same manner. �

Theorem 3.1.23 For functions f1, f2 : G→ C the following hold:

(1) If f1, f2 ∈ Cc(G), then also f1 ∗ f2 ∈ Cc(G) and supp(f1 ∗ f2) ⊆ supp(f1)supp(f2).

(2) If f1 ∈ L1(G), f2 ∈ L∞(G), then f1 ∗ f2 exists and f1 ∗ f2 ∈ Cb(G).

(3) For all f ∈ L1(G) and ε > 0 there exists a neighborhood V = V −1 of 1G with

||f ∗ ϕ− f ||1, ||ϕ ∗ f − f ||1 < ε ∀ϕ ∈ C+
c (G) with supp(ϕ) ⊆ V and

∫
G
ϕ(g)dg = 1.

Proof:

(2) f1 ∈ L1(G), f2 ∈ L∞(G)
Hoelder⇒ h 7→ f1(h)f2(h−1g) is integrable ∀g ∈ G and thus f1 ∗ f2(g)

exists for all g ∈ G and it holds that

f1 ∗ f2(g) =

∫
G
f1(h)f2(h−1g)

h→gh
=

∫
G
f1(gh)f2(h−1)dh.

It follows, that

|f1 ∗ f2(g)− f1 ∗ f2(g0)| ≤
∫
G
|f1(gh)− f1(g0h)||f2(h−1)|dh

Hoelder
≤ ||g−1f1 − g−1

0
f1||1||f2||∞ −→

g→g0
0.

(1) Continuity follows from (2) and if

0 6= f1 ∗ f2(g) =∈G f1(h)f2(h−1g)dh

then there exists an h ∈ G with h ∈ supp(f1) and h−1g ∈ supp(f2), thus

g = h(h−1g) ∈ supp(f1)supp(f2).

(3) There is a neighborhood V1 = V −1
1 of 1G with ||xf − f ||1 < ε ∀x ∈ V1. If now ϕ ∈ C+

c (G)
with supp(ϕ) ⊆ V1 and

∫
G ϕ(g)dg = 1, then

||ϕ ∗ f − f ||1 =

∫
G
|ϕ ∗ f(g)− f(g)|dg =

∫
G
|(
∫
G
ϕ(h)f(h−1g)dh)− f(g)|dg

=

∫
G
|
∫
G

(ϕ(h)f(h−1g)− f(g))dh|dg
Fubini
≤

∫
V1

ϕ(h)

∫
G
|f(h−1g)− f(g)|dgdh

=

∫
V1

ϕ(h)||hf − f ||1dh < ε

∫
V1

ϕ(h)dh = ε.

Analogously there exists a neighborhood V2 = V −1
2 of 1G with ||f ∗ϕ− f ||1 < ε ∀ϕ ∈ C+

c (G)
with supp(ϕ) ⊆ V2 and

∫
V2
ϕ(g)dg = 1. Setting V = V1 ∩ V2 concludes the proof.
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�

Corollary 3.1.24 Let G be a locally compact group, then there is a net (ϕλ)λ in C+
c (G) with

||ϕλ ∗ f − f ||1 → 0, i.e. (ϕλ)λ is an approximate unity.

Proof: Set Λ := {V |V = V −1 neighborhood of 1G}, which is orderes by V1 ≥ V2 ⇔ V1 ⊆ V2

and for every V ∈ Λ we choose a ϕV ∈ C+
c (G) with supp(ϕV ) ⊆ V and

∫
G ϕV (g)dg = 1. The rest

follows from (2) of the last theorem. �

3.2 Unitary Representations and C∗-Group Algebras

The main result of this section is the bijection

unitary representations of G ↔ nondegenerate ∗ −representations of L1(G).

Definition 3.2.1 Strongly continuous A strongly continuous homomorphism is a unitary
representation

π : G −→ U(Hπ)

of the locally compact group G. Strongly continuous means that for all ξ ∈ Hπ the map

g 7−→ π(g)ξ

is continuous.

Example 3.2.2

(1) The trivial representation 1G : G→ U(C) 1G(g) = 1 ∀g ∈ G.

(2) The left regular representation

λ : G −→ U(L2(G)), (λ(g)ξ)(h) = ξ(g−1h).

This is strongly continuous and λ(g) ∈ U(L2(G)), since for all ξ, η ∈ L2(G) :

〈λ(g)ξ, λ(g)η〉 =

∫
G
ξ(g−1h)η(g−1h)dh

h→gh
=

∫
G
ξ(h)η(h)dh = 〈ξ, η〉 .

(3) The right regular representation

ρ : G −→ U(L2(G)), (ρ(g)ξ)(h) =
√

∆(h)ξ(gh).

Remark 3.2.3 ρ ∼= λ by U : L2(G)→ L2(G), (Uξ)(g) :=
√

∆(g−1)ξ(g−1), which is unitary:

〈Uξ, Uη〉 =

∫
G

∆(g−1)ξ(g−1)η(g−1)dg =

∫
G
ξ(g)η(g)dg = 〈ξ, η〉 ,

and indeed an equivalence

(Uλ(g)ξ)(h) =
√

∆(g−1)(λ(g)ξ)(h−1) =
√

∆(g−1)ξ(g−1h−1)

=
√

∆(g)
√

∆(hg−1)ξ((hg)−1) =
√

∆(g)(Uξ)(hg) = (ρ(g)Uξ)(h).

Lemma 3.2.4 If π : G→ U(Hπ) is a unitary representation and E ⊆ Hπ a closed
π(G)-invariant subspace, then E⊥ ⊆ Hπ is also invariant.

Proof: Let ξ ∈ E⊥, η ∈ E, then π(g)∗ = π(g−1), and, since π(g−1)η ∈ E:

〈π(g)ξ, η〉 =
〈
ξ, π(g−1)η

〉
= 0
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�

Definition 3.2.5 Irreducible Representation A unitary representation π : G→ U(Hπ) is
called irreducible iff {0}, Hπ ⊆ Hπ are the only closed invariant subspaces. The set of equivalent
classes of irreducible representations of G is denoted Ĝ.

Lemma 3.2.6 Schur Let π : G→ U(Hπ) be a unitary representation of G, then the following
are equivalent

(1) π ∈ Ĝ, i.e. π is irreducible.

(2) Every vector 0 6= ξ ∈ Hπ is cyclic, i.e. LH{π(g)ξ | g ∈ G} = Hπ.

(3) If T ∈ L(Hπ) with Tπ(g) = π(g)T ∀g ∈ G, then T = 1.

Remark 3.2.7 Note that in part (3) we have T = c1, with c = 1 due to unitarity of T .

Lemma 3.2.8 Let f : G→ L(H) be a function such that

(1) g 7→ 〈f(g)ξ, η〉 is measurable ∀ξ, η ∈ H,

(2) g 7→ ||f(g)|| is integrable.

Then there is exactly one operator Tf ∈ L(H) such that ∀ξ, η ∈ H:

〈Tfξ, η〉 =

∫
G
〈f(g)ξ, η〉 dg, Tf =:

∫
G
f(g)dg ∈ L(H)

For the integral it holds that

(a) ||
∫
G f(g)dg|| ≤

∫
G ||f(g)||dg =: ||f ||1,

(b) ∀S ∈ L(H) : S
∫
G f(g)dg =

∫
G Sf(g)dg,

∫
G f(g)Sdg =

∫
G f(g)dgS.

Proof: The map (ξ, η) 7→
∫
G 〈f(g)ξ, η〉 dg is well defined and sesqui-linear. It holds, that

|
∫
G
〈f(g)ξ, η〉 dg| ≤

∫
G
| 〈f(g)ξ, η〉 |dg ≤

∫
G
||f(g)||dg ||ξ||||η||.

Thus there exists exactly one operator Tf ∈ L(H), as stated above, with ||Tf || ≤
∫
G ||f(g)||dg.

Part (b) follows easily from identities like

〈TSfξ, η〉 =

∫
G
〈Sf(g)ξ, η〉 dg =

∫
G
〈f(g)ξ, S∗η〉 dg = 〈Tfξ, S∗η〉 = 〈STfξ, η〉 .

