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Abstract. We give an introduction into the ideal structure and representation

theory of crossed products by actions of locally compact groups on C*-algebras. In

particular, we discuss the Mackey-Rieffel-Green theory of induced representations

of crossed products and groups. Although we do not give complete proofs of all

results, we try at least to explain the main ideas. For a much more detailed

exposition of many of the results presented here we refer to the beautiful book

[123] by Dana Williams (which has not been available when most of this was

written).

1. introduction

If a locally compact group G acts continuously via ∗-automorphism on a C∗-

algebra A, one can form the full and reduced crossed products A ⋊ G and A ⋊r G

of A by G. The full crossed product should be thought of as a skew maximal tensor

product of A with the full group C∗-algebra C∗(G) of G and the reduced crossed

product should be regarded as a skew minimal (or spacial) tensor product of A by

the reduced group C∗-algebra C∗
r (G) of G.

The crossed product construction provides a huge source of examples in C∗-

algebra theory, and they play important rôles in many applications of C∗-algebras

in other fields of mathematics, like group representation theory and topology (here

in particular in connection with the Baum-Connes conjecture). It is the purpose of

this article to present in a concise way some of the most important constructions and

features of crossed products with emphasis on the Mackey-Green-Rieffel mashine as

a basic technique to investigate the structure of crossed products. Note that the

material covered in this article is almost perpendicular to the material covered in

Pedersen’s book [98]. Hence we recommend the interested reader to also have a look

into [98] to obttain a more complete and balanced picture of the theory. Peder-

sen’s book also provides a good introduction into the general theory of C∗-algebras.

An incomplete list of other good references on the general theory of C∗-algebas is

[22, 23, 92]. Some general notation: if X is a locally compact Hausdorff space and

E is a normed linear space, then we denote be Cb(X,E) the space of bounded con-

tinuous E-valued functions on X and by Cc(X,E) and C0(X,E) those function in

Cb(X,E) which have compact supports or which vanish at infinity. If E = C, then

we simply write Cb(X), Cc(X) and C0(X), respectively. If E and F are two linear

spaces, then E ⊙F always denotes the algebraic tensor product of E and F and we

reserve the sign “⊗” for certain kinds of topological tensor products.
1
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2. Some preliminaris

We shall assume throughout this article that the reader is familiar with the basic

concepts of C∗-algebras as can be found in any of the standard text books mentioned

above. However, in order to make this treatment more self-contained we try to recall

some basic facts and notation on C∗-algebras which will play an important rôle in

this article.

2.1. C∗-algebras. A (complex) C∗-algebra is a complex Banach-algebra A together

with an involution a 7→ a∗ such that ‖a∗a‖ = ‖a‖2 for all a ∈ A. Note that we usually

do not assume that A has a unit. Basic examples are given by the algebras C0(X) and

Cb(X) equipped with the supremum-norm and the involution f 7→ f̄ . These algebras

are clearly commutative and a classical theorem of Gelfand and Naimark asserts,

that all commutative C∗-algebras are isomorphic to some C0(X) (see paragraph 2.3

below). Other examples are given by the algebras B(H) of bounded operators on

a Hilbert space H with operator norm and involution given by taking the adjoint

operators, and all closed ∗-subalgebras of B(H) (like the algebra K(H) of compact

operators on H). Indeed, another classic result by Gelfand and Naimark shows that

every C∗-algebra is isomorphic to a closed ∗-subalgebra of some B(H). If S ⊆ A

is any subset of a C∗-algebra A, we denote by C∗(S) the smallest sub-C∗-algebra

of A which contains S. A common way to construct C∗-algebras is by describing a

certain set S ⊆ B(H) and forming the algebra C∗(S) ⊆ B(H). If S = {a1, . . . , al}
is a finte set of elements of A, we shall also write C∗(a1, . . . , al) for C∗(S). For

example, if U, V ∈ B(H) are unitary operators such that UV = e2πiθV U for some

irrational θ ∈ [0, 1], then Aθ := C∗(U, V ) is the famous irrational rotation algebra

corresponding to θ, a standard example in C∗-algebra theory (one can show that

the isomorphism class of C∗(U, V ) does not depend on the particular choice of U

and V ).

C∗-algebras are very rigid objects: If A is a C∗-algebra, then every closed (two-

sided) ideal of A is automatically selfadjoint and A/I, equipped with the obvious

operations and the quotient norm is again a C∗-algebra. If B is any Banach ∗-algebra

(i.e., a Banach algebra with isometric involution, which does not necessarily satisfy

the C∗-relation ‖b∗b‖ = ‖b‖2), and if A is a C∗-algebra, then any ∗-homomorphism

Φ : B → A is automatically continuous with ‖Φ(b)‖ ≤ ‖b‖ for all b ∈ B. If B is also a

C∗-algebra, then Φ factors through an isometric ∗-homomorphism Φ̃ : B/(ker Φ) →
A. In particular, if A and B are C∗-algebras and Φ : B → A is an injective (resp.

bijective) ∗-homomorphism, then Φ is automatically isometric (resp. an isometric

isomorphism).

2.2. Multiplier Algebras. The multiplier algebra M(A) of a C∗-algebra A is the

largest C∗-algebra which contains A as an essential ideal (an ideal J of a C∗-algebra

B is called essential if bJ = {0} implies b = 0 for all b ∈ B). If A is represented

faithfully and non-degenerately on a Hilbert space H (i.e. A ⊆ B(H) with AH = H),

then M(A) can be realized as the idealizer

M(A) = {T ∈ B(H) : TA ∪ AT ⊆ A}
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of A in B(H). In particular we have M(K(H)) = B(H), where K(H) denotes the

algebra of compact operators on H.

The strict topology on M(A) is the locally convex topology generated by the semi-

norms m 7→ ‖am‖, ‖ma‖ with a ∈ A. Notice that M(A) is the strict completion

of A. M(A) is always unital and M(A) = A if A is unital. If A = C0(X) for

some locally compact space X, then M(A) ∼= Cb(X) ∼= C(β(X)), where β(X)

denotes the Stone-Čech compactification of X. Hence M(A) should be viewed as

a noncommutative analogue of the Stone-Čech compactification. If A is any C∗-

algebra, then the Algebra A1 := C∗(A ∪ {1}) ⊆ M(A) is called the unitization of A

(notice that A1 = A if A is unital). If A = C0(X) for some non-compact X, then

A1
∼= C(X+), where X+ denotes the one-point compactification of X.

A ∗-homomorphism π : A → M(B) is called non-degenerate if π(A)B = B,

which by Cohen’s factorization theorem is equivalent to the weaker condition that

span{π(a)b : a ∈ A, b ∈ B} is dense in B (e.g. see [105, Proposition 2.33]). If H

is a Hilbert space, then π : A → M(K(H)) = B(H) is non-degenerate in the above

sense iff π(A)H = H. If π : A → M(B) is non-degenerate, there exists a unique

∗-homomorphism π̄ : M(A) → M(B) such that π̄|A = π. We shall usually make no

notational difference between π and its extension π̄.

2.3. Commutative C∗-algebras and functional calculus. If A is commutative,

then we denote by ∆(A) the set of all non-zero algebra homomorphisms χ : A →
C equipped with the weak-∗ topology. Then ∆(A) is locally compact and it is

compact if A is unital. If a ∈ A, then â : ∆(A) → C; â(χ) := χ(a) is an element of

C0(∆(A)), and the Gelfand-Naimark theorem asserts that A → C0(∆(A)) : a 7→ â

is an (isometric) ∗-isomorphism.

If A is any C∗-algebra, then an element a ∈ A is called normal if a∗a = aa∗. If

a ∈ A is normal, then C∗(a, 1) ⊆ A1 is a commutative sub-C∗-algebra of A1. Let

σ(a) = {λ ∈ C : a−λ1 is not invertible in A1} denote the spectrum of a, a nonempty

compact subset of C. If λ ∈ σ(a), then a − λ1 generates a unique maximal ideal

Mλ of C∗(a, 1) and the quotient map C∗(a, 1) → C∗(a, 1)/Mλ
∼= C determines an

element χλ ∈ ∆(C∗(a, 1)). One then checks that λ 7→ χλ is a homeomorphism

between σ(a) and ∆(C∗(a, 1)). Thus, the Gelfand-Naimark theorem provides a ∗-
isomorphism Φ : C(σ(a)) → C∗(a, 1). If p(z) =

∑n
i,j=0 αijz

iz̄j is a plynomial in z

and z̄ (which by the Stone-Weierstraß theorem form a dense subalgebra of C(σ(a))),

then Φ(p) =
∑n

i,j=0 αija
i(a∗)j . In particular, we have Φ(1) = 1 and Φ(idσ(a)) = a.

In what follows, we always write f(a) for Φ(f). Note that σ(f(a)) = f(σ(a)) and if

g ∈ C
(
σ(f(a))

)
, then g(f(a)) = (g ◦ f)(a), i.e., the functional calculus is compatible

with composition of functions. If A is not unital, then 0 ∈ σ(a) and it is clear that for

any polynomial p in z and z̄ we have p(a) ∈ A if and only if p(0) = 0. Approximating

functions by polynomials, it follows that f(a) ∈ A if and only f(0) = 0 and we obtain

an isomorphism C0(σ(a) \ {0}) → C∗(a) ⊆ A; f 7→ f(a).

Example 2.1. An element a ∈ A is called positive if a = b∗b for some b ∈ A. This is

equivalent to say that σ(a) ⊆ [0,∞). If a ≥ 0, then the functional calculus provides

the element
√

a ∈ A, which is the unique positive element of A such that (
√

a)2 = a.



4 le 4/5/2009

If a ∈ A is selfadjoint (i.e., a = a∗), then σ(a) ⊆ R and the functional calculus

allows a unique decomposition a = a+−a− with a+, a− ≥ 0. Simply take a+ = f(a)

with f(t) = max{t, 0}. Since we can write any b ∈ A as a linear combination of

two selfadjoint elements via b = 1
2(a + a∗) + i 1

2i(a − a∗), we see that every element

of A can be written as a linear combination of four positive elements. Since every

positive element is a square, it follows that A = A2 := LH{ab : a, b ∈ A} (Cohen’s

factorization theorem even implies that A = {ab : a, b ∈ A}).

Every C∗-algebra has an approximate unit, i.e., (ai)i∈I is a net in A such that

‖aia − a‖, ‖aai − a‖ → 0 for all a ∈ A. In fact (ai)i∈I can be chosen so that ai ≥ 0

and ‖ai‖ = 1 for all i ∈ I, i.e., (ai)i∈I . If A is separable ( i.e., A contains a countable

dense set), then one can find a sequence (an)n∈N with theses properties.

If A is a unital C∗-algebra, then u ∈ A is called a unitary, if uu∗ = u∗u = 1. If u is

unitary, then σ(u) ⊆ T = {z ∈ C : |z| = 1} and hence C∗(u) = C∗(u, 1) is isomorphic

to a quotient of C(T). Note that if u, v ∈ A are two unitaries such that uv = e2πiθvu

for some irrational θ ∈ [0, 1], then one can show that σ(u) = σ(v) = T, so that

C∗(u) ∼= C∗(v) ∼= C(T). It follows that the irrational rotation algebra Aθ = C∗(u, v)

should be regarded as (the algebra of functions on) a “noncommutative product” of

two tori which results in the expression of a noncommutative 2-torus.

2.4. Representation and Ideal spaces of C∗-algebras. If A is a C∗-algebra,

the spectrum Â is defined as the set of all unitary equivalence classes of irreducible

representations π : A → B(H) of A on Hilbert space1. We shall usually make no

notational difference between an irreducible representation π and its equivalence

class [π] ∈ Â. The primitive ideals of A are the kernels of the irreducible represen-

tations of A, and we write Prim(A) := {ker π : π ∈ Â} for the set of all primitive

ideals of A. Every closed two-sided ideal I of A is an intersection of primitive

ideals. The spaces Â and Prim(A) are equipped with the Jacobson topologies, where

the closure operations are given by π ∈ R :⇔ ker π ⊇ ∩{ker ρ : ρ ∈ R} (resp.

P ∈ R :⇔ P ⊇ ∩{Q : Q ∈ R}) for R ⊆ Â (resp. R ⊆ Prim(A)). In general, the

Jacobson topologies are far away from being Hausdorff. In fact, while Prim(A) is

at least always a T0-space (i.e. for any two different elements in Prim(A) at least

one of them has an open neighborhood which does not contain the other), this very

weak separation property often fails for the space Â. If A is commutative, it follows

from Schur’s lemma that Â = ∆(A) and the Jacobson topology coincides in this

case with the weak-∗ topology.

If I is a closed two-sided ideal of A, then Â can be identified with the disjoint

union of Î with Â/I, such that Î identifies with {π ∈ Â : π(I) 6= {0}} ⊆ Â and

Â/I identifies with {π ∈ Â : π(I) = {0}} ⊆ Â. It follows from the definition of the

Jacobson topology that Â/I is closed and Î is open in Â. The correspondence I ↔ Î

1A selfadjoint subset S ⊆ B(H) is called irreducible if there exists no proper nontrivial closed

subspace L ⊆ H with SL ⊆ L. By Schur’s lemma, this is equivalent to saying that the commutator

of S in B(H) is equal to C · 1. A representation π : A → B(H) is irreducible if π(A) is irreducible.

Two representations π, ρ of A on Hπ and Hρ, respectively, are called unitarily equivalent, if there

exists a unitary V : Hπ → Hρ such that V ◦ π(a) = ρ(a) ◦ V for all a ∈ A.
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(resp I ↔ Â/I) is a one-to-one correspondence between the closed two-sided ideals

of A and the open (resp. closed) subsets of Â. Similar statements hold for the open

or closed subsets of Prim(A).

A C∗-algebra is called simple if {0} is the only proper closed two-sided ideal of A.

Of course, this is equivalent to saying that Prim(A) has only one element (the zero

ideal). Simple C∗-algebras are thought of as the basic “building blocks” of more

general C∗-algebras. Examples of simple algebras are the algebras K(H) of compact

operators on a Hilber space H and the irrational rotation algebras Aθ. Notice that

while K̂(H) has also only one element (the equivalance class of its embedding into

B(H)), one can show that Âθ is an uncountable infinite set (this can actually be

deduced from Proposition 11.1 below).

A C∗-algebra A is called type I (or GCR or postliminal) if for every irreducible

representation π : A → B(H) we have π(A) ⊇ K(H). We refer to [23, Chapter XII]

for some important equivalent characterizations of type I algebras. A C∗-algebra A is

called CCR (or liminal), if π(A) = K(H) for every irreducible representation π ∈ Â.

If A is type I, then the mapping Â → Prim(A) : π 7→ ker π is a homeomorphism,

and the converse holds if A is separable (in the non-separable case this converse is

still an open problem). Furthermore, if A is type I, then A is CCR if and only if

Â ∼= Prim(A) is a T1-space, i.e., points are closed.

A C∗-algebra is said to have continuous trace if there exists a dense ideal m ⊆ A

such that for all positve elements a ∈ m the operator π(a) ∈ B(Hπ) is trace-class

and the resulting map Â → [0,∞);π 7→ tr(π(a)) is continuous. Continuous trace

algebras are all CCR with Hausdorff spectrum Â. Note that every type I C∗-algebra

A contains a non-zero closed two-sided ideal I such that I is a continuous-trace

algebra (see [23, Chapter 4]).

2.5. Tensor products. The algebraic tensor product A⊙ B of two C∗-algebras A

and B has a canonical structure as a ∗-algebra. To make it a C∗-algebra, we have

to take completions with respect to suitable cross-norms ‖ · ‖µ satisfying ‖a⊗ b‖µ =

‖a‖‖b‖. Among the possible choices of such norms there is a maximal cross-norm

‖ · ‖max and a minimal cross-norm ‖ · ‖min giving rise to the maximal tensor product

A ⊗max B and the minimal tensor product A ⊗min B (which we shall always denote

by A ⊗ B).

The maximal tensor product is characterized by the universal property that any

∗-homomorphisms π : A ⊙ B → B(H) extends to the completion A ⊗max B. The

minimal (or spatial) tensor product A ⊗ B is the completion of A ⊙ B with respect

to ∥∥∥∥∥
n∑

i=1

ai ⊗ bi

∥∥∥∥∥
min

=

∥∥∥∥∥
n∑

i=1

ρ(ai) ⊗ σ(bi)

∥∥∥∥∥ ,

where ρ : A → B(Hρ), σ : B → B(Hσ) are faithful representations of A and B

and the norm on the right is taken in B(Hρ ⊗ Hσ). It is a non-trivial fact (due to

Takesaki) that ‖ · ‖min is the smallest cross-norm on A ⊙ B and that it does not

depend on the choice of ρ and σ (e.g. see [105, Theorem B.38]).
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A C∗-algebra A is called nuclear, if A ⊗max B = A ⊗ B for all B. Every type

I C∗-algebra is nuclear (e.g. see [105, Corollary B.49]) as well as the irrational

rotation algebra Aθ (which will follow from Theorem 4.7 below). In particular, all

commutative C∗-algebras are nuclear and we have C0(X) ⊗ B ∼= C0(X,B) for any

locally compact space X. One can show that B(H) is not nuclear, if H is an infinite

dimensional Hilbert space.

If H is an infinite dimensional Hilbert space, then K(H) ⊗ K(H) is isomorphic

to K(H) (which can be deduced from a unitary isomorphism H ⊗ H ∼= H). A C∗-

algebra A is called stable if A is isomorphic to A⊗K, where we write K := K(l2(N)).

It follows from the associativity of taking tensor products that A ⊗ K is always

stable and we call A ⊗ K the stabilization of K. Note that A ⊗ K and A have

isomorphic representation and ideal spaces. For example, the map π 7→ π ⊗ idK

gives a homeomorphism between Â → (A ⊗ K)̂ . Moreover A is type I (or CCR or

continuous-trace or nuclear) if and only if A ⊗K is.

3. Actions and their crossed products

3.1. Haar measure and Vector-valued integration on groups. If X is a locally

compact space, we denote by Cc(X) the set of all continuous functions with compact

supports on X. A positive integral on Cc(X) is a linear functional
∫

: Cc(X) → C

such that
∫
X f(x) dx :=

∫
(f) ≥ 0 if f ≥ 0. We refer to [111] for a good treatment of

the Riesz representation theorem which provides a one-to-one connection between

integrals on Cc(X) and positive measures on X. If H is a Hilbert space and f :

X → B(H) is a weakly continuous function (i.e., x 7→ 〈f(x), ξ, η〉 is continuous for

all ξ, η ∈ H) with compact support, then there exists a unique operator
∫
X f(x) dx ∈

B(H) such that

〈(∫

X
f(x) dx

)
ξ, η

〉
=

∫

X
〈f(x)ξ, η〉 dx for all ξ, η ∈ H.

If A is a C∗-algebra imbedded faithfully into some B(H), then approximating f

uniformly with controlled supports by elements in the algebraic tensor product

Cc(X) ⊙ A shows that
∫
X f(x) dx ∈ A. Moreover, if f : X → M(A) is a strictly

continuous function with compact support and M(A) ⊆ B(H), then f is weakly

continuous as a function into B(H), and since
(
x 7→ af(x), f(x)a

)
∈ Cc(X,A) for

all a ∈ A it follows that
∫
X f(x) dx ∈ M(A).

If G is a locally compact group, then there exists a nonzero positive integral∫
: Cc(X) → C, called Haar integral on Cc(G), such that

∫
G f(gx) dx =

∫
G f(x) dx

for all f ∈ Cc(G) and g ∈ G. The Haar integral is unique up to multiplication with

a positive number, which implies that for each g ∈ G there exists a positive number

∆(g) such that
∫
G f(x) dx = ∆(g)

∫
G f(xg) dx for all f ∈ Cc(G) (since the right hand

side of the equation defines a new Haar integral). One can show that ∆ : G → (0,∞)

is a continuous group homomorphism. A group G is called unimodular if ∆(g) = 1

for all g ∈ G. All discrete, all compact and all abelian groups are unimodular,

however, the ax + b-group, which is the semidirect product R ⋊ R∗ via the action of



le 4/5/2009 7

the multiplicative group R∗ := R \ {0} on the additive group R by dilation, is not

unimodular.

3.2. C∗-dynamical systems and their crossed products. An action of a locally

compact group G on a C∗-algebra A is a homomorphism α : G → Aut(A); s 7→ αs of

G into the group Aut(A) of ∗-automorphisms of A such that s 7→ αs(a) is continuous

for all a ∈ A (i.e., α is strongly continuous). The triple (A,G,α) is then called a

C∗-dynamical system (or covariant system). We also say that A is a G-algebra, when

A is equipped with a given G-action α.

Example 3.1 (Transformation groups). If G×X → X; (s, x) 7→ s ·x is a continuous

action of G on a locally compact Hausdorff space X, then G acts on C0(X) by(
αs(f)

)
(x) := f(s−1 · x), and it is not difficult to see that every action on C0(X)

arises in this way. Thus, general G-algebras are non-commutative analogues of

locally compact G-spaces.

If A is a G-algebra, then Cc(G,A) becomes a ∗-algebra with respect to convolution

and involution defined by

(3.1) f ∗ g(s) =

∫

G
f(t)αt(g(t−1s)) dt and f∗(s) = ∆(s−1)αs(f(s−1))∗.

A covariant homomorphisms of (A,G,α) into the multiplier algebra M(D) of some

C∗-algebra D is a pair (π,U), where π : A → M(D) is a ∗-homomorphism and

U : G → UM(D) is a strictly continuous homomorphism into the group UM(D) of

unitaries in M(D) satisfying

π(αs(a)) = Usπ(a)Us−1 for all s ∈ G.

We say that (π,U) is non-degenerate if π is non-degenerate. A covariant repre-

sentation of (A,G,α) on a Hilbert space H is a covariant homomorphism into

M(K(H)) = B(H). If (π,U) is a covariant homomorphism into M(D), its inte-

grated form π × U : Cc(G,A) → M(D) is defined by

(3.2) (π × U)(f) :=

∫

G
π(f(s))Us ds ∈ M(D).

It is straightforward to check that π × U is a ∗-homomorphism.

Covariant homomorphisms do exist. Indeed, if ρ : A → M(D) is any

∗-homomorphism, then we can construct the induced covariant homomor-

phism Ind ρ := (ρ̃, 1 ⊗ λ) of (A,G,α) into M
(
D ⊗ K(L2(G))

)
as follows:

Let λ : G → U(L2(G)) denote the left regular representation of G given by

(λsξ)(t) = λ(s−1t), and define ρ̃ as the composition

A
α̃−−−−→ M

(
A ⊗ C0(G)

) ρ⊗M−−−−→ M
(
D ⊗K(L2(G))

)
,

where the ∗-homomorphism α̃ : A → Cb(G,A) ⊆ M
(
A ⊗ C0(G)

)
2 is defined by

α̃(a)(s) = αs−1(a), and where M : C0(G) → B(L2(G)) = M(K(L2(G))) denotes the

represention by multiplication operators. We call Ind ρ the covariant homomorphism

2Cb(G, A) is regarded as a subset of M
`

A⊗C0(G)
´

via the identification A⊗C0(G) ∼= C0(G, A)

and taking pointwise products of functions.
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induced from ρ, and we shall make no notational difference between Ind ρ and its

integrated form ρ̃ × (1 ⊗ λ). Ind ρ is faithful on Cc(G,A) whenever ρ is faithful on

A. If ρ = idA, the identity on A, then we say that

ΛG
A := Ind(idA) : Cc(G,A) → M

(
A ⊗K(L2(G))

)

is the regular representation of (A,G,α). Notice that

(3.3) Ind ρ = (ρ ⊗ idK) ◦ ΛG
A

for all ∗-homomorphisms ρ : A → M(D). 3

Remark 3.2. If we start with a representation ρ : A → B(H) = M(K(H)) of A

on a Hilbert space H, then Ind ρ = (ρ̃, 1 ⊗ λ) is the representation of (A,G,α) into

B(H ⊗ L2(G)) (which equals M(K(H) ⊗K(L2(G)))) given by the formulas
(
ρ̃(a)ξ

)
(t) = ρ(αt−1(a))(ξ(t)) and

(
1 ⊗ λ)(s)ξ

)
(t) = ξ(s−1t),

for a ∈ A, s ∈ G and ξ ∈ L2(G,H) ∼= H ⊗L2(G). Its integrated form is given by the

convolution formula

f ∗ ξ(t) :=
(
Ind ρ(f)ξ

)
(t) =

∫

G
ρ
(
αt−1(f(s))

)
ξ(s−1t) ds

for f ∈ Cc(G,A) and ξ ∈ L2(G,H).

