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In this talk, all C∗-algebras denoted by A, B, C, . . . are assumed to be σ-unital and graded. Some
statements are also true if not all of the C∗-algebras involved are σ-unital, but we would like to keep the
formulation of our theorems and propositions simple.

1 Invitation to the Kasparov product
The aim of this talk is to define the Kasparov product

⊗B : KK(A,B)×KK(B,C) −→ KK(A,C)

for C∗-algebras A, B and C. We will have to assume that the algebra A is separable. In the first part of the
talk, we will discuss the Kasparov product for some special cases giving us some desirable conditions for
the general product. Before we dive into the technicalities, an outline of the product is given as a goal for
the construction.

1.1 The Kasparov product in some special cases
1.1.1 Homomorphisms

Definition 1.1. Let A and B be C∗-algebras and f : A −→ B be a ∗-homomorphism. Then we define

(f) := (B, f, 0) ∈ E(A,B) and [f ] := [(B, f, 0)] ∈ KK(A,B).

(f) is indeed an element of E(A,B) because B is σ-unital (and hence countably generated as a B-
Hilbert-module) and KB(B) = B (so f factors through the compact operators).

Obviously, we should define the Kasparov product in a way that ensures the formula

(1) [g ◦ f ] = [f ]⊗B [g],

where we denote the Kasparov product with a tensor product notation which will soon be plausible. If A is
a C∗-algebra, then (IdA) = (A, IdA, 0). Now [IdA] seems to be a natural candidate for a left unit element
for KK(A,B) and [IdB ] should act as a right unit:

(2) ∀x ∈ KK(A,B) : [IdA]⊗A x = x⊗B [IdB ] = x.

In the following section we are going to analyze a more general, but still comparatively simple situation:

1.1.2 Kasparov cycles with trivial operator

What do these Kasparov cycles look like?

Proposition 1.2. Let A and B be C∗-algebras. Then (E, φ, 0) is a Kasparov cycle if and only if E is a
countably generated graded Hilbert B-module and φ : A −→ LB(E) is a graded ∗-homomorphism such
that φ(A) ⊆ KB(E).

For such modules there is an obvious definition of a product on the level of cycles:

Definition 1.3. Let A, B and C be C∗-algebras. Then we define for every E1 = (E1, φ1, 0) ∈ E(A,B)
and E2 = (E2, φ2, 0) ∈ E(B,C):

E1 ⊗B E2 = (E1, φ1, 0)⊗B (E2, φ2, 0) := (E1 ⊗B E2, φ1 ⊗ 1, 0) ∈ E(A,C)

The module E1⊗B E2 is countably generated because E1 and E2 are. Because φ2(B) ⊆ KC(E2) one
can show that KB(E1)⊗ 1 ⊆ KC(E1 ⊗B E2) (but be careful: this is not true in general). The grading of
E1 ⊗B E2 was given in the preceding talk.

The Kasparov product should surely satisfy

(3) [E1]⊗B [E2] = [E1 ⊗B E2].

There is a link of the above definition to strong Morita equivalences of C∗-algebras:
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Proposition 1.4. Let A and B be C∗-algebras, E1 := (E1, φ1, 0) ∈ E(A,B) and E2 := (E2, φ2, 0) ∈
E(B,A) such that E1 ⊗B E2 ∼= (IdA) = (A, IdA, 0) and E2 ⊗A E1 ∼= (IdB). Then φ1 : A −→ KB(E1) is
an isomorphism, E1 is an A-B-imprimitivity bimodule and E2

∼= E1.

This was proved in a more general setting (but without the grading which should not cause any prob-
lems) in [EKQR02], Lemma 2.4.

Of course also the opposite is true:

Proposition 1.5. Let A and B be C∗-algebras and E be an A-B-imprimitivity bimodule. Let φ denote the
action of A on E. Then E := (E, φ, 0) ∈ E(A,B). Moreover, E is an B-A-imprimitivity bimodule, and if
ψ is the action ofB onE, then E := (E,ψ, 0) ∈ E(B,A) and E⊗B E ∼= (IdA) as well as E⊗AE ∼= (IdB).

Note that E and E are automatically countably generated because A and B are σ-unital.

1.1.3 No problems so far

It’s worth a thought to check that these requirements for the Kasparov product are not contradictory. In
particular, we would like to show the following proposition which implies (3)⇒ (1).

Proposition 1.6. Let A, B and C be C∗-algebras, f : A −→ B and g : B −→ C. Then

[g ◦ f ] = [(f)⊗B (g)].

Proof. Note that (g ◦ f) = (C, g ◦ f, 0) and (f)⊗B (g) = (B ⊗g C, f ⊗ 1, 0). There is a canonical map
µ from B ⊗g C to C, given on simple tensors by

b⊗g c 7→ g(b)c.

A short calculation shows that this is a well-defined isometric C-linear map respecting the inner products.
If g is non-degenerate, then µ is unitary and the cycles in question are isomorphic. For general g, the image
of µ is g(B)C, the non-degenerate part of the left Banach B-module C. This is also a Hilbert B-module
and the result follows from the following observation that we are going to prove later also for non-zero
operators.

Lemma 1.7. Let A and B be C∗-algebras and (E, φ, 0) ∈ E(A,B). Then E0 := φ(A)E = φ(A)E
is a graded Hilbert sub-B-module of E, invariant under φ(A), such that (E0, φ, 0) is in E(A,B) and
homotopic to (E, φ, 0). The homotopy may be chosen with vanishing operator.

Proof. We have to construct the homotopy and we do this analogously to the construction in 18.3.6 of
[Bla98]. Define E := E[0, 1] and the sub-B[0, 1]-module E0 := {f ∈ E[0, 1] : f(1) ∈ E0}. Let
γ : LB(E) −→ LB[0,1](E[0, 1]) ∼= LB(E)[0, 1] be the embedding of LB(E) as constant functions. Note
that γ maps KB(E) into KB[0,1](E[0, 1]) ∼= KB(E)[0, 1]. Then γ ◦ φ is a graded ∗-homomorphism with
image in the compact operators on E[0, 1], so (E[0, 1], γ ◦ φ, 0) ∈ E(A,B[0, 1]) (note that E[0, 1] is
countably generated). Obviously, E0 is γ(φ(A))-invariant so that (E0, γ ◦ φ, 0) is in E(A,B[0, 1]) as well
(note that every element of E0 can be written as a sum of an element of E[0, 1) and of an element of
E0[0, 1] with both B[0, 1]-modules being countably generated). Now

ψt : E0 ⊗evt
B −→ E, f ⊗ b 7→ f(t)b

is an isometric B-linear map respecting the inner product for every t ∈ [0, 1]. It is surjective for every
t < 1 and has image E0 for t = 1, and (E0, γ ◦ φ, 0) is a homotopy from E to E0.
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1.1.4 Homotopies

Proposition 1.8. Let A, B be C∗-algebras and E be a countably generated Hilbert B-module. Let φ : A
−→ KB(E)[0, 1] ∼= KB[0,1](E[0, 1]) be a graded ∗-homomorphism. For every t ∈ [0, 1] let

φt : A −→ KB(E), a 7→ φ(a)(t).

Then
evt,∗(E[0, 1], φ, 0) ∼= (E, φt, 0).

In particular, (E[0, 1], φ, 0) is a homotopy from (E, φ0, 0) to (E, φ1, 0).

Corollary 1.9. Let A and B be C∗-algebras and (ft)t∈[0,1] be a homotopy of graded ∗-homomorphisms
from A to B. Then (f0) is homotopic to (f1), i.e. if f0 and f1 : A −→ B are homotopic, then [f0] = [f1].

1.2 A picture of the Kasparov product
Theorem 1.10. Let A, B, C be C∗-algebras, A separable. Then there exists a map

⊗B : KK(A,B)×KK(B,C) −→ KK(A,C),

called the Kasparov product. It has the following properties:

(Biadditivity) The Kasparov product is additive in the first component

∀x1, x2 ∈ KK(A,B) ∀y ∈ KK(B,C) : (x1 + x2)⊗B y = x1⊗B xy + x2⊗B y,

as well as in the second:

∀x ∈ KK(A,B) ∀y1, y2 ∈ KK(B,C) : x⊗B (y1 + y2) = x⊗B y1 + x⊗B y2.