�

In order to prove the main theorem of this section, we need one last

Lemma 3.2.9 Let X be a set, H, H̃ Hilbert spaces and ϕ, ϕ̃ : X → H, H̃ maps with

H = LH{ϕ(x) |x ∈ X}, 〈ϕ(x), ϕ(y)〉 = 〈ϕ̃(x), ϕ̃(y)〉 , ∀x, y ∈ X.

Then there is exactly one linear isometry U : H → H̃ with U(ϕ(x)) = ϕ̃(x) ∀x ∈ X. If additionally

H̃ = LH{ϕ̃(x) |x ∈ X},

then U is unitary.
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Proof: Let H0 := LH{ϕ(x) |x ∈ X}
dense
⊂ H. Define U : H0 → H̃ by

U(
m∑
i=1

λiϕ(xi)) =
m∑
i=1

λiϕ̃(xi).

Now we need to show that U is a well defined isometry. We have〈
m∑
i=1

λiϕ̃(xi),

m∑
i=1

λiϕ̃(xi)

〉
=

m∑
i,j=1

λiλj 〈ϕ̃(xi), ϕ̃(xi)〉 =

m∑
i,j=1

λiλj 〈ϕ(xi), ϕ(xi)〉

=

〈
m∑
i=1

λiϕ(xi),

m∑
i=1

λiϕ(xi)

〉
.

This shows that U is a well defined isometry, since

m∑
i=1

λiϕ(xi) =
l∑

i=1

µiϕ(xi), ⇒ 0 =
m∑
i=1

λiϕ(xi)−
l∑

i=1

µiϕ(xi)

and with this the above calculation shows, that

0 =
m∑
i=1

λiϕ̃(xi)−
l∑

i=1

µiϕ̃(xi).

So the value of Uξ does not depend on the specific representation of ξ ∈ H0.
Functional analysis tells us that there is a unique isometric continuation A : H = H0 → H̃, thus
U is surjective and thus unitary. �

We now get to the main theorem of this section.

Theorem 3.2.10 Let G be a locally compact group. It then holds, that

(1) If π : G→ U(Hπ) is a unitary representation of G, then

π̃ : L1(G) −→ L(Hπ), π̃(f) :=

∫
G
f(g)π(g)dg

defines a nondegenerate ∗-representation of L1(G) on Hπ.

(2) Vice versa: to every nondegenerate ∗-representation Π : L1(G)→ L(H) there corresponds
exactly one unitary representation π : G→ U(H), such that Π = π̃.

That is, the map π 7→ π̃ is a bijection.

Proof: Let f1, f2 ∈ L1(G) and ξ, η ∈ Hπ. We first prove (1):

• Multiplicativity of f 7→ π̃(f) is proved as follows:

〈π̃(f1 ∗ f2)ξ, η〉 =

∫
G

(f1 ∗ f2)(g) 〈π(g)ξ, η〉 dg =

∫
G

∫
G
f1(h)f2(h−1g) 〈π(g)ξ, η〉 dhdg

Fubini
=

∫
G

∫
G
f1(h)f2(h−1g) 〈π(g)ξ, η〉 dgdh

g→gh
=

∫
G

∫
G
f1(h)f2(g) 〈π(hg)ξ, η〉 dgdh

=

∫
G

∫
G
f1(h)f2(g)

〈
π(g)ξ, π(h−1)η

〉
dgdh

=

∫
G
f1(h)

∫
G
f2(g)

〈
π(g)ξ, π(h−1)η

〉
dgdh

=

∫
G
f1(h)

〈
π̃(f2)ξ, π(h−1)η

〉
dgdh

= 〈π̃(f1)π̃(f2)ξ, η〉 .



OPERATOR ALGEBRAS 63

• Compatability with the involution:

〈π̃(f∗)ξ, η〉 =

∫
G

∆(g−1)f(g−1) 〈π(g)ξ, η〉

g→g−1

=

∫
G
f(g)

〈
π(g−1)ξ, η

〉
dg =

∫
G
f(g) 〈π(g−1)η, ξ〉 dg

= 〈π̃(f)η, ξ〉 = 〈ξ, π̃(f)η〉 = 〈π̃(f)∗ξ, η〉 .

• Nondegeneracy: Let (ϕλ)λ be an approximate unity as above and ξ ∈ Hπ, then π̃(ϕλ)ξ → ξ
since

||π̃(ϕλ)ξ − ξ|| = ||
∫
G
ϕλ(g)(π(g)ξ − ξ)dg|| ≤

∫
G
ϕλ(g)(||π(g)ξ − ξ||dg ≤ max

g∈suppϕλ
||π(g)ξ − ξ||.

For an ε > 0 choose a neighborhood V of 1G with ||π(g)ξ − ξ|| < ε ∀g ∈ V and λ0 ∈ Λ with
supp(ϕλ) ⊆ V ∀λ ≥ λ0. It then follows that ||π̃(ϕλ)ξ − ξ|| ≤ ε ∀λ ≥ λ0.

We now prove (2):

• First show that (gϕ)∗ ∗ gf = ϕ∗ ∗ f ∀ϕ and ∀g ∈ G:

((gϕ)∗ ∗ gf)(h) =

∫
G

(gϕ)∗(l)gf(l−1h)dl =

∫
G

∆(l−1)gϕ(l−1)gf(l−1h)dl

=

∫
G

∆(l−1)ϕ(g−1l−1)f(g−1l−1h)dl

l→lg−1

= ∆(g−1)

∫
G

∆(gl−1)ϕ(l−1)f(l−1h)dl

=

∫
G

∆(l−1)ϕ(l−1)f(l−1h)dl = (ϕ∗ ∗ f)(h).

• Let now Π : L1(G)→ L(H) be a nondegenerate ∗-representation of L1(G). Set
X := L1(G)×H and define ϕ, ϕ̃ : X → H by

ϕ(f, ξ) := Π(f)ξ, ϕ̃(f, ξ) := Π(gf)ξ.

Then for all f, ϕ ∈ L1(G) and ξ, η ∈ H, we have

〈Π(gf)ξ,Π(gϕ)η〉 = 〈Π((gϕ)∗ ∗ gf)ξ, η〉 = 〈Π(ϕ∗ ∗ f)ξ, η〉 = 〈Π(f)ξ,Π(ϕ)η〉 .

Now, due to the last lemma, there exists exactly one unitary operator π(g) : H → H with

π(g)(Π(f)ξ) = Π(gf)ξ, ∀f ∈ L1(G), ξ ∈ H.

Because of 1Gf = f and ghf = g(hf), we have π(1G) = 1H and π(gh) = π(g)π(h) ∀g, h ∈ G.
So we have that π : G→ U(H) is a homomorphism of groups. Since Π : L1(G)→ L(H) is
norm decreasing and g 7→ gf is continuous, it follows that also g 7→ π(g)(Π(f)ξ) = Π(gf)ξ is
continuous ∀η ∈ H0 and after a ε/3 argument, continuity holds for all η ∈ H.
We thus have that π : G→ U(H) is a strongly continuous unitary representation of G.

• It remains to show that Π = π̃, for this it suffices to show that ∀f, ϕ ∈ L1(G), ξ, η ∈ H :

〈π̃(f)Π(ϕ)ξ, η〉 = 〈Π(f ∗ ϕ)ξ, η〉 = 〈Π(f)Π(ϕ)ξ, η〉

that is, since with Π(L1(G))H = H we get π̃(f) = Π(f).
For fixed ξ, η ∈ H the linear functional ϕ 7→ 〈Π(ϕ)ξ, η〉 is continuous on L1(G). Because of
L1(G)′ = L∞(G), there exists a φ ∈ L∞(G), such that

〈Π(ϕ)ξ, η〉 =

∫
G
ϕ(l)φ(l)dl, ∀ϕ ∈ L1(G).
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With this we conclude that ∀f, ϕ ∈ L1(G) it holds that

〈π̃(f)Π(ϕ)ξ, η〉 =

∫
G
f(g) 〈Π(gϕ)ξ, η〉 dg =

∫
G
f(g)

∫
G
gϕ(l)φ(l)dldg

Fubini
=

∫
G
f(g)

∫
G
ϕ(g−1l)dg φ(l)dl =

∫
G

(f ∗ ϕ)(l)φ(l)dl

= 〈Π(f ∗ ϕ)ξ, η〉 .