In the literature the regular representation is often defined as such concrete rep-

resentation on Hilbert space, but it has the disadvantage that it depends on a choice

of an embedding of A into some B(H).

Definition 3.3. Let (A,G,α) be a C∗-dynamical system.

(i) The full crossed produt A ⋊α G (or just A ⋊ G if α is understood) is the

completion of Cc(G,A) with respect to

‖f‖max := sup{‖(π × U)(f)‖ : (π,U) is a covariant representation of (A,G,α)}.

(ii) The reduced crossed product A ⋊α,r G (or just A ⋊r G) is defined as

ΛG
A

(
Cc(G,A)

)
⊆ M

(
A ⊗K(L2(G))

)
.

Remark 3.4. (1) It follows directly from the above definition that every integrated

form π × U : Cc(G,A) → M(D) of a covariant homomorphism (π,U) extends to

a ∗-homomorphism of A ⋊α G into M(D). Conversely, every non-degenerate

∗-homomorphism Φ : A ⋊α G → M(D) is of the form Φ = π × U for some non-

degenerate covariant homomorphism (π,U). To see this consider the canonical co-

variant homomorphism (iA, iG) of (A,G,α) into M(A ⋊α G) given by the formulas

(iA(a)f)(s) = af(s) (iG(t)f)(s) = αt(f(t−1s))

(fiA(a))(s) = f(s)αs(a) (fiG(t))(s) = ∆(t−1)αs−1

(
f(st−1)

)
,

3This equation even makes sense if ρ is degenerate since ρ ⊗ idK is well defined on the image of

Cb(G, A) in M(A ⊗K(L2(G))).
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f ∈ Cc(G,A) (the given formulas extend to left and right multiplications of iA(a)

and iG(s) with elements in A⋊G). It is then relatively easy to check that Φ = π×U

with

π = Φ ◦ iA and U = Φ ◦ iG.

Nondegeneracy of Φ is needed to have the compositions Φ ◦ iA and Φ ◦ iG well

defined. In the definition of ‖ · ‖max one could restrict to non-degenerate or even

(topologically) irreducible representations of (A,G,α) on Hilbert space. However,

it is extremely useful to consider more general covariant homomorphisms into mul-

tiplier algebras.

(2) The above described correspondence between non-degenerate representations of

(A,G,α) and A⋊G induces a bijection between the set (A,G,α)̂ of unitary equiv-

alence classes of irreducible covariant Hilbert-space representations of (A,G,α) and

(A ⋊ G)̂ . We topologize (A,G,α)̂ such that this bijection becomes a homeomor-

phisms.

(3) The reduced crossed product A⋊r G does not enjoy the above described univer-

sal properties, and therefore it is often more difficult to handle. However, it follows

from (3.3) that whenever ρ : A → M(D) is a ∗-homomorphism, then Ind ρ factors

through a representation of A ⋊r G to M(D) which is faithful iff ρ is faithful. In

particular, if ρ : A → B(H) is a faithful representation of A on Hilbert space, then

Ind ρ is a faithful representation of A ⋊r G into B(H ⊗ L2(G)).

(4) It follows from the definition of A ⋊r G, that the canonical inclusion iA,r : A →
M(A ⋊r G) ⊆ M(A ⊗ K(L2(G)) maps a to a ⊗ 1, and hence it is isometric. Since

iA,r = ΛG
A ◦ iA, where iA denotes the embedding of A into M(A ⋊ G), we see that

iA is injective, too.

(5) If G is discrete, then A embeds into A⋊(r)G via a 7→ δe⊗a ∈ Cc(G,A) ⊆ A⋊(r)G.

If, in addition, A is unital, then G also embeds into A ⋊(r) G via g 7→ δg ⊗ 1. If

we identify a ∈ A and g ∈ G with their images in A ⋊(r) G, we obtain the relations

ga = αg(a)g for all a ∈ A and g ∈ G. The full crossed product is then the universal

algebra generated by A and G (viewed as a group of unitaries) subject to the relation

ga = αg(a)g.

(6) In case A = C the maximal crossed product C∗(G) := C ⋊ G is called the

full group C∗-algebra of G (note that C has only the trivial ∗-automorphism). The

universal properties of C∗(G) translate into a one-to-one correspondence between

the unitary representations of G and the non-degenerate ∗-representations of C∗(G)

which induces a bijection between the set Ĝ of equivalence classes of irreducible

unitary Hilbert-space representations of G and Ĉ∗(G). Again, we topologize Ĝ so

that this bijection becomes a homeomorphism.

The reduced group C∗-algebra C∗
r (G) := C ⋊r G is realized as the closure

λ
(
Cc(G)

)
⊆ B(L2(G)), where λ denotes the regular representation of G.

(7) If G is compact, then every irreducible representation is finite dimensional and

the Jacobson topology on Ĝ = Ĉ∗(G) is the discrete topology. Moreover, it follows

from the Peter-Weyl theorem(e.g. see [48]) that C∗(G) and C∗
r (G) are isomorphic

to the C∗-direct sum
⊕

U∈ bG Mdim U (C). In particular, we have C∗(G) = C∗
r (G) if G
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is compact.

(8) The convolution algebra Cc(G), and hence also its completion C∗(G), is com-

mutative if and only if G is abelian. In that case Ĝ coincides the set of continuous

homomorphisms from G to the circle group T, called characters of G, equipped

with the compact-open topology. The Gelfand-Naimark theorem for commutative

C∗-algebras then implies that C∗(G) ∼= C0(Ĝ) (which also coincides with C∗
r (G) in

this case). Note that Ĝ, equipped with the pointwise multiplication of characters,

is again a locally compact abelian group and the Pontrjagin duality theorem asserts

that
̂̂
G is isomorphic to G via g 7→ ĝ ∈ ̂̂

G defined by ĝ(χ) = χ(g). Notice that the

Gelfand isomorphism C∗(G) ∼= C0(Ĝ) extends the Fourier transform

F : Cc(G) → C0(Ĝ);F(f)(χ) = χ(f) =

∫

G
f(x)χ(x) dx.

For the circle group T we have Z ∼= T̂ via n 7→ χn with χn(z) = zn, and one checks

that the above Fourier transform coincides with the classical Fourier transform on

C(T). Similarly, if G = R, then R ∼= R̂ via s 7→ χs with χs(t) = e2πist and we recover

the classical Fourier transform on R (see [48] for more details).

Example 3.5 (Transformation group algebras). If (X,G) is a topological dynam-

ical system, then we can form the crossed products C0(X) ⋊ G and C0(X) ⋊r G

with respect to the corresponding action of G on C0(X). These algebras are often

called the (full and reduced) transformation group algebras of the dynamical system

(X,G). Many important C∗-algebras are of this type. For instance if X = T is the

circle group and Z acts on T via n · z = ei2πθnz, θ ∈ [0, 1], then Aθ = C(T) ⋊ Z is

the (rational or irrational) rotation algebra corresponding to θ (compare with §2.1
above). Indeed, since Z is discrete and C(T) is unital, we have canonical embed-

dings of C(T) and Z into C(T) ⋊ Z. If we denote by v the image of idT ∈ C(T)

and by u the image of 1 ∈ Z under these embeddings, then the relations given in

part (5) of the above remark show that u, v are unitaries which satisfy the basic

commutation relation uv = e2πθivu. It is this realization as a crossed product of Aθ

which motivates the notion “rotation algebra”.

There is quite some interesting and deep work on crossed products by actions of

Z (or Zd) on compact spaces, which we cannot cover in this article. We refer the

interested reader to the article [58] for a survey and for further references to this

work.

Example 3.6 (Decomposition action). Assume that G = N ⋊ H is the semi-direct

product ot two locally compact groups. If A is a G-algebra, then H acts canonically

on A ⋊ N (resp. A ⋊r N) via the extension of the action γ of H on Cc(N,A) given

by
(
γh(f)

)
(n) = δ(h)αh

(
f(h−1 · n)

)
,

where δ : H → R+ is determined by the equation
∫
N f(h · n) dn = δ(h)

∫
N f(n) dn

for all f ∈ Cc(N). The inclusion Cc(N,A) ⊆ A ⋊(r) N determines an inclusion

Cc(N × K,A) ⊆ Cc(K,A ⋊(r) N) which extends to isomorphisms A ⋊ (N ⋊ H) ∼=
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(A⋊N)⋊H and A⋊r (N ⋊H) ∼= (A⋊r N)⋊r H. In particular, if A = C, we obtain

canonical isomorphisms C∗(N ⋊ H) ∼= C∗(N) ⋊ H and C∗
r (N ⋊ H) ∼= C∗

r (N) ⋊r H.

We shall later extend the notion of crossed products to allow also the decompos-

tion of crossed products by group extensions which are not topologically split.

Remark 3.7. When working with crossed products, it is often useful to use the

following concrete realization of an approximate unit in A ⋊ G (resp. A ⋊r G) in

terms of a given approximate unit (ai)i∈I in A: Let U be any neighborhood basis of

the identity e in G, and for each U ∈ U let ϕU ∈ Cc(G)+ such that
∫
G ϕU (t) dt = 1.

Let Λ = I×U with (i1, U1) ≥ (i2, U2) if i1 ≥ i2 and U1 ⊆ U2. Then a straightforward

computation in the dense subalgebra Cc(G,A) shows that (ϕU ⊗ ai)(i,U)∈Λ is an

approximate unit of A ⋊ G (resp. A ⋊r G), where we write ϕ ⊗ a for the function

(t 7→ ϕ(t)a) ∈ Cc(G,A) if ϕ ∈ Cc(G) and a ∈ A.

4. Crossed products versus tensor products

The following lemma indicates the conceptual similarity of full crossed products

with maximal tensor products and of reduced crossed products with minimal tensor

products of C∗-algebras.

Lemma 4.1. Let (A,G,α) be a C∗-dynamical system and let B be a C∗-algebra.

Let id⊗maxα : G → Aut(B⊗max A) be the diagonal action of G on B⊗max A (i.e., G

acts trivially on B), and let id⊗α : G → Aut(B ⊗A) denote the diagonal action on

B ⊗A. Then the obvious map B ⊙Cc(G,A) → Cc(G,B ⊙A) induces isomorphisms

B⊗max (A⋊α G) ∼= (B⊗max A)⋊id⊗α G and B⊗ (A⋊α,r G) ∼= (B⊗A)⋊id⊗α,r G.

Sketch of proof. For the full crossed products check that both sides have the same

non-degenerate representations and use the universal properties of full crossed prod-

ucts and maximal tensor product. For the reduced crossed products observe that

the map B ⊙ Cc(G,A) → Cc(G,B ⊙ A) identifies idB ⊗ΛG
A with ΛG

B⊗A. �

Remark 4.2. As a special case of the above lemma (with A = C) we see in particular

that

B ⋊id G ∼= B ⊗max C∗(G) and B ⋊id,r G ∼= B ⊗ C∗
r (G).

We now want to study an important condition on G which implies that full and

reduced crossed products by G always coincide.

Definition 4.3. Let 1G : G → {1} ⊆ C denote the trivial representation of G. Then

G is called amenable if ker 1G ⊇ ker λ in C∗(G), i.e., if the integrated form of 1G

factors through a homomomorphism 1r
G : C∗

r (G) → C. 4

Remark 4.4. The above definition is not the standard definition of amenability

of groups, but it is one of the many equivalent formulations for amenability (e.g.

see [54, 23]), and it is best suited for our purposes. It is not hard to check (even

using the above C∗-theoretic definition) that abelian groups and compact groups

4In particular, it follows that 1r
G(λs) = 1G(s) = 1 for all s ∈ G!
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are amenable. Moreover, extensions, quotients, and closed subgroups of amenable

groups are again amenable. In particular, all solvable groups are amenable.

On the other side, one can show that the non-abelian free group F2 on two gener-

ators, and hence any group which contains F2 as a closed subgroup, is not amenable.

This shows that non-compact semi-simple Lie groups are never amenable. For ex-

tensive studies of amenability of groups (and groupoids) we refer to [54, 97, 2].

If (π,U) is is covariant representation of (A,G,α) on some Hilbert space H, then

the covariant representation (π⊗ 1, U ⊗λ) of (A,G,α) on H ⊗L2(G) ∼= L2(G,H) is

unitarily equivalent to Indπ via the unitary W ∈ U(L2(G,H)) defined by (Wξ)(s) =

Usξ(s). Thus, if π is faithful on A, then (π ⊗ 1)× (U ⊗ λ) factors through a faithful

representation of A ⋊r G. As an important application we get

Proposition 4.5. If G is amenable, then ΛG
A : A ⋊α G → A ⋊α,r G is an isomor-

phism.

Proof. Choose any faithful representation π × U of A ⋊α G on some Hilbert space

H. Regarding (π⊗1, U ⊗λ) as a representation of (A,G,α) into M(K(H)⊗C∗
r (G)),

we obtain the equation

(id⊗1r
G) ◦

(
(π ⊗ 1) × (U ⊗ λ)

)
= π × U.

Since π is faithful, it follows that

ker ΛG
A = ker(Indπ) = ker

(
(π ⊗ 1) × (U ⊗ λ)

)
⊆ ker(π × U) = {0}.

�

The special case A = C gives

Corollary 4.6. G is amenable if and only if λ : C∗(G) → C∗
r (G) is an isomorphism.

A combination of Lemma 4.1 with Proposition 4.5 gives the following important

result:

Theorem 4.7. Let A be a nuclear G-algebra with G amenable. The A ⋊α G is

nuclear.

Proof. Using Lemma 4.1 and Proposition 4.5 we get

B ⊗max (A ⋊α G) ∼= (B ⊗max A) ×id⊗α G ∼= (B ⊗ A) ×id⊗α G

∼= (B ⊗ A) ×id⊗α,r G ∼= B ⊗ (A ⋊α,r G) ∼= B ⊗ (A ⋊α G).

�

If (A,G,α) and (B,G, β) are two systems, then a G-equivariant homomorphism

φ : A → M(B) 5 induces a ∗-homomorphism

φ ⋊ G := (iB ◦ φ) × iG : A ⋊α G → M(B ×β G)

5where we uniquely extend β to an action of M(B), which may fail to be strongly continuous
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where (iB , iG) denote the canonical embeddings of (B,G) into M(B ⋊β G), and a

similar ∗-homomorphism

φ ⋊r G := Indφ : A ⋊α,r G → M(B ⋊β,r G) ⊆ M
(
B ⊗K(L2(G))

)
.

Both maps are given on the level of functions by

φ ⋊(r) G(f)(s) = φ(f(s)), f ∈ Cc(G,A).

If φ(A) ⊆ B, then φ ⋊ G(A ⋊α G) ⊆ B ⋊β G and similarly for the reduced crossed

products. Moreover, φ ⋊r G = Indφ is faithful if and only if φ is — a result which

does not hold in general for φ ⋊ G!

On the other hand, the following proposition shows that taking full crossed prod-

ucts gives an exact functor between the category of G-C∗-algebras and the category

of C∗-algebras, which is not at all clear for the reduced crossed-product functer!

Proposition 4.8. Assume that α : G → Aut(A) is an action and I is a G-invariant

closed ideal in A. Let j : I → A denote the inclusion and let q : A → A/I denote

the quotient map. Then the sequence

0 → I ⋊α G
j⋊G−−−−→ A ⋊α G

q⋊G−−−−→ (A/I) ⋊α G → 0

is exact.

Proof. If (π,U) is a non-degenerate representation of (I,G, α) into M(D), then

(π,U) has a canonical extension to a covariant homomorphism of (A,G,α) by defin-

ing π(a)(π(b)d) = π(ab)d for a ∈ A, b ∈ I and d ∈ D. By the definition of ‖ · ‖max,

this implies that the inclusion I ⋊α G → A ⋊α G is isometric.

Assume now that p : A⋊α G → (A⋊α G)/(I ⋊α G) is the quotient map. Then p =

ρ×V for some covariant homomorphism (ρ, V ) of (A,G,α) into M
(
(A⋊G)/(I⋊G)

)
.

Let iA : A → M(A ⋊ G) denote the embedding. Then we have iA(I)Cc(G,A) =

Cc(G, I) ⊆ I ⋊ G from which it follows that

ρ(I)(ρ × V (Cc(G,A)) = ρ × V
(
iA(I)(A ⋊ G)

)
⊆ ρ × V (I ⋊ G) = {0}.

Since ρ × V (Cc(G,A)) is dense in A/I ⋊ G, it follows that ρ(I) = {0}. Thus ρ

factors through a representation of A/I and p = ρ × V factors through A/I ⋊α G.

This shows that the crossed product sequence is exact in the middle term. Since

Cc(G,A) clearly maps onto a dense subset in A/I ⋊α G, q ⋊ G is surjective and the

result follows. �

For quite some time it was an open question whether the analogue of Proposition

4.8 also holds for the reduced crossed products. This problem lead to

Definition 4.9 (Kirchberg – S. Wassermann). A locally compact group G is called

C∗-exact (or simply exact) if for any system (A,G,α) and any G-invariant ideal

I ⊆ A the sequence

0 → I ⋊α,r G
j⋊rG−−−−→ A ⋊α,r G

q⋊rG−−−−→ A/I ⋊α,r G → 0

is exact.
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Let us remark that only exactness in the middle term is the problem, since q ⋊r G

is clearly surjective, and j⋊rG = Ind j is injective since j is. We shall later report on

Kirchberg’s and S. Wassermann’s permanence results on exact groups, which imply

that the class of exact groups is indeed very large. However, a recent construction of

Gromov (see [56, 49]) implies that there do exist finitely generated discrete groups

which are not exact!

5. The Morita categories

In this section we want to give some theoretical background for the discussion of

imprimitivity theorems for crossed products and for the theory of induced represen-

tations. The basic notion for this is the notion of the Morita category in which the

objects are C∗-algebras and the morphisms are unitary equivalence classes of Hilbert

bimodules. Having this at hand, the theory of induced representations will reduce

to taking compositions of morphisms in the Morita category. All this is based on the

fundamental idea of Rieffel (see [106]) who first made systematic approach to the

theory of induced representations of C∗-algebras in terms of (pre-) Hilbert modules,

and who showed how the theory of induced group representations can be seen as

part of this more general theory. However, it seems that a systematic categorical

treatment of this theory was first given in [32] and, in parallel work by Landsman

in [75].

5.1. Hilbert modules. If B is a C∗-algebra, then a (right) Hilbert B-module is a

complex Banach space E equipped with a right B-module structure and a B-valued

inner product 〈·, ·〉B : E × E → B, which is linear in the second and antilinear in

the first variable and satisfies

(〈ξ, η〉B)∗ = 〈η, ξ〉B , 〈ξ, η〉Bb = 〈ξ, η · b〉B , and ‖ξ‖2 = ‖〈ξ, ξ〉B‖
for all ξ, η ∈ E and b ∈ B. With the obvious modifications we can also define

left-Hilbert B-modules. The Hilbert C-modules are precisely the Hilbert spaces.

Moreover, every C∗-algebra B becomes a Hilbert B-module by defining 〈b, c〉B :=

b∗c. We say that E is a full Hilbert B-module, if

B = 〈E,E〉B := span{〈ξ, η〉B : ξ, η ∈ E}.
In general 〈E,E〉B is a closed two-sided ideal of B.

If E is a Hilbert B-module, then a linear map T : E → E is called adjointable if

there exists a map T ∗ : E → E such that 〈Tξ, η〉B = 〈ξ, T ∗η〉B for all ξ, η ∈ E. 6

Every adjointable operator on E is automatically bounded and B-linear. The set

LB(E) = {T : E → E : T is adjointable}
becomes a C∗-algebra with respect to the usual operator norm. Every pair of ele-

ments ξ, η ∈ E determines an element Θξ,η ∈ LB(E) given by

(5.1) Θξ,η(ζ) := ξ · 〈η, ζ〉B
6Notice that, different from the operators on Hilbert space, a bounded B-linear operator T :

E → E is not automatically adjointable.
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with adjoint Θ∗
ξ,η = Θη,ξ. The closed linear span of all such operators forms the ideal

of compact operators KB(E) in LB(E) Note that there is an obvious ∗-isomorphism

between the multiplier algebra M(KB(E)) and LB(E), which is given by extending

the action of KB(E) on E to all of M(KB(E)) in the canonical way.

Example 5.1. (1) If B = C H is a Hilbert space, then LC(H) = B(H) and

KC(H) = K(H).

(2) Every C∗-algebra B can be viewed as a Hilbert B-module by defining 〈b, c〉B =

b∗c and the obvious right module operation. It is then easy to check that KB(B) = B,

where we B act on itself via left multiplication, and then we have LB(B) = M(B).

It is important to notice that, in case B 6= C, the notion of compact operators

as given above does not coincide with the standard notion of compact operators

on a Banach space (i.e., that the image of the unit ball has compact closure). For

example, if B is unital, then LB(B) = KB(B) = B and we see that the identity

operator on B is a compact operator in the sense of the above definition. But if B is

not finite dimensional, the identity operator is not a compact operator in the usual

sense of Banach-space operators.

There is a one-to-one correspondence between right and left Hibert B-modules

given by the operation E 7→ E∗ := {ξ∗ : ξ ∈ E}, with left action of B on E∗ given

by b · ξ∗ := (ξ · b∗)∗ and with inner product B〈ξ∗, η∗〉 := 〈ξ, η〉B (notice that the

inner product of a left Hilbert B-module is linear in the first and antilinear in the

second variable). We call E∗ the adjoint module of E. Of course, if F is a left

Hilbert B-module, a similar construction yields the adjoint F ∗ — a right Hilbert

B-module. Clearly, the notions of adjointable and compact operators also have their

left analogues (thought of as acting on the right), and we have LB(E) = LB(E∗)

(resp. KB(E) = KB(E∗)) via ξ∗T := (T ∗ξ)∗.

There are several important operations on Hilbert modules (like taking the direct

sum E1
⊕

E2 of two Hilbert B-modules E1 and E2 in the obvious way). But for our

considerations the construction of the interior tensor products is most important.

For this assume that E is a (right) Hilbert A-module, F is a (right) Hilbert B-

module, and Ψ : A → LB(F ) is a ∗-homomorphism. Then the interior tensor

product E ⊗A F is defined as the Hausdorff completion of E ⊙F with respect to the

B-valued inner product

〈ξ ⊗ η, ξ′ ⊗ η′〉B = 〈Ψ(〈ξ, ξ′〉A) · η, η′〉B ,

where ξ, ξ′ ∈ E and η, η′ ∈ F . With this inner product, E ⊗A F becomes a Hilbert

B-module. Moreover, if C is a third C∗-algebra and if Φ : C → LA(E) is a ∗-
representation of C on LA(E), then Φ⊗1 : C → LB(E⊗A F ) with Φ⊗1(c)(ξ⊗η) =

Φ(c)ξ⊗η becomes a ∗-representation of C on E⊗A F (we refer to [74, 105] for more

details). The construction of this representation is absolutely crucial in what follows

below.