(Associativity) Let D be another graded C∗-algebra and assume that B is separable, too. Then

∀x ∈ KK(A,B) ∀y ∈ KK(B,C) ∀z ∈ KK(C,D) : x⊗B (y⊗C z) = (x⊗B y)⊗C z.

(Unit elements) If we define 1A := [IdA] and 1B := [IdB ], then

∀x ∈ KK(A,B) : 1A⊗A x = x⊗B 1B = x.

(Functoriality) If f : A −→ B and g : B −→ C are graded ∗-homomorphisms, then

∀x ∈ KK(A,B) : x⊗B [g] = g∗(x) and ∀y ∈ KK(B,C) : [f ]⊗B y = f∗(y).

(“Triviality”) If (E1, φ1, 0) ∈ E(A,B) and (E2, φ2, 0) ∈ E(B,C), then

[(E1, φ1, 0)]⊗B [(E2, φ2, 0)] = [(E1 ⊗B E2, φ1 ⊗ 1, 0)].

Remark 1.11. Note that if we restrict ourselves to separable C∗-algebras, we can take the KK-elements
as morphisms and obtain a category with the Kasparov product as composition. (To be more precise: you
first have to flip the variables of the product.)

Definition 1.12. Let A and B be separable C∗-algebras. Then x ∈ KK(A,B) is called an isomorphism
(in KK-theory) if there is a y ∈ KK(B,A) such that x⊗B y = 1A and y ⊗A x = 1B .

Remark 1.13. Obviously, isomorphisms of separable C∗-algebras induce isomorphisms in KK-theory. In
the situation of proposition 1.5 we have in particular that [E ⊗B E ] = 1A and [E ⊗B E ] = 1B , so it follows
that A-B-imprimitivity bimodules induce “isomorphisms in KK-theory ” as well.
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2 Three technical tools
Before we introduce the technical devices that we are going to use in the proof of the existence as well
as in the proof of the properties of the Kasparov product, we would like to sketch the basic ideas of the
construction in order to point out the technical problems that we have to face.

Of course we are going to try to define the product on the level of Kasparov cycles. Let A, B and C be
C∗-algebras and (E1, φ1, F1) ∈ E(A,B), (E2, φ2, F2) ∈ E(B,C). Then there is an obvious choice of the
module and the action of A for the product: E12 := E1 ⊗B E2 and φ12 := φ1 ⊗ 1.

Now we have to find a suitable operator on E1 ⊗B E2. A first idea would be F1 ⊗B F2. Despite the
problem that this isn’t a well-defined operator (as F2 is not B-linear on the left), it would be an operator of
degree zero rather than of degree one anyway.

So what about F1 ⊗B 1 + 1⊗BF2. The first part makes sense and is of degree one. But the second
definitely causes some problems: As already pointed above, F2 isn’tB-linear on the left. On the other hand,
there is at least the commutation relation [F2, φ2(b)] ∈ KC(E2) for every b ∈ B. We will use this relation
to construct a substitute for the operator 1⊗BF2, called an F2-connection for E1. This construction is one
of the three technical tools presented in this talk.

Suppose for a moment that the expression 1⊗BF2 makes sense. Then we still have to check that the
operator F1 ⊗B 1 + 1⊗BF2 satisfies the conditions from the definition of a Kasparov cycle. In particular,
we have to analyze its square. But

(F1 ⊗B 1 + 1⊗BF2)2 = (F 2
1 )⊗B 1 +(F1 ⊗B 1)(1⊗BF2) + (1⊗BF2)(F1 ⊗B 1) + 1⊗B(F 2

2 ).

To some extend, we are able to handle the first term because we have

((F 2
1 )⊗B 1)φ12(a) = (F 2

1 φ1(a))⊗B 1 = (1⊗B 1)φ12(a)

for all a ∈ A, at least up to some operator in KB(E) ⊗B 1 that we might disregard for the time being.
Similarly, we might get the last term under control. But the middle terms are problematic.

The solution is to find suitable operators M,N ≥ 0 in LC(E12) such that M + N = 1 in order to
consider the operator

M
1
2 (F1 ⊗B 1) +N

1
2 (1⊗BF2).

The idea is to choose M and N in a way that the middle terms of the square of the operator are small. The
result that ensures the existence of such coefficient operators is known as Kasparov’s technical lemma and
constitutes the second tool that is going to be presented in this section.

The way we are going to construct a Kasparov product on the level of Kasparov cycles will involve
many choices; the construction thus cannot be expected to give a well-defined function on the level of
cycles. But at least we will be able to show that whatever choices we make, we will end up with operator
homotopic cycles, allowing us to define a function on the level of KK-elements. This aim is achieved by
means of a criterion for operator homotopy that forms the first technical tool given in this exposition.

2.1 A sufficient condition for operator homotopy
Definition 2.1. Let B be a C∗-algebra and I be a closed ideal in B. Let q : B −→ B/J, b 7→ b + J . Let
a, b ∈ B. We say that

1. a is orthogonal to b mod J if ab ∈ J , i.e. if q(a)q(b) = 0.

2. a = b mod J if a− b ∈ J , i.e. if q(a) = q(b).

3. a ≤ b mod J if q(a) ≤ q(b).

Remark 2.2. Let B be a C∗-algebra and J be a closed ideal in A. Then

a ≥ 0 mod J ⇔ ∃j ∈ J : a+ j ≥ 0.
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Proof. Let q : A −→ A/J be the quotient map. Suppose that q(a) ≥ 0. Then we can find a b ∈ A such that
q(b)∗q(b) = q(a). Then we have j := b∗b− a ∈ J and a+ j = b∗b ≥ 0.

On the other hand, let j ∈ J such that a+ j ≥ 0. Then q(a) = q(a+ j) ≥ 0.

Definition 2.3. Let E be a graded (A,B)-Hilbert-bimodule where φ : A −→ LB(E) denotes the action of
A on E. Define

Q := QA(E) := {T ∈ LB(E) : ∀a ∈ A : [T, φ(a)] ∈ KB(E)}

and
J := JA(E) := {T ∈ QA(E) : ∀a ∈ A : Tφ(a) ∈ KB(E)}.

Then it’s easy to check thatQA(E) is a graded sub-C∗-algebra of LB(E) and JA(E) is a closed ∗-invariant,
graded ideal in QA(E) containing the compact operators. By definition, if (E, φ, F ) ∈ E(A,B) then
F ∈ Q(1) and (F − F ∗), (F 2 − 1) ∈ J . So QA(E) and JA(E) can be used to rephrase the definition of
E(A,B).

Lemma 2.4. Let q ∈ QA(E)(0) satisfying ∀a ∈ A : φ(a)qφ(a)∗ ≥ 0 mod KB(E). Then q ≥ 0
mod JA(E).

Proof. We first show that q− q∗ ∈ J , i.e. q is self-adjoint modulo J . Let b ∈ A be positive and find a ∈ A
such that b = aa∗. Because [q − q∗, φ(a)] ∈ KB(E) we have

(q−q∗)φ(b) = (q−q∗)φ(a)φ(a∗) = φ(a)(q−q∗)φ(a)∗ = φ(a)qφ(a)∗−(φ(a)qφ(a)∗)∗ = 0 mod KB(E).

As every element of A can be written as the sum of four positive elements we have shown that q is self-
adjoint modulo JA(E). So w.l.o.g. let q be self-adjoint. Then there are unique q+, q− ∈ QA(E) such that
q± ≥ 0, q+ − q− = q and q+q− = q−q+ = 0. But φ(a)q±φ(a)∗ ≥ 0 mod KB(E) and

(φ(a)q±φ(a)∗)(φ(a)q∓φ(a)∗) = φ(a)φ(a∗a)q±q∓φ(a)∗ = 0 mod KB(E)

for every a ∈ A. So φ(a)q−φ(a)∗ is the negative part of φ(a)qφ(a)∗ for every a ∈ A. Therefore
φ(a)q−φ(a)∗ is in KB(E). As above we conclude that q− ∈ J . So q ≥ 0 mod J .