�

Remark 3.2.11 It is easy to see, that the bijection π 7→ π̃ preserves all important
characteristics, like e.g. unitary equivalence, irreducibility, direct sums, etc. In particular we have
the bijection

Ĝ←→ L̂1(G)

Theorem 3.2.12 Let λ : G→ U(L2(G)) be the left regular representation of G, i.e.
(λ(g)ξ)(h) = ξ(g−1h). It then holds that

λ̃(f)ξ = f ∗ ξ ∀f ∈ L1(G), ξ ∈ Cc(G) ⊆ L2(G)

and λ is faithful on L1(G), i.e. λ(f) = 0 ⇒ f = 0.

Proof: For all ξ, η ∈ Cc(G) ⊆ L2(G) we have

〈λ(f)ξ, η〉 =

∫
G
f(g) 〈λ(g)ξ, η〉 dg =

∫
G
f(g)

∫
G
ξ(g−1l)η(l)dldg

Fubini
=

∫
G

(

∫
G
f(g)ξ(g−1l)dg)η(l)dl = 〈f ∗ ξ, η〉 .

Since Cc(G) is dense in L2(G), it follows that λ(f)ξ = f ∗ ξ. If now f ∈ L1(G) with λ(f) = 0,
then f ∗ ξ = 0 ∀ξ ∈ Cc(G), since f ∗ ξ is continuous. If then (ϕλ)λ is an approximate unity as
above, it then follows that f = limλ f ∗ ϕλ = 0 ∈ L1(G). �

Theorem 3.2.13 The maximal group algebra Let G be a locally compact group. The
following is a norm on L1(G)

||f ||C∗ := {||π(f)|| |π is nondegenerate ∗ −representation of L1(G)}

With this norm the following (called maximal group algebra) is a C∗-algebra

C∗(G) := L1(G)
||·||C∗

Furthermore the restriction of a *-representation π : C∗(G)→ L(H) to the dense subalgebra
L1(G):

π 7−→ π|L1(G)

is a bijection and conserves unitary equivalence, direct sums, etc. In particular

Ĉ∗(G) ∼= L̂1(G) ∼= Ĝ

Proof: We know that for every *-representation π : L1(H)→ L(H) we have ||π(f)|| ≤ ||f ||1.
Thus there exists a ||f ||C∗ = supπ ||π(f)|| ≤ ||f ||1. Since f 7→ ||π(f)|| is a semi norm for all π, we
also get that || · ||C∗ is a semi norm, and since

||f ||C∗ ≥ ||λ(f)|| and λ(f) = 0 ⇒ f = 0
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we have that || · ||C∗ is a norm. For f ∈ L1(G) we have

||f∗ ∗ f ||C∗ = sup
π
||π(f∗ ∗ f)|| = sup

π
||π(f∗)π(f)|| = sup

π
||π(f)||2 = ||f ||2.

Thus C∗(G) := L1(G)
||·||C∗

is indeed a C∗-algebra.
If π : L1(H)→ L(Hπ) is an arbitrary *-representation of L1(G), then ||π(f)|| ≤ ||f ||C∗ and thus π
is continuous w.r.t. || · ||C∗ . Then there is a unique contiuation π : C∗(G)→ L(Hπ). This proves,
that the restriction map π 7→ π|L1(G) is bijective. The rest is easily checked. �

Definition 3.2.14 Reduced group algebra The reduced group algebra is defined using the
faithful left regular representation λ : L1(G)→ L(L1(G)). Setting

||f ||r := ||λ(f)||

we define the reduced group algebra to be

C∗r (G) := L1(G)
||·||r

which is also a C∗-algebra.

Lemma 3.2.15 The continuation of λ to C∗(G) gives a surjective ∗-homomorphism

λ : C∗(G) −→ C∗r (G) ⊆ L(L1(G)).

Definition 3.2.16 Amenable group A group G is called amenable, iff the above surjection is
also an injection, i.e. iff

C∗(G)
∼=−→ C∗r (G).

Remark 3.2.17

• All abelian and all compact groups are amenable.

• GL(n,R) is not amenable.

• Since C∗r (G) ∼= C∗(G)/ ker(λ) is a quotient, we can identify C∗r with a closed subset

Ĝr ⊆ Ĝ ∼= Ĉ∗(G).

• One can choose the topology on Ĝ such that the bijection Ĝ ∼= Ĉ∗(G) becomes a
homeomorphism.

3.3 Duality Theorem of Abelian Groups

The duality we shall establish in this section is

G abelian locally compact ⇒ ̂̂
G ∼= G

Lemma 3.3.1 Let G be an abelian locally compact group and π : G→ L(Hπ) an irreducible
unitary representation, then

Ĝ = {χ : G→ S1 |χ continuous homomorphism}.

Proof: Since G is abelian, we have π(g)π(h) = π(h)π(g) and thus with Schur π(g) = χ(g)1Hπ
for some χ(g) ∈ S1, since π is unitary. But then ∀g every subspace of Hπ is π(g) invariant and we
have dim(Hπ) = 1. �
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Definition 3.3.2 Dual Group Let G be an abelian locally compact group, then

Ĝ = {χ : G→ S1 |χ continuous homomorphism}, (χ · µ)(g) := χ(g)µ(g) ∀χ, µ ∈ Ĝ

is called the dual group, which is a group with neutral element and inverse:

1
Ĝ

: G→ {1}, χ−1 := χ.

Remark 3.3.3 Fourier Transformation In the last section, we established the isomorphism

Ĝ = {χ : G→ S1}
∼=−→ L̂1(G) ∼= Ĉ∗(G)

χ 7−→ χ̃ χ̃(f) :=

∫
G
f(g)χ(g)dg.

Where the second isomorphism is given by unique extension. The Gelfand-transformation

L1(G)
dense
⊂ C∗(G)

∼=−→ C0(Ĉ∗(G)) ∼= C0(Ĝ)

f 7−→ f̂

gives the following isomorphism, called the Fourier transformation:

C∗(G)
∼=−→ C0(Ĝ)

f 7−→ f̂ f̂(χ) = χ̃(f) =

∫
G
f(g)χ(g)︸︷︷︸

∈S1

dg.

It holds that f̂1 ∗ f2(χ) = χ(f1 ∗ f2) = χ(f1)χ(f2) = f̂1(χ)f̂2(χ) and the following commutes

L1(G) C0(Ĝ)

C∗(G)

@
@
@

@
@R

-∧

6

∧

So we can identify C∗(G) with C0(Ĝ), where Ĝ is given the topology of Ĉ∗(G), i.e. the topology of
pointwise convergence.

Remark 3.3.4 Problem We need to check if with the above topology Ĝ is a locally compact
group. In particular, we need to assure that multiplication and the inverse map are continuous.

Lemma 3.3.5 The map Ĉ∗(G)→ L̂1(G) χ 7→ χ|L1(G) is a homeomorphism, where both spaces
are taken to carry the weak-∗-topology.

Proof: It suffices to show that if (χλ)λ∈Λ is a net in Ĝ and χ ∈ Ĝ with χλ(f)→ χ(f)
∀f ∈ L1(G), then also

χλ(x)→ χ(x) ∀x ∈ C∗(G).

But if x ∈ C∗(G) and ε > 0, then there exists a f ∈ L1(G) with ||f − x||C∗ < ε
3 . If then λ0 ∈ Λ

with ||χλ(f)− χ(f)|| < ε
3 ∀λ ≥ λ0, then ∀λ ≥ λ0:

||χλ(x)−χ(x)|| ≤ ||χλ(x)−χλ(f)||+||χλ(f)−χ(f)||+||χ(f)−χ(x)|| ≤ ||x−f ||C∗+
ε

3
+||f−x||C∗ < ε.

�

We shall now give an alternative description of the topology on Ĝ:
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Lemma 3.3.6 Let G be an abelian locally compact group, (χλ)λ∈Λ a net in Ĝ and χ ∈ Ĝ, then
the following are equivalent:

(1) χλ → χ0 in L̂1(G) ∼= Ĉ∗(G).

(2) ∀ε > 0 and ∀K ⊆ G compact there is a λ ∈ Λ with |χλ(g)− χ0(g)| < ε ∀g ∈ K
(i.e. χλ → χ0 uniformally convergent on compact subsets of G).