5.2. Morita equivalences. The notion of Morita equivalent C∗-algebras, which

goes back to Rieffel [106] is one of the most important tools in the study of crossed

products.
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Definition 5.2 (Rieffel). Let A and B be C∗-algebras. An A-B imprimitivity

bimodule7 X is a Banach space X which carries the structure of both, a right Hilbert

B-module and a left Hilbert A-module with commuting actions of A and B such

that

(i) A〈X,X〉 = A and 〈X,X〉B = B (i.e., both inner products on X are full);

(ii) A〈ξ, η〉 · ζ = ξ · 〈η, ζ〉B for all ξ, η, ζ ∈ X.

A and B are called Morita equivalent if such A-B bimodule X exists.

Remark 5.3. (1) It follows from the above definition together with (5.1) that, if X
is an A-B imprimitivity bimodule, then A canonically identifies with KB(X) and B
canonically identifies with KA(X). Conversely, if E is any Hilbert B-module, then

K(E)〈ξ, η〉 := Θξ,η (see (5.1)) defines a full KB(E)-valued inner product on E, and
E becomes a KB(E) − 〈B,B〉B imprimitivity bimodule. In particular, if E is a full
Hilbert B-module (i.e., 〈E,E〉B = B), then B is Morita equivalent to KB(E).
(2) As a very special case of (1) we see that C is Morita equivalent to K(H) for
every Hilbert space H.
(3) It is easily checked that Morita equivalence is an equivalence relation: If A is
any C∗-algebra, then A becomes an A-A imprimitivity bimodule with respect to

A〈a, b〉 = ab∗ and 〈a, b〉A = a∗b for a, b ∈ A. If X is an A-B imprimitivity bimodule
and Y is a B-C imprimitivity bimodule, then X ⊗B Y is an A − C equivalence
bimodule. Finally, if X is an A-B-imprimitivity bimodule, then the adjoint module
X∗ is a B − A imprimitivity bimodule.
(4) Recall that a C∗-algebra A is a full corner of the C∗-algebra C, if there exists
a full projection p ∈ M(C) (i.e., CpC = C) such that A = pCp. Then pC equipped
with canonical inner products and actions coming from multiplication and involution
on C becomes an A−C imprimitivity bimodule. Thus, if A and B can be represented
as full corners of a C∗-algebra C, they are Morita equivalent. Conversely, let X
be an A-B imprimitivity bimodule. Let L(X) =

(
A X

X∗ B

)
with multiplication and

involution defined by
(

a1 ξ1

η∗

1
b1

) (
a2 ξ2

η∗

2
b2

)
=

(
a1a2 + A〈ξ1, η2〉 a1 · ξ2 + ξ1 · b2

η∗

1
· a2 + b1 · η∗

2
〈η1, ξ2〉B + b1b2

)
and

(
a ξ

η∗ b

)∗

=

(
a∗ η

ξ∗ b∗

)
.

Then L(X) has a canonical embedding as a closed subalgebra of the adjointable
operators on the Hilbert B-module X

⊕
B via

(
a ξ

η∗ b

) (
ζ

d

)
=

(
aζ + ξd

〈η, ζ〉B + bd

)

which makes L(X) a C∗-algebra. If p = ( 1 0
0 0 ) ∈ M(L(X)), then p and q := 1 − p

are full projections such that A = pL(X)p, B = qL(X)q and X = pL(X)q. The

algebra L(X) is called the linking algebra of X. It often serves as a valuable tool for

the study of imprimitivity bimodules.

(5) It follows from (4) that A is Morita equivalent to A⊗K(H) for any Hilbert space

H (since A is a full corner of A ⊗K(H)). Indeed, a deep theorem of Brown, Green

and Rieffel shows (see [9]) that if A and B are σ-unital8, then A and B are Morita

7often called an A-B equivalence bimodule in the literature
8A C∗-algebra is called σ-unital, if it has a countable approximate unit. In particular, all

separable and all unital C∗-algebras are σ-unital
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equivalent if and only if they are stably isomorphic, i.e., there exists an isomorphism

between A ⊗ K(H) and B ⊗ K(H) with H = l2(N). A similar result does not hold

if the σ-unitality assumption is dropped (see [9]).

(6) The above results indicate that many important properties of C∗-algebras are

preserved by Morita equivalences. Indeed, among these properties are: nuclearity,

exactness, simplicity, the property of being a type I algebra (and many more). More-

over, Morita equivalent C∗-algebras have homeomorphic primitive ideal spaces and

isomorphic K-groups. Most of these properties will be discussed later in more detail

(e.g., see Propositions 5.4, 5.11 and 5.12 below).

A very important tool when working with imprimitivity bimodules is the Rieffel

correspondence. To explain this suppose that X is an A-B imprimitivity bimodule

and that I is a closed ideal of B. Then X · I is a closed A-B submodule of X

and IndX I := A〈X · I,X · I〉 (taking the closed span) is a closed ideal of A. The

following proposition implies that Morita equivalent C∗-algebras have equivalent

ideal structures:

Proposition 5.4 (Rieffel correspondence). Assume notation as above. Then

(i) The assignments I 7→ X · I, I 7→ IndX I and I 7→ JI :=
(

IndX I X·I
I· eX I

)
provide

inclusion preserving bijective correspondences between the closed two-sided

ideals of B, the closed A-B-submodules of X, the closed two-sided ideals of

A, and the closed two-sided ideals of the linking algebra L(X), respectively.

(ii) X · I is an IndX I-I imprimitivity bimodule and X/(X · I), equipped with the

obvious inner products and bimodule actions, becomes an A/(IndX I)-B/I

imprimitivity bimodule. Moreover, we obviously have JI = L(X · I) and

L(X)/JI
∼= L(X/X · I).

Remark 5.5. Assume that X is a A-B imprimitivity bimodule and Y is a C-D

imprimitivity bimodule. An imprimitivity bimodule homomorphism from X to Y

is then a triple (φA, φX , φB) such that φA : A → C and ΦB : B → D are ∗-
homomorphisms and φX : X → Y is a linear map such that the triple (φA, φX , φB)

satisfies the obvious compatibilty conditions with respect to the inner products

and module actions on X and Y (e.g. 〈φX(ξ), φX (η)〉D = φB(〈ξ, η〉B), φX(ξb) =

φX(ξ)φB(b), etc.).

If (φA, φX , φB) is such an imprimitivity bimodule homomorphism, then one can

check that ker φA, ker φX and ker φB all correspond to each other under the Rieffel

correspondence for X.

As a simple application of the Rieffel correspondence and the above remark we

now show

Proposition 5.6. Suppose that A and B are C∗-algebras. Then A is nuclear if and

only if B is nuclear.

Sketch of proof. Let X be an A-B imprimitivity bimodule. If C is any other C∗-

algebra, we can equipp X ⊙ C with A ⊙ C- and B ⊙ C-valued inner products and

a A ⊙ C-B ⊙ C module structure in the obvious way. Then X ⊙ C completes to an
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A⊗max C-B⊗max C imprimitivity bimodule X ⊗max C as well as to an A⊗C-B ⊗C

imprimitivity bimodule X⊗C. The identity map on X⊙C then extends to a quotient

map X ⊗max C → X ⊗C which together with the quotient maps A⊗max C → A⊗C

and B ⊗max C → B ⊗ C is an imprimitivity bimodule homomorphism. But then it

follows from the above remark and the Rieffel correspondence that injectivity of any

one of these quotient maps implies injectivity of all three of them. �

5.3. The Morita category. We now come to the definition of the Morita cate-

gories. Suppose that A and B are C∗-algebras. A (right) Hilbert A-B bimodule

is a pair (E,Φ) in which E is a Hilbert B-module and Φ : A → LB(E) is a ∗-
representation of A on E. We say that (E,Φ) is non-degenerate, if Φ(A)E = E (this

is equivalent to Φ : A → M(KB(E)) = LB(E) being non-degenerate in the usual

sense). Two Hibert A-B bimodules (Ei,Φi), i = 1, 2 are called unitarily equivalent

if there exists an isomorphism U : E1 → E2 preserving the B-valued inner prod-

ucts such that UΦ1(a) = Φ2(a)U for all a ∈ A. We denote by [E,Φ] the unitary

equivalence class of (E,Φ).

Definition 5.7 (cf. [32, 33, 75]). The Morita category M is the category whose

objects are C∗-algebras and where the morphisms from A to B are given by unitary

equivalence classes [E,Φ] of non-degenerate Hilbert A-B bimodules (E,Φ). The

identity morphism from A to A is represented by the trivial A-A bimodule (A, id)

and composition of two morphisms [E,Φ] ∈ Mor(A,B) and [F,Ψ] ∈ Mor(B,C) is

given by taking the interior tensor product [E ⊗B F,Φ ⊗ 1].

The compact Morita category Mc is the subcategory of M in which we additionally

require Φ(A) ⊆ KB(E) for a morphism [E,Φ] ∈ Morc(A,B).

If X is an A-B imprimitivity bimodule, then the adjoint module X∗ satisfies

X ⊗B X∗ ∼= A as A-A bimodule and X∗ ⊗A X ∼= B as B-B bimodule, so X∗ is an

inverse of X in the Morita categories. Indeed we have

Proposition 5.8 (cf [75, 32]). The isomorphisms in the categories M and Mc are

precisely the Morita equivalences.

Remark 5.9. (1) Note that M and Mc are not categories in the strong sense, since

the collections Mor(A,B) and Morc(A,B) of morphisms from A to B do not form

sets. However, if we restrict to separable C∗-algebras and bimodules, then Mor(A,B)

and Morc(A,B) do form sets and M and Mc will become real categories. Of course,

one could similarly restrict to objects and modules with cardinality (of dense sub-

sets) restricted by any other cardinal number to force Mor(A,B) and Morc(A,B) to

be sets. We shall mostly ignore this point below.

(2) It is necessary to require the bimodules (E,Φ) to be non-degenerate (i.e.,

Φ(A)E = E) in order to have [A, id] ◦ [E,Φ] = [A ⊗A E, id⊗1] = [E,Φ]. How-

ever, if we are willing to identify an arbitrary A-B Hilbert bimodule (E,Φ) with

(Φ(A)E,Φ), we can include all bimodules into the picture.

(3) Note that every ∗-homomorphism Φ : A → M(B) determines a morphism

[E,Φ] ∈ Mor(A,B) in M (with E = Φ(A)B), and [E,Φ] is a morphism in Mc if and
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only if Φ(A) ⊆ B.

(4) Taking direct sums of bimodules allows to define sums of morphisms in the

Morita categories (and hence a semi-group structure with neutral element given by

the zero-module). It is easy to check that this operation is commutative and satisfies

the distributive law with respect to composition.

5.4. The equivariant Morita categories. If G is a locally compact group, then

the G-equivariant Morita category M(G) is the category in which the objects are

systems (A,G,α) and morphisms from (A,G,α) to (B,G, β) are the unitary equiva-

lence classes of equivariant non-degenerate A-B Hilbert bimodules (E,Φ, u), i.e., E

is equipped with a strongly continuous homomorphism u : G → Aut(E) such that

〈us(ξ), us(η)〉B = βs(〈ξ, η〉B), us(ξ · b) = us(ξ)βs(b)

and us(Φ(a)ξ) = Φ(αs(a))us(ξ).
(5.2)

Again, composition of morphisms is given by taking interior tensor products

equipped with the diagonal actions, and the equivalences in this category are just

the equivariant Morita equivalences.

Notice that the crossed product constructions A⋊G and A⋊r G extend to descent

functors

⋊(r) : M(G) → M.

In particular, Morita equivalent systems have Morita equivalent full (resp. reduced)

crossed products. If [E,φ, u] is a morphism from (A,G,α) to (B,G, β), then the

crossed product [E ⋊(r) G,Φ ⋊(r) G] ∈ Mor(A ⋊(r) G,B ⋊(r) G) is given as the

completion of Cc(G,E) with respect to the B ⋊(r) G-valued inner product

〈ξ, η〉B⋊(r)G(t) =

∫

G
〈ξ(s), us(η(s−1t))〉B ds

(taking values in Cc(G,B) ⊆ B ⋊(r) G) and with left action of Cc(G,A) ⊆ A ⋊(r) G

on E ⋊(r) G given by

(
Φ ⋊(r) G(f)ξ

)
(t) =

∫

G
Φ(f(s))us(ξ(s

−1t)) ds.

The crossed product constructions for equivariant bimodules first appeared in Kas-

parov’s famous Conspectus [65], which circulated as a preprint from the early eight-

ies. A more detailed study in case of imprimitivity bimodules has been given in [18].

A very extensive study of the equivariant Morita categories for actions and coactions

of groups together with their relations to duality theory are given in [33].

5.5. Induced representations and ideals. If B is a C∗-algebra we denote by

Rep(B) the collection of all equivalence classes of non-degenerate ∗-representations

of B on Hilbert space. In terms of the Morita category, Rep(B) coincides with the

collection Mor(B, C) of morphisms from B to C in M. Thus, if A is any other

C∗-algebra and if [E,Φ] ∈ Mor(A,B), then composition with [E,Φ] determines a

map

Ind(E,Φ) : Rep(B) → Rep(A); [H,π] 7→ [E,Φ] ◦ [H,π] = [E ⊗B H,Φ ⊗ 1].
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If confusion seems unlikely, we will simply write π for the representation (H,π) and

for its class [H,π] ∈ Rep(A) and we write IndE π for the representation Φ ⊗ 1 of A

on IndE H := E ⊗B H. We call IndE π the representation of A induced from π via

E.

Remark 5.10. (1) A special case of the above procedure is given in case when

Φ : A → M(B) is a non-degenerate ∗-homomorphism and [B,Φ] ∈ Mor(A,B) is the

corresponding morphism in M. Then the induction map IndB : Rep(B) → Rep(A)

coincides with the obvious map

Φ∗ : Rep(B) → Rep(A);π 7→ Φ∗(π) := π ◦ Φ.

(2) Induction in steps. If [H,π] ∈ Rep(B), [E,Φ] ∈ Mor(A,B) and [F,Ψ] ∈
Mor(D,A) for some C∗-algebra D, then it follows directly from the associativity of

composition in M that (up to equivalence)

IndF (IndE π) = IndF⊗AE π.

(3) If X is an A-B imprimitivity bimodule, then IndX : Rep(B) → Rep(A) gets

inverted by IndX∗

: Rep(A) → Rep(B), where X∗ denotes the adjoint of X (i.e.,

the inverse of [X] in M). Since composition of morphisms in M preserves direct

sums, it follows from this that induction via X maps irreducible representations of

B to irreducible representations of A and hence induces a bijection IndX : B̂ → Â

between the spectra.

It is useful to consider a similar induction map on the set I(B) of closed two sided

ideals of the C∗-algebra B. If (E,Φ) is any Hilbert A-B bimodule, we define

(5.3) IndE : I(B) → I(A); IndE I := {a ∈ A : 〈Φ(a)ξ, η〉B ∈ I for all ξ, η ∈ E}. 9

It is clear that induction preserves inclusion of ideals and with a little work one can

check that

(5.4) IndE(ker π) = ker(IndE π) for all π ∈ Rep(B).

Hence it follows from part (3) of Remark 5.10 that, if X is an A-B imprimitivity bi-

module, then induction of ideals via X restricts to give a bijection IndX : Prim(B) →
Prim(A) between the primitive ideal spaces of B and A. Since induction preserves

inclusion of ideals, the next proposition follows directly from the description of the

closure operations in Â and Prim(A) (see §2.4).

Proposition 5.11 (Rieffel). Let X be an A-B imprimitivity bimodule. Then the

bijections

IndX : B̂ → Â and IndX : Prim(B) → Prim(A)

are homeomorphisms.

9If X is an A-B imprimitivity bimodule, the induced ideal IndX I defined here coincides with

the induced ideal IndX I = A〈X · I, X · I〉 of the Rieffel correspondence (see Proposition 5.4).
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Notice that these homeomorphisms are compatible with the Rieffel-correspondence

(see Proposition 5.4): If I is any closed ideal of B and if we identify B̂ with the

disjoint union Î ∪ B̂/I in the canonical way (see §2.4), then induction via X

“decomposes” into induction via Y := X · I from Î to (IndX I )̂ and induction via

X/Y from B̂/I to (A/ IndX I )̂ . This helps to prove

Proposition 5.12. Suppose that A and B are Morita equivalent C∗-algebras. Then

(i) A is type I if and only if B is type I.

(ii) A is CCR if and only if B is CCR.

(iii) A has continuous trace algebra if and only if B has contininuous trace.

Proof. Recall from §2.4 that a C∗-algebra B is type I if and only if for each π ∈ B̂

the image π(B) ⊆ B(Hπ) contains K(Hπ). Furthermore, B is CCR if and only if B

is type I and points are closed in B̂.

If X is an A-B imprimitivity bimodule and π ∈ B̂, we may pass to B/ ker π

and A/ ker(IndX π) via the Rieffel correspondence to assume that π and IndE π

are injective, and hence that B ⊆ B(Hπ) and A ⊆ B(X ⊗B Hπ). If B is type

I, it follows that K := K(Hπ) is an ideal of B. Let Z := X · K. Then Z is an

IndX K − K imprimitivity bimodule and Z ⊗K Hπ, the composition of Z with the

K − C imprimitivity bimodule Hπ, is an IndX K − C imprimitivity bimodule. It

follows that IndX K ∼= K(Z ⊗K Hπ). Since Z ⊗K Hπ
∼= X ⊗B Hπ via the identity

map on both factors, we conclude that IndX π(A) contains the compact operators

K(X ⊗B Hπ). This proves (i). Now (ii) follows from (i) since B̂ is homeomorphic

to Â. The proof of (iii) needs a bit more room and we refer the interested reader to

[122, ]. �

Of course, similar induction procedures as described above can be defined in the

equivariant settings: If (A,G,α) is a system, then the morphisms from (A,G,α)

to (C, G, id) in M(G) are just the unitary equivalence classes of non-degenerate

covariant representations of (A,G,α) on Hilbert space, which we shall denote by

Rep(A,G) (supressing the given action α in our notation). Composition with a

fixed equivariant morphism [E,Φ, u] between two systems (A,G,α) and (B,G, β)

gives an induction map

IndE : Rep(B,G) → Rep(A,G); [H, (π,U)] 7→ [E,Φ, u] ◦ [H,π,U ].

As above, we shall write IndE H := E⊗AH, IndE π := Φ⊗1, and IndE U := u⊗U , so

that the composition [E,Φ, u]◦[H,π,U ] becomes the triple [IndE H, IndE π, IndE U ].

Taking integrated forms allows to identify Rep(A,G) with Rep(A⋊G) and hence we

may topologize Rep(A,G) so that these identifications become homeomorphisms. A

more or less straight-forward computation gives:

Proposition 5.13. Assume that [E,Φ, u] is a morphism from (A,G,α) to (B,G, β)

in M(G) and let [E ⋊ G,Φ ⋊ G] ∈ Mor(A ⋊ G,B ⋊ G) denote its crossed product.

Then, for each [H, (π,U)] ∈ Rep(B,G) we have

[IndE H, IndE π × IndE U ] = [IndE⋊G H, IndE(π × U)] in Rep(A ⋊ G).
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Hence induction from Rep(B,G) to Rep(A,G) via [E,Φ, u] is equivalent to induction

from Rep(A⋊G) to Rep(B⋊G) via [E⋊G,Φ⋊G] under the canonical identifications

Rep(A,G) ∼= Rep(A ⋊ G) and Rep(B,G) ∼= Rep(B ⋊ G).

Proof. Simply check that the map

W : Cc(G,E) ⊙ H → E ⊗A H; W (ξ ⊗ v) =

∫

G
ξ(s) ⊗ Usv ds

extends to a unitary from (E ⋊ G) ⊗A⋊G H to E ⊗A H which intertwines both

representations (see [30] for mor details). �

5.6. The Fell-topologies and weak containment. For later use and for com-

pleteness it is necessary to discuss some more topological notions on the spaces

Rep(B) and I(B): For I ∈ I(B) let U(I) := {J ∈ I(B) : J ∩ I 6= ∅}. Then

{U(I) : I ∈ I(B)} is a sub-basis for the Fell topology on I(B). The Fell topology

on Rep(B) is then defined as the inverse image topology with respect to the map

ker : Rep(B) → I(B);π 7→ ker π. 10 The Fell topologies restrict to the Jacobson

topologies on Prim(B) and B̂, respectively. Convergence of nets in Rep(B) (and

hence also in I(B)) can conveniently be described in terms of weak containment: If

π ∈ Rep(B) and R is a subset of Rep(B), then π is said to be weakly contained in R

(denoted π ≺ R) if ker π ⊇ ∩{ker ρ : ρ ∈ R}. Two subsets S,R of Rep(A) are said

to be weakly equivalent (S ∼ R) if σ ≺ R for all σ ∈ S and ρ ≺ S for all ρ ∈ R.

Lemma 5.14 (Fell). Let (πj)j∈J be a net in Rep(B) and let π, ρ ∈ Rep(B). Then

(i) πj → π if and only if π is weakly contained in every subnet of (πj)j∈J .

(ii) If πj → π and if ρ ≺ π, then πj → ρ.

For the proof see [43, Propositions 1.2 and 1.3]. As a direct consequence of this

and the fact that induction via bimodules preserves inclusion of ideals we get

Proposition 5.15. Let [E,Φ] ∈ Mor(A,B). Then induction via E preserves weak

containment and the maps

IndE : Rep(B) → Rep(A) and IndE : I(B) → I(A)

are continuous with respect to the Fell topologies. Both maps are homeomorphisms

if E is an imprimitivity bimodule.

Another important observation is the fact that tensoring representations and

ideals of C∗-algebras is continuous:

Proposition 5.16. Suppose that A and B are C∗-algebras. For π ∈ Rep(A) and

ρ ∈ Rep(B) let π ⊗ ρ ∈ Rep(A⊗B) denote the tensor product representation on the

minimal tensor product A ⊗ B. Moreover, if I ∈ I(A) and J ∈ I(B), define I ⊗ J

as the closed two-sided ideal of A ⊗ B generated by I ⊗ B + A ⊗ J . Then the maps

Rep(A) × Rep(B) → Rep(A ⊗ B); (π, ρ) 7→ π ⊗ ρ

and I(A) × I(B) → I(A ⊗ B); (I, J) 7→ I ⊗ J

are continuous with respect to the Fell-topologies.

10Recall that Rep(B) is a set only if we restrict the cardinality of the Hilbert spaces.
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Proof. Notice first that if I = ker π and J = ker ρ, then I ⊗ J = ker(π ⊗ ρ). Since

tensoring ideals clearly preserves inclusion of ideals, the map (π, ρ) 7→ π⊗ρ preserves

weak containment in both variables. Hence the result follows from Lemma 5.14. �

It follows from deep work of Fell (e.g. see [42, 23]) that weak containment (and

hence the topologies on I(B) and Rep(B)) can be described completely in terms of

matrix coefficients of representations. In particular, if G is a locally compact group

and if we identify the collection Rep(G) of equivalence classes of unitary represen-

tations of G with Rep(C∗(G)) via integration, then it is shown in [42, 23] that weak

containment for representations of G can be described in terms of convergence of

positive definite functions on G associated to the given representations.

6. Green’s imprimitivity theorem

We are now presenting (a slight extension of) Phil Green’s imprimitivity theorem

as presented in [52]. For this we start with the construction of an induction functor

IndG
H : M(H) → M(G); (A,H,α) 7→

(
IndG

H(A,α), G, Ind α
)
,

if H is a closed subgroup of G and α : H → Aut(A) an action of H on the C∗-algebra

A. The induced C∗-algebra IndG
H(A,α) (or just IndA if all data are understood) is

defined as

IndG
H(A,α) :=

{
f ∈ Cb(G,A) :

f(sh) = αh−1(f(s)) for all s ∈ G,h ∈ H

and sH 7→ ‖f(s)‖ ∈ C0(G/H)

}
,

equipped with the pointwise operations and the supremum norm. The induced

action Indα : G → Aut(IndA) is given by
(
Indαs(f)

)
(t) := f(s−1t) for all s, t ∈ G.