Note that it suffices to have ∀a ∈ A : φ(a)qφ(a)∗ ≥ 0 mod J

Proposition 2.5. 1 Let A and B be C∗-algebras, E = (E, φ, F ) and E ′ = (E, φ, F ′) elements of E(A,B).
Then the following condition is sufficient for E and E ′ to be operator-homotopic:

(4) ∀a ∈ A : φ(a)[F, F ′]φ(a)∗ ≥ 0 mod KB(E).

Proof. Let Q := QA(E) and J := JA(E). As a first approximation let’s define for every t ∈ [0, 1]:

F̃t :=
√
tF ′ +

√
1− tF ∈ Q.

We choose the square root because we would like to facilitate the calculations involving F̃ 2
t . One could

also use the functions sin and cos. The family (F̃t)t∈[0,1] has surely the property that F̃0 = F and F̃1 = F ′.
Moreover, F̃t is of degree 1 for every t ∈ [0, 1] and

F̃t − F̃ ∗t =
√
t(F ′ − F ′∗) +

√
1− t(F − F ∗) ∈ J.

To prove that (E, φ, F̃t) the only thing that is left to check is the condition on the square of the operator:

F̃ 2
t = tF ′2 + (1− t)F 2 +

√
t(1− t) (FF ′ + F ′F )︸ ︷︷ ︸

=[F,F ′]

= (t+ (1− t)) 1 +
√
t(1− t)[F, F ′] mod J.

So F̃t will not do, but the idea is to normalize it. This requires that 1 +
√
t(1− t)[F, F ′] is positive and

invertible so that we can take (·)−1/2. To this end we approximate [F, F ′] by a positive operator, commuting
with F and F ′ modulo J .

1cf. lemma 2.1.18 in [JT91].
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We have [F, F ′] ∈ Q because

[[F, F ′], φ(a)] = −(−1)deg a[[F ′, φ(a)], F ]− [[φ(a), F ], F ′]

for every homogeneous a ∈ A. So we can apply the preceding lemma to get that [F, F ′] = p + j where
p ∈ Q(0), p ≥ 0 and j ∈ J (0). But p commutes with F and F ′ mod J because:

Fp = F [F, F ′] = FFF ′ + FF ′F
F 2=1 mod J= F ′ + FF ′F mod J

and
pF = [F, F ′]F = FF ′F + F ′FF

F 2=1 mod J= FF ′F + F ′ mod J.

Similarly for F ′. Now define
Ft := (1 +

√
t(1− t)p)−1/2F̃t ∈ Q

for every t ∈ [0, 1]. Then F 2
t = 1 mod J . We also have

Ft − F ∗t = (1 +
√
t(1− t)p)−1/2(F̃t − F̃ ∗t ) = 0 mod J.

2.2 The technical lemma
Definition 2.6. If B is a graded C∗-algebra with grading automorphism βB , and A is a sub-C∗-algebra of
B we say that A is a graded sub-C∗-algebra if βB(A) ⊆ A. Note that a graded sub-C∗-algebra is itself a
graded C∗-algebra with the induced grading.

In the following, all sub-C∗-algebras are supposed to be graded.

Definition 2.7. Let B be a C∗-algebra, A a sub-C∗-algebra and F a subset of B. We say that F derives A
if

∀a ∈ A ∀f ∈ F : [f, a] ∈ A.

Here we use the graded commutator.

The following theorem is known as Kasparov’s technical lemma:

Theorem 2.8. 2 Let B be a graded σ-unital C∗-algebra, let A1, A2 be σ-unital sub-C∗-algebras of M(B)
and let F be a separable closed linear subspace of M(B) such that βB(F) = F . Assume that

1. A1A2 ⊆ B, i.e. A1 and A2 are orthogonal mod B, and

2. [F , A1] ⊆ A1, i.e. F derives A1.

Then there exist elements M,N ∈ M(B) of degree 0 such that M + N = 1, M,N ≥ 0, MA1 ⊆ B,
NA2 ⊆ B and [N,F ] ⊆ B.

Remark 2.9. Note that the larger A1, A2 and F , the stronger the lemma. For example, we can always
assume that B ⊆ A1, A2 because we can replace Ai by Ai + B. Note that Ai + B is a graded sub-C∗-
algebra and that it is σ-unital, because if b is a strictly positive element in B and ai is a strictly positive
element in Ai then b + ai is a strictly positive element in Ai + B. To see this note that b + ai is positive
and (ai + b)(Ai +B) ⊇ aiAi + bB where the latter set is dense in Ai +B.

So the interesting part of Ai is the part not contained in B.
Following [Bla98] one can rephrase the technical lemma as follows:
If D1 and D2 are orthogonal σ-unital sub-C∗-algebras of Q(B) := M(B)/B, i.e. of the outer mul-

tiplier algebra of B, and if F is a separable subspace of Q(B) which derives D1, then there is a positive
element M of Q(B), of norm 1, commuting with F , which is a unit for D2 and orthogonal to D1.

2cf. [JT91], Theorem 2.2.1
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2.2.1 Special cases

Corollary 2.10. 3 LetB be a gradedC∗-Algebra andE be a countably generated graded HilbertB-module.
Let LB(E) have the grading βE induced by the grading of E.

Let A1 and A2 be graded σ-unital sub-C∗-algebras of LB(E) and F ⊆ LB(E) be a separable closed
linear subspace such that βE(F) = F . Assume

1. A1A2 ⊆ KB(E).

2. [F , A1] ⊆ A1.

Then there exist M,N ∈ LB(E) of degree 0 such that M + N = 1, M,N ≥ 0, MA1 ⊆ KB(E),
NA2 ⊆ KB(E) and [F ,M ] ⊆ KB(E).

Proof. The C∗-algebra KB(E) is σ-unital, because E is countably generated. Now apply the technical
lemma to (KB(E), A1, A2,F) instead of (B,A1, A2,F) where we identify LB(E) with M (KB(E)).

Proposition 2.11. Let X be a topological space. Then the following are equivalent:

1. Every two disjoint open sets have disjoint closures.

2. The closures of open sets are open.

3. For every two disjoint open sets U and V there is a clopen set W containing U such that W and V
are disjoint.

4. For every two disjoint open sets U and V there is a continuous function on X taking values in [0, 1]
that vanishes on U and equals 1 on V .

Proof. 1. ⇒ 2.: Let U ⊆ X be open. The interior V of X \U is open. The closure of U is X \V . Because
U and V are disjoint, so are their closures. Hence V is closed and therefore U is open.

The rest is completely trivial.

Definition 2.12. A topological space X is called stonean if one of the equivalent conditions of the preced-
ing proposition are satisfied.

Corollary 2.13. If X is a locally compact, σ-compact topological space then the corona space ∂X :=
βX \X is stonean.

Proof. Let B := C0(X). Then M(B) = C(βX). Let U1 and U2 be disjoint open sets in ∂X . Then
there are open sets Ũ1 and Ũ2 in βX such that Ui = ∂X ∩ Ũi and therefore Ũ1 ∩ Ũ2 ⊆ X . Define
Ai := {f ∈ C(βX) : supp f ⊆ Ũi} where supp f := {x ∈ βX : f(x) 6= 0}. Then A1A2 ⊆ {f ∈
C(βX) : supp f ⊆ Ũ1 ∩ Ũ2} ⊆ C0(X). So the conditions of the technical lemma are satisfied with F = 0
and trivial grading. Thus we can find M,N ∈ C(βX) such that M,N ≥ 0, M +N = 1, MA1 ⊆ C0(X)
and NA2 ⊆ C0(X). Define m := M |∂X and n := N |∂X . For every x ∈ U1 there exists an f ∈ A1 such
that f(x) 6= 0 we can deduce that m|U1 = 0. Similarly, n|U2 = 0 and therefore m|U2 = 1. So we have
shown that ∂X is stonean.

2.2.2 The proof of the lemma

Lemma 2.14. Let D be a C∗-algebra.

1. D is separable if and only if it is generated as a C∗-algebra by a countable subset of D.

2. If D is separable, then every approximate unit for D contains a countable approximate unit.

Lemma 2.15. Let D be a C∗-algebra with grading automorphism βD.