Proof:

(2)⇒ (1) If (2) holds and 0 6= ϕ ∈ Cc(G), then choose a ε > 0 and a λ0 ∈ Λ with
|χλ(g)− χ(g)| < ε

µ(K)||ϕ||∞ for all g ∈ K := supp(ϕ) and λ ≥ λ0. Then for all λ ≥ λ0 it
follows, that

|χλ(ϕ)− χ0(ϕ)| = |
∫
G
ϕ(g)(χλ(g)− χ0(g))dg| ≤

∫
K
|ϕ(g)||χλ(g)− χ0(g)|dg

≤ µ(K)||ϕ||∞
ε

µ(K)||ϕ||∞
= ε.

Since Cc(G) is dense in L1(G), we also have an analogous statement for f ∈ L1(G).

(1)⇒ (2) We now have χλ → χ0 in L̂1(G) ∼= Ĉ∗(G), then χλχ0 → χ0χ0 = 1 ∈ L̂1(G), since for
f ∈ L1(G) :

χλχ0(f) =

∫
G
f(g)χλ(g)χ0(g)dg = χλ(fχ0)→ χ0(fχ0) = χ0χ0(f) = 1(f).

And due to χλ(g)− χ0(g) = |χλ(g)χ0(g)− 1| it holds that χλ → χ0 in the sense of (2) ⇔
χλ(g)χ0 → 1 in the sense of (2). By using the net (χλχ0)λ ∈ Ĝ w.l.o.g. we can assume that

χ0 = 1. We thus take χλ → 1 in L̂1(G). Let K ⊆ G be compact and ε > 0.
Select ϕ ∈ Cc(G) with 1(ϕ) =

∫
G ϕ(g)dg = 1, then there exists a neighborhood W of 1G

with ||gϕ− g0ϕ||1 < ε
3 for all g, g0 ∈ G with g ∈ g0W . If then χ ∈ Ĝ with

|χ(ϕ)− 1(ϕ)︸︷︷︸
=1

| < ε

3
, |χ(g0ϕ)− 1(g0ϕ)︸ ︷︷ ︸

=1

| < ε

3
.

So for all g ∈ g0W it follows that

|χ(g)− 1| = |χ(g)− χ(g)χ(ϕ)|+ |χ(g)χ(ϕ)− χ(g0)χ(ϕ)|+ |χ(g0)χ(ϕ)− 1|
= |χ(g)||1− χ(ϕ)|+ |χ(gϕ)− χ(g0ϕ)|+ |χ(g0ϕ)− 1|

<
ε

3
+
ε

3
+
ε

3
= ε.

Where χ(g)χ(ϕ) = χ(gϕ) ∀g ∈ G follows from inserting and left invariance of the
Haar-integral.
Since K is compact, there are g1, . . . , gl ∈ G such that K = ∪li=1giW. Define

f0, . . . , fl ∈ L1(G), f0 := ϕ1, fi := giϕ.

If then λ0 ∈ Λ such that |χ(fi)− 1(fi)| < ε
3 ∀0 ≤ i ≤ l and λ ≥ λ0, then with |χ(ϕ)− 1| < ε,

we have that |χλ(ϕ)− 1| < ε ∀g ∈ K and λ ≥ λ0.

�

Corollary 3.3.7 If G is a locally compact abelian group, then its dual group Ĝ is also locally
compact abelian.
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Proof: Let χλ → χ µλ → µ be in Ĝ and K ⊆ G compact and ε > 0, then there exists λ0 ∈ Λ
such that |χλ − χ| < ε

2 and |µλ − µ| < ε
2 ∀g ∈ K,λ ≥ λ0. For g ∈ K and λ ≥ λ0 it then holds, that

|χλµλ(g)− χµ(g)| ≤ |χλ(g)||µλ(g)− µ(g)|+ |µ(g)||χλ(g)− χ(g)| < ε

2
+
ε

2
= ε.

It follows that the multiplication is continuous. And due to |χλ(g)− χ(g)| = |χλµλ(g)− χµ(g)|,
we also have the continuity of the map χ 7→ χ. �

Theorem 3.3.8 Let G be a locally compact abelian group, then

(1) G compact ⇒ Ĝ discrete.

(2) G discrete ⇒ Ĝ compact.

Proof:

(1) If G is compact, then w.l.o.g.
∫
G 1dg = 1 and thus

∫
G χ(g)dg = 0 ∀1 6= χ ∈ Ĝ, since if

g0 ∈ G with χ(g0) 6= 1, then∫
G
χ(g)dg =

∫
G
χ(g0g)dg = χ(g0)

∫
G
χ(g)dg

χ(g0)6=1⇒
∫
G
χ(g)dg = 0.

Let now (χλ)λ → 1 is a net in Ĝ. We know that (χλ)λ → 1 converges uniformly and thus
χλ = 1 for all λ ≥ λ0, since

∫
G χλ(g)dg →

∫
G 1dg = 1. Thus {1} ⊂ Ĝ is open, and since Ĝ is

a topological group, we also have {χ} ⊂ Ĝ is open for all χ ∈ Ĝ.

(2) Let now G be discrete. Then δ1 ∗ f = f ∗ δ1 = f ∀f ∈ L1(G), so L1(G) is unital, but then

Ĝ ∼= L̂1(G) is compact.
�

Lemma 3.3.9 Let G = G1 × · · · ×Gn be a locally compact abelian group, then

Ĝ1 × · · · × Ĝn
∼=−→ Ĝ,

(χ1, . . . , χn) 7−→ χ1 · · ·χn

with (χ1 · · ·χn)(g) := χ1(g) · · ·χn(g).

Lemma 3.3.10 Let H ⊆ G be a closed subgroup of the locally compact abelian group G. Then

Ĝ/H ∼= {χ ∈ Ĝ |χ|H = 1}.

Proof: Fundamental theorem on homomorphisms. �

Lemma 3.3.11 Let G be compact abelian. If A ⊆ Ĝ separates the points of G, then 〈A〉 = Ĝ.

Proof: Let w.l.o.g. A = 〈A〉 and let D ⊆ C(Ĝ) the subalgebra of C(Ĝ) generated by A. Since
1 ∈ A and if χ ∈ A, then also χ = χ−1 ∈ A. Since A (and thus also D) separates the points of G,
we have that D ⊆ C(Ĝ) is dense w.r.t. || · ||∞ by Stone-Weierstraß.
We assume that ∃χ ∈ Ĝ/A. Then µ · χ 6= 1 ∀µ ∈ A. We have already shown that∫

G
µ · χ(g)dg = 0 ∀µ ∈ A.

Every element in D is of the form
∑m

i=1 αiχi with α1 ∈ C, χi ∈ A and thus∫
G
µ(g)ϕ(g)dg = 0 ∀ϕ ∈ D.

Since D ⊆ C(Ĝ) is dense w.r.t. || · ||∞, we also have∫
G
µ(g)ϕ(g)dg = 0 ∀ϕ ∈ C(Ĝ).

In particular is follows that 1 =
∫
G 1dg =∈G µ(g)µ(g)dg = 0, which is a contradiction.
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�

Example 3.3.12

(1) It holds that

S1 ∼=−→ Ẑ, z 7→ χz, χz(n) := zn

If χ(n) = χ(1)n = zn, i.e. χ = χz and thus Ẑ→ S1 χ 7→ χ(1) is a continuous bijection and
since Ẑ, S1 are compact, it is a homeomorphism.

(2) It holds that

Z
∼=−→ Ŝ1, n 7→ χn, χn(z) := zn

χ1 separates the points of S1, and since S1 is compact, it follows that

Ŝ1 = 〈χ1〉 = {χn |n ∈ Z}.

(3) It holds that

R
∼=−→ R̂, s 7→ χs, χs(t) := e−1st

Let χ ∈ R̂ be arbitrary. Then A := kerχ is a closed subgroup of R, thus A ∈ {{0},R, bZ}.

– if A = {0}, then 1 = χ(0) 6= χ(1) := z and since χ is continuous, χ([0, 1]) is connected
and contains a true arch in S1, which spans from 1 to z, so χ(na) = 1 with na 6= 0,
which is in contradiction to A = {0}.