A similar construction works for morphisms in M(H), i.e., if [E,Φ, u] is an

H-equivariant morphism from A to B, then a fairly obvious extension of the

above construction yields the induced morphism [IndG
H(E, u), Ind Φ, Indu] from

(IndG
H(A,α), G, Ind α) to (IndG

H(B,β), G, Ind β). One then checks that induction

preserves composition of morphisms, and hence gives a functor from M(H) to

M(G) (see [32] for more details).

Remark 6.1. (1) If we start with an action α : G → Aut(A) and restrict this

action to the closed subgroup H of G, then IndG
H(A,α) is canonically G-isomorphic

to C0(G/H,A) ∼= C0(G/H) ⊗ A equipped with the diagonal action l ⊗ α, where l

denotes the left-translation action of G on G/H. The isomorphism is given by

Φ : IndG
H(A,α) → C0(G/H,A); Φ(f)(sH) = αs(f(s)).

(2) The construction of the induced algebra IndG
H(A,α) is the C∗-analogue of the

usual construction of the induced G-space G ×H Y of a topological H-space Y ,

which is defined as the quotient of G × Y by the H-action h(g, y) = (gh−1, hy) and

which is equipped with the obvious G-action. Indeed, if Y is locally compact, then

IndG
H C0(Y ) ∼= C0(G ×H Y ).

A useful characterization of induced systems is given by the following result:
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Theorem 6.2 (cf [27, Theorem]). Let (B,G, β) be a system and assume that H

is a closed subgroup of G. Then (B,G, β) is isomorphic to an induced system

(IndG
H(A,α), G, Ind α) if and only if there exists a continuous G-equivariant map

ϕ : Prim(B) → G/H, where G acts on Prim(B) via s · P := βs(P ).

Indeed, we can always define a continuous G-map ϕ : Prim(IndA) → G/H by

sending a primitive ideal P to sH iff P contains the ideal Is := {f ∈ IndA :

f(s) = 0}. Conversely, if ϕ : Prim(B) → G/H is given, define A := B/Ie with

Ie := ∩{P ∈ Prim(B) : φ(P ) = eH}. Since Ie is H-invariant, the action β|H
induces an action α of H on A and (B,G, β) is isomorphic to (IndG

H A,G, Ind α) via

b 7→ fb ∈ IndG
H A; fb(s) := βs−1(b) + Ie. We should remark at this point that a

much more general result has been shown by Le Gall in [78] in the setting of Morita

equivalent groupoids. Applying Theorem 6.2 to commutative G-algebras, one gets:

Corollary 6.3. Let X be a locally compact G-space and let H be a closed subgroup

of G. Then X is G-homeomorphic to G×H Y for some locally compact H-space Y if

and only if there exists a continuous G-map ϕ : X → G/H. If such a map is given,

then Y can be chosen as Y = ϕ−1({eH}) and the homeomorphism G ×H Y ∼= X is

given by [g, y] 7→ gy.

In what follows let B0 = Cc(H,A) and D0 = Cc(G, Ind A), viewed as dense

subalgebras of the full (resp. reduced) crossed products A ⋊(r) H and IndA ⋊(r) G,

respectively. Let X0(A) = Cc(G,A). We define left and right module actions of D0

and B0 on X0(A), and D0- and B0-valued inner products on X0(A) by the formulas

e · x(s) =

∫

G
e(t, s)x(t−1s)∆G(t)1/2dt

x · b(s) =

∫

H
αh

(
x(sh)b(h−1)

)
∆H(h)−1/2dh

D0〈x, y〉(s, t) = ∆G(s)−1/2

∫

H
αh

(
x(th)y(s−1th)∗

)
dh

〈x, y〉B0(h) = ∆H(h)−1/2

∫

G
x(t−1)∗αh(y(t−1h)) dt,

(6.1)

for e ∈ D0, x, y ∈ X0(A), and b ∈ B0. The Cc(H,A)-valued inner product on X0(A)

provides X0(A) with two different norms: ‖ξ‖2
max := ‖〈ξ, ξ〉B0‖max and ‖ξ‖2

r :=

‖〈ξ, ξ〉B0‖r, where ‖ · ‖max and ‖ · ‖r denote the maximal and reduced normes on

Cc(G,A). Then Green’s inprimitivity theorem reads as follows:

Theorem 6.4 (Green). The actions and inner products on X0(A) extend to the

completion XG
H(A) of X0(A) with respect to ‖ · ‖max such that XG

H(A) becomes an

(IndG
H A ⋊ G)-(A ⋊ H) imprimitivity bimodule.

Similarly, the completion XG
H(A)r of X0(A) with respect to ‖ · ‖r becomes an

(IndG
H A ⋊r G)-(A ⋊r H) imprimitivity bimodule.

Remark 6.5. (1) Although the statement of Green’s theorem looks quite straight-

forward, the proof requires a fair amount of work. The main problem is to show

positivity of the inner products and continuiuty of the left and right actions of D0
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and B0 on X0 with respect to the appropriate norms. In [52] Green only considered

full crossed products. The reduced versions were obtained later by Kasparov ([66]),

by Quigg and Spielberg ([102]) and by Kirchberg and Wassermann ([70]).

The reduced module XG
H(A)r can also be realized as the quotient of XG

H(A) by

the submodule Y := XG
H(A) · I with I := ker

(
A ⋊ H → A ⋊r H

)
. This follows from

the fact that the ideal I corresponds to the ideal J := ker
(
IndA⋊G → IndA⋊r G

)

in IndA ⋊ G via the Rieffel correspondence (see Proposition 5.4). We shall give an

argument for this fact in Remark 9.14 below.

(2) In his original work [52], Green first considered the special case where the action

of H on A restricts from an action of G on A. In this case one obtains a Morita

equivalence between A ⋊(r) H and C0(G/H,A) ⋊(r) G (compare with Remark 6.1

above). Green then deduced from this a more general result (see [52, Theorem 17]),

which by Theorem 6.2 is equivalent to the above formulation for full crossed prod-

ucts.

(3) In [32] it is shown that the construction of the equivalence bimodule X(A),

viewed as an isomorphism in the Morita category M, provides a natural equivalence

between the descent functor ⋊ : M(H) → M; (A,H,α) 7→ A ⋊ H with the composi-

tion ⋊ ◦ IndG
H : M(H) → M; (A,H,α) 7→ IndA ⋊ G (and similarly for the reduced

descent functors ⋊r). This shows that the assignment (A,H,α) 7→ XG
H(A) is, in a

very strong sense, natural in A.

Let us now present some basic examples:

Example 6.6. (1) Let H be a closed subgroup of G. Consider the trivial action of H

on C. Then IndG
H C = C0(G/H) and Green’s theorem provides a Morita equivalence

between C∗(H) and C0(G/H) ⋊ G, and similarly between C∗
r (H) and C0(G/H) ⋊r

G. It follows then from Proposition 5.15 that induction via XG
H(C) identifies the

representation spaces Rep(H) and Rep(C0(G/H), G). This is a very strong version

of Mackey’s original imprimitivity theorem for groups (e.g., see [81, 82, 7]).

(2) If H = {e} is the trivial subgroup of G, we obtain a Morita equivalence between

A and C0(G,A) ⋊ G, where G acts on itself by left translation. Indeed, in this

case we obtain a unitary isomorphism between Green’s bimodule XG
{e}(A) and the

Hilbert A-module L2(G,A) ∼= A ⊗ L2(G) via the transformation

U : XG
{e}(A) → L2(G,A);

(
U(x)

)
(s) = δ(s)−

1
2 x(s).

It follows from this that C0(G,A)⋊G is isomorphic to K(A⊗L2(G)) ∼= A⊗K(L2(G)).

In particular, it follows that C0(G)⋊G is isomorphic to K(L2(G)) if G acts on itself

by translation.

Since full and reduced crossed products by the trivial group coincide, it follows

from part (2) of Remark 6.5 that C0(G,A) ⋊r G ∼= C0(G,A) ⋊ G, and hence that

C0(G,A) ⋊r G ∼= A ⊗K(L2(G)), too.

(3) Let H3 denote the three-dimensional real Heisenberg group, i.e., H3 = R2 ⋊ R

with action of R on R2 given by x · (y, z) = (y, z + xy). We want to use Green’s

theorem to analyse the structure of C∗(H3) ∼= C∗(R2) ⋊ R. We first identify C∗(R2)

with C0(R
2) via Fourier transform. The transformed action of R on R2 is then given



26 le 4/5/2009

by x · (η, ζ) = (η − xζ, ζ). The short exact sequence

0 → C0

(
R × R∗) → C0(R

2) → C0(R × {0}) → 0

determines a short exact sequence

0 → C0

(
R × R∗) ⋊ R → C∗(H3) → C0(R × {0}) ⋊ R → 0.

Since the action of R on the quotient C0(R) ∼= C0(R × {0}) is trivial, we see that

C0(R × {0}) ⋊ R ∼= C0(R) ⊗ C∗(R) ∼= C0(R
2). The homeomorphism h : R × R∗ →

R×R∗;h(η, ζ) = (−η
ζ , ζ) transforms the action of R on C0(R×R∗) ∼= C0(R)⊗C0(R

∗)

to the diagonal action l ⊗ id, where l denotes left translation. Thus, it follows from

(2) and Lemma 4.1 that C0(R × R∗) ⋊ R ∼= C0(R
∗) ⊗ K(L2(R)) and we obtain a

short exact sequence

0 → C0(R
∗) ⊗K(L2(R)) → C∗(H3) → C0(R

2) → 0

for C∗(H3).

(4) Let R act on the two-torus T2 by an irrational flow, i.e. there exists an ir-

rational number θ ∈ (0, 1) such that t · (z1, z2) = (e2πitz1, e
2πiθtz2). Then T2 is

R-homeomorphic to the induced space R ×Z T, where Z acts on T by irrational

rotation given by θ (compare with Example 3.5). Hence, it follows from Green’s

theorem that C(T2) ⋊θ R is Morita equivalent to the irrational rotation algebra

Aθ = C(T) ⋊θ Z.

7. The Takesaki-Takai duality theorem.

From the second of the above examples it is fairly easy to obtain the Takesaki-

Takai duality theorem for crossed products by abelian groups. For this assume that

(A,G,α) is a system with G abelian. The dual action α̂ : Ĝ → Aut(A ⋊ G) of the

dual group Ĝ on the crossed product A ⋊ G is defined by

α̂χ(f)(s) := χ(s)f(s) for χ ∈ Ĝ and f ∈ Cc(G,A) ⊆ A ⋊ G.

With a similar action of Ĝ on crossed products E ⋊ G for an equivariant bimodule

(E,Φ, u) we obtain from this a descent functor

⋊ : M(G) → M(Ĝ).

The double dual crossed product A ⋊ G ⋊ Ĝ is isomorphic to C0(G,A) ⋊ G with

respect to the diagonal action l ⊗ α of G on C0(G,A) ∼= C0(G) ⊗ A. Indeed, we

have canonical (covariant) representations (kA, kG, k bG) of the triple (A,G, Ĝ) into

M
(
C0(G,A) ⋊ G

)
given by the formulas

(
kA(a) · f

)
(s, t) =a

(
f(s, t)

)
,

(
kG(r) · f

)
(s, t) = αr

(
f(r−1s, r−1t)

)
, and

(
k bG

(χ) · f
)
(s, t) = χ(t)f(s, t),

for f in the dense subalgebra Cc(G,C0(G,A)) of C0(G,A) ⋊ G. Making extensive

use of the universal properties, one checks that the integrated form

(kA × kG) × k bG : (A ⋊ G) ⋊ Ĝ → M(C0(G,A) ⋊ G)
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gives the desired isomorphism A ⋊ G ⋊ Ĝ ∼= C0(G,A) ⋊ G. Using the isomorphism

C0(G,A)⋊G ∼= A⊗K(L2(G)) of Example 6.6 (2) and checking what this isomorphism

does on the double-dual action ̂̂α we arrive at

Theorem 7.1 (Takesaki-Takai). Suppose that (A,G,α) is a system with G abelian.

Then the double dual system (A ⋊ G ⋊ Ĝ,G, ̂̂α) is equivariantly isomorphic to the

system (A ⊗ K(L2(G)), G, α ⊗ Ad ρ), where ρ : G → U(L2(G)) denotes the right

regular representation of G on L2(G).

Recall that the right regular representation ρ : G → U(L2(G)) is defined by

(ρsξ)(t) =
√

∆(t)ξ(st) for ξ ∈ L2(G). Note that the system (A ⊗K(L2(G)), G, α ⊗
Ad ρ) in the Takesaki-Takai theorem is Morita equivalent to the original system

(A,G,α) via the equivariant imprimitivity bimodule (A⊗L2(G), α⊗ρ). In fact, the

assignment (A,G,α) 7→ (A⊗L2(G), α⊗ρ) is easily seen to give a natural equivalence

between the identity functor on M(G) and the composition

M(G)
⋊−−−−→ M(Ĝ)

⋊−−−−→ M(G).

In general, if G is not abelian, one can obtain similar duality theorems by replacing

the dual action of Ĝ by a dual coaction of the group algebra C∗(G) on A ⋊ G. A

fairly complete account of that theory in the group case is given in the appendix

of [33] — however a much more general duality theory for Hopf-C∗-algebras was

developed by Baaj and Skandalis in [5].

8. Permanence properties of exact groups

As a further application of Green’s imprimitivity theorem we now present some

of Kirchberg’s and Wassermann’s permanence results for C∗-exact groups. Recall

from Definition 4.9 that a group G is called C∗-exact (or just exact) if for every

system (A,G,α) and for every G-invariant ideal I ⊆ A the sequence

0 → I ⋊r G → A ⋊r G → (A/I) ⋊r G → 0

is exact (which is equivalent to exactness of the sequence in the middle term). Recall

from Proposition 4.8 that the corresponding sequence of full crossed products is

always exact. Using Proposition 4.5, this implies that all amenable groups are

exact.

In what follows we want to relate exactness of G with exactnesss of a closed

subgroup H of G. For this we start with a system (A,H,α) and a closed H-invariant

ideal I of A. Recall that Green’s IndA⋊rG−A⋊rH imprimitivity bimodule XG
H(A)r

is a completion of Cc(G,A). Using the formulas for the actions and inner products

as given in (6.1) one observes that XG
H(I)r can be identified with the closure of

Cc(G, I) ⊆ Cc(G,A) in XG
H(A)r. It follows that the ideals Ind I ⋊r G and I ⋊r H

are linked via the Rieffel correspondence with respect to XG
H(A)r (see Proposition

5.4). Similarly, the imprimitivity bimodule XG
H(A/I)r is isomorphic to the quotient

XG
H(A)r/Y with Y := XG

H(A)r · ker
(
A ⋊r H → A/I ⋊r H

)
, which implies that the

ideals

ker
(
A ⋊r H → A/I ⋊r H

)
and ker

(
IndA ⋊r G → Ind(A/I) ⋊r G

)
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are also linked via the Rieffel correspondence. Since the Rieffel correspondence is

one-to-one, we obtain

I ⋊r H = ker
(
A ⋊r H → A/I ⋊r H

)

⇐⇒ Ind I ⋊r G = ker
(
IndA ⋊r G → Ind(A/I) ⋊r G

)
.

(8.1)

Using this, we now give proofs of two of the main results of [70].

Theorem 8.1 (Kirchberg and Wassermann). Let G be a locally compact group.

Then the following are true:

(i) If G is exact and H is a closed subgroup of G, then H is exact.

(ii) Let H be a closed subgroup of G such that G/H is compact. Then H exact

implies G exact.

Proof. Suppose that I is an H-invariant ideal of the H-algebra A. If G is exact, then

Ind I ⋊r G = ker
(
IndA⋊r G → Ind(A/I)⋊r G

)
and hence I ⋊r H = ker

(
A⋊r H →

A/I ⋊r H
)

by (8.1). This proves (i).
To see (ii) we start with an arbitrary G-algebra A and a G-invariant ideal I of

G. Since A, I, and A/I are G-algebras and G/H is compact, we have IndG
H A ∼=

C(G/H,A) and similar statements hold for I and A/I. Since H is exact, we see
that I ⋊r H = ker

(
A ⋊r H → A/I ⋊r H

)
and (8.1) implies that the lower row of

the commutative diagram

0 −−−−→ I ⋊r G −−−−→ A ⋊r G −−−−→ (A/I) ⋊r G −−−−→ 0
y

y
y

0 −−−−→ C(G/H, I) ⋊r G −−−−→ C(G/H, A) ⋊r G −−−−→ C(G, A/I) ⋊r G −−−−→ 0,

is exact, where the vertical maps are induced by the canonical inclusions of I, A,

and A/I into C(G/H, I), C(G/H,A) and C(G/H,A/I), respectively. Since these in-

clusions are injective, all vertical maps are injective, too (see the remarks preceeding

Proposition 4.8). This and the exactness of the lower horizontal row imply that

ker
(
A ⋊r G → (A/I) ⋊r G

)
=: J =

(
A ⋊r G

)
∩

(
C(G/H, I) ⋊r G

)
.

Let (xi)i be a bounded approximate unit of I and let (ϕj)j be an approximate unit

of Cc(G) (compare with Remark 3.7). Then zi,j := ϕj ⊗ xi ∈ Cc(G,A) serves as

an approximate unit of I ⋊r G and of J :=
(
A ⋊r G

)
∩

(
C(G/H, I) ⋊r G

)
. Thus if

y ∈ J , then zi,j · y ∈ I ⋊r G and zi,j · y converges to y. Hence J ⊆ I ⋊r G. �

Corollary 8.2. Every closed subgroup of an almost connected group is exact (in

particular, every free group in countably many generators is exact). Also, every

closed subgroup of GL(n, Qp), where Qp denotes the field of p-adic rational numbers

equipped with the Hausdorff topology is exact.

Proof. Recall first that a locally compact group is called almost connected if the

component G0 of the identity in G is cocompact. By part (i) of Theorem 8.1 it is

enough to show that every almost connected group G is exact and that GL(n, Qp)

is exact for all n ∈ N. But structure theory for those groups implies that in both

cases one can find an amenable cocompact subgroup. Since amenable groups are



le 4/5/2009 29

exact (by Propositions 4.5 and 4.8), the result then follows from part (ii) of the

theorem. �

Remark 8.3. We should mention that Kirchberg and Wassermann proved some

further permanence results: If H is a closed subgroup of G such that G/H carries a

finite invariant measure, then H exact implies G exact11. Another important result

is the extension result: If N is a closed normal subgroup of G such that N and

G/N are exact, then G is exact. The proof of this result needs the notion of twisted

actions and twisted crossed products. We shall present that theory and the proof of

the extension result for exact groups in §12 below. We should also mention that the

proof of part (ii) of Theorem 8.1, and hence of Corollary 8.2 followed some ideas of

Skandalis (see also the discussion at the end of [69]).

By work of Ozawa and others (e.g. see [94] for a general discussion), the class

of discrete exact groups is known to be identical to the class of all discrete groups

which can act amenably on some compact Hausdorff space X (we refer to [2] for a

quite complete exposition of amenable actions). A similar result is not known, so

far, for more general locally compact groups. If we apply the exactness condition

of a group G to trivial actions, it follows from Remark 4.2 that C∗
r (G) is an exact

C∗-algebra if G is exact — the converse is known for discrete groups by [69] but is

still open in the general case. As mentioned at the end of §4, it is now known that

there are non-exact finitely generated discrete groups.

9. Induced representations of groups and crossed products

If (A,G,α) is a system and H is a closed subgroup of G, then Green’s imprimitivity

theorem provides an imprimitivity bimodule XG
H(A) between C0(G/H,A) ⋊ G ∼=

IndG
H A ⋊ G and A ⋊ H. In particular, C0(G/H,A) ⋊ G identifies with the compact

operators K(XG
H(A)) on XG

H(A). There is a canonical covariant homomorphism

(kA, kG) : (A,G) → M(C0(G,A) ⋊ G) ∼= L(XG
H(A)),

where kA = iC0(G,A) ◦ jA denotes the composition of the inclusion jA : A →
M

(
C0(G/H,A)

)
with the inclusion iC0(G/H,A) : C0(G/H,A) → M

(
C0(G/H,A)⋊G

)

and kG = iG denotes the canonical inclusion of G into M
(
C0(G/H,A) ⋊ G

)
. The

integrated form

kA × kG : A ⋊ G → M
(
C0(G/H,A) ⋊ G

) ∼= L(XG
H(A))

determines a left action of A ⋊ G on XG
H(A) and we obtain a canonical element

[XG
H(A), kA × kG] ∈ Mor(A ⋊ G,A ⋊ H) — a morphism from A ⋊ G to A ⋊ H in the

Morita category. Using the techniques of §5.5, we can define induced representations

of A ⋊ G as follows:

Definition 9.1. For ρ × V ∈ Rep(A ⋊ H) we define the induced representation

indG
H(ρ×V ) ∈ Rep(A⋊G) as the representation induced from ρ×V via [XG

H(A), kA×
kG] ∈ Mor(A ⋊ G,A ⋊ H).

11Nachschauen!!!
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Similarly, for J ∈ I(A ⋊ H), we define the induced ideal indG
H J ∈ I(A ⋊ G) as

the ideal induced from J via [XG
H(A), kA × kG].

On the other hand, if we restrict the canonical embedding iG : G → M(A ⋊ G)

to H, we obtain a non-degenerate homomorphism iA × iG|H : A ⋊ H → M(A ⋊ G)

which induces a morphism [A ⋊ G, iA × iG|H ] ∈ Mor(A ⋊ H,A ⋊ G). This leads to

Definition 9.2. For π × U ∈ Rep(A ⋊ G) we define the restriction resG
H(π × U) ∈

Rep(A ⋊ H) as the representation induced from π × U via [A ⋊ G, iA × iG|H ] ∈
Mor(A ⋊ H,A ⋊ G).

Similarly, for I ∈ I(A ⋊ G), we define the restricted ideal resGH I ∈ I(A ⋊ H) as

the ideal induced from I via [A ⋊ G, iA × iG|H ].

Remark 9.3. It is a good exercise to show that for any π × U ∈ Rep(A ⋊ G) we

have resG
H(π × U) = π × U |H — the integrated form of the restriction of (π,U) to

(A,H,α).

As a consequence of the Definitions 9.1 and 9.2 and Proposition 5.15 we get

Proposition 9.4. The maps indG
H : Rep(A ⋊ H) → Rep(A ⋊ G) and indG

H : I(A ⋊

H) → I(A ⋊ G) as well as the maps resG
H : Rep(A ⋊ G) → Rep(A ⋊ H) and

resG
H : I(A ⋊ G) → I(A ⋊ H) are continuous with respect to the Fell topologies.

Remark 9.5. (1) Note that the left action of A ⋊ G on XG
H(A) can be described

conveniently on the level of Cc(G,A) via convolution: If f ∈ Cc(G,A) ⊆ A ⋊ G and

ξ ∈ Cc(G,A) ⊆ XG
H(A), then kA × kG(f)ξ = f ∗ ξ.

(2) For A = C we obtain, after identifying unitary representations of G (resp. H)

with ∗-representations of C∗(G) (resp. C∗(H)) an induction map indG
H : Rep(H) →

Rep(G). With a bit of work one can check that indG
H U for U ∈ Rep(H) coincides

(up to equivalence) with the induced representations defined by Mackey in [81] or

Blattner in [7]. Similarly, the induced representations for C∗-dynamical systems

as defined above coincide up to equivalence with the induced representations as

constructed by Takesaki in [116]. We will present some more details on these facts

in Proposition 9.7 and Corollary 9.8 below.