1. If d is a strictly positive element of D, then so is d+ βD(d).

3cf. [JT91], Corollary 2.2.3



The Kasparov product, seminar on KK-theory, May 2004 9

2. If (uλ)λ∈Λ is an approximate unit for D, then so is 1
2 (uλ + βD(uλ))λ∈Λ.

Definition 2.16. Suppose thatD is aC∗-algebra,C a closed ideal ofD. Then an approximate unit (uλ)λ∈λ
for C is called quasi-central for D if

∀d ∈ D : lim
λ∈Λ

[uλ, d] = 0

Here we use the graded commutator.

Lemma 2.17. 4 Let C be a C∗-algebra, contained as a closed ideal in a C∗-algebra D. There exists an
approximate unit for C consisting of elements of degree 0 which is quasi-central for D. If D is separable,
then the approximate unit can be chosen to be a sequence.

Lemma 2.18. 5 Let C be a C∗-algebra. Then for every ε > 0 there exists δ(ε) > 0 such that for all
x, y ∈ C, ‖x‖ , ‖y‖ ≤ 1, x ≥ 0, deg x = 0:

‖[x, y]‖ < δ(ε) ⇒
∥∥[
√
x, y]

∥∥ < ε.

Lemma 2.19. 6 Let C be a C∗-algebra, (xn)n∈N a bounded sequence of self-adjoint elements in M(C)
and S subset of C such that the closed right ideal spanned by S in C is C itself (this holds for example if
S contains a strictly positive element). Then (xn)n∈N converges strictly in M(C) if and only if (xns)n∈N
is a norm-Cauchy sequence in C for all s ∈ S. If all xn are positive or of degree 0, then so is their limit.

Proof of the technical lemma. Define G := C*(F ∪ {1}). Then G is separable. The norm closure A′1 of
GA1 is a βE-invariant C∗-algebra containing A1. Moreover, A′1 satisfies A′1A2 ⊆ B as well as FA′1 ⊆
GA′1 ⊆ A′1. Furthermore, A′1 is σ-unital since every approximate unit for A1 is also an approximate unit
for A′1. So if we replace A1 by A′1, we have improved [F , A1] ⊆ A1 to FA1 ⊆ A1 and we can even
assume that F is a separable C∗-algebra.

Let b, a1, a2 be strictly positive elements of norm ≤ 1 of B, A1 and A2, respectively. Let F :=
{x1, x2, . . .} be a countable subset of F which spans a dense subspace of F such that ∀n ∈ N : ‖xn‖ ≤ 1
and limn−→∞ xn = 0. Now it suffices to find a degree 0 element N ∈ M(B) such that 0 ≤ N ≤ 1,
a1 −Na1 ∈ B, Na2 ∈ B, and [N,F ] ⊆ B.

Define A := C* (F ∪ {a1}), and let I be the closed two-sided ideal in A generated by a1. Then A is
separable since F is, I is separable since A is, and I ⊆ A1 since FA1 ⊆ A1. So I contains a countable
approximate unit (un)n∈N for I of degree 0 elements which is quasi-central for A.

By passing to a subsequence we can assume that for all n ∈ N:

(a) ‖una1 − a1‖ < 2−n, and

(b) ∀f ∈ F : ‖[un, f ]‖ < 2−n.

Define C := C* (F ∪ {b, a1, a2, u1, u2, . . .}) and let J be the closed two-sided ideal in C generated
by b. Then C and J are separable and J is contained in B. Then we can find a countable approximate unit
(vn)n∈N for J of degree 0 elements which is quasi-central for C. Note that (vn)n∈N is also an approximate
unit for B because b ∈ J .

By passing to a subsequence we can assume that for all n ∈ N:

(c) ∀x ∈ {b, a2un, a2un+1} ⊆ B ∩ C : ‖vnx− x‖ < 2−2n, and

(d) ∀x ∈ F ∪ {a1, a2, b} : ‖[vn, x]‖ < δ(2−(n+1))/2,

where δ(2−n) > δ(2−(n+1)) > 0 is the δ from lemma 2.18.
Define d1 := v1 and for all n ∈ N>1:

dn := (vn − vn−1)1/2.

Then by lemma 2.18 we have
4cf. [Bla98], 12.4.1 and [Ped79], 3.12.14.
5cf. [JT91], 2.2.2.
6cf. [Bla98], proposition 12.1.2
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(d’) ∀x ∈ F ∪ {a1, a2, b} : ‖[dn, x]‖ < 2−n.

We want to define
N :=

∑
n∈N

dnundn.

For every k ∈ N we have

0 ≤
k∑

n=1

dnundn ≤
k∑

n=1

dndn = vk,

so the partial sums are bounded in norm by 1. Note that

‖(vn − vn−1)b‖ = ‖vnb− b+ b− vn−1b‖ ≤ 2−2n + 2−2(n−1) = 5 · 2−2n.

This yields

‖dnunbdn‖2 =
∥∥dnunbd2

nbundn
∥∥ = ‖dnunb(vn − vn−1)bundn‖ ≤ 5 · 2−2n

and hence
‖dnunbdn‖ ≤

√
5 · 2−n.

It follows that
‖dnundnb‖ ≤ ‖dnunbdn‖+ ‖dnun‖ ‖[b, dn]‖ ≤ (

√
5 + 1)2−n.

So
∑∞
n=1 dnundnb converges in norm. So

∑∞
n=1 dnundn converges strictly to some operator N ∈ M(B),

where degN = 0 and 0 ≤ N ≤ 1. Since multiplication is separately strictly continuous we have that

a1 −Na1 =
∞∑
n=1

(d2
n − dnundn)a1,

Na2 =
∞∑
n=1

dnundna2,

and

∀x ∈ F : [N, x] =
∞∑
n=1

[dnundn, x].

We show that these series converge in norm, because all the terms which are summed up are contained in
B (dn ∈ B!). To this end we rewrite the terms:

(I) (d2
n − dnundn)a1 = dn(1− un)[dn, a1] + dn(a1 − una1)dn,

(II) dnundne2 = dnun[dn, e2] + dnune2dn, and

(III) [dnundn, x] = dnun[dn, x] + [dn, x]undn + dn[un, x]dn.

The norm of (I) is ≤ 2 · 2−n by (a) and (d’). The norm of (II) is ≤ (1 +
√

5)2−n by (d’) and (c). Finally,
the norm of (III) is ≤ 3 · 2−n by (d’) and (b).

2.3 Connections
2.3.1 Definition

In this section, let B, C be graded C∗-algebras, E1 a Hilbert B-module, E2 an Hilbert B-C-bimodule
where φ : B −→ LC(E2) denotes the action of B. Let E12 := E1 ⊗B E2 be the graded tensor product of
E1 and E2.
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Definition 2.20. Let F2 be an operator on E2. Then we say that F2 is B-linear (in the graded sense) if

∀b ∈ B : [F2, φ(b)] = 0.

We say that F2 is B-linear up to compact operators if

∀b ∈ B : [F2, φ(b)] ∈ KC(E2).

So one of the conditions of (E2, φ, F2) being a Kasparov triple is exactly that F2 is B-linear up to
compact operators.

Remark 2.21. If F2 is homogeneous andB-linear, then indeed we have F2(bx)−(−1)deg b degF2bF2(x) =
0 for every homogeneous b ∈ B, x ∈ E2, i.e.

F2(bx) = bF2(x) if F2 is even and F2(bx) = βB(b)F2(x) if F2 is odd.

Here we abbreviate φ(b)x by bx.
If F2 is even, the operator 1⊗BF2 is well-defined. If F2 is odd, we can at least make sense of the

expression SE1 ⊗B F2 because for every x1 ∈ E1, x2 ∈ E2, b ∈ B:

SE1(x1b)⊗B F2(x2) = SE1(x1)βB(b)⊗B F2(x2) = SE1(x1)⊗B βB(b)F2(x2) = SE1(x1)⊗B F2(bx2).

If F2 = F
(0)
2 + F

(1)
2 , where degF (i)

2 = i, we define

1⊗BF2 := 1⊗BF (0)
2 + SE1 ⊗B F

(1)
2

as a short-hand notation.

Remark 2.22. If F2 is just B-linear up to compact operators, we cannot expect the expressions 1⊗BF (0)
2

or SE1 ⊗B F
(1)
2 to make sense, but we can at least try to get a substitute for these operators. That is:

We have to list some of the properties that 1⊗BF2 possesses in the B-linear case and to then construct
some operator that has these properties in the general case. The topic of this section is to describe this
construction and to say to what extend the result is unique.