– If A = R, then χ = 1, i.e. χ = χ0.

– If A = bZ, b > 0, then χ̃(t+A) = χ(t) defines a character on R/A and R/A ∼= S1 via

t+A 7→ e−it2π/b. So we get a χ̃ ∈ Ŝ1 by setting χ̃(−it2π/b) = (−it2π/b)n =−it2πn/b= χs(t)
with s = 2πn

b .

(4) It holds that

Zm ∼= Cm := {ω ∈ S1 |ωm = 1}
∼=−→ Ẑm, ω 7→ χω, χω([n]) := ωn

Theorem 3.3.13 Structure Theorem for finitely generated Abelian Groups If G is
finitely generated abelian, then there exist l,m1, . . . ,mr ∈ N such that

G ∼= Zl × Zm1 × · · · × Zmr ⇒ Ĝ ∼= (S1)l × Zm1 × · · · × Zmr

Definition 3.3.14 Elementary Group A locally compact abelian group such that

G ∼= Rn × (S1)l × Zr × F

with some finite group F is called elementary.

Lemma 3.3.15 Elementary groups G ∼= Rn × (S1)l × Zr × F are reflexive:

Ĝ ∼= Rn × Zl × (S1)r × F, ⇒ ̂̂
G ∼= G

Theorem 3.3.16 Pontrjagin + Plancherel 1940 Let G be a locally compact abelian group,
then the following hold

(1) (Pontrjagin Theorem) ϕ : G
∼=→ ̂̂
G with ϕ(g)(χ) := χ(g), χ ∈ Ĝ is a topological

isomorphism of groups.
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(2) (Inversion frormula) The Haar integral on Ĝ can be normalized such that for f̂ ∈ L1(Ĝ) we
have

f(g) =

∫
Ĝf̂(χ)χ(g)dχ for almost all g ∈ G.

(3) (Plancherel Theorem) Let f ∈ L1(G) ∩ L2(G), then f̂ ∈ L2(Ĝ) with ||f̂ ||2 = ||f ||2. This
defines an isometry

F : L1(G) ∩ L2(G) −→ L2(Ĝ), F(f) := f̂ ,

which has a unique continuation F : L2(G)→ L2(Ĝ). If

F̂ : L2(Ĝ) −→ L2(
̂̂
G) ∼= L2(G)

is the corresponding Fourier transform for Ĝ, then

F̂ ◦ F (f) = f(g) = f(g−1) ∀f ∈ L2(G).

Corollary 3.3.17 Let G be a locally compact abelian group, then the regular representation

λ : C∗(G)
∼=−→ C∗r (G)

is an isomorphism.

Proof: We want to use the Pointrjagin-Plancherel theorem to prove the assertion. We consider
the following diagram

C∗(G) C∗r (G) ⊆ L(L2(G))

C0(Ĝ) L(L2(Ĝ))

-λ

?

∧

?

F◦(·)◦F−1

-
M

where M : C0(Ĝ)→ L(L2(Ĝ)) is the multiplicative representation (Mϕ)ξ = ϕ · ξ. Of all arrows,
but λ, we know that they are isomorphisms, thus we only need to prove commutativity of the
diagram.

For all ξ ∈ Cc(G)
dense
⊆ L2(G) and f ∈ Cc(G), we have

λ(f)ξ = f ∗ ξ.

And thus

F (λ(f)ξ) = f̂ ∗ ξ = f̂ ξ̂ = M(f̂)F (ξ̂).

This gives λ(f) = F−1M(f̂)F , i.e. M(f̂) = Fλ(f)F−1. This gives Cc(G)
dense
⊂ C∗(G) and

everything is continuous the claim follows.

3.4 Universal C∗-Algebras and the noncommutative 2-Torus

One of the main lessons of this sections is, that the noncommutative 2-torus Aθ has a very
different structure, depending of wether θ ∈ Q or θ ∈ R \Q.
There are many mathematical objects, to which one can assign C∗-algebra in a natural way, such
that the algebra mirrors the properties of these objects:

• (C∗)-dynamical systems

• Foliations of manifolds
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• Semigroups

• Groupoids

• Rings (see Cuntz and Xin Li)

Many of these constructions are of universal nature. E.g. for a discrete group G, the group
algebra C∗(G) is the universal C∗-algebra generated by G.

Definition 3.4.1 Representation of a set X with relations Let X be a set and R a set of
relations on X. A map

ϕ : (X,R) −→ B

is called a representation of (X,R) if ϕ preserves all relations R of X in B.

Example 3.4.2 X = {u, v}, R = {u∗ = u−1, v∗ = v−1, uv = vu}

Remark 3.4.3 Not all pairs (X,R) are representable. Not all relations make sense in a
C∗-algebra, e.g. they could be contradictory to the defining relations of a C∗-algebra.

Definition 3.4.4 Universal C ∗ −algebra A C∗-algebra is called universal for (X,R), if the
following hold:

(1) Existence: There exists a representation iX : (X,R)→ A.

(2) Minimality: A = C∗(iX(X)), i.e. there is no true C∗-subalgebra of A, which includes
iX(X).

(3) Universality: If ϕ : (X,R)→ B is an arbitrary other representation, then there exists
exactly one ∗-homomorphism φ : A→ B such that the following commutes:

(X,R) A

B

-iX

@
@

@
@R

ϕ

pppppppppp?∃!φ

We denote the universal algebra of (X,R) by A := C∗(X,R)

Remark 3.4.5 Existence It is not always clear if for a given pair (X,R), there exists
corresponding a universal C∗-algebra. However, a necessary condition is that there exists some
representation ϕ : (X,R)→ B.

Lemma 3.4.6 Uniqueness If A,B are both universal for (X,R), then A ∼= B.

Proof: Let iX : X → A, jX : X → B be representations, as in (1). According to the
universality of A (3), there exists a unique ∗-homomorphism φ : A→ B such that
φ(iX(x)) = jX(x) ∀x ∈ X. By the universality of B there is also a unique ∗-homomorphism
ψ : B → A such that φ(jX(x)) = iX(x) ∀x ∈ X. Thus ψ ◦ φ : A→ A is a ∗-homomorphism with
ψ ◦ φ(iX(x)) = iX(x) and due to uniqueness in (3) we get ψ ◦ φ = 1A. Analogously φ ◦ ψ = 1B �

Example 3.4.7
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(i) Group algebras Let G be a discrete group. We give G the relations coming from the group
operation and g∗ = g−1. A representation ϕ : (G,R)→ B is then a homomorphism

ϕ : G −→ U(B) := {u ∈ B |u unitary}.

It then follows that
C∗(G,R) = C∗(G).

That is since

(1) iG : G→ C∗(G) iG(g) = δg.

(2) Since LH{δg | g ∈ G}
dense
⊂ l1(G), we also have LH{δg | g ∈ G}

dense
⊂ C∗(G).

(3) If ϕ : G→ U(B) is an arbitrary representation of (G,R), then, with Gelfand-Naimark,
we can interprete B ⊆ L(H) for some Hilbert space H, so

ϕ : G −→ B ⊆ L(H)

as a unitary representation of G. And then there is exactly one ∗-representation

φ : C∗(G) −→ L(H), such that φ(δg) = ϕ(g).

Since φ(LH{δg | g ∈ G}) ⊆ B, it also holds that φ(C∗(G)) ⊆ B.

(ii) X := {u}, R := {u∗u = uu∗ = 1}, then

C∗({u},R) ∼= C(S1).

(1) Let v ∈ C(S1) given by v(z) = z, then iX(u) = v is a representation of (X,R).

(2) With Stone-Weierstraß, we have that C(S1) = C∗(v).

(3) If B is an arbitrary C∗-algebra and w ∈ B unitary (i.e. fulfills R), then σ(w) ⊆ S1.
Consider the ∗-homomorphism φ : C(S1)→ B given by the composition

C(S1) −→ C(σ(w))
∼=−→ C∗(w) ⊆ B.

f 7−→ f |σ(w) 7−→ f(w)

Due to v = 1S1 it holds that φ(v) = 1(w) = w.