(3) If ρ is a non-degenerate representation of A on a Hilbert space Hρ, then

indG
{e} ρ is equivalent to the regular representation Ind ρ of A ⋊ G on L2(G,Hρ) (see

Remark 3.2). The intertwining unitary V : XG
H(A) ⊗A Hρ → L2(G,Hρ) is given by(

V (ξ ⊗ v)
)
(s) = π

(
αs−1(ξ(s))

)
v for ξ ∈ Cc(G,A) ⊆ XG

H(A) and v ∈ Hρ.

The construction of [XG
H(A), kA × kG] shows that we have a decomposition

[XG
H(A), kA × kG] = [C0(G/H,A) ⋊ G, kA × kG] ◦ [XG

H(A)]

as morphisms in the Morita category. Hence the induction map indG
H : Rep(A⋊H) →

Rep(A ⋊ G) factors as the composition

Rep(A ⋊ H)
IndXG

H (A)

−−−−−−→
∼=

Rep
(
C0(G/H,A) ⋊ G

) (kA×kG)∗−−−−−−→ Rep(A ⋊ G)
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(see Remark 5.10 for the meaning of (kA × kG)∗). The representations of

C0(G/H,A) ⋊ G are of the form (P ⊗ π) × U , where P and π are commut-

ing representations of C0(G/H) and A, respectively (we use the identification

C0(G/H,A) ∼= C0(G)⊗A). The covariance condition for (P ⊗π,U) is equivalent to

(π,U) and (P,U) being covariant representations of (A,G,α) and (C0(G/H), G, l),

respectively (where l : G → Aut(C0(G/H)) is the left translation action). One then

checks that (
(P ⊗ π) × U

)
◦ (kA × kG) = π × U.

Since induction from Rep(A⋊H) to Rep
(
C0(G/H,A)⋊G

)
via XG

H(A) is a bijection,

we obtain the following general version of Mackey’s classical imprimitivity theorem

for group representation (see [81] and [116]):

Theorem 9.6 (Mackey-Takesaki-Rieffel-Green). Suppose that (A,G,α) is a system

and let H be a closed subgroup of G. Then:

(i) A representation π × U ∈ Rep(A ⋊ G) on a Hilbert space Hπ is induced

from a representation σ × V ∈ Rep(A ⋊ H) if and only if there exists a

non-degenerate representation P : C0(G/H) → B(Hπ) which commutes with

π and such that (P,U) is a covariant representation of (C0(G/H), G, l).

(ii) If π×U ∈ Rep(A⋊G) is induced from the irreducible representation σ×V ∈
Rep(A ⋊ H), and if P : C0(G/H) → B(Hπ) is the corresponding representa-

tion such that (P ⊗ π) × U ∼= IndXG
H(A)(ρ × V ), then π × U is irreducible if

and only if every W ∈ B(Hπ) which intertwines π and U (and hence π ×U)

also intertwines P .

Proof. The first assertion follows directly from the above discussions. The second

statement follows from Schur’s irreducibilty criterion (a representation is irreducible

iff every intertwiner is a multiple of the identity) together with the fact that induc-

tion via imprimitivity bimodules preserves irreducibility of representations in both

directions (see Proposition 5.11). �

In many situations it is convenient to have a more concrete realization of the

induced representations. The following construction follows Blattner’s construction

of induced group representations (see [7, 48]). It is actually convenient to start with

the more general situation of an induced system. So assume that H is a closed

subgroup of G and that α : H → Aut(A) is an H-action. If ρ × V ∈ Rep(A ⋊ H) is

a representation on the Hilbert space Hρ we put

Fρ×V :=

{
ξ : G → Hρ :

ξ(sh) =
√

∆H(h)/∆G(h)Vh−1ξ(s) for all s ∈ G,h ∈ H

and ξ is continuous with compact support modulo H

}
.

Let c : G → [0,∞) be a Bruhat section for H, i.e., c is continuous with supp c∩C ·H
compact for all compact C ⊆ G and such that

∫
H c(sh) dh = 1 for all s ∈ G (for

the existence of such c see [8]). Then

〈ξ, η〉 :=

∫

G
c(s)〈ξ(s), η(s)〉 ds
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determines a well defined inner product on Fρ×V and we let Hind(ρ×V ) denote its

Hilbert space completion. We can now define representations σ and U of IndG
H A

and G on Hind(ρ×V ), respectively, by

(9.1) (σ(f)ξ)(s) := ρ(f(s))ξ(s) and (Utξ)(s) := ξ(t−1s).

Then σ × U is a representation of IndG
H A ⋊ G on Hind(ρ×V ) and a straightforward

but lengthy computation gives:

Proposition 9.7. Let X := XG
H(A) denote Green’s IndG

H A⋊G−A⋊H imprimitivity

bimodule and let ρ×V be a representation of A⋊H on Hρ. Then there is a unitary

W : X ⊗A⋊H Hρ → Hind(ρ×V ), given on elementary tensors x ⊗ v ∈ X ⊙ Hρ by

W (x ⊗ v)(s) = ∆G(s)−
1
2

∫

H
∆H(h)−

1
2 Vhρ(x(sh))v dh,

which implements a unitary equivalence between IndX(ρ×V ) and the representation

σ × U defined above.

In the special case where A is a G-algebra we identify IndG
H A with C0(G/H,A) via

the isomorphism Φ of Remark 6.1 (1). It is then easy to check that the representation

σ defined above corresponds to the representation P⊗π of C0(G/H,A) ∼= C0(G/H)⊗
A on Hind(ρ×V ) given by the formula

(9.2) (P (ϕ)ξ)(s) := ϕ(sH)ξ(s) and (π(a)ξ)(s) = ρ(αs−1(a))ξ(s).

Hence, as a direct corollary of the above proposition we get:

Corollary 9.8. Let (A,G,α) be a system and let ρ×V ∈ Rep(A⋊H) for some closed

subgroup H of G. Then indG
H(ρ×V ) is unitarily equivalent to the representation π×U

of A ⋊ G on Hind(ρ×V ) with π and U as in Equations (9.2) and (9.1), respectively.

Another corollary which we can easily obtain from Blattner’s realization is the

following useful observation: Assume that H is a closed subgroup of G and that A is

an H-algebra. Let εe : IndG
H A⋊H → A⋊H be the H-equivariant surjection defined

by evaluation of functions f ∈ IndG
H A at the unit e ∈ G. If ρ × V ∈ Rep(A ⋊ H)

then (ρ ◦ εe) × V is a representation of IndG
H A ⋊ H. We then get

Corollary 9.9. The induced representation indG
H

(
(ρ ◦ εe) × V

)
(induction from H

to G for the system (IndG
H A,G, Ind α)) is unitarily equivalent to indXG

H(A)(ρ × V )

(induction via Green’s IndG
H A ⋊ G − A ⋊ H imprimitivity bimodule XG

H(A)).

Proof. By Proposition 9.7 and Corollary 9.8, both representations can be realized on

the Hilbert space Hind(ρ×V ) whose construction only depends on G and the unitary

representation V of H. Applying the formula for π in (9.2) to the present situation,

we see that the IndG
H A-part of indG

H

(
(ρ ◦ εe) × V

)
is given by the formula

(π(f)ξ)(s) = ρ
(
indαs−1(f)(e)

)
ξ(s) = ρ(f(s))ξ(s) = (σ(f)ξ)(s)

with σ as in (9.1). �
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We now turn to some further properties of induced representations. To obtain

those properties we shall pass from Green’s to Blattner’s realizations of the induced

representations and back whenever it seems convenient. We start the discussion

with the theorem of induction in steps. For this suppose that L ⊆ H are closed

subgroups of G. To avoid confusion, we write ΦG
H for the left action of A ⋊ G on

XG
H(A) (i.e., ΦG

H = kA × kG in the notation used above) and we write ΦG
L and ΦH

L

for the left actions of A ⋊ G and A ⋊ L on XG
L (A) and XH

L (A), respectively. Then

the theorem of induction in steps reads as

Theorem 9.10 (Green). Let (A,G,α) and L ⊆ H be as above. Then

[XG
H(A),ΦG

H ] ◦ [XH
L (A),ΦH

L ] = [XG
L (A),ΦG

L ]

as morphisms from A ⋊ L to A ⋊ G in the Morita category M. As a consequence,

we have

indG
H

(
indH

L (ρ × V )
)

= indG
L (ρ × V )

for all ρ × V ∈ Rep(A ⋊ L).

Proof. For the proof one has to check that XG
H ⊗A⋊H XH

L
∼= XG

L (A) as Hilbert

A ⋊ G−A ⋊ L bimodule. Indeed, one can check that such isomorphism is given on

the level functions by the pairing Cc(G,A) ⊗ Cc(H,A) → Cc(G,A) as given by the

second formula in (6.1). We refer to [52] and [123, Theorem 5.9] for more details. �

By an automorphism γ of a system (A,G,α) we understand a pair γ = (γA, γG),

where γA is a ∗-automorphism of A and γG : G → G is an automorphism of G such

that αγG(t) = γA ◦ αt ◦ γ−1
A for all t ∈ G. An inner automorphism of (A,G,α) is an

automorphism of the form (αs, Cs), s ∈ G, with Cs(t) = sts−1. If γ = (γA, γG) is

an automorphism of (A,G,α) and if H is a closed subgroup of G, then γ induces an

isomorphism γA⋊H : A ⋊ H → A ⋊ Hγ with Hγ := γG(H) via

γA⋊H(f)(h) := γA

(
f(γ−1

G (h))
)

for h ∈ Hγ and f ∈ Cc(H,A),

where we adjust Haar measures on H and Hγ such that
∫
H f(γG(h)) dh =∫

Hγ
f(h′) dh′ for f ∈ Cc(Hγ). Note that if (ρ, V ) ∈ Rep(A,Hγ) then (ρ◦γA, V ◦γG) ∈

Rep(A,H) and we have

(ρ × V ) ◦ γA⋊H
∼= (ρ ◦ γA) × (V ◦ γG)

for their integrated forms.

Remark 9.11. If H = N is normal in G and if γs = (αs, Cs) is an inner automor-

phism of (A,G,α), then we will write αN
s for the corresponding automorphism of

A⋊N . Then s 7→ αN
s is an action of G on A⋊N . This action will serve as a starting

point for the study of twisted actions in §12 below.

Proposition 9.12. Suppose that γ = (γA, γG) is an automorphism of (A,G,α) and

let H ⊆ L be two closed subgroups of G. Then

indL
H

(
(ρ × V ) ◦ γA⋊H

) ∼=
(
ind

Lγ

Hγ
(ρ × V )

)
◦ γA⋊L
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for all ρ×V ∈ Rep(A ⋊ Hγ), where “∼=” denotes unitary equivalence. In particular,

if ρ × V ∈ Rep(A,H) and (αs, Cs) is an inner automorphism of (A,G,α) then

indG
H(ρ × V ) ∼= indG

sHs−1

(
s · (ρ × V )

)
,

where we put s · (ρ × V ) := (ρ ◦ αs−1) × (V ◦ Cs−1) ∈ Rep(A, sHs−1).

Proof. Simply check that the map γL : Cc(L,A) → Cc(Lγ , A) as defined above

also extends to a bijection ΦL : XL
H(A) → X

Lγ

Hγ
(A) which is compatible with the

isomorphisms γL : A ⋊ L → A ⋊ Lγ and γH : A ⋊ H → A ⋊ Hγ on the left and

right. This implies that γ∗
L ◦ [X

Lγ

Hγ
(A), kA × kLγ ] = [XG

H(A), kA × kL] ◦ γ∗
H in M and

the first statement follows. The second statement follows from the first applied to

L = G and γ = (αs, Cs) together with the fact that for any π × U ∈ Rep(A,G)

the unitary Us ∈ U(Hπ) implements a unitary equivalence between s · (π × U) =

(π ◦ αs−1) × (U ◦ Cs−1) and π × U . �

As a direct consequence we get:

Corollary 9.13. Let (A,G,α) be a system. For J ∈ I(A) let

JG := ∩{αs(J) : s ∈ G}.
Then indG

{e} JG = indG
{e} J in A ⋊ G. As a consequence, if ρ ∈ Rep(A) such that

∩{ker(ρ ◦ αs) : s ∈ G} = {0}, then indG
{e} ρ factors through a faithful representation

of the reduced crossed product A ⋊r G.

Proof. Let J = ker ρ for some ρ ∈ Rep(A) and let ρG :=
⊕

s∈G ρ ◦ αs. Then

JG = ker ρG. It follows from Proposition 9.12 that indG
{e} ρ ◦ αs

∼= indG
{e} ρ for all

s ∈ G. Since induction preserves direct sums, it follows that

indG
{e} J = ker(indG

{e} ρ) = ker(indG
{e} ρG) = indG

{e} JG.

If ∩{ker(ρ ◦ αs) : s ∈ G} = {0}, then ρG is faithful and it follows from Remark 3.4

(2) and Remark 9.5 (3) that ker ΛG
A = ker(indG

{e} ρG) = ker(indG
{e} ρ). �

Remark 9.14. From the previous results it is now possible to obtain a fairly easy

proof of the fact that Green’s IndG
H A ⋊ G − A ⋊ H imprimitivity bimodule XG

H(A)

factors to give a IndG
H A⋊rG−A⋊rH imprimitivity bimodule for the reduced crossed

products (compare with Remark 6.5). Indeed, if ρ is any faithful representation of A,

and if εe : IndA → A denotes evaluation at the unit e, it follows from Corollary 9.13,

that ker(ΛG
Ind A) = ker

(
indG

{e}(ρ◦εe)
)
. The latter coincides with ker(indG

H(indH
{e}(ρ◦

εe))) by Theorem 9.10. If σ × V denotes the representation indH
{e} ρ ∈ Rep(A ⋊ H),

then ker(σ × V ) = ker ΛH
A since ρ is faithful on A and a short computation shows

that indH
{e}(ρ ◦ εe) = (σ ◦ εe) × V , where on the left-hand side we use induction in

the system (IndA,H, Ind α). Putting all this together we get

ker(ΛG
Ind A) = ker

(
indG

{e}(ρ ◦ εe)
)

= ker
(
indG

H(indH
{e}(ρ ◦ εe))

)

= ker
(
indG

H

(
(σ ◦ εe) × V )

) ∗
= ker

(
indXG

H(A)(σ × V )
)

= ker
(
indXG

H(A) ΛH
A

) ∗∗
= indXG

H(A)
(
ker ΛH

A

)
,
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where * follows from Corollary 9.9 and ** follows from Equation (5.4). The desired

result then follows from the Rieffel correspondence (Proposition 5.4).

We now come to some important results concerning the relation between induction

and restriction of representations and ideals (see Definition 9.2 for the definition of

the restriction maps). We start with

Proposition 9.15. Suppose that (A,G,α) is a system and let N ⊆ H be closed

subgroups of G such that N is normal in G. Let Fρ×V be the dense subspace of

Blattner’s induced Hilbert space Hind(ρ×V ) as constructed above. Then

(9.3)
(
resG

N (indG
H(ρ × V ))(f)ξ

)
(s) = resH

N (ρ × V )(αN
s−1(f))ξ(s)

for all f ∈ A ⋊ N , ξ ∈ Fρ×V and s ∈ G, where αN : G → Aut(A ⋊ N) is the

canonical action of G on A ⋊ N (see §12). As a consequence, if J ∈ I(A × H), we

get

(9.4) resG
N

(
indG

H J) = ∩{αN
s (resH

N (J)) : s ∈ G}.

Proof. Define σ : A ⋊ N → B(Hind(ρ×V )) by (σ(f)ξ)(s) = ρ × V |N (αN
s−1(f))ξ(s)

for f ∈ A ⋊ N and ξ ∈ Fρ×V . Then σ is a non-degenerate ∗-representation and
hence it suffices to check that the left-hand side of (9.3) coincides with (σ(f)ξ)(s)
for f ∈ Cc(N,A). But using (9.2) together with the transformation n 7→ sns−1 and
the equation ξ(sn−1) = Vnξ(s) for s ∈ G,n ∈ N , the left-hand side becomes

(
π × U |N (f)ξ

)
(s) =

∫

N

ρ(αs−1(f(n))ξ(n−1s) dn = δ(s−1)

∫

N

ρ(αs−1(f(sns−1))ξ(sn−1) dn

=

∫

N

ρ(αN

s−1(f)(n))Vnξ(s) dn = (σ(f)ξ)(s).

�

Remark 9.16. Suppose that (A,G,α) is a system, H is a closed subgroup of G,

and J ⊆ A is a G-invariant ideal of A. If ρ × V is a representation of A ⋊ H and if

we put π × U := indG
H(ρ × V ), then it follows from the above proposition that

J ⊆ ker ρ ⇐⇒ J ⊆ ker π.

Hence, we see that the induction map for the system (A,G,α) determines a map

from Rep(A/J ⋊H) to Rep(A/J ⋊G) if we identify representations of A/J ⋊H with

the representations ρ×V of A⋊H wich satisfy J ⊆ ker ρ (and similarly for G). It is

easy to check (e.g., by using Blattner’s construction of the induced representations)

that this map coincides with the induction map for the system (A/J,G,α).

Also, if ρ×V is a representation of A⋊H such that ρ restricts to a non-degenerate

representation of J , then one can check that the restriction of indG
H(ρ×V ) to J ⋊G

conicides with the induced representation IndG
H(ρ|J × V ) where the latter represen-

tation is induced from J ⋊ H to J ⋊ G via XG
H(J).12 We shall use these facts quite

frequently below.

12Of course, these results are also consequences of the naturality of the assignment A 7→ XG
H(A)

as stated in Remark 6.5 (3).
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We close this section with some useful results on tensor products of representa-

tions. If (π,U) is a covariant representation of the system (A,G,α) on Hπ and if

V is a unitary representation of G on HV , then (π ⊗ 1HV
, U ⊗ V ) is a covariant

representation of (A,G,α) on Hπ ⊗ HV and we obtain a pairing

⊗ : Rep(A ⋊ G) × Rep(G) → Rep(A ⋊ G);
(
(π × U), V

)
7→ (π × U) ⊗ V := (π ⊗ 1HV

) × (U ⊗ V ).

Identifying Rep(G) ∼= Rep(C∗(G)), this map can also be obtained via the composi-

tion

Rep(A ⋊ G) × Rep(C∗(G)) → Rep
(
(A ⋊ G) ⊗ C∗(G)

) D∗

→ Rep(A ⋊ G),

where D : A ⋊ G → M
(
(A ⋊ G)⊗C∗(G)

)
denotes the integrated form of the tensor

product (iA⊗1C∗(G), iG⊗iG) of the canonical inclusions (iA, iG) : (A,G) → M(A⋊G)

with the inclusion iG : G → M(C∗(G)). Thus, from Propositions 5.15 and 5.16 we

get

Proposition 9.17. The map ⊗ : Rep(A ⋊ G) × Rep(G) → Rep(A ⋊ G) preserves

weak containment in both variables and is jointly continuous with respect to the Fell

topologies.

Proposition 9.18. Let (A,G,α) be a system and let H be a closed subgroup of G.

Then

(i) indG
H

(
(ρ × V ) ⊗ U |H)

) ∼=
(
indG

H(ρ × V )
)
⊗ U for all ρ × V ∈ Rep(A ⋊ H)

and U ∈ Rep(G);

(ii) indG
H

(
(π ×U |H)⊗ V ) ∼= (π ×U)⊗ indG

H V for all V ∈ Rep(H) and π ×U ∈
Rep(A ⋊ G).

In particular, if π × U ∈ Rep(A ⋊ G) and N is a normal subgroup of G, then

indG
N (π × U |N ) ∼= (π × U) ⊗ λG/N ,

where λG/N denotes the regular representation of G/N , viewed as a representation

of G.

Proof. This result can be most easily shown using Blattner’s realization of the in-

duced representations: In the first case define

W : Fρ×V ⊗ HU → F(ρ×V )⊗U |H ; W (ξ ⊗ v)(s) = ξ(s) ⊗ Us−1v.

Then a short computation shows that W is a unitary intertwiner of
(
indG

H(ρ×V )
)
⊗U

and indG
H

(
(ρ × V )⊗ U |H)

)
. A similar map works for the second equivalence. Since

λG/N = indG
N 1N , the last assertion follows from (ii) in case V = 1N . �

Corollary 9.19. Suppose that (A,G,α) is a system and that N is a normal subgroup

of G such that G/N is amenable. Then π×U is weakly contained in indG
N (resG

N (π×
U)) for all π × U ∈ Rep(A ⋊ G). As a consequence, indG

N (resG
N I) ⊆ I for all

I ∈ I(A ⋊ G).
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Proof. Since G/N is amenable if and only if 1G/N ≺ λG/N we obtain from Proposi-

tion 9.18

π × U = (π × U) ⊗ 1G/N ≺ (π × U) ⊗ λG/N = indG
N (π × U |N ),

which proves the first statement. The second statement follows from the first by

choosing π × U ∈ Rep(A ⋊ G) such that I = ker(π × U). �

10. The Mackey-Rieffel-Green machine for the ideal structure of

crossed products

In this section we come to the main results on the Mackey-Rieffel-Green machine,

namely the description of the spectrum (A ⋊ G)̂ and the primitive ideal space

Prim(A⋊G) in terms of induced representations (resp. ideals) under some favorable

circumstances. We start with some topological notations:

Definition 10.1. Let Y be a topological space.

(i) We say that Y is almost Hausdorff if every closed subset F of Y contains a

nonempty relatively open Hausdorff subset U (which can then be chosen to

be dense in F ).

(ii) A subset C ⊆ Y is called locally closed if C is relatively open in its closure

C.

It is important to note that if A is a type I algebra, then the spectrum Â (and

then also Prim(A) ∼= Â) is almost Hausdorff with respect to the Jacobson topology.

This follows from the fact that every quotient of a type I algebra is type I and

that every nonzero type I algebra contains a nonzero continuous-trace ideal, and

hence its spectrum contains a nonempty Hausdorff subset U (see [23, Chapter 4]

and §2.4). Notice also that if Y is almost Hausdoff, then the one-point sets {y} are

locally closed for all y ∈ Y .

If A is a C∗-algebra and if J ⊆ I are two closed two-sided ideals of A, then we

may view Î/J (resp. Prim(I/J)) as a locally closed subset of Â (resp. Prim(A)).

Indeed, we first identify Â/J with the closed subset {π ∈ Â : J ⊆ ker π} of Â and

then we identify Î/J with the open subset {π ∈ Â/J : π(I) 6= {0}} (and similarly

for Prim(I/J) — compare with §2.4)).
Conversely, if C is a locally closed subset of Â , then C is canonical homeomorphic

ÎC/JC if we take JC := ker(C) and IC := ker
(
C r C

)
(we write ker(E) := ∩{ker π :

π ∈ E} if E ⊆ Â and similarly ker(D) := ∩{P : P ∈ D} for D ⊆ Prim(A)). If we

apply this observation to commutative C∗-algebras, we recover the well known fact

that the locally closed subsets of a locally compact Hausdorff space Y are precisely

those subsets of Y which are locally compact in the relative topology.

Definition 10.2. Let A be a C∗-algebra and let C be a locally closed subset of Â

(resp. Prim(A)). Then AC := IC/JC with IC , JC as above is called the restriction

of A to C. In the same way, we define the restriction AD of A to D for a locally

closed subset D of Prim(A).
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In what follows, we shall use the following notations:

Notations 10.3. If (A,G,α) is a system, we consider Prim(A) as a G-space via the

continuous action G × Prim(A) → Prim(A); (s, P ) 7→ s · P := αs(P ). We write

GP := {s ∈ G : s · P = P} and G(P ) := {s · P : s ∈ G}

for the for the stabilizer and the G-orbit of P ∈ Prim(A), respectively. Moreover,

we put

PG := ker G(P ) = ∩{s · P : s ∈ G}.
Notice that the stabilizers GP are closed subgroups of G for all P ∈ Prim(A).13

Remark 10.4. Similarly, we may consider the G-space Â with G-action (s, π) 7→
s · π := π ◦ αs−1 (identifying representations with their equivalence classes) and we

then write Gπ and G(π) for the stabilizers and the G-orbits, respectively. However,

the stabilizers Gπ are not necessarily closed in G if A is not a type I algebra. If A

is type I, then π 7→ ker π is a G-equivariant homeomorphism from Â to Prim(A).