Definition 2.23. For any x ∈ E1 set

Tx : E2 −→ E12, e2 7→ x⊗ e2.

Tx is called an E2-tensor operator for E1

Remark 2.24. For all x ∈ E1 we have Tx ∈ LC(E2, E12). The operator T ∗x is given by T ∗x (e1 ⊗
e2) = φ(〈x, e1〉)e2. If we regard LC(E2, E12) as a right B-module, then the map x 7→ Tx is B-linear,
‖Tx‖ ≤ ‖x‖ and Tx has the same degree as x whenever x is homogeneous. Note that whenever E′1 is
another Hilbert B-module and S ∈ LB(E1, E

′
1) then

(5) ∀x ∈ E1 : TSx = (S ⊗B 1)Tx and ∀x′ ∈ E′1 : T ∗x′(S ⊗B 1) = T ∗S∗x′ .

Now how do the operators Tx and 1⊗BF2 interact if F2 is B-linear? If F2 is odd and x ∈ E1, y ∈ E2

then
TxF2(y) = x⊗ F2(y) = (SE1 ⊗ F2)(SE1(x)⊗ y) = (SE1 ⊗ F2)TSE1 (x)(y),

i.e the following diagram is commutative:

E12 E12
-

SE1 ⊗ F2

E2 E2
-F2

?

TSE1 (x)

?

Tx



The Kasparov product, seminar on KK-theory, May 2004 12

Similarly,

F2(T ∗x (y⊗z)) = F2(〈x, y〉z) = βB(〈x, y〉)F2(z) = T ∗SE1 (x) (SE1(y)⊗ F2(z)) = T ∗SE1 (x) (SE1 ⊗ F2) (y⊗z),

or equivalently, the diagram

E12 E12
-

SE1 ⊗ F2

E2 E2
-F2

6

T ∗x

6

T ∗SE1 (x)

commutes.
For an elegant description of this define

T̃x :=
(

0 T ∗x
Tx 0

)
and F̃12 :=

(
F2 0
0 F12

)
∈ LC(E2 ⊕ E12),

for every x ∈ E1 and F12 ∈ LC(E12). Then the commutativity of the two diagrams is equivalent to the
formula

[
˜1⊗BF2, T̃x

]
= 0 for every x ∈ E1. A short calculation shows that this is also true if F2 is even.

Hence the following definition:

Definition 2.25 (Connection). Let F2 ∈ LC(E2). Then an operator F12 ∈ LC(E12) is called an F2-
connection for E1 (or an F2-connection on E12) if, for all x ∈ E1,[

F̃12, T̃x

]
∈ KC (E2 ⊕ E12) .

If F2 is odd, it’s equivalent to saying that the following diagrams commute for every x ∈ E1 modulo
compact operators

E12 E12
-

F12

E2 E2
-F2

?

TSE1 (x)

?

Tx

E12 E12
-

F12

E2 E2
-F2

6
T ∗x

6
T ∗SE1 (x)

.

If F2 is even, it’s equivalent to saying that the following diagrams commute for every x ∈ E1 modulo
compact operators

E12 E12
-

F12

E2 E2
-F2

?

Tx

?

Tx

E12 E12
-

F12

E2 E2
-F2

6
T ∗x

6
T ∗x

.

2.3.2 Uniqueness and properties

We start with a lemma that proves useful in general:

Lemma 2.26. 7 Let D be a C∗-algebra (not necessary σ-unital), X1, X2 be Hilbert D-modules. Then

KD(X1, X2) = {m ∈ LD(X1, X2) : mm∗ ∈ KD(X2)}.
7cf. [JT91], lemma 1.1.10.
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Proof. Obviously, KD(X1, X2) is contained in the right-hand side. For the other inclusion note that

∀m ∈ LD(X1, X2) : ‖m‖2 = ‖mm∗‖ .

This is easily poved as in the case that X1 = X2. Now let (vλ)λ∈Λ be an approximate unit for KD(X2).
Then for every m ∈ LD(X1, X2) and every λ ∈ Λ:

‖vλm−m‖2 = ‖vλmm∗vλ − vλmm∗ −mm∗vλ +mm∗‖ .

This shows that if mm∗ ∈ KD(X2) then limλ∈Λ vλm = m. Since vλm ∈ KD(X1, X2) for all λ ∈ Λ this
yields m ∈ KD(X1, X2).

Remark 2.27. We can view LD(X1, X2) as a left Hilbert LD(X2)-module. The lemma says that if one
only considers those operators m for which the inner product 〈m,m〉 = mm∗ is in KD(X2), then one gets
the left Hilbert KD(X2)-module KD(X1, X2).

Proposition 2.28. An operator F12 ∈ LC(E12) is a 0-connection on E12 if and only if

(6) ∀T ∈ KB(E1) : F12(T ⊗ 1), (T ⊗ 1)F12 ∈ KC(E12).

Proof. F12 ∈ LC(E12) is a zero-connection forE1 if and only if F12Tx, T ∗xF12 are compact for all x ∈ E1.
Note that for every x, y ∈ E1 we have

TxT
∗
y = Θx,y ⊗B 1 .

Thus if F12 is a zero-connection then for all x, y ∈ E1:

F12(Θx,y ⊗B 1) = (F12Tx)T ∗y ∈ KC(E2),

and similarly (Θx,y ⊗B 1)F12 ∈ KC(E2). By linearity and continuity F12 satisfies (6).
Conversely, if F12 satisfies condition (6), then F12TxT

∗
xF
∗
12 = F12(Θx,x ⊗B 1)F ∗12 ∈ KC(E12) for all

x ∈ E1. Because of lemma 2.26 this yields F12Tx ∈ KC(E2, E12). Similarly for T ∗xF12. Thus F12 is a
zero-connection for E1.

Proposition 2.29. Let F2, F
′
2 ∈ LC(E2) and F12 be an F2-connection, and F ′12 be an F ′2-connection. Then

1. F ∗12 is an F ∗2 -connection, F (0)
12 is an F (0)

2 -connection, and F (1)
12 is an F (1)

2 -connection.

2. F12+F ′12 is an (F2+F ′2)-connection and F12F
′
12 is an (F2F

′
2)-connection. If F2 and F12 are normal,

then f(F12) is an f(F2)-connection for every continuous function f such that the spectra of F2 and
F12 are contained in its domain of definition.

3. The set of all F2-connections is an affine space parallel to the space of all 0-connections.

4. If T ∈ KB(E1), then [F12, T ⊗ 1] ∈ KC(E12).

5. If F2 is a “compact perturbation” of zero, i.e. F2φ(B), φ(B)F2 ⊆ KC(E2), then F12 is also a
0-connection.

6. Suppose thatE3 is a HilbertD-module, ψ : C −→ LD(E3) is a ∗-homomorphism, and F3 ∈ LD(E3)
with [F3, ψ(C)] ⊆ KD(E3). If F23 is an F3-connection on E2 ⊗C E3, and F is an F23-connection
on E = E1 ⊗B (E2 ⊗C E3), then F is an F3-connection on E ∼= (E1 ⊗B E2)⊗C E3.

Proposition 2.30. Assume that E1 = E′1⊕E′′1 . Let ι′ : E′1 −→ E1 be the canonical embedding and π′ : E1

−→ E′1 be the canonical projection. Note that ι′, π′ have degree zero and π′ι′ = IdE′1 . Moreover we have
π′∗ = ι′. Similar statements hold for ι′′ and π′′.

Assume that F2 ∈ LC(E2).
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1. If F12 is an F2-connection for E1, then

F ′12 := (π′ ⊗B 1)F12(ι′ ⊗B 1) ∈ LC(E′1 ⊗B E2)

is an F2-connection for E′1. Similarly one can define an F2-connection F ′′12 for E′′1 .

2. If F ′12 and F ′′12 are F2-connections for E′1 and E′′1 , respectively, then

F12 := (ι′ ⊗B 1)F ′12(π′ ⊗B 1) + (ι′′ ⊗B 1)F ′′12(π′′ ⊗B 1)

is an F2 connection for E1.