(iii) Alternative to (ii) If w ∈ B is unitary, then so is wn ∀n ∈ Z. Every unitary element w ∈ B
then generates a unitary representation ϕ : Z→ B, ϕ(n) = wn and it thus follows, that

C∗({u},R) ∼= C∗(Z) ∼= C0(Ẑ) = C(S1).

(iv) X := {u, v}, R := {u∗u = uu∗ = 1 = v∗v = vv∗, uv = vu}, then

C∗({u, v},R) ∼= C∗(Z2) ∼= C0(Ẑ2) = C(S1 × S1).

That is since every pair {u, v} with the relations R induces a representation ϕ : Z2 → B
ϕ(n,m) = unvm and vice versa: every representation ϕ gives the unitary elements
u = ϕ(δ(1,0)), v = ϕ(δ(0,1)).

Definition 3.4.8 Noncommutative 2−Torus is the universal algebra

Aθ := C∗(Xθ,Rθ)

for the set and relations

Xθ := {u, v}, Rθ := {u∗u = uu∗ = 1 = v∗v = vv∗, uv = e2πiθvu}.
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Remark 3.4.9 Observe that we have already treaded the case A0 above:

A0 := C∗({u, v},R0) ∼= C(S1 × S1).

This is just the commutative algebra of the continuous functions on the 2-torus S1 × S1, we thus
understand why Aθ is referred to as the noncommutative 2-torus.

Remark 3.4.10 The noncommutative 2-torus is a standard example in noncommutative
geometry.

Remark 3.4.11 Constructive Definition Let f ∈ Cc(Z2) = {f : Z2 → C | supp(f) = finite},
then take the formal sums

Aθ := {
∑
Z2

f(n,m)unvm | f ∈ Cc(Z2)}.

The above relations Rθ hold, so

unvmulvk = e−2πiθmlun+lvm+k,

thus Aθ is an algebra with

(
∑
Z2

f(n,m)unvm)(
∑
Z2

g(n,m)unvm) =
∑
Z2

(f ∗θ g)(n,m)unvm

and the product

(f ∗θ g)(n,m) :=
∑

(k,l)∈Z2

f(k, l)g(n− k,m− l)e−2πiθl(n−k).

Because of

(
∑
Z2

f(n,m)unvm)∗ =
∑
Z2

f(n,m)v−mu−n =
∑
Z2

f(n,m)e−2πiθmnu−nv−m,

we get that Aθ is a ∗-algebra. For an arbitrary representation ϕ : {u, v} → B of (Xθ,Rθ), we have
that

φ : Aθ −→ B, φ(
∑
Z2

f(n,m)unvm) :=
∑
Z2

f(n,m)ϕ(u)nϕ(v)m

is a ∗-representation of Aθ with

||φ(
∑
Z2

f(n,m)unvm)|| ≤
∑
Z2

||f(n,m)ϕ(u)nϕ(v)m|| =
∑
Z2

|f(n,m)| =: ||f ||1.

So we can define

||
∑
Z2

f(n,m)unvm||C∗ := sup
φ
||φ(
∑
Z2

f(n,m)unvm)||,

which exists if there is such a φ. Finally we set

Aθ := Aθ
||·||C∗

From this constructive definition, it follows that Aθ together with the embedding iX : {u, v} ↪→ Aθ
fulfills the conditions (1)-(3), if the relations Rθ are realizable in at least one C∗-algebra, since
otherwise || · ||C∗ does not exist.
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Example 3.4.12 Let B = L(l2(Z2)), define U, V ∈ L(l2(Z2)) by

(Uξ)(n,m) := ξ(n+ 1,m),

(V ξ)(n,m) := e2πiθnξ(n,m+ 1).

Then U, V are unitary with

(UV ξ)(n,m) = (V ξ)(n+1,m) = e2πiθ(n+1)ξ(n+1,m+1) = e2πiθ(n+1)(Uξ)(n,m+1) = e2πiθ(V Uξ)(n,m).

Thus UV = e2πiθV U and we have found a representation

ϕ : (Xθ,Rθ) −→ L(l2(Z2)), ϕ(u) := U, ϕ(v) := V.

Lemma 3.4.13

θ ∈ [0, 1
2 ] ⇒ Aθ ∼= A1−θ

.

Proof: Let u, v ∈ Aθ be the generators of Aθ and ũ, ṽ ∈ A1−θ the generators of A1−θ. Thus in
particular

ũṽ = e2πi(1−θ)ṽũ = e−2πiθṽũ ⇒ ṽũ = e2πiθũṽ.

There is exactly one ∗-homomorphism ϕ : Aθ → A1−θ such that ϕ(u) = ṽ, ϕ(v) = ũ. Analogously,
due to

vu = e−2πiθuv = e(2πi(1−θ)uv

there is exactly one ∗-homomorphism ψ : A1−θ → Aθ such that ψ(ũ) = v, ψ(ṽ) = u. It follows that

ψ ◦ ϕ(u) = u, ψ ◦ ϕ(v) = v

and thus ψ ◦ ϕ = 1Aθ . Analogously it follows that ϕ ◦ ψ = 1A1−θ . �

Remark 3.4.14 Finite dimensional representations From the construction of Aθ it follows,
that

dim(Aθ) =∞.

However, for θ = p
q with gcd(p, q) = 1, we can define a family of finite dimensional representations

π(z,ω) : Aθ −→Mq(C), (z, ω) ∈ S1 × S1.

Let λ = e2πiθ and let

U :=


1 0 · · · 0
0 λ 0
...

. . .
...

0 · · · · · · λq−1

 , V :=


0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 1
1 0 · · · · · · 0

 .

Then U, V are unitary with

UV =


0 1 0 · · · 0
0 0 λ · · · 0
...

. . .
...

0 λq−2

λq−1 0 · · · · · · 0

 , V U =


0 λ 0 · · · 0
0 0 λ2 · · · 0
...

. . .
...

0 λq−1

1 0 · · · · · · 0

 .

That is since λq = e2πiθq = e2πip = 1. So there is exactly one ∗-homomorphism π : Aθ →Mq(C)
with π(u) = U, π(v) = V, one can prove that π is irreducible.
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If now (z, ω) ∈ S1 × S1, then zU, ωV are unitary, with

(zU)(ωV ) = zω(UV ) = zωe2πiθ(V U) = e2πiθ(ωV )(zU)

so there is a representation

π(z,ω) : Aθ −→Mq(C), π(z,ω)(u) = zU, π(z,ω)(v) = ωV.

One can then show, that all π(z,ω) are irreducible and

π(z,ω)
∼= π(z′,ω′) ⇔ z = ξkz′, ω = ξlω′, ξ = e

2πi
1
q , k, l ∈ Z.

And it holds that every irreducible representation of Aθ is equivalent to some π(z,ω).
The moral of the story is, that for θ ∈ Q we have that Aθ is a CCR and it holds that

Âθ ∼= Prim(Aθ) ∼= (S1 × S1)/ ∼ .

Where ∼ is the above relation used in π(z,ω)
∼= π(z′,ω′). In particular it follows that Aθ has a lot of

different ideals.

We shall now study the case θ ∈ R \Q:

Lemma 3.4.15 Let θ ∈ R, then for every (z, ω) ∈ S1 × S1 there is exactly one ∗-automorphism

β(z,ω) : Aθ −→ Aθ, β(z,ω)(u) := zu, β(z,ω)(v) := ωv.

Proof: It holds that (zu)(ωv) = e2πiθ(ωv)(zu) and thus there exists exactly one
∗-homomorphism β(z,ω) : Aθ → Aθ as in the lemma. Due to

β(z,ω) ◦ β(z,ω)(u) = β(z,ω)(zu) = (zzu) = u

and the analogous statement for v, we have β(z,ω) = β−1
(z,ω). �

Remark 3.4.16 The map

β : S1 × S1 −→ Aut(Aθ), (z, ω) 7−→ β(z,ω)

is a homomorphism of groups.

Definition 3.4.17 Inner Automorphism Let A be a unital C∗-algebra and u ∈ A unitary, then

u 7−→ Ad(u)(a) := uau∗

is a ∗-automorphism, called inner automorphism.

Lemma 3.4.18 Let θ ∈ R and λ = e2πiθ, then

β(λn,λm) = Ad(v−num), ∀n,m ∈ Z

In particular β(λn,λm) is an inner automorphism ∀n,m ∈ Z.