The following theorem is due to Glimm:

Theorem 10.5 (cf [50]). Suppose that (A,G,α) is a separable type I system (i.e.,

A is a separable type I algebra and G is second countable). Then the following are

equivalent:

(i) The quotient space G\Prim(A) is almost Hausdorff.

(ii) G\Prim(A) is a T0-space.

(iii) All points in G\Prim(A) are locally closed.

(iv) For all P ∈ Prim(A) the quotient G/GP is homeomorphic to G(P ) via

s · GP 7→ s · P .

(v) There exists an ordinal number µ and an increasing sequence {Iν}ν≤µ of G-

invariant ideals of A such that I0 = {0}, Iµ = A and G\Prim(Iν+1/Iν) is

Hausdorff for all ν < µ.

Hence, if (A,G,α) is a separable type I system satisfying one of the equivalent

conditions above, then (A,G,α) is smooth in the sense of:

Definition 10.6. The system (A,G,α) is called smooth if the following two condi-

tions are satisfied:

(i) The map G/GP → G(P ); s · GP → s · P is a homeomorphism for all P ∈
Prim(A).

(ii) The quotient G\Prim(A) is almost Hausdorff, or A is separable and all orbits

G(P ) are locally closed in Prim(A).

13The the fact that GP is closed in G follows from the fact that Prim(A) is a T0-space. Indeed,

if {si} is a net in GP which converges to some s ∈ G, then P = si · P → s · P , so s · P is in the

closure of {P}. Conversely, we have s · P = ss−1
i · P → P , and hence {P} ∈ {sP}. Since Prim(A)

is a T0-space it follows that P = s · P .
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If G(P ) is a locally closed orbit of Prim(A), then we may identify G(P ) with

Prim(AG(P )), where AG(P ) = IG(P )/JG(P ) denotes the restriction of A to G(P ) as in

Definition 10.2 (note that JG(P ) = PG in our notation). Since the ideals IG(P ) and

JG(P ) are G-invariant, the action of G on A restricts to an action of G on AG(P ).

Using exactness of the full crossed-product functor, we get

(10.1) AG(P ) ⋊ G ∼= (IG(P ) ⋊ G)/(JG(P ) ⋊ G).

If G is exact, a similar statement holds for the reduced crossed products.

Proposition 10.7. Suppose that (A,G,α) is a system such that

(i) G\Prim(A) is almost Hausdorff, or

(ii) A is separable.

Then, for each π × U ∈ (A ⋊ G)̂ , there exists an orbit G(P ) ⊆ Prim(A) such

that ker π = PG. If, in addition, all orbits in Prim(A) are locally closed (which is

automatic in case of (i)), then G(P ) is uniquely determined by π × U .

Proof. (Following ideas from [107, ]) Let J = ker π. By passing from A to A/J we

may assume without loss of generality that π is faithful. We then have to show that

there exists a P ∈ Prim(A) such that G(P ) is dense in Prim(A).

We first show that under these assumptions every open subset W ⊆ G\Prim(A)

is dense. Indeed, since π is faithful, it follows that π × U restricts to a non-zero,

and hence irreducible representation of I ⋊ G, whenever I is a nonzero G-invariant

ideal of A. In particular, π(I)Hπ = Hπ for all such ideals I. Assume now that there

are two nonempty G-invariant open sets U1, U2 ⊆ Prim(A) with U1 ∩ U2 = ∅. Put

Ii = ker(Prim(A) r Ui), i = 1, 2. Then I1, I2 would be nonzero G-invariant ideals

such that I1 · I2 = I1 ∩ I2 = {0}, and then

Hπ = π(I1)Hπ = π(I1)
(
π(I2)Hπ

)
= π(I1 · I2)Hπ = {0},

which is a contradiction.

Assume that G\Prim(A) is almost Hausdorff. If there is no dense orbit G(P ) in

Prim(A), then G\Prim(A) contains an open dense Hausdorff subset which contains

at least two different points. But then there exist G-invariant open subsets U1, U2

of Prim(A) with U1 ∩ U2 = ∅, which is impossible.

If A is separable, then G \Prim(A) is second countable (see [23, Chapter 3]) and

we find a countable base {Un : n ∈ N} for its topology. Since G\Prim(A) is a Baire

space by [23, Chapter 3], it follows that D := ∩n∈NUn is also dense in Prim(A).

Note that every open subset of G\Prim(A) contains D. Hence, if we pick any orbit

G(P ) ∈ D then G(P ) is dense in Prim(A), since otherwise D would be a subset of

the non-empty open set G\
(
Prim(A) r G(P )

)
, which is impossible.

If the dense orbit G(P ) is locally closed then G(P ) is open in its closure Prim(A),

which implies that G(P ) is the unique dense orbit in Prim(A). This gives the

uniqueness assertion of the proposition. �

Suppose that G(P ) is a locally closed orbit in Â. By exactness of the full crossed

product functor we can then identify AG(P ) ⋊ G with the subquotient (IG(P ) ⋊
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G)/(JG(P ) ⋊ G) of A ⋊ G. If G is exact, a similar identification is possible for the

reduced crossed product AG(P ) ⋊r G. Using this identification we get

Corollary 10.8. Suppose that (A,G,α) is smooth. Then we obtain a decomposition

of (A ⋊ G)̂ (resp. Prim(A ⋊ G)) as the disjoint union of the locally closed subsets

(AG(P ) ⋊ G)̂ (resp. Prim(AG(P ) ⋊ G)), where G(P ) runs through all G-orbits in

Prim(A). If G is exact, similar statements hold for the reduced crossed products.

Proof. It follows from Proposition 10.7 that for each π ×U ∈ (A ⋊ G)̂ , there exists

a unique orbit G(P ) such that ker π = PG = JG(P ) and then π × U restricts to an

irreducible representation of AG(P ) ⋊ G. Hence

(A ⋊ G)̂ = ∪{(AG(P ) ⋊ G)̂ : G(P ) ∈ G\Prim(A)}.
To see that this union is disjoint, assume that there exists an element ρ × V ∈
(AG(P ) ⋊ G)̂ (viewed as a representation of A ⋊ G) such that ker ρ 6= PG. Since ρ

is a representation of AG(P ) = IG(P )/P
G we have ker ρ ⊇ PG. By Proposition 10.7

there exists a Q ∈ Prim(A) such that ker ρ = QG. Then QG ⊇ PG, which implies

that G(Q) ⊆
(
G(P ) r G(P )

)
. But then

ker ρ = QG = ker G(Q) ⊇ ker
(
G(P ) r G(P )

)
= IG(P ),

which contradicts the assumption that ρ × V ∈ (AG(P ) ⋊ G)̂ . �

It is now easy to give a proof of the Mackey-Green-Rieffel theorem, which is

the main result of this section. If (A,G,α) is smooth, one can easily check that

points in Prim(A) are automatically locally closed (since they are closed in their

orbits). Hence, for each P ∈ Prim(A) the restriction AP := IP /P of A to {P} is

a simple subquotient of A. Since IP and P are invariant under the action of the

stabilizer GP , the action of GP on A factors through an action of GP on AP . It

is then straightforward to check (using the same arguments as given in the proof

of Corollary 10.8) that there is a canonical one-to-one correspondence between the

irreducible representations of AP ⋊ GP and the set of all irreducible representations

ρ × V of A ⋊ GP satisfying ker ρ = P .

Remark 10.9. If A is type I, then AP
∼= K(Hπ), the compact operators on the

Hilbert space Hπ, where π : A → B(Hπ) is the unique (up to equivalence) irreducible

representation of A with ker π = P . To see this we first pass to A/P ∼= π(A). Since

A is type I we know that K(Hπ) ⊆ π(A). Hence, if we identify K(Hπ) with an

ideal of A/P , we see (since π does not vanish on this ideal) that this ideal must

correspond to the open set {π} (resp. {P}) in its closure Â/P (resp. Prim(A/P )).

Theorem 10.10 (Mackey-Rieffel-Green). Suppose that (A,G,α) is smooth. Let

S ⊆ Prim(A) be a cross-section for the orbit space G\Prim(A). Then induction of

representations and ideals induces bijections

Ind : ∪P∈S(AP ⋊ GP )̂ → (A ⋊ G)̂ ; ρ × V 7→ indG
GP

(ρ × V ) and

Ind : ∪P∈S Prim(AP ⋊ GP ) → Prim(A ⋊ G); Q 7→ indG
GP

Q.
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If G is exact, these maps restrict to similar bijections

∪P∈S(AP ⋊r GP )̂
Ind→ (A ⋊r G)̂ and ∪P∈S Prim(AP ⋊r GP )

Ind→ Prim(A ⋊r G)

for the reduced crossed products.

Proof. We show that Ind : ∪P∈S(AP ⋊ GP )̂ → (A ⋊ G)̂ is a bijection. Bijectivity

of the other maps follows similarly.

By Corollary 10.8 it suffices to show that Ind : (AP ⋊ GP )̂ → (AG(P ) ⋊ G)̂ is

an isomorphism for all P ∈ S. By definition of AG(P ) we have Prim(AG(P )) ∼= G(P )

and by the smoothness of the action we have G(P ) ∼= G/GP as G-spaces. Hence,

it follows from Theorem 6.2 that AG(P )
∼= IndG

GP
AP . Hence induction via Green’s

AG(P ) ⋊ G − AP ⋊ GP imprimitivity bimodule XP := XG
GP

(AP ) gives the desired

bijection indXP : (AP ⋊ GP )̂ → (AG(P ) ⋊ G)̂ . By Corollary 9.9, induction via XP

coincides with the usual induction for the system (AG(P ), G, α), which by Remark

9.16 is compatible with inducing the corresponding representations for (A,G,α). �

The above result shows that for smooth systems, all representations are induced

from the stabilizers for the corresponding action of G on Prim(A). In fact the above

result is much stronger, since it shows that A⋊G has a “fibration” over G\Prim(A)

such that the fiber AG(P ) ⋊ G over an orbit G(P ) is Morita equivalent to AP ⋊ GP ,

hence, up to the global structure of the fibration, the study of A ⋊ G reduces to the

study of the fibers AP ⋊ GP . Note that under the assumptions of Theorem 10.10

the algebra AP is always simple. We shall give a more detailed study of the crossed

products AP ⋊GP in the important special case where A is type I in §14 below. The

easier situation where A = C0(X) is treated in §11 below.

Note that the study of the global structure of A⋊G, i.e., of the global structure of

the fibration over G\Prim(A) is in general quite complicated, even in the situation

where G\Prim(A) is Hausdorff. In general, it is also very difficult (if not impossible)

to describe the global topology of Prim(A⋊G) in terms of the bijection of Theorem

10.10. Some progress has been made in the case where A is a continuous-trace C∗-

algebra and/or where the stabilizers are assumed to vary continuously, and we refer

to [31, 21, 105, 38, 34] and the references given in those papers and books for more

information on this problem.

Even worse, the assumption of having a smooth action is a very strong one and

for arbitrary systems one cannot expect that one can compute all irreducible rep-

resentations via induction from stabilizers. Indeed, in general it is not possible

to classify all irreducible representations of a non-type I C∗-algebra, and a similar

problem occurs for crossed products A ⋊ G if the action of G on Prim(A) fails to

be smooth. However, at least if (A,G,α) is separable and G is amenable, there is a

positive result towards the description of Prim(A ⋊ G) which was obtained by work

of Sauvageot and Gootman-Rosenberg, thus giving a positive answer to an earlier

formulated conjecture by Effros and Hahn (see [41]). To give precise statements, we

need

Definition 10.11. A non-degenerate representation ρ of a C∗-algebra A is called

homogeneous if all non-trivial subrepresentations of ρ have the same kernel as ρ.
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It is clear that every irreducible representation is homogeneous and it is easy to

see that the kernel of any homogeneous representation is a prime ideal, and hence

it is primitive if A is second countable.

Theorem 10.12 (Sauvageot ([113])). Suppose that (A,G,α) is a separable system

(i.e., A is separable and G is second countable). Let P ∈ Prim(A) and let GP

denote the stabilizer of P in G. Suppose that ρ×V is a homogeneous representation

of A ⋊ GP such that ρ is a homogeneous representation of A with ker ρ = P . Then

indG
GP

(ρ × V ) is a homogeneous representation of A ⋊ G and ker
(
indG

GP
(ρ × V )

)
is

a primitive ideal of A ⋊ G.

We say that a primitive ideal of A ⋊ G is induced if it is obtained as in the above

theorem. Note that Sauvageot already showed in [113] that in case where G is

amenable, every primitive ideal of A ⋊ G contains an induced primitive ideal and in

case where G is discrete every primitive ideal is contained in an induced primitive

ideal. Together, this shows that for actions of discrete amenable groups all primitive

ideals of A ⋊ G are induced from the stabilizers. Sauvageot’s result was generalized

by Gootman and Rosenberg in [55, Theorem 3.1]:

Theorem 10.13 (Gootman-Rosenberg). Suppose that (A,G,α) is a separable sys-

tem. Then every primitive ideal of A ⋊ G is contained in an induced ideal. As a

consequence, if G is amenable, then every primitive ideal of A ⋊ G is induced.

The condition in Theorem 10.12 that the representations ρ × V and ρ are homo-

geneous is a little bit unfortunate. In fact, a somehow more natural formulation

of Sauvageot’s theorem (using the notion of induced ideals) would be to state that

whenever Q ∈ Prim(A⋊GP ) such that resGP

{e}(Q) = P , then indG
GP

(Q) is a primitive

ideal of A⋊G. Note that if ρ×V is as in Theorem 10.12, then Q = ker(ρ×V ) is an

element of Prim(A ⋊ GP ) which satisfies the above conditions. At present time, we

do not know whether this more general statement is true, and we want to take this

opportunity to point out that the statement of [31, Theorem 1.4.14] is not correct

(or at least not known) as it stands. We are very grateful to Dana Williams for

pointing out this error and we refer to the paper [40] for a more elaborate discussion

of this problem. But let us indicate here that the problem vanishes if all points in

Prim(A) are locally closed (which is in particular true if A is type I).

Proposition 10.14. Suppose that (A,G,α) is a separable system such that one of

the following conditions is satisfied:

(i) All points in Prim(A) are locally closed (which is automatic if A is type I).

(ii) All stabilizers GP for P ∈ Prim(A) are normal subgroups of G (which is

automatic if G is abelian).

Then indG
GP

Q ∈ Prim(A ⋊ G) for all P ∈ Prim(A) and Q ∈ Prim(A ⋊ GP ) such

that resGP

{e}
Q = P . If, in addition, G is amenable, then all primitive ideals of A ⋊ G

are induced in this way.

Proof. Let us first assume condition (i). Choose ρ × V ∈ (A ⋊ GP )̂ such that

ker(ρ×V ) = Q and ker ρ = P . Then we may regard ρ as a representation of AP , the
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simple subquotient of A corresponding to the locally closed subset {P} of Prim(A).

Since AP is simple, all nontrivial subrepresentations of ρ have kernel {0} in AP (and

hence they have kernel P in A). Hence ρ is homogeneous and the result follows from

Theorems 10.12 and 10.13.

Let us now assume (ii). If N := GP is normal, we may use the theory of twisted

actions, which we shall present in §12 below, to pass to the system ((A ⋊ N) ⊗
K, G/N, β). If ρ × V ∈ (A ⋊ N )̂ with ker(ρ × V ) = P , then the corresponding

representation of (A⋊N)⊗K has trivial stabilizer in G/N , and therefore the induced

representation has primitive kernel in A⋊G ∼M

(
(A⋊N)⊗K

)
⋊G/N by Theorem

10.12. �

Recall that if M is a topological G-space, then two elements m1,m2 ∈ M are

said to be in the same quasi-orbit if m1 ∈ G(m2) and m2 ∈ G(m1). Being in the

same quasi-orbit is clearly an equivalence relation on M and we denote by Gq(m) the

quasi-orbit (i.e., the equivalence class) of m and by QG(M) the set of all quasi-orbits

in M equipped with the quotient topology. Note that QG(M) is always a T0-space.

If G\M is a T0-space, then QG(M) coincides with G\M .

If (A,G,α) is a system, it follows from the definition of the Jacobson topology that

two elements P,Q ∈ Prim(A) are in the same quasi-orbit if and only if PG = QG.

If the action of G on A is smooth, then all point in G\Prim(A) are locally closed,

which implies in particular that G\Prim(A) is a T0-space. Hence in this case we

have QG(Prim(A)) = G\Prim(A). In what follows, we let

PrimG(A) := {PG : P ∈ Prim(A)} ⊆ I(A)

equipped with the relative Fell topology. Then [52, Lemma on p. 221] gives

Lemma 10.15. Let (A,G,α) be a system. Then the map

q : Prim(A) → PrimG(A) : P 7→ PG

is a continuous and open surjection and therefore factors through a homeomorphism

between QG(Prim(A)) and PrimG(A).

As a consequence of the previous results we get

Corollary 10.16. Suppose that (A,G,α) is smooth or that (A,G,α) is separable

and G is amenable. Suppose further the action of G on Prim(A) is free (i.e., all

stabilizers are trivial). Then the map

Ind : PrimG(A) ∼= QG(A) → Prim(A ⋊ G);P 7→ indG
{e} PG

is a homeomorphism. In particular, A ⋊ G is simple if and only if every G-orbit is

dense in Prim(A), and A ⋊ G is primitive (i.e., {0} is a primitive ideal of A) if and

only if there exists a dense G-orbit in Prim(A).

Proof. It follows from Theorem 10.10 and Theorem 10.13 that the map indG
{e} :

Prim(A) → Prim(A ⋊ G);P 7→ indG
{e} P is well defined and surjective. By Corollary

9.13 we know that indG
{e} P = indG

{e} PG, so the induction map Ind : PrimG(A) →
Prim(A ⋊ G) is also well defined and surjective. Equation (9.4) applied to H = {e}
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gives resG
{e}(indG

{e} P ) = PG, which shows that resG
{e} : Prim(A ⋊ G) → PrimG(A) is

the inverse of Ind. Since induction and restriction are continuous by Proposition 9.4

the result follows. �

Remark 10.17. Note that if (A,G,α) is a system with constant stabilizer N for

the action of G on Prim(A), then one can pass to the iterated twisted system

(A ⋊ N,G,N,αN , τN ) (see §12 below), and then to an equivariantly Morita equiv-

alent system (B,G/N, β) (see Proposition 13.3) to see that induction of primitive

ideals gives a homeomorphism between QG/N (Prim(A⋊N)) and Prim(A⋊G) if one

of the following conditions are satisfied:

(i) (A,G,α) is smooth.

(ii) (A ⋊ N,G,N,αN , τN ) is smooth (i.e., the action of G/N on Prim(A ⋊ N)

via αN satisfies the conditions of Definition 10.6.

(iii) (A,G,α) is separable and G/N is amenable.

A similar result can be obtained for systems with continuously varying stabilizers

(see [28]). In the case of constant stabilizers, the problem of describing the topology

of Prim(A ⋊ G) now reduces to the description the topology of Prim(A ⋊ N) and

the action of G/N on Prim(A ⋊ N). In general, both parts can be quite difficult to

perform, but in some interesting special cases, e.g. if A has continuous trace, some

good progress has been made for the description of Prim(A⋊N) (e.g. see [37, 38, 34]

and the references given there). Of course, if A = C0(X) is abelian, and N is the

constant stabilizer of the elements of Prim(A) = X, then N acts trivially on X and

Prim(C0(X) ⋊ N) = Prim(C0(X) ⊗ C∗(N)) = X × Prim(C∗(N)).

Example 10.18. As an easy application of Corollary 10.16 we get the simplicity of

the irrational rotation algebra Aθ, for θ an irrational number in (0, 1). Recall that

Aθ = C(T) ⋊θ Z where n ∈ Z acts on z ∈ T via n · z := e2πiθnz. Since θ is irrational,

the action of Z on Prim(C(T)) = T is free and all Z-orbits are dense in T. Hence,

there exists only one quasi-orbit in T and the crossed product is simple. Of course,

there are other more elementary proofs for the simplicity of Aθ which do not use

such heavy machinery, but this example illustrates quite well how one can use the

above results.

11. The Mackey-machine for transformation groups

Suppose that X is a locally compact G-space and consider the corresponding

action of G on A = C0(X) given by (s · ϕ)(x) = ϕ(s−1x) for s ∈ G, ϕ ∈ C0(X).

Then Prim(A) = X and Ax = C for all x ∈ X, so that Ax ⋊ Gx = C∗(Gx) for

all x ∈ X, where Gx denotes the stabilizer of x. Hence, if the action of G on X

is smooth in the sense of Definition 10.6, then it follows from Theorem 10.10 that

C0(X) ⋊ G is “fibered” over G\X with fibres C0(G(x)) ⋊ G ∼M C∗(Gx) (compare

the discussion following Theorem 10.10).

If V ∈ Ĝx and if εx : C0(X) → C denotes evaluation at x, then εx × V is the

representation of C0(X)⋊Gx which corresponds to V by regarding Ĝx = (Ax⋊Gx)̂
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as a subset of (A ⋊ Gx)̂ as described in the discussion preceeding Theorem 10.10.

In this situation, the result of Theorem 10.12 can be improved by showing:

Proposition 11.1 (cf. [121, Proposition 4.2]). Let εx × V ∈
(
C0(X) ⋊ Gx)̂ be as

above. Then indG
Gx

(εx ⋊ V ) is irreducible. Moreover, if V,W ∈ Ĝx, then indG
Gx

(εx ×
V ) ∼= indG

Gx
(εx × W ) if and only if V ∼= W .

Combining this with Theorem 10.10 and Theorem 10.13 gives:

Theorem 11.2. Suppose that X is a locally compact G-space.

(i) If G acts smoothly on X, and if S is a section for G\X, then we get a

bijection

Ind : ∪x∈SĜx →
(
C0(X) ⋊ G

)̂ ;V 7→ indG
Gx

(εx × V ).

(ii) If X and G are second countable and if G is amenable, then every primitive

ideal of C0(X) ⋊ G is the kernel of some induced irreducible representation

indG
Gx

(εx × V ).

We now want to present some applications to group representation theory:

Example 11.3. Suppose that G = N ⋊ H is the semi-direct product of the abelian

group N by the group H. Then, as seen in Example 3.6, we have

C∗(N ⋊ H) ∼= C∗(N) ⋊ H ∼= C0(N̂) ⋊ H,

where the last isomorphism is given via the Gelfand-transform C∗(N) ∼= C0(N̂).

The corresponding action of H on C0(N̂) is induced by the action of H on N̂ given

by
(
h · χ

)
(n) := χ(h−1 · n) if h ∈ H, χ ∈ N̂ and n ∈ N . Thus, if the action of H on

N̂ is smooth, we obtain every irreducible representation of C∗(N ⋊H) ∼= C0(N̂)⋊H

as an induced representation indH
Hχ

(εχ × V ) for some χ ∈ N̂ and V ∈ Ĥχ. The

isomorphism C0(N̂) ⋊ Hχ
∼= C∗(N ⋊ Hχ), transforms the representation εχ × V to

the representation χ×V of N ⋊Hχ defined by χ×V (n, h) = χ(n)V (h) and one can

show that indN⋊H
N⋊Hχ

(χ × V ) corresponds to the representation indH
Hχ

(εχ × V ) under

the isomorphism C∗(N ⋊ N) ∼= C0(N̂ ) ⋊ H. Thus, choosing a cross-section S ⊆ N̂

for H\N̂ , it follows from Theorem 10.10 that

Ind : ∪{Ĥχ : χ ∈ S} → N̂ ⋊ H;V 7→ indN⋊H
N⋊Hχ

(χ × V )

is a bijection.