Proof. W.l.o.g. let F2 be homogeneous.

1. Let F12 be an F2-connection for E1. Assume w.l.o.g. that F12 is homogeneous. Let F ′12 be de-
fined as above. Then F ′12 is homogeneous and of the same degree as F2 and F12. Let x ∈ E′1 be
homogeneous. Then

F ′12Tx = (π′ ⊗B 1)F12(ι′ ⊗B 1)Tx = (π′ ⊗B 1)F12Tι′x

= (−1)deg x degF2(π′ ⊗B 1)Tι′xF2 = (−1)deg x degF2TxF2 mod KC(E2, E12)

and

T ∗xF
′
12 = T ∗x (π′ ⊗B 1)F12(ι′ ⊗B 1) = T ∗ι′(x)F12(ι′ ⊗B 1)

= (−1)deg x degF2F2T
∗
ι′(x)(ι

′ ⊗B 1) = (−1)deg x degF2F2Tx mod KC(E12, E2).

2. Let F ′12, F ′′12 and F12 be as in the second statement of the proposition. Without loss of generality
we can assume that they are all homogenous. Let x ∈ E1 be homogeneous. Then x = ι′(π′(x)) +
ι′′(π′′(x)) and

(ι′ ⊗B 1)F ′12(π′ ⊗B 1)Tx = (ι′ ⊗B 1)F ′12Tπ′(x) = (−1)deg x degF2(ι′ ⊗B 1)Tπ′(x)F2

= (−1)deg x degF2Tι′(π′(x))F2 mod KC(E2, E12)

as well as

T ∗x (ι′ ⊗B 1)F ′12(π′ ⊗B 1) = T ∗π′(x)F
′
12(π′ ⊗B 1) = (−1)deg x degF2F2T

∗
π′(x)(π

′ ⊗B 1)

= (−1)deg x degF2F2T
∗
ι′(π′(x)) mod KC(E12, E2).

and similar for the E′′1 part. It follows that

F12Tx = (ι′ ⊗B 1)F ′12(π′ ⊗B 1)Tx + (ι′′ ⊗B 1)F ′′12(π′′ ⊗B 1)Tx.
= (−1)deg x degF2Tι′(π′(x))F2 + (−1)deg x degF2Tι′′(π′′(x))F2

= (−1)deg x degF2
(
Tι′(π′(x)) + Tι′′(π′′(x))

)
F2

= (−1)deg x degF2
(
Tι′(π′(x))+ι′′(π′′(x))

)
F2

= (−1)deg x degF2TxF2 mod KC(E2, E12).

Analogously for the other equation.

2.3.3 Existence

Example 2.31. If F2 ∈ LC(E2) is a B-linear operator, i.e. [F2, φ(B)] = 0, then 1⊗BF2 ∈ L(E2 ⊗ E12)
defined as above is an F2-connection for E1 (and in particular, 0 is a 0-connection for every E1). If B = C
and φ is unital, then this applies in particular.
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Example 2.32. Let φ : B −→ LC(E2) be non-degenerate, F2 ∈ LC(E2) be B-linear up to compact
operators, and E1 = B. Define

Φ: B ⊗B E2 −→ E2, b⊗B x 7→ bx.

Because φ is non-degenerate Φ is an isomorphism; in particular we have Φ∗ = Φ−1. Note that

φ(b) = Φ ◦ Tb, and hence Φ∗ ◦ φ(b) = Tb.

If we define F12 := Φ∗F2Φ, then

F12Tb = Φ∗F2ΦTb = Φ∗F2φ(b) = (−1)deg b degF2Φ∗φ(b)F2 = (−1)deg b degF2TbF2 mod KC(E2, E12),

and

T ∗b F12 = T ∗b Φ∗F2Φ = φ(b∗)F2Φ = (−1)deg b degF2F2φ(b∗)Φ = (−1)deg b degF2F2T
∗
b mod KC(E12, E2).

Example 2.33. Assume thatB is unital, φ is non-degenerate, i.e. unital, andE1 = ĤB . Let F2 beB-linear
up to compact operators. Then there is a standard F2-connection. There are two ways of constructing it:
directly or by reduction to the previous example. For a direct construction define the isomorphism

Φ: ĤB ⊗B E2 −→ Ĥ⊗C B ⊗B E2 −→ Ĥ⊗C E2,

Note that Φ ∈ LC
(
ĤB ⊗B E2, Ĥ⊗C E2

)
is unitary. Now there is an F2-connection G for Ĥ using exam-

ple 2.31. So G is an element of LC
(
Ĥ⊗C E2

)
. W.l.o.g. we can assume that G and F2 are homogeneous

and of the same degree. Define
F := Φ−1 ◦G ◦ Φ.

Now for every ξ ∈ Ĥ and every b ∈ B we have

Φ ◦ Tξ⊗b = Tξ ◦ φ(b) and hence T ∗ξ⊗b ◦ Φ−1 = φ(b∗) ◦ T ∗ξ .

Moreover, the degree of ξ ⊗ b is deg ξ + deg b if b and ξ are homogeneous. Now

F ◦ Tξ⊗b = Φ−1 ◦G ◦ Φ ◦ Tξ⊗b = Φ−1 ◦G ◦ Tξ ◦ φ(b)
= (−1)degF2 deg ξΦ−1 ◦ Tξ ◦ F2 ◦ φ(b)
= (−1)degF2 deg ξ(−1)degF2 deg bΦ−1 ◦ Tξ ◦ φ(b) ◦ F2

= (−1)degF2 deg(ξ⊗b) ◦ Tξ⊗b ◦ F2 mod KC(E2, Ĥ⊗B E2),

and

T ∗ξ⊗b ◦ F = T ∗ξ⊗b ◦ Φ−1 ◦G ◦ Φ = φ(b∗) ◦ T ∗ξ ◦G ◦ Φ

= (−1)degF2 deg ξφ(b∗) ◦ F2 ◦ T ∗ξ ◦ Φ

= (−1)degF2 deg(ξ⊗b)F2 ◦ φ(b∗) ◦ T ∗ξ ◦ Φ

= (−1)degF2 deg(ξ⊗b)F2 ◦ T ∗ξ⊗b mod KC(Ĥ⊗B E2, E2).

For a prove that uses example 2.32 note that

ĤB ⊗B E2
∼= (Ĥ⊗C B)⊗B E2

∼= Ĥ⊗C (B ⊗B E2).

Then by example 2.32 there is an F2-connection G on B ⊗B E2. By 2.31 there is a G-connection F on
Ĥ⊗C (B ⊗B E2) and by proposition 2.29 the operator F may be regarded as an F2-connection.

Proposition 2.34. Let E1 be a countably generated Hilbert B-module, E2 a Hilbert B-C-bimodule with
B-action φ, and F2 ∈ LC(E2) such that [F2, φ(b)] ∈ KC(E2) for every b ∈ B. Then there exists an
F2-connection for E1.
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Proof. W.l.o.g. let B and φ be unital. A reduction argument for this is given in [JT91], proposition 2.2.5..
Now we can just collect what we have already done: Because E1 is countably generated we can assume
that E1 is a direct summand of ĤB . By proposition 2.30 it suffices to consider the case where E1 = ĤB .
But we have already covered this case in example 2.33.

Remark 2.35. A careful revision of the above construction shows that we can extend the last proposition
in the following way: If t 7→ F t2 is a norm-continuous path of operators, being B-linear up to compact
operators, then there is a norm-continuous path F t12, where F t12 is an F t2-connection for E1. If all the F t2
are homogeneous of degree n or self-adjoint then all the F t12 may be chosen homogeneous of degree n or
self-adjoint, respectively.

2.3.4 A first application

Proposition 2.36. Let A and B be graded C∗-algebras. For every (E, φ, F ) ∈ E(A,B), there is some
(E′, φ′, F ′) ∈ E(A,B) with φ′ non-degenerate and (E, φ, F ) ∼ (E′, φ′, F ′).