Proof: Since Aθ = C∗(u, v), it suffices to show that β(λn,λm)(a) = (v−num)a(v−num)∗ for
a = u, v. We shall only prove the case a = u, the other is done in the exact same way.

(v−num)u(v−num)∗ = v−numuu−mvn = v−nuvn = e2π1θnu = λnu = β(λn,λm)(u)

�
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Theorem 3.4.19 If H ⊆ R is a closed subgroup, then H ∈ {{0},R, aZ} for some a > 0.

Proof: Let H 6= {0} and a := inf{b ∈ H | b > 0}.

a = 0 We will show that if a = 0, then H = R. Let x ∈ R arbitrary and cx := sup{b ∈ H | b < x},
then cx ∈ H, since H closed. Assume cx < x, then x− cx > 0 and there is a b ∈ H with
0 < b < x− cx. But then cx < b+ cx < x and b+ cx ∈ H, since b, cx ∈ H, which is a
contradiction to cx = sup{b ∈ H | b < x}.

a > 0 If 0 < a ∈ H we have aZ ⊆ H. Assume that there is a b ∈ H \ (aZ), then there is a n ∈ Z
with an < b < a(n+ 1), i.e. 0 < b− an < a. But since b− an ∈ H we have a contradiction
to the definition of a.

�

Corollary 3.4.20 Let θ ∈ R \Q, λ = e2πiθ, then the following holds

(1) Z + θZ is a dense subgroup of R.

(2) {λn |n ∈ Z} is a dense subgroup of S1.

(3) {(λn, λm) | (n,m) ∈ Z2} is a dense subgroup of Z2.

Proof:

(1) Z + θZ is a closed subgroup of R. Assume ∃a > 0 : Z + θZ = aZ. Then there are n,m ∈ Z
with an = 1, am = θ. Thus 1

n = θ
m and m

n = θ which is in contradiction to θ ∈ R \Q.

(2) Consider ϕ : R→ S1 ϕ(x) = e2πix, then {e2πiθn |n ∈ Z} = ϕ(Z + θZ) which is dense in
ϕ(R) = S1.

(3) If D ⊂ X dense, then D ×D ⊂ X ×X dense.

�

Lemma 3.4.21 For all a ∈ Aθ is holds that the following map is continuous:

S1 × S1 −→ Aθ (z, ω) 7−→ β(z,ω).

Proof: Due to β(z,ω)(u
nvm) = (zu)n(ωv)m = znωm(unvm) continuity follows for a = unvm and

thus also for all
b =

∑
n,m

f(n,m)unvm, f ∈ Cc(Z2).

If now a ∈ Aθ arbitrary and (zn, ωn)→ (z, ω) ∈ S1 × S1, then there is a ε > 0 and a
b =

∑
n,m f(n,m)unvm with ||b− a|| < ε

3 . Choose N ∈ N with ||β(zn,ωn)b− β(z,ω)b|| < ε
3 , then

||β(zn,ωn)a− β(z,ω)a|| ≤ ||β(zn,ωn)(a− b)||+ ||β(zn,ωn)b− β(z,ω)b||+ ||β(z,ω)(b− a)|| < ε

3
+
ε

3
+
ε

3
= ε.

�

Definition 3.4.22 With Gelfand-Naimark there exists a faithful representation Aθ ⊂ L(H) for
some Hilbert space H. Then (z, ω) 7→ β(z,ω)(a) is a continuous, operator valued function and we
can define

Eθ(a) :=

∫
S1×S1

β(z,ω)(a)d(z, ω) =

∫ 1

0

∫ 1

0
βe2πis,e2πitdsdt

Approximating the integral by Riemannian sums, shows that Eθ(a) ∈ Aθ ∀a ∈ Aθ.
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Theorem 3.4.23 Let Eθ : Aθ → Aθ as in the definition, then there is a state τθ : Aθ → C such
that

(1) Eθ(a) = τθ(a)1 ∀a ∈ Aθ.

(2) τθ(ab) = τθ(ba) ∀a, b ∈ Aθ.

(3) τθ(a
∗a) > 0 ∀0 6= a ∈ Aθ.

Proof:

(1) For a = unvm it holds that

Eθ(u
nvm) =

∫
S1×S1

β(z,ω)(u
nvm)d(z, ω) =

∫
S1×S1

(zu)n(ωv)md(z, ω)

=

(∫
S1×S1

znωmd(z, ω)

)
unvm =

(∫ 1

0

∫ 1

0
e2πisne2πitmdsdt

)
unvm

=

{
1, if (n,m) 6= (0, 0)

0, if (n,m) = (0, 0).

Thus Eθ(
∑

n,m f(n,m)unvm) = f(0, 0)1. a 7→ Eθ(a) is continuous since

Aθ → C(S1 × S1, Aθ); a 7→ [(z, ω) 7→]β(zω)(a) is continuous as a *-homomorphism and∫
S1×S1 : C(S1 × S1, Aθ)→ Aθ is continuous. The continuity of a 7→ Eθ(a) and the fact that
C1 is closed in Aθ give Eθ(a) ∈ C1 ∀a ∈ Aθ.
So we have Eθ(a) = τθ(a)1 ∀a ∈ Aθ, but we still need to show that τθ is a positive
functional. Let a =

∑
n,m f(n,m)unvm, f ∈ Cc(Z2), then

a∗a = (
∑
n,m

f(n,m)unvm)∗(
∑
n,m

f(n,m)unvm) =
∑

n,m,k,l

f(n,m)f(k, l)e2πiθ(k−n)uk−nvl−m.

It thus follows that τθ(a
∗a) =

∑
f(n,m)f(n,m) > 0 if f 6= 0. Since τθ is continuous (Eθ

continuous) we have τθ(a
∗a) ≥ 0 ∀a ∈ Aθ.

(2) If a =
∑

n,m f(n,m)unvm, b =
∑

n,m g(n,m)unvm, then

ab =
∑
n,m

(f ∗θ g)(n,m)unvm.

So it holds that

τθ(ab) = (f ∗θ g)(0, 0) =
∑

f(k, l)g(−k,−l)e2πiθlk (k,l)→(−k,−l)
=

∑
f(−k,−l)g(k, l)e2πiθlk

= (g ∗θ f)(0, 0) = τθ(ba).

And since τθ is continuous, it follows that τθ(ab) = τθ(ba) ∀a, b ∈ Aθ.

(3) Let 0 6= a ∈ Aθ and let ϕ : Aθ → C is a linear functional with ϕ(a∗a) > 0 (which exists by
the GNS construction), then

ϕ(Eθ(a
∗a)) = ϕ

(∫
S1×S1

β(z,ω)(a
∗a)d(z, ω)

)
ϕ continuous

=

∫
S1×S1

ϕ(β(z,ω)(a
∗a))d(z, ω) > 0

since β(z,ω)(a
∗a) = (β(z,ω)(a))∗β(z,ω)(a) ≥ 0 ∀(z, ω) ∈ S1 × S1, and thus ϕ(β(z,ω)(a

∗a)) ≥ 0
∀(z, ω) ∈ S1 × S1 and β(1,1)(a

∗a) = ϕ(a∗a) ≥ 0. It follows that Eθ(a
∗a) 6= 0 and thus also

τθ(a
∗a) 6= 0.

�
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Remark 3.4.24 Traces

• A positive functional τ : A→ C with τ(ab) = τ(ba) ∀a, b ∈ A is called a trace on A. E.g.
tr : Mn(C)→ C is such a trace.

• A trace τ : A→ C with τ(1) = 1 is called trace state or a normalized trace.

• If τ(a∗a) = 0 ⇒ a = 0 then τ is called a faithful trace.

• The above trace τθ : Aθ → C is a sort of Lebesgue-integral on the noncommutative torus Aθ.
For θ = 0 τ0 is the usual Lebesgue-integral on A0 = C(S1 × S1).

Theorem 3.4.25 Uniqueness Let θ ∈ (0, 1) be irrational, then τθ : Aθ → C is the only
normalized trace on Aθ, i.e. if τ : Aθ → C is an arbitrary state with τ(ab) = τ(ba) ∀a, b ∈ Aθ,
then τ = τθ.