If the action of H on N̂ is not smooth, but N ⋊ H is second countable and

amenable, then we get at least all primitive ideals of C∗(N ⋊ H) as kernels of the

induced representations indN⋊H
N⋊Hχ

(χ × V ).

Let us now discuss some explicit examples:

(1) Let G = R ⋊ R∗ denote the ax + b-group, i.e., G is the semi-direct product

for the action of the multiplicative group R∗ on R via dilation. Identifying R with

R̂ via t 7→ χt with χt(s) = e2πits, we see easily that the action of R∗ on R̂ is also

given by dilation. Hence there are precisely two orbits in R̂: {χ0} and R̂ r {χ0}.



46 le 4/5/2009

Let S = {χ0, χ1} ⊆ R̂. Then S is a cross-section for R∗\R̂, the stabilizer of χ1 in R∗

is {1} and the stabilizer of χ0 is all of R∗. Thus we see that

Ĝ = {χ0 × µ : µ ∈ R̂∗} ∪ {indR⋊R∗

R
χ1}.

Notice that we could also consider the C∗-algebra C∗(G) as “fibered” over R∗\R̂:

The open orbit R̂ r {χ0} ∼= R∗ corresponds to the ideal C0(R
∗) ⋊ R∗ ∼= K(L2(R∗))

and the closed orbit {χ0} corresponds to the quotient C0(R̂∗) of C∗(G), so that this

picture yields the short exact sequence

0 → K(L2(R∗)) → C∗(G) → C0(R̂∗) → 0

(compare also with Example 6.6).

(2) A more complicated example is given by the Mautner group. This group is

the semi-direct product G = C2 ⋊ R with action given by

t · (z,w) = (e−2πitz, e−2πiθtw),

where θ ∈ (0, 1) is a fixed irrational number. Identifying C2 with the dual group Ĉ2

via (u, v) 7→ χ(u,v) such that

χ(u,v)(z,w) = exp(2πiRe(zū + wv̄)),

we get t · χ(u,v) = χ(e2πitu,e2πiθtz). The quasi-orbit space for the action of R on Ĉ2

can then be parametrized by the set [0,∞) × [0,∞): If (r, s) ∈ [0,∞)2, then the

corresponding quasi-orbit O(s,t) consists of all (u, v) ∈ C2 such that |u| = r and |v| =

s. Hence, if s, r > 0, then O(s,t) is homeomorphic to T2 and this homeomorphism

carries the action of R on O(s,t) to the irrational flow of R on T2 corresponding to θ as

considered in part (4) of Example 6.6. In particular, R acts freely but not smoothly

on those quasi-orbits. If r 6= 0 and s = 0, the quasi-orbit O(s,t) is homeomorphic

to T with action t · u := e2πitu and constant stabilizer Z. In particular, all those

quasi-orbits are orbits. Similarly, if r = 0 and s 6= 0, the quasi-orbit O(r,s) is

homeomorphic to T with action t · v = e2πiθtv and stabilizer 1
θZ. Finally, the quasi-

orbit corresponding to (0, 0) is the point-set {(0, 0)} with stabilizer R.

Since G is second countable and amenable, we can therefore parametrize

Prim(C∗(G)) by the set

{(r, s) : r, s > 0} ∪
(
(0,∞) × Ẑ

)
∪

(
(0,∞) × 1̂

θ
Z

)
∪ R̂.

In fact, we can also view C∗(G) as “fibered” over [0,∞)2 with fibers

C∗(G)(r,s) ∼= C(T2) ⋊θ R ∼M Aθ for r, s > 0,

where Aθ denotes the irrational rotation algebra,

C∗(G)(r,0) ∼= C(T) ⋊ R ∼M C(Ẑ) ∼= C(T) for r > 0,

C∗(G)(0,s)
∼= C(T) ⋊θ R ∼M C(

1̂

θ
Z) ∼= C(T) for s > 0,

and C∗(G)(0,0)
∼= C0(R). Using continuity of induction and restriction, it is also

possible to describe the topology of Prim(G) in terms of convergent sequences, but

we do not go into the details here. We should mention that the Mautner group is
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the lowest dimensional example of a connected Lie-group G with a non-type I group

algebra C∗(G).

Remark 11.4. It follows from Theorems 10.10 and 10.13 that for understanding

the ideal structure of A ⋊ G, it is necessary to understand the structure of AP ⋊ GP

for P ∈ Prim(A). We saw in this section that this is the same as understanding the

group algebras C∗(Gx) for the stabilizers Gx if A = C0(X) is abelian. In general, the

problem becomes much more difficult. However, at least in the important special

case where A is type I one can still give a quite satisfactory description of AP ⋊ GP

in terms of the stabilizers. Since an elegant treatment of that case uses the theory

of twisted actions and crossed products, we postpone the discussion of this case to

§14 below.

12. Twisted actions and twisted crossed products

One draw-back of the theory of crossed products by ordinary actions is the fact

that crossed products A ⋊ G (and their reduced analogues) cannot be written as

iterated crossed products (A ⋊ N) ⋊ G/N if N is a normal subgroup such that the

extension

1 → N → G → G/N → 0

is not topologically split (compare with Example 3.6). In order to close this gap, we

now introduce twisted actions and twisted crossed products following Phil Green’s

approach of [52]. Note that there is an alternative approach due to Leptin and

Busby–Smith (see [79, 10, 96] for the construction of twisted crossed products within

this theory), but Green’s theory seems to be better suited for our purposes.

As a motivation, consider a closed normal subgroup N of the locally compact

group G, and assume that α : G → Aut(A) is an action. Let A ⋊ N be the crossed

product of A by N . Let δ : G → R+ be the module for the conjugation action of G

on N , i.e., δ(s)
∫

N f(s−1ns) dn =
∫
N f(n) dn for all f ∈ Cc(N). A short computation

using the formula

(12.1)

∫

G
g(s) ds =

∫

G/N

(∫

N
g(sn) dn

)
dsN

(with respect to suitable choices of Haar measures) shows that δ(s) = ∆G(s)∆G/N (s−1)

for all s ∈ G. Similar to Example 3.6 we define an action αN : G → Aut(A ⋊ N) by

(12.2)
(
αN

s (f)
)
(n) = δ(s)αs

(
f(s−1ns)

)

for f in the dense subalgebra Cc(N,A) ⊆ A ⋊ N . If we denote by τN := iN : N →
U(A ⋊ N) the canonical embedding as defined in part (1) of Remark 3.4, then the

pair (αN , τN ) satisfies the equations

(12.3) τN
n xτN

n−1 = αN
n (x) and αN

s (τN
n ) = τN

sns−1

for all x ∈ A ⋊ N , n ∈ N and s ∈ G, where in the second formula we extended the

automorphism αN
s of A ⋊ N to M(A ⋊ N). Suppose now that (π,U) is a covariant

homomorphism of (A,G,α) into some M(D). Let (π,U |N ) denote its restriction to
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(A,N,α) and let π×U |N : A⋊N → M(D) be its integrated form. Then (π×U |N , U)

is a non-degenerate covariant homomorphism of (A ⋊ N,G,αN ) which satisfies

π × U |N (τN
n ) = Un

for all n ∈ N (see Remark 3.4). The pair (αN , τN ) is the prototype for a twisted

action (which we denote the decomposition twisted action) and (π × U |N , U) is the

prototype of a twisted covariant homomorphism as in

Definition 12.1 (Green). Let N be a closed normal subgroup of G. A twisted

action of (G,N) on a C∗-algebra A is a pair (α, τ) such that α : G → Aut(A) is an

action and τ : N → UM(A) is a strictly continuous homomorphism such that

τnaτn−1 = αn(a) and αs(τn) = τsns−1

for all a ∈ A, n ∈ N and s ∈ G. We then say that (A,G,N,α, τ) is a twisted

system. A (twisted) covariant homomorphism of (A,G,N,α, τ) into some M(D) is

a covariant homomorphism (ρ, V ) of (A,G,α) into M(D) which preserves τ in the

sense that ρ(τna) = Vnρ(a) for all n ∈ N, a ∈ A. 14

Remark 12.2. Note that the kernel of the regular representation ΛN
A : A ⋊ N →

A⋊rN is easily seen to be invariant under the decomposition twisted action (αN , τN )

(which just means that it is invariant under αN ), so that (αN , τN ) induces a twisted

action on the quotient A ⋊r N . In what follows, we shall make no notational differ-

ence between the decomposition twisted actions on the full or the reduced crossed

products.

Let Cc(G,A, τ) denote the set of all continuous A-valued functions on G with

compact support mod N and which satisfy

f(ns) = f(s)τn−1 for all n ∈ N , s ∈ G.

Then Cc(G,A, τ) becomes a ∗-algebra with convolution and involution defined by

f ∗ g(s) =

∫

G/N
f(t)αt(g(t−1s)) dtN and f∗(s) = ∆G/N (s−1)αs

(
f(s−1)∗

)
.

If (ρ, V ) is a covariant representation of (A,G,N,α, τ), then the equation

ρ × V (f) =

∫

G/N
ρ(f(s))Vs dsN

defines a ∗-homomorphism ρ×V : Cc(G,A, τ) → M(D), and the full twisted crossed

product A ⋊α,τ (G,N) (or just A ⋊ (G,N) if (α, τ) is understood) is defined as the

completion of Cc(G,A, τ) with respect to

‖f‖max := sup{‖ρ×V (f)‖ : (ρ, V ) is a covariant homomorphism of (A,G,N,α, τ)}.
Note that the same formulas as given in Remark 3.4 define a twisted covariant

homomorphism (iA, iG) of (A,G,N,α, τ) into M(A ⋊ (G,N)) such that any non-

degenerate homomorphism Φ : A ⋊ (G,N) → M(D) is the integrated form ρ × V

with ρ = Φ ◦ iA and V = Φ ◦ iG.

14The latter condition becomes ρ(τn) = Vn if (ρ, V ) is non-degenerate.
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Remark 12.3. It is important to notice that for any twisted action (α, τ) of (G,N)

the map

Φ : Cc(G,A) → Cc(G,A, τ); Φ(f)(s) =

∫

N
f(sn)τsns−1 dn

extends to a quotient map Φ : A ⋊ G → A ⋊ (G,N) of the full crossed products,

such that ker Φ = ∩{ker(π × U) : (π,U) preserves τ}. The ideal Iτ := ker Φ is

called the twisting ideal of A ⋊ G. Note that if G = N , then A ⋊ (N,N) ∼= A via

f 7→ f(e);Cc(N,A, τ) → A.

For the definition of the reduced twisted crossed products A ⋊α,τ,r (G,N) (or just

A ⋊r (G,N)) we define a Hilbert A-module L2(G,A, τ) by taking the completion of

Cc(G,A, τ) with respect to the A-valued inner product

〈ξ, η〉A := ξ∗ ∗ η(e) =

∫

G/N
αs−1

(
ξ(s)∗η(s)

)
dsN.

The regular representation

ΛG,N
A : Cc(G,A, τ) → LA(L2(G,A, τ)); ΛG,N

A (f)ξ = f ∗ ξ

embeds Cc(G,A, τ) into the algebra of adjointable operators on L2(G,A, τ) and

then A ⋊r (G,N) := ΛG,N
A

(
Cc(G,A, τ)

)
⊆ LA(L2(G,A, τ)). If N = {e} is trivial,

then LA(L2(G,A)) identifies naturally with M(A ⊗K(L2(G))), and we recover the

original definition of the regular representation ΛG
A of (A,G,α) and of the reduced

crossed product A ⋊r G of A by G.

Remark 12.4. The analogue of Remark 12.3 does not hold in general for the

reduced crossed products, i.e. A ⋊r (G,N) is in general not a quotient of A ⋊r G.

For example, if N is not amenable, the algebra C∗
r (G/N) = C ⋊id,1,r (G,N) is not a

quotient of C∗
r (G) = C ⋊id,r G – at least not in a canonical way.

We are now coming back to the decomposition problem

Proposition 12.5 (Green). Let α : G → Aut(A) be an action, let N be a closed

normal subgroup of G, and let (αN , τN ) be the decomposition twisted action of (G,N)

on A ⋊ N . Then the map

(12.4) Ψ : Cc(G,A) → Cc(G,Cc(N,A), τN ); Ψ(f)(n) = δ(s)f(ns)

extends to isomorphisms A⋊G ∼= (A⋊N)⋊(G,N) and A⋊rG ∼= (A⋊rN)⋊r (G,N).

In particular, if A = C we obtain isomorphisms C∗(G) ∼= C∗(N) ⋊ (G,N) and

C∗
r (G) ∼= C∗

r (N) ⋊r (G,N). Under the isomorphism of the full crossed products, a

representation π × U of A ⋊ G corresponds to the representation (π × U |N ) × U of

(A ⋊ N) ⋊ (G,N).

A similar result holds if we start with a twisted action of (G,M) on A with

M ⊆ N (see [52, Proposition 1] and [12]). Note that all results stated in §3 for

ordinary crossed products have their complete analogues in the twisted case, where

G/N plays the rôle of G. In particular, the full and reduced crossed products coincide

if G/N is amenable. Indeed, we shall see in §12 below that there is a convenient
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way to extend results known for ordinary actions to the twisted case via Morita

equivalence (see Theorem 13.4 below).

13. The twisted Morita category and the stabilization trick

As done for ordinary actions in §5 we may consider the equivariant twisted Morita

category M(G,N) (resp. the compact twisted Morita category Mc(G,N)) in which

the objects are twisted systems (A,G,N,α, τ) and in which the morphism from

(A,G,N,α, τ) and (B,G,N, β, σ) are given by morphisms [E,Φ, u] from (A,G,α)

to (B,G, β) in M(G) (resp. Mc(G)) which preserve the twists in the sense that

(13.1) Φ(τn)ξ = un(ξ)σn for all n ∈ N .

As for ordinary actions, the crossed product construction A ⋊(r) (G,N) extend to a

descent functor

⋊(r) : M(G,N) → M.

If [E,Φ, u] ∈ Mor(G,N) is a morphism from (A,G,N,α, τ) to (B,G,N, β, σ), then

the descent [E ⋊(r) (G,N),Φ⋊(r) (G,N)] can be defined by setting E ⋊(r) (G,N) :=

(E ⋊ G)/
(
(E ⋊ G) · I(r)

)
with I(r) := ker

(
B ⋊ G → B ⋊(r) (G,N)

)
. Alternatively,

one can construct E ⋊(r) G as the closure of Cc(G,E, σ), the continuous E-valued

functions ξ on G with compact support modulo N satisfying ξ(ns) = ξ(s)σn−1 for

s ∈ G, n ∈ N , with respect to the B ⋊(r) (G,N)-valued inner product given by

〈ξ, η〉B⋊(r)(G,N)(t) =

∫

G/N
〈ξ(s), us(η(s−1t)〉B dsN

(compare with the formulas given in §5.4.
There is a natural inclusion functor inf : M(G/N) → M(G,N) given as follows:

If (A,G/N,α) is an action of G/N , we let inf α : G → Aut(A) denote the inflation

of α from G/N to G and we let 1N : N → U(A) denote the trivial homomorphism

1N (s) = 1. Then (inf α, 1N ) is a twisted action of (G,N) on A and we set

inf
(
(A,G/N,α)

)
:= (A,G,N, inf α, 1N ).

Similarly, on morphisms we set inf
(
[E,Φ, u]

)
:= [E,Φ, inf u], where inf u denotes

the inflation of u from G/N to G. The dense subalgebra Cc(G,A, 1N ) of the crossed

product A ⋊(r) (G,N) for (inf α, 1N ) consists of functions which are constant on N -

cosets and which have compact supports in G/N , hence it coincides with Cc(G/N,A)

(even as a ∗-algebra). The identification Cc(G,A, 1N ) ∼= Cc(G/N,A) extends to the

crossed products, and we obtain canonical isomorphisms A⋊(r)G/N ∼= A⋊(r)(G,N).

A similar observation can be made for the crossed products of morphism and we see

that the inclusion inf : M(G/N) → M(G,N) is compatible with the crossed product

functor in the sense that the diagram

M(G/N)
inf−−−−→ M(G,N)

⋊

y
y⋊

M M

commutes.
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In what follows next we want to see that every twisted action is Morita equivalent

(and hence isomorphic in M(G,N)) to some inflated twisted action as above. This

will allow us to pass to an untwisted system whenever a theory (like the theory of

induced representations, or K-theory of crossed products, etc.) only depends on the

Morita equivalence class of a given twisted action.

To do this, we first note that Green’s imprimitivity theorem (see Theorem 6.4)

extends easily to crossed products by twisted actions: If N is a closed normal sub-

group of G such that N ⊆ H for some closed subgroup H of G, and if (α, τ) is

a twisted action of (H,N) on A, then we obtain a twisted action (Indα, Ind τ) of

(G,N) on IndG
H(A,α) by defining

(Ind τnf)(s) = τs−1nsf(s) for f ∈ IndA, s ∈ G and n ∈ N.

One can check that the twisting ideals Iτ ⊆ A⋊H and IInd τ ⊆ IndA⋊G (see Remark

12.3) are linked via the Rieffel correspondence of the IndA⋊G−A⋊H imprimitivity

bimodule XG
H(A). Similarly, the kernels Iτ,r := ker

(
A ⋊ H → A ⋊r (H,N)

)
and

IInd τ,r := ker
(
IndA⋊G → IndA⋊r(G,N)

)
are linked via the Rieffel correspondence

(we refer to [52] and [70] for the details). Thus, from Proposition 5.4 it follows:

Theorem 13.1. The quotient Y G
H (A) := XG

H(A)/(XG
H (A) · Iτ ) (resp. Y G

H (A)r :=

XG
H(A)/(XG

H (A) · Iτ,r)) becomes an IndG
H(A,α) ⋊ (G,N) − A ⋊ (H,N) (resp.

IndG
H(A,α) ⋊ r(G,N) − A ⋊r (H,N)) imprimitivity bimodule.

Remark 13.2. (1) Alternatively, one can construct the modules Y G
H (A) and

Y G
H (A)r by taking completions of Y0(A) := Cc(G,A, τ) with respect to suitable

Cc(G, Ind A, Ind τ)- and Cc(N,A, τ)-valued inner products. The formulas are

precisely those of (6.1) if we integrate over G/N and H/N , respectively (compare

with the formula for convolution in Cc(G,A, τ) as given in §12).
(2) If we start with a twisted action (α, τ) of (G,N) on A and restrict this

to (H,N), then the induced algebra IndG
H(A,α) is isomorphic to C0(G/H,A) ∼=

C0(G/H) ⊗ A as in Remark 6.1. The isomorphism transforms the action Indα

to the action l ⊗ α : G → Aut(C0(G/H,A)), with l : G → Aut(C0(G/H)) be-

ing left-translation action, and the twist Ind τ is transformed to the twist 1 ⊗ τ :

N → U(C0(G/H) ⊗ A). Hence, in this setting, the above theorem provides Morita

equivalences

A ⋊(r) (H,N) ∼M C0(G/H,A) ⋊(r) (G,N)

for the above described twisted action (l ⊗ α, 1 ⊗ τ) of (G,N).

We want to use Theorem 13.1 to construct a functor

F : M(G,N) → M(G/N)

which, up to a natural equivalence, inverts the inflation functor inf : M(G/N) →
M(G,N). We start with the special case of the decomposition twisted actions

(αN , τN ) of (G,N) on A ⋊ N with respect to a given system (A,G,α) and a normal

subgroup N of G (see §12 for the construction). Since A is a G-algebra, it follows

from Remark 6.1 that IndG
N (A,α) is isomorphic to C0(G/N,A) as a G-algebra. Let
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XG
N (A) be Green’s C0(G/N,A) ⋊ G − A ⋊ N imprimitivity bimodule. Since right

translation of G/N on C0(G/N,A) commutes with Indα, it induces an action

βN : G/N → Aut
(
C0(G/N,A) ⋊ G

)

on the crossed product. For s ∈ G and ξ ∈ Cc(G,A) ⊆ XG
N (A) let

uN
s (ξ)(t) :=

√
δ(s)αs(ξ(ts)), ξ ∈ Cc(G,A)

where δ(s) = ∆G(s)∆G/N (s−1). This formula determines an action uN : G →
Aut(XG

H(A)) such that (XG
N (A), uN ) becomes a (G,N)-equivariant C0(G/N,A) ⋊

G − A ⋊ N Morita equivalence with respect to the twisted actions (inf βN , 1N ) and

(αN , τN ), respectively. All these twisted actions pass to the quotients to give also

a (G,N)-equivariant equivalence (XG
N (A)r, u

N ) for the reduced crossed products.

Thus we get

Proposition 13.3 (cf. [30, Theorem 1]). The decomposition action (αN , τN ) of

(G,N) on A⋊(r) N is canonically Morita equivalent to the (untwisted) action βN of

G/N on C0(G/N,A) ⋊(r) G as described above.

If one starts with an arbitrary twisted action (α, τ) of (G,N) on A, one checks that

the twisting ideals Iτ ⊆ A⋊N and IInd τ ⊆ C0(G/N,A)⋊G are (G,N)-invariant and

that the twisted action on A ∼= (A⋊N)/Iτ (cf. Remark 12.3) induced from (αN , τN )

is equal to (α, τ). Hence, if β denotes the action of G/N on C0(G/N,A) ⋊ (G,N) ∼=(
C0(G/N,A) ⋊ G

)
/IInd τ induced from βN , then uN factors through an action u

of G on Y G
N (A) = XG

N (A)/(XG
N (A) · Iτ ) such that (Y G

N (A), u) begomes a (G,N)-

equivariant C0(G/N) ⋊ (G,N) − A Morita equivalence with respect to the twisted

actions (inf β, 1N ) and (α, τ), respectively. Following the arguments given in [32]

one can show that there is a functor F : M(G,N) → M(G/N) given on objects by

the assignment

(A,G,N,α, τ)
F7→ (C0(G/N,A) ⋊ (G,N), G/N, β)

(and a similar crossed-product construction on the morphisms) such that

Theorem 13.4 (cf. [30, Theorem 1] and [32, Theorem 4.1]). The assignment

(A,G,N,α, τ) 7→ (Y G
N (A), u)

is a natural equivalence between the identity functor on M(G,N) and the functor

inf ◦F : M(G,N) → M(G,N), where inf : M(G/N) → M(G,N) denotes the infla-

tion functor. In particular, every twisted action of (G,N) is Morita equivalent to

an ordinary action of G/N (viewed as a twisted action via inflation).

Note that a first version of the above Theorem was obtained by Packer and Rae-

burn in the setting of Busby-Smith twisted actions ([96]). We therefore call it the

Packer-Raeburn stabilization trick. It allows to extend results known for ordinary

actions to the twisted case as soon as they are invariant under Morita equivalence.

If A is separable and G is second countable, the algebra B = C0(G/N,A)⋊(G,N) is

separable, too. Thus, it follows from Brown-Green-Rieffel theorem of [9] that A and
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B are stably isomorphic (a direct isomorphism B ∼= A⊗K(L2(G/N)) is obtained in

[53]). Hence, as a consequence of Theorem 13.4 we get

Corollary 13.5. If G is second countable and and A is separable, then every twisted

action of (G,N) on A is Morita equivalent to some action β of G/N on A ⊗K.