Proof. Let E0 := AE. Define E := E[0, 1] and the sub-B[0, 1]-module E0 := {f ∈ E[0, 1] : f(1) ∈
E0} as in the proof of lemma 1.7. As above, let γ : LB(E) −→ LB[0,1](E[0, 1]) ∼= LB(E)[0, 1] be the
embedding of LB(E) as constant functions. Then γ ◦ φ : A −→ LB(E[0, 1]) is a graded ∗-homomorphism.
Again, E0 is γ(φ(A))-invariant so that E0 is a Hilbert A-B-module and

ψt : E0 ⊗evt
B −→ E, f ⊗ b 7→ f(t)b

is an isometric left A-linear and right B-linear map respecting the inner product for every t ∈ [0, 1]. It is
surjective for every t < 1 and has image E0 for t = 1. The only problem is to find an appropriate operator
G on E0 such that E0, γ ◦ φ,G) is in E(A,B[0, 1]). To construct it, we use the existence of connections.
Firstly, we rewrite E0 as a tensor product of some suitably chosen module and E:

Define J :=
{
f ∈ Ã[0, 1] | f(1) ∈ A

}
; J is an ideal in Ã[0, 1]. Let ω : A −→ J be the embedding

as constant functions. If J is regarded as graded Hilbert Ã[0, 1]-module, then E0
∼= J ⊗φ̃⊗1 E, where

φ̃ : Ã −→ LB(E) is the unital extension of φ. Note that the left action of A on E0 translates to the action
a 7→ ω(a)⊗ 1.

Let F̃ := F ⊗ 1 ∈ LB[0,1](E[0, 1]). We check that F̃ is Ã[0, 1]-linear up to compact operators: Let
λ ∈ C, a ∈ A and f ∈ C[0, 1]. Then[

F̃ , (φ̃⊗ 1)((λ1 + a)⊗ f)
]

=
[
F ⊗ 1, φ̃(λ1 + a)⊗ f

]
= [F, λ1 + φ(a)]⊗ f = [F, φ(a)]︸ ︷︷ ︸

∈KB(E)

⊗f ∈ KB[0,1](E[0, 1]).

Now we can find an F̃ -connection G on E0. Then (E0, γ ◦φ,G) ∈ E(A,B[0, 1]). To see this note that
ω(a) ∈ KÃ[0,1](J), and therefore, by proposition 2.29, 4:

[G,ω(a)⊗ 1] ∈ KB[0,1](E0).

Moreover, (G2 − 1) is a (F̃ 2 − 1)-connection. So by 2.29, 5, (G2 − 1) is a 0-connection, too. The same
holds for G∗ −G. Hence:

∀a ∈ A : (G2 − 1)(ω(a)⊗ 1), (G∗ −G)(ω(a)⊗ 1) ∈ KB[0,1](E0)

by proposition 2.28.
The restriction to zero gives a Kasparov (A,B)-module of the form (Ã⊗Ã E, j ⊗ 1, G0), where j : A

−→ Ã is the inclusion. When Ã ⊗Ã E is identified with E, this triple becomes (E, φ, F0), where F0 is a
compact perturbation of F . Similarly, the restriction to one gives a Kasparov (A,B)-module of the form
(A ⊗φ̃ E, IdA⊗ 1, G1); under the isomorphism A ⊗A E ∼= E0 this triple becomes (E0, φ,H) for some
operator H .
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3 Definition of the product
In this section, let A, B, C be graded C∗-algebras, E1 = (E1, φ1, F1) ∈ E(A,B) and E2 = (E2, φ2, F2) ∈
E(B,C). Let E12 := E1 ⊗B E2 be the graded tensor product of E1 and E2 and φ12 the action of A on
E12.

Definition 3.1 (Kasparov product). E12 = (E12, φ12, F12) is called a Kasparov product for (E1, φ1, F1)
and (E2, φ2, F2) if

1. (E12, φ12, F12) is a Kasparov (A,C)-bimodule,

2. F12 is an F2-connection on E12, and

3. ∀a ∈ A : φ12(a)[F1 ⊗ 1, F12]φ12(a)∗ ≥ 0 mod KC(E12).

The set of all operators F12 onE12 such that (E12, φ12, F12) is a Kasparov product of F1 abd F2 is denoted
by F1]F2.

We are going to prove the following theorem:

Theorem 3.2. Assume that A is separable. Then there exists a Kasparov product E12 of E1 and E2. It is
unique up to operator homotopy, and the operator F12 can be chosen to be self-adjoint if F1 and F2 are
self-adjoint.

This theorem ensures that the map sending E1 and E2 to [E12] ∈ KK(A,C) exists and is well-defined.
We then have to show that homotopic modules have homotopic Kasparov products in order to be able to
pass to a map on the level of KK-elements.

3.1 Existence in some special cases
Example 3.3. Assume that f : A −→ B is a homomorphism and (E1, φ1, F1) = (B, f, 0) = (f). Assume
moreover that φ2 is non-degenerate (by proposition 2.36 we can always arrange this within any given
KK-equivalence class). Then there is an isomorphism Φ: B ⊗B E2 ' E2. As in example 2.32, Φ∗F2Φ
is an F2-connection on B ⊗ E2, and Φ∗F2Φ ∈ 0]F2. In other words, (B ⊗B E2, f ⊗ 1,Φ∗F2Φ) is a
Kasparov product for (B, f, 0) and (E2, φ2, F2). It is obviously isomorphic to (E2, φ2 ◦ f, F2). But this
cycle is actually f∗(E2). So if we have proved that the Kasparov product is well-defined on the level of
KK-elements, we can conclude that

∀y ∈ KK(B,C) : [f ]⊗B y = f∗(y).

Example 3.4. Assume that F2 = 0. Then F1⊗1 is a 0-connection on E12 because for every T ∈ KB(E1)
we have (T ⊗ 1)(F1 ⊗ 1) = (TF1) ⊗ 1 ∈ KB(E1) ⊗ 1 ⊆ KC(E12), where the last inclusion follows
from the fact that φ2(B) ⊆ KC(E2). Similarly, one shows that (F1 ⊗ 1)(T ⊗ 1) ∈ KC(E12). Hence
(E12, φ12, F1 ⊗ 1) is a Kasparov product because the third condition of the definition is trivially satisfied,
and the second follows from the fact that KB(E1)⊗ 1 ⊆ KC(E12).

Example 3.5. As a special case of the preceding example consider F1 = F2 = 0. Then (E1 ⊗B E2, φ1 ⊗
1, 0) is a Kasparov product of (E1, φ1, 0) and (E2, φ2, 0). So we have proved

[(E1, φ1, 0)]⊗B [(E2, φ2, 0)] = [(E1, φ1, 0)⊗B (E2, φ2, 0)],

if the Kasparov product is well-defined on KK-level.

Example 3.6. As another special case of 3.4, let g : B −→ C be a homomorphism and (E2, φ2, F2) =
(C, g, 0) = (g). Then (E1 ⊗g C, φ1 ⊗ 1, F1 ⊗ 1) is a Kasparov product. But this is the cycle g∗(E1). So
we have proved that if the Kasparov product exists, then

∀x ∈ KK(A,B) : g∗(x) = x⊗B [g].

Remark 3.7. As Id∗(x) = Id∗(x) = x for every x ∈ KK(A,B) the above examples show in particular
that

∀x ∈ KK(A,B) : 1A ⊗A x = x⊗B 1B = x.
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3.2 Existence in general and uniqueness
Proof of theorem 3.2. Let’s proof existence of an element in F1]F2. Let G be an F2-connection for E2 of
degree 1. Using the technical lemma, we are going to find suitableM,N ∈ LC(E12), such thatM

1
2 (F1⊗B

1) +N
1
2G ∈ F1]F2. To find candidates for the algebras A1, A2 and the space F ⊆ LC(E12) to which we

will apply the technical lemma we define

FM := M
1
2 (F1 ⊗B 1) + (1−M)

1
2G

for every degree zero operator M ∈ LC(E12), 0 ≤M ≤ 1. Now we give conditions on M , i.e. conditions
on A1, A2 and F , ensuring that FM is in F1]F2. We will then check that the resulting candidates fulfill the
conditions of the technical lemma.

So let M ∈ LC(E12) be of degree zero, 0 ≤M ≤ 1. Define N := 1−M .