Proof: Let λ = e2πiθ and Hθ = {(λn, λm) |n,m ∈ Z} ⊆ S1 × S1, then Hθ is dense in S1 × S1

and we have

τ(β(λn,λm)(a)) = τ((v−num)∗︸ ︷︷ ︸
=:b

a(v−num)∗︸ ︷︷ ︸
=:c

) = τ(bc) = τ(cb) = τ(a(v−num)∗(v−num)∗) = τ(a).

Since (z, ω) 7→ β(z,ω)(a) and τ are continuous, we have τ(β(z,ω)(a)) = τ(a) ∀(z, ω) ∈ S1 × S1 and
finally

τ(a) =

∫
S1×S1

τ(a)d(z, ω) =

∫
S1×S1

τ(β(z,ω)(a))d(z, ω) = τ(

∫
S1×S1

β(z,ω)(a)d(z, ω))

= τ(Eθ(a)) = τ(τθ(a)1) = τθ(a)τ(1) = τθ(a).

�

Theorem 3.4.26 Let θ ∈ (0, 1) be irrational, then Aθ is simple, i.e. {0} and Aθ are the only
ideals in Aθ.

Proof: Let I 6= {0} be an ideal in Aθ und let 0 6= a ∈ I. Let
Hθ = {(λn, λm) |n,m ∈ Z} ⊆ S1 × S1, then

β(λn,λm)(a
∗a) = (v−num)a∗a(v−num)∗ ∈ I

for all (λn, λm) ∈ Hθ. Now since I closed and Hθ dense in S1 × S1, we also have β(z,ω)(a
∗a), for

all (z, ω) ∈ S1 × S1. It follows that

τθ(a
∗a)1Aθ = Eθ(a

∗a) =

∫
S1×S1

β(z,ω)(a
∗a)d(z, ω) ∈ I.

Since τθ is faithful, we have τθ(a
∗a) 6= 0, and it follows that 1Aθ ∈ I, thus I = Aθ. �

Remark 3.4.27 We have seen that that the structure of Aθ is very different, depending on
wether θ is rational or irrational. I.e. in the irrational case there are no nontrivial ideals, whereas
in the rational case, there are many. In particular

θ ∈ Q, θ̃ /∈ Q, ⇒ Aθ/∼= Aθ̃

We already know
Aθ ∼= A1−θ

The question:
When is Aθ ∼= Aθ̃ ?

in solved with K-theory.
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A Results from Topology

Theorem A.0.28 Tietze Extension Theorem if X is a normal topological space, A ⊂ X
closed and f : A ⊂ X → R continuous, then there exists a continuous extension

F : X −→ R, F |A = f

Lemma A.0.29 Urysohn Let X be a locally compact Hausdorff space. Let K ⊂ X be compact
and A ⊂ X closed with K ∩A = ∅. Then the following hold

(i) There exists a relatively compact open neighborhood U of K such that K ⊂ U ⊂ U ⊂ X \A.

(ii) There exists a continuous function of compact support f : X → [0, 1] with f |K = 1 and
f |A = 0.

Lemma A.0.30 Let K,X be Hausdorff spaces, K be compact, f : K → X continuous and
bijective. Then f−1 is continuous also. I.e. f is a homeomorphism.

B Results from Functional Analysis

Definition B.0.31 Separates Points

• F ⊆ XY is said to separate points in X iff

∀x1, x2 ∈ X with x1 6= x2 ∃ϕ ∈ F : ϕ(x1) 6= ϕ(x2)

• F ⊆ XK is said to strongly separate points in X iff it separates points in X and

∀x ∈ X ∃ϕ ∈ F : ϕ(x) 6= 0

Remark B.0.32 Note: if 1 ∈ F ⊆ XX , then F separates points in X.

Theorem B.0.33 Stone−Weierstraß Let X be a locally compact Hausdorff space and
F ⊆ C0(X,C) separates points in X, then the unital ∗-algebra 〈F 〉 ⊆ C0(X,C) is dense.

Theorem B.0.34 Hahn−Banach Continuation Theorem Let E be a topological K-vector
space and p : E → [0,∞) a halfnorm on it. F ⊆ E a linear subspace and g : F → K a linear
functional on F such that |g(x)| ≤ p(x) ∀x ∈ F , then there exists a linear continuation g̃ : E → K
such that

g̃|F = g, |g̃(x)| ≤ p(x) ∀x ∈ E.

Theorem B.0.35 Banach−Alaoglu Theorem Let (E, || · ||) be a normed space, then

Br(f) ⊂ E′ compact, ∀f ∈ E′, ε > 0

in the weak ∗-topology.

Theorem B.0.36 Banach− Steinhaus Theorem Let E be a Banach space and F be a
normed space. ∅ 6= I an arbitrary index set and Ti ∈ L(E,F ) ∀i ∈ I. If for all x ∈ E there exists
a cX ≥ 0 such that

||Tix|| ≤ cx ∀i ∈ I

then there is a c ≥ 0 such that ||Ti|| ≤ c ∀i ∈ I. I.e. {Ti | i ∈ I} is point wise bounded, then it is
also norm bounded.

Theorem B.0.37 Open Mapping Theorem Let E,F be Banach spaces. T ∈ L(E,F )
surjective, then T is open, i.e. if U ⊆ E open, then T (U) ⊆ F open.
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C Examples of Normed Algebras

(1) C0(X), X locally compact

– Multiplication: (f · g)(x) := f(x) · g(x)

– Involution: f∗ := f

– Banach ∗-algebra: ||f ||∞ = ||f ||∞
– C∗-algebra: ||ff ||∞ = || |f |2 ||∞ = ||f ||2∞
– Commutative: obvious

– Gelfand-space Â ∼= X, with the homeomorphism

δ· : X
∼=−→ {δx : C0(X)→ C |x ∈ X, δx(f) := f(x)} ∼= Ĉ0(X)

– Spectrum for X compact: σC(X)(f) = f(X) since

f ∈ Inv(C(X)) ⇔ f(x) 6= 0 ∀x ∈ X, thenf−1 = 1
f

(2) Disc-algebra A = ADisc := {f ∈ C(D) | f holomorphic on int(D)}

– Multiplication: obvious

– Involution: f∗(z) := f(z)

– Banach ∗-algebra:

– C∗-algebra: ADisc is not a C∗-algebra, that is since every commutative C∗-algebra is
symmetric and ADisc is not symmetric:

1 ∈ ADisc ⇒ 1∗(x) = 1(z) = z = z ⇒ 1 = 1∗

and σA(1) = 1(D) = D * R, but symmetric algebras fulfill σA(a) ⊂ R.
– Commutative: obvious

– Gelfand-space:

Â
∼=−→ D

ϕ 7−→ ϕ(z) ∈ σA(z) = z(D) = D

– Spectrum: σA(f) = f(D), if f |int(D) is holomorphic, then so is 1
f |int(D).

(3) Convolution algebra (l1(Z), ||f ||1 :=
∑

n∈Z |f(n)|)

– Multiplication = Convolution: (f ∗ g)(n) :=
∑

m∈Z f(m)g(n−m)

– Involution: f∗(n) := f(−n)

– Banach ∗-algebra:

(f ∗ g)∗ = (f ∗ g)(−n) =
∑
m

f(m)g(−n−m) =
∑
m

f(−m)g(−n+m)

=
∑
m

f∗(m)g∗(n−m) = (f∗ ∗ g∗)(n)
commutativity

= (g∗ ∗ f∗)(n)

||f∗||1 =
∑

n |f(−n)| =
∑

n |f(n)| = ||f ||1
– C∗-algebra: l1(Z) is not a C∗-algebra. There exist counter examples f ∈ l1(Z) with
||f∗ ∗ f ||1 6= ||f ||21.
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– Commutative:

(f ∗ g)(n) =
∑
m

f(m)g(n−m)
m→n−m

=
∑
m

g(m)f(n−m) = (g ∗ f)(n)

– Gelfand-space:

ϕ : S1 ∼=−→ l̂1(Z)

z 7−→ ϕz ϕz(f) := f̂(z) :=
∑
n

f(n)zn

– Spectrum: σl1(Z)(f) = f̂(S1), since f ∈ Inv(l1(Z)) iff f̂(z) 6= 0 ∀z ∈ S1