We want to discuss some further consequences of Theorem 13.4:

13.1. Twisted Takesaki-Takai duality. If (A,G,N,α, τ) is a twisted system with

G/N abelian, then we define the dual action

(̂α, τ) : Ĝ/N → Aut
(
A ⋊ (G,N)

)

as in the previous section by pointwise multiplying characters of G/N with func-

tions in the dense subalgebra Cc(G,A, τ). Similarly, we can define actions of Ĝ/N

on (twisted) crossed products of Hilbert bimodules, so that taking dual actions gives

a descent functor ⋊ : M(G,N) → M(Ĝ/N ). The Takesaki-Takai duality theorem

shows that on M(G/N) ⊆ M(G,N) this functor is inverted, up to a natural equiv-

alence, by the functor ⋊ : M(Ĝ/N ) → M(G/N). Using Theorem 13.4, this directly

extends to the twisted case.

13.2. Stability of exactness under group extensions. Recall from §8 that a

group is called exact if for every short exact sequence 0 → I → A → A/I → 0 of

G-algebras the resulting sequence

0 → I ⋊r G → A ⋊r G → (A/I) ⋊r G → 0

of reduced crossed products is exact. We want to use Theorem 13.4 to give a proof

of the following result of Kirchberg and S. Wassermann:

Theorem 13.6 (Kirchberg and S. Wassermann [70]). Suppose that N is a closed

normal subgroup of the locally compact group G such that N and G/N are exact.

Then G is exact.

The result will follow from

Lemma 13.7. Suppose that N is a closed normal subgroup of G and that (X,u) is

a (G,N)-equivariant Morita equivalence for the twisted actions (β, σ) and (α, τ) of

G on B and A, respectively. Let I ⊆ A be a (G,N)-invariant ideal of A, and let

J := IndX I ⊆ B denote the ideal of B induced from I via X (which is a (G,N)-

equivariant ideal of B).

Then J ⋊(r) (G,N) (resp. (B/J) ⋊(r) (G,N)) corresponds to I ⋊(r) (G,N) (resp.

(A/I) ⋊(r) (G,N)) under the Rieffel correspondence for X ⋊(r) (G,N).

Proof. Let Y := X · I ⊆ X. Then the closure Cc(G,Y, τ) ⊆ Cc(G,X, τ)

is a B ⋊(r) (G,N) − A ⋊(r) (G,N) submodule of X ⋊(r) (G,N) which cor-

responds to the ideals J ⋊(r) (G,N) and I ⋊(r) (G,N) under the Rieffel

correspondence. For the quotients observe that the obvious quotient map

Cc(G,X, τ) → Cc(G,X/X · I, τ) extends to an imprimitivity bimodule quotient

map X ⋊(r) (G,N) → (X/X · I) ⋊(r) (G,N), whose kernel corresponds to the ideals
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KB := ker
(
B ⋊(r) (G,N) → (B/J) ⋊(r) (G,N)

)
and KA := ker

(
A ⋊(r) (G,N) →

(A/I) ⋊(r) (G,N)
)

und the Rieffel correspondence (see Remark 5.5). �

As a consequence we get

Lemma 13.8. Suppose that N is a closed normal subgroup of G such that G/N is

exact. Suppose further that 0 → I → A → A/I → 0 is a short exact sequence of

(G,N)-algebras. Then the sequence

0 → I ⋊r (G,N) → A ⋊r (G,N) → (A/I) ⋊r (G,N) → 0

is exact.

Proof. By Theorem 13.4 there exists a system (B,G/N, β) such that (B,G,N, inf β, 1N )

is Morita equivalent to the given twisted system (A,G,N,α, τ) via some equivalence

(X,u). If I is a (G,N)-invariant ideal of A, let J := IndX I ⊆ B. It follows then

from Lemma 13.7 and the Rieffel correspondence, that

0 → I ⋊r (G,N) → A ⋊r (G,N) → (A/I) ⋊r (G,N) → 0

is exact if and only if

0 → J ⋊r (G,N) → B ⋊r (G,N) → (B/J) ⋊r (G,N) → 0

is exact. But the latter sequence is equal to the sequence

0 → J ⋊r G/N → B ⋊r G/N → (B/J) ⋊r G/N → 0,

which is exact since G/N is exact. �

Proof of Theorem 13.6. Suppose that 0 → I → A → A/I → 0 is an exact sequence

of G-algebras and consider the decomposition twisted action (αN , τN ) of (G,N) on

A ⋊r N . Since N is exact, we the sequence

0 → I ⋊r N → A ⋊r N → (A/I) ⋊r N → 0

is a short exact sequence of (G,N)-algebras. Since G/N is exact, it follows therefore

from Lemma 13.8 that

0 → (I ⋊r N) ⋊r (G,N) → (A ⋊r N) ⋊r (G,N) →
(
(A/I) ⋊r N

)
⋊r (G,N) → 0

is exact. But it follows from Proposition 12.5 that this sequence equals

0 → I ⋊r G → A ⋊r G → (A/I) ⋊r G → 0.

�

13.3. Induced representations of twisted crossed products. Using Green’s

imprimitivity theorem for twisted systems, we can define induced representations

and ideals for twisted crossed products A ⋊ (G,N) as in the untwisted case, using

the spaces Cc(G,A, τ) and Cc(G, Ind A, Ind τ) etc. (e.g. see [31, Chapter 1] for this

approach). An alternative but equivalent way, as followed in Green’s original paper

[52] is to define induced representations via the untwisted crossed products: Suppose

that (α, τ) is a twisted action of (G,N) on A and let H ⊆ G be a closed subgroup

of G such that N ⊆ H. Since A ⋊ (H,N) is a quotient of A ⋊ H we can regard
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every representation of A ⋊ (H,N) as a representation of A ⋊ H. We can use the

untwisted theory to induce the representation to A ⋊ G. But then we have to check

that this representation factors through the quotient A⋊ (G,N) to have a satisfying

theory. This has been done in [52, Corollary 5], but one can also obtain it as an

easy consequence of Proposition 9.15: Let IN
τ ⊂ A ⋊ N denote the twisting ideal

for (α|N , τ). It is then clear from the definition of representations π × U of A ⋊ H

(resp. A ⋊ G) which preserve τ , that π × U preserves τ iff π × U |N preserves τ as

a representation of A ⋊ N . Hence, π × U is a representation of A ⋊ (H,N) (resp.

A ⋊ (G,N)) iff IN
τ ⊆ ker(π ×U |N ). Since IN

τ is easily seen to be a G-invariant ideal

of A ⋊ N , this property is preserved under induction by Proposition 9.15.

Induction of representations are invariant under passing to Morita equivalent sys-

tems. To be more precise: Suppose that (X,u) is a Morita equivalence for the

systems (A,G,α) and (B,G, β). If H is a closed subgroup of G and π × U is a

representation of B ⋊ H, then we get an equivalence

IndG
H

(
IndX⋊H(π × U)

) ∼= IndX⋊G
(
IndG

H(π × U)
)
.

This result follows from an isomorphism of A ⋊ G − B ⋊ H bimodules

XG
H(A) ⊗A×H (XrtimesH) ∼= (X ⋊ G) ⊗B⋊G (XG

H(B)),

which just means that the respective compositions in the Morita categories coincide.

A similar result can be shown for the reduction of representations to subgroups. Both

results will follow from linking algebra trick as introduced in [35, §4]:

14. Twisted group algebras, actions on K and Mackey’s little group

method

In this section we want to study crossed products of the form K ⋊(r) G, where

K = K(H) is the algebra of compact operators on some Hilbert space H.

While there are only trivial actions of groups on the algebra C of complex numbers,

there are usually many nontrivial twisted actions of pairs (G,N) on C. However, in

a certain sense they are all equivalent to twisted actions of the following type:

Example 14.1. Assume that 1 → T → G̃ → G → 1 is a central extension of

the locally compact group G by the circle group T. Let ι : T → T; ι(z) = z

denote the identity character on G. Then (id, ι) is a twisted action of (G̃, T) on

C. A (covariant) representations of the twisted system (C, G̃, T, id, ι) consists of

unitary representation U of G̃ satisfying Uz = ιz · 1 for all z ∈ T ⊆ G̃, i.e., of those

representations of G̃ which restrict to a multiple of ι on the central subgroup T of

G̃. Hence, the twisted crossed product C ⋊ (G̃, ι) is the quotient of C∗(G̃) by the

ideal Iι = ∩{ker U : U ∈ Rep(G̃) and U |T = ι · 1}. Note that the isomorphism class

of C ⋊ (G̃, ι) only depends on the isomorphism class of the extension 1 → T → G̃ →
G → 1.
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If G is second countable15, we can choose a Borel section c : G → G̃ in the above

extension, and we then obtain a Borel map ω : G × G → T by

ω(s, t) := c(s)c(t)c(st)−1 ∈ T.

A short computation then shows that ω satisfies the cocycle conditions ω(s, e) =

ω(e, s) = 1 and ω(s, t)ω(st, r) = ω(s, tr)ω(t, r) for all s, t, r ∈ G. Hence it is a 2-

cocycle in Z2(G, T) of Moore’s group cohomology with Borel cochains (see [87, 88, 89,

90]). The cohomology class [ω] ∈ H2(G, T) then only depends on the isomorphism

class of the given extension 1 → T → G̃ → G → 1.16 Conversely, if ω : G × G →
T is any Borel 2-cocycle on G, let Gω denote the cartesian product G × T with

multiplication given by

(s, z) · (t, w) = (st, ω(s, t)zw).

By [84, ] there exists a unique locally compact topology on Gω whose Borel structure

coincides with the product Borel structure. Then Gω is a central extension of G by

T corresponding to ω (just consider the section c : G → Gω; c(s) = (s, 1)) and we

obtain a complete classification of the (isomorphism ckasses of) central extensions

of G by T in terms of H2(G, T). We then write C∗
(r)(G,ω) := C ⋊(r) (Gω, T) for the

corresponding full (resp. reduced) twisted crossed products, which we now call the

twisted group algebra of G corrsponding to ω.

There is a canonical one-to-one correspondence between the (non-degenerate)

covariant representations of the twisted system (C, Gω, T, id, ι) on a Hilbert space

H and the projective ω-representations of G on H, which are defined as Borel maps

V : G → U(H) satisfying VsVt = ω(s, t)Vst s, t ∈ G.

Indeed, if Ṽ : Gω → U(H) is a unitary representation of Gω which restricts to a

multiple of ι on T, then Vs := Ṽ (s, 1) is the corresponding ω-representation of G.

A convenient alternative realization of the twisted group algebra C∗(G,ω) is ob-

tained by taking a completion of the convolution algebra L1(G,ω), where L1(G,ω)

denotes the algebra of all L1-functions on G with convolution and involution given

by

f ∗ g(s) =

∫

G
f(t)g(t−1s)ω(t, t−1s) dt and f∗(s) = ∆G(s−1)ω(s, s−1)f(s−1).

One checks that the ∗-representations of L1(G,ω) are given by integrating projective

ω-representations and hence the corresponding C∗-norm for completing L1(G,ω) to

C∗(G,ω) is given by

‖f‖max = sup{‖V (f)‖ : V is an ω-representation of G}.
The map

Φ : Cc(Gω, C, ι) → L1(G,ω); Φ(f)(s) := f(s, 1)

15This assumptions is made to avoid measurability problems. With some extra care, much of

the following discussion also works in the non-separable case (e.g. see [73])
16Two cocycles ω and ω′ are in the same class in H2(G, T) iff they differ by a boundary ∂f(s, t) :=

f(s)f(t)f(st) of some Borel function f : G → T.
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then extends to an isomorphism between the two pictures of C∗(G,ω).17 Sim-

ilarly, we can define the ω-regular representation Lω of G on L2(G) by set-

ting
(
Lω(s)ξ

)
(t) = ω(s, s−1t)ξ(s−1t), ξ ∈ L2(G), and then realize C∗

r (G,ω) as

Lω

(
L1(G,ω)

)
⊆ B(L2(G)).

We shall see in §14 below, that the theory of twisted group algebras for G is

(Morita-) equivalent to the theory of crossed products K(H) ⋊ G, where K(H)

denotes the algebra of compact operators on a Hilbert space H.

Example 14.2. Twisted group algebras appear quite often in C∗-algebra theory.

For instance the rational and irrational rotation algebras Aθ for θ ∈ [0, 1) are iso-

morphic to the twisted group algebras C∗(Z2, ωθ) with ωθ

(
(n,m), (k, l)

)
= ei2πθmk.

Note that every cocycle on Z2 is equivalent to ωθ for some θ ∈ [0, 1). If θ = 0 we

simply get C∗(Z2) ∼= C(T2), the classical commutative 2-torus. For this reason the

Aθ are often denoted as noncommutative 2-tori.

More generally, a noncommutative n-torus is a twisted group algebra C∗(Zn, ω)

for some cohomology class [ω] ∈ H2(Zn, T).

An extensive study of 2-cocycles on abelian groups is given by Kleppner in [73].

In particular, for G = Rn, every cocycle is similar to a cocycle of the form ω(x, y) =

e2πi〈Ax,y〉, where A is a skew-symmetric real n × n-matrix, and every cocycle of Zn

is similar to a restiction to Zn of some cocycle on Rn. The general structure of the

twisted group algebras C∗(G,ω) for abelian G is studied extensively in [36] in the

type I case and in [95] in the general case. If G is abelian, then the symmetry group

Sω of ω is defined by

Sω := {s ∈ G : ω(s, t) = ω(t, s) for all t ∈ G}.
Then Poguntke shows that C∗(G,ω) is stably isomorphic to an algebra of the form

C0(Ŝω) ⊗ C∗(Zn, σ), where C∗(Zn, σ) is some simple noncommutative n-torus.18

It follows from Theorems 10.10 and 10.13 that for understanding the ideal struc-

ture of A⋊G, it is necessary to understand the structure of AP ⋊GP for P ∈ Prim(A).

In the special case A = C0(X), we saw in the previous section that this is the same as

understanding the group algebras C∗(Gx) for the stabilizers Gx, x ∈ X. In general,

the problem becomes much more difficult. However, at least in the important special

case where A is type I one can still give a quite satisfactory description of AP ⋊ GP

in terms of the stabilizers. If A is type I, we have Â ∼= Prim(A) via σ 7→ ker σ and if

P = ker σ for some σ ∈ Â, then the simple subquotient AP of A corresponding to P

is isomorphic to K(Hσ). Thus, we have to understand the structure of the crossed

products K(Hσ) ⋊ Gσ, where Gσ denotes the stabilizer of σ ∈ Â.

Hence, in what follows we shall always assume that G is a locally compact group

acting on the algeba K(H) of compact operators on some Hilbert space H. In order

to avoid measerability problems, we shall always assume that G is second countable

17Use the identity ω(t, t−1)ω(t−1, s)ω(t, t−1s) = 1 in order to check that Φ preserves multiplica-

tion.
18Two C∗-algebras A and B are called stably isomorphic if A⊗K ∼= B⊗K, where K = K(l2(N)).

We refer to §5 below for a more detailed discussion
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and that H is separable (for a discussion of the non-separable case we refer to [52,

Theorem 18]). Moreover, after stabilization if necessary (which does not change the

ideal and representation spaces), we may assume that H is infinite dimensional and

then we write K := K(H). Since every automorphism of K is given by conjugation

with some unitary U ∈ B(H), it follows that the automorphism group of K is

isomorphic (as topological groups) to the group PU := U/T · 1, where U = U(H)

denotes the group of unitary operators on H equipped with the strong operator

topology. We choose a Borel map Vα : G → PU such that αs = Ad Vα(s) for all

s ∈ G. Since Vα(s)Vα(t) and Vα(st) give the same automorphism of K, they must

differ by some element in T, and hence there exists a Borel map ωα : G × G → T

such that

Vα(s)Vα(t) = ω(s, t)Vα(st) for all s, t ∈ G.

Comparing Vα(st)Vα(r) with Vα(s)Vα(tr) then shows that ωα satisfies the cocycle

identity

ωα(s, t)ωα(st, r) = ωα(s, tr)ωα(t, r) for all s, t, r ∈ G,

and ωα(e, t) = ωα(t, e) = 1 for all t ∈ G. Hence ωα determines a class [ωα] in

Moore’s Borel cohomology group H2(G, T). We refer to [87, 89] for the definition

and the general properties of this cohomology theory, but we mention here that two

cocycles ω, ω′ ∈ Z2(G, T) are cohomologuous iff they differ by some trivial cocycle

∂f(s, t) := f(s)f(t)s(st) for some Borel map f : G → T. It is then esay to check

that the class [ωα] does not depend on the choice of Vα. The following result goes

back to early work of Mackey (e.g. see [84, 85]).

If we define

G̃ := {(s, U) ∈ G × U(H) : αs = Ad(U)}
then we obtain a central extension

1 −−−−→ T
z 7→(e,z̄·1)−−−−−−→ G̃

(s,U)7→s−−−−−→ G −−−−→ 1,

and then a corresponding twisted system (C, G̃, T, id, ι) as in Example 14.1, where

ι(z) = z is the identity character on T. Recall from Example 14.1 that

(C, G̃, T, id, ι)̂ = {V ∈ ̂̃G : V |T = ι · 1HV
}.

Lemma 14.3. Let U : G̃ → U(H) denote the second projection. Then the pair

(H,U) is a (G̃, T)-equivariant Morita equivalence between (K(H), G, α) (viewed as

a twisted (G̃, T)-system via inflation) and (C, G̃, T, id, ι). Therefore, induction via

H gives a homeomorphism

V 7→ (id⊗1HV
, U ⊗ V )

between {V ∈ ̂̃G : V |T = ι · 1HV
} and (K(H) ⋊ G)̂ , where we remark that U ⊗ V is

trivial on T ⊆ G̃, and hence may be regarded as a unitary representation of G.

Proof. The proof follows directly from the definitions. �
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Choose a Borel section c : PU → U . If α : G → PU is a continuous homomor-

phism, let Vα := c ◦ α : G → U . Since Vα(s)Vα(t) and Vα(st) both implement the

automorphism αst, there exists a number ωα(s, t) ∈ T with

ωα(s, t) · 1 = Vα(st)Vα(t)∗Vα(s)∗.

A short computation shows that ωα is a Borel 2-cocycle on G as in Example 14.1

and that Vα is an ω−1
α -projective representation of G on H.

The class [ωα] ∈ H2(G, T) only depends on α and it vanishes if and only if α is

unitary in the sense that α is implemented by a strongly continuous homomorphism

V : G → U . 19 Therefore, the class [ωα] ∈ H2(G, T) is called the Mackey obstruction

for α being unitary. An easy computation gives:

Lemma 14.4. Let α : G → Aut(K), Vα : G → U and ωα be as above. Let Gωα

denote the central extension of G by T corresponding to ωα as described in Example

14.1 and let ι : T → C denote the inclusion. Let

Ṽα : Gωα → U(H); Ṽα(s, z) = z̄Vα(s).

Then (H, Ṽα) is a (Gωα , T)-equivariant Morita equivalence between the action α of

G ∼= Gωα/T on K and the twisted action (id, ι) of (Gωα , T) on C.

We refer to §5.4 for the definition of twisted equivariant Morita equivalences.

Since Morita equivalent twisted systems have Morita equivalent full and reduced

crossed products, it follows that K ⋊α G is Morita equivalent to the twisted group

algebra C∗(G,ωα) (and similarly for K ⋊r G and C∗
r (G,ω)). Recall from Exam-

ple 14.1 that there is a one-to-one correspondence between the representations of

C∗(G,ωα) (or the covariant representations of (C, Gωα , T, id, ι)) and the projective

ωα-representations of G. Using the above lemma and induction of covariant repre-

sentations via the bimodule (H, Ṽα) then gives:

Theorem 14.5. Let α : G → Aut(K) be an action and let ωα and V : G → U(H)

be as above. Then the assignment

L 7→ (id⊗1, Vα ⊗ L)

gives a homeomorphic bijection between the (irreducible) ωα-projective represen-

tations of G and the (irreducible) non-degenerate covariant representations of

(K, G, α).

Remark 14.6. (1) It is actually quite easy to give a direct isomorphism between

C∗(G,ωα)⊗K and the crossed product K⋊α G. If Vα : G → U(H) is as above, then

one easily checks that

Φ : L1(G,ωα) ⊙K → L1(G,K); Φ(f ⊗ k)(s) = f(s)kV ∗
s .

is a ∗-homomorphism with dense range such that

(id⊗1) × (Vα ⊗ L)
(
Φ(f ⊗ k)

)
= L(f) ⊗ k

19To see this one should use the fact that any measurable homomorphism between polish groups

is automatically continuous by [89, Proposition 5].
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for all f ∈ L1(G,ω) and k ∈ K, and hence the above theorem implies that Φ

is isometric with respect to the C∗-norms. A similar argument also shows that

K ⋊r G ∼= C∗
r (G,ωα) ⊗K.

(2) The separability assumptions made above are not really necessary: Indeed,

if α : G → Aut(K(H)) ∼= PU(H) is an action of any locally compact group on the

algebra of compact operators on any Hilbert space H, then

G̃ := {(s, U) ∈ G × U(H) : αs = Ad(U)}
fits into the central extension

1 −−−−→ T
z 7→(e,z·1)−−−−−−→ G̃

(s,U)7→s−−−−−→ G −−−−→ 1.

Combining the previous results (and using the identification Â ∼= Prim(A) if A is

type I) with Theorem 10.10 now gives:

Theorem 14.7 (Mackey’s little group method). Suppose that (A,G,α) is a smooth

separable system such that A is type I. Let S ⊆ Â be a section for the quotient

space G\Â and for each π ∈ S let Vπ : G → U(Hπ) be a measurable map such that

π(αs(a)) = Vπ(s)π(a)Vπ(s)∗ for all a ∈ A and s ∈ G (such map always exists). Let

ωπ ∈ Z2(Gπ, T) be the 2-cocycle satisfying

ωπ(s, t) · 1Hπ := Vπ(st)Vπ(t)∗Vπ(s)∗.

Then

IND : ∪π∈SC∗(Gπ, ωπ )̂ → (A ⋊ G)̂ ; IND(L) = indG
Gπ

(π ⊗ 1) × (Vπ ⊗ L).

is a bijection, which restricts to homeomorphisms between C∗(Gπ, ωπ )̂ and it’s im-

age (AGπ ⋊ G)̂ for each π ∈ S.

Remark 14.8. (1) If G is exact, then a similar result holds for the reduced crossed

product A⋊r G, if we also use the reduced twisted group algebras C∗
r (Gπ, ωπ) of the

stabilizers.

(b) If (A,G,α) is a type I smooth system which is not separable, then the action

of Gπ on K(Hπ) induced from

Notice that the above result in particular applies to all systems (A,G,α) with

A type I and G compact, since actions of compact groups on type I algebras are

always smooth in the sense of Definition 10.6. Since the central extensions Gω of a

compact group G by T are compact, and since C∗(G,ω) is a quotient of C∗(Gω) (see

Example 14.1), it follows that the twisted group algebras C∗(G,ω) are direct sums

of matrix algebras if G is compact. Using this, we easily get from Theorem 14.7:

Corollary 14.9. Suppose that (A,G,α) is a separable system with A type I and G

compact. Then A ⋊ G is type I. If, moreover, A is CCR, then A ⋊ G is CCR, too.

Proof. Since the locally closed subset (AGπ ⋊ G)̂ corresponding to some or-

bit G(π) ⊆ Â is homeomorphic (via Morita equivalence) to (K(Hπ) ⋊ G)̂ ∼=
C∗(Gπ, ωπ )̂ , it follows that (AG(π) ⋊ G)̂ is a discrete set in the induced topology.

This implies that all points in (A ⋊ G)̂ are locally closed. Moreover, if A is CCR,
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then the points in Â are closed. Since G is compact, it follows then that the G-orbits

in Â are closed, too. But then the discrete set (AGπ ⋊ G)̂ is closed in (A ⋊ G)̂ ,

which implies that the points in (A ⋊ G)̂ are closed. �

Notice that it is not very difficult to remove the separability assumption from the

above result.
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