• A first sensible condition would be that M
1
2 commutes with F1 ⊗B 1 and N

1
2 commutes with G

modulo compact operators, because this will come in handy when we compute the square of FM .
This condition is obviously equivalent to the condition that N commutes with F1 ⊗B 1 and G
mod KC(E12). In other words, we would like to have that

(7) F1 ⊗B 1, G ∈ F .

• We also want to have that M
1
2 (F1 ⊗B 1) is a 0-connection and N

1
2G is an F2-connection, because

by proposition 2.29, this ensures that FM is an F2-connection. As G is already an F2-connection it
would suffice for the second property that N

1
2 is a 1-connection. But by proposition 2.29, 2., this is

the case precisely if N is a 1-connection, which in turn is equivalent to M being a 0-connection. So
a good condition on M would be that M is a 0-connection, or in other words:

(8) KB(E1)⊗ 1 ⊆ A1.

If this is the case, then alsoM
1
2 is a 0-connection by proposition 2.29, 2. The productM

1
2 (F1⊗B 1)

is also a 0-connection because it is compact when multiplied with elements of KB(E1) ⊗B 1 from
the left and from the right.

• We have to make sure that (E12, φ12, F ) is indeed a Kasparov triple:

– Note that by (7)

F 2
M − 1 = M(F 2

1 ⊗B 1) +NG2 +M
1
2N

1
2 (G(F1 ⊗B 1) + (F1 ⊗B 1)G)− 1

= M((F 2
1 − 1)⊗B 1) +N(G2 − 1) +M

1
2N

1
2 [G,F1 ⊗B 1] mod KC(E12).

Thus for every a ∈ A:

(F 2
M − 1)φ12(a) = M((F 2

1 − 1)φ1(a)⊗B 1) +N(G2 − 1)φ12(a)

+ M
1
2N

1
2 [G,F1 ⊗B 1]φ12(a) mod KC(E12).

Because (F 2
1 − 1)φ1(a) is in KB(E1) it follows by (8) that the first term is 0 mod KC(E12).

The second term will be compact if (G2 − 1)φ12(a) ∈ A2. For the third term it suffices to ask
for N [G,F1 ⊗B 1]φ12(a) being compact (here, we could also use M instead, but as we will
have more to check for A1 than for A2 in the technical lemma, we prefer to express everything
in terms of N ). So one possible condition on A2 is

(9) ∀a ∈ A : [G,F1 ⊗B 1]φ12(a), (G2 − 1)φ12(a) ∈ A2.

– For every a ∈ A we have (under condition (7))

(FM − F ∗M )φ12(a) = M
1
2 ((F1 − F ∗1 )φ1(a)⊗ 1) +N

1
2 (G−G∗)φ12(a) mod KC(E12).
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Because (F1−F ∗1 )φ(a) ∈ KB(E1) follows from the fact that E1 is a Kasparov cycle, and M
1
2

is a zero-connection by (8), the first term is compact. So the following condition seems natural
in order to get rid of the second term:

(10) ∀a ∈ A : (G−G∗)φ12(a) ∈ A2.

– For every a ∈ A we have

[φ12(a), FM ] =
[
φ12(a),M

1
2 (F1 ⊗B 1)

]
+
[
φ12(a), N

1
2G
]

=
[
φ12(a),M

1
2

]
(F1 ⊗B 1) +M

1
2 [φ12(a), (F1 ⊗B 1)]

+
[
φ12(a), N

1
2

]
G+N

1
2 [φ12(a), G] .

Note that for any T ∈ LC(E12) the following statements are equivalent: T commutes withM
1
2

up to compact operators, T commutes withM up to c.o. (use functional calculus), T commutes
with N up to c.o., T commutes with N

1
2 up to compact operators. To make the first and the

third term compact it suffices to have

(11) ∀a ∈ A : φ12(a) ∈ F .

The second term is equal to M
1
2 ([φ12(a), F1]⊗B 1), so this is compact using condition (8).

The last term is compact if we have the following:

(12) ∀a ∈ A : [G,φ12(a)] ∈ A2.

• Let a ∈ A. Under which circumstances is φ12(a)[F1 ⊗B 1, FM ]φ12(a)∗ ≥ 0 mod KC(E12)? We
have

[F1 ⊗B 1, FM ] =
[
F1 ⊗B 1,M

1
2 (F1 ⊗B 1)

]
+
[
F1 ⊗B 1, N

1
2G
]

=
[
F1 ⊗B 1,M

1
2

]
(F1 ⊗B 1) +M

1
2 [F1 ⊗B 1, F1 ⊗B 1]

+
[
F1 ⊗B 1, N

1
2

]
G+N

1
2 [F1 ⊗B 1, G] .

From (7) it follows as above that the first and the third term is compact. If we multiply with φ12(a)∗

from the right, it follows from (9) that the fourth term becomes compact. So

[F1 ⊗B 1, FM ]φ12(a)∗ = M
1
2 [F1 ⊗B 1, F1 ⊗B 1]φ12(a)∗

= 2M
1
2
(
F 2

1 φ1(a)∗ ⊗B 1
)

mod KC(E12).

Because M
1
2 is a 0-connection if condition (8) holds, it follows, using (1−F 2

2 )φ1(a) ∈ KB(E1):

[F1 ⊗B 1, FM ]φ12(a)∗ = M
1
2φ12(a)∗ mod KC(E12).

If we multiply this by φ12(a) from the left, the right-hand side is obviously positive. So without any
extra condition we have positivity of the left-hand-side mod KC(E12).

If all of these conditions are satisfied, we know that FM is in F1]F2. So let us define

A1 := KC(E12) + KB(E1)⊗B 1,

A2 := C∗
(
[G,F1 ⊗B 1]φ12(A), (G2 − 1)φ12(A), (G−G∗)φ12(A), [G,φ12(A)]

)
,

F := 〈F1 ⊗B 1, G, φ12(A)〉C.
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Note that our A1 also contains the compact operators as this will ensure that F derives A1.
What is left to check is that these data satisfy the conditions of the technical lemma. Obviously, all of

the three spaces are invariant under the grading. That A1 is σ-unital was already shown directly after the
statement of the technical lemma. A2 and F are separable because they are each generated by a separable
set. So the size conditions are satisfied.

In order to show A1A2 ⊆ KC(E12) take k ∈ KB(E1). Note that G2 − 1 is an (F 2
2 − 1)-connection,

and this operator is a compact perturbation of 0. So G2 − 1 is a 0-connection and hence

(k ⊗B 1)(G2 − 1)φ12(a) ∈ KC(E12).

For the same reason we have

(k ⊗B 1)(G−G∗)φ12(a) ∈ KC(E12).

Moreover,

(−1)deg k(k ⊗B 1)[G,F1 ⊗B 1] = [G, (kF1)⊗B 1]− [G, k ⊗B 1](F1 ⊗B 1).

The first terms on the right-hand side are compact proposition 2.29, 4. So the left-hand side is compact
(and stays compact when multiplied with φ12(a). Similarly,

(−1)deg k(k ⊗B 1)[G,φ1(a)⊗B 1] = [G, (kφ1(a))⊗B 1]− [G, k ⊗B 1](φ1(a)⊗B 1)

is compact. So we have shown that A1A2 is contained in KC(E12).
The last thing that remains to be checked is [F , A1] ⊆ A1. It is obvious that F1⊗B 1 and φ12(A) derive

A1. G derives A1 by proposition 2.29, 4.
So we have shown that A1, A2 and F satisfy the conditions of the technical lemma, so we can find

appropriate M and N such that
F := M

1
2 (F1 ⊗B 1) +N

1
2G

is in F1]F2.

Note that the FM we have just constructed is a compact perturbation of

F̂M := M
1
4 (F1 ⊗B 1)M

1
4 +N

1
4GN

1
4 ,

because M and N commute with F1 ⊗B 1 and G modulo compacts, respectively. So F̂M ∈ F1]F2, as
well. Now, if F1 and F2 are self-adjoint, we can take G self-adjoint and then F̂M will be self-adjoint.

To prove uniqueness note that if the operator G is already in F1]F2, then FM is operator homotopic to
G. To see this note that

[G,FM ] = [G,M
1
2 (F1 ⊗ 1)] + [G,N

1
2G]

= [G,M
1
2 ](F1 ⊗ 1) +M

1
2 [G,F1 ⊗ 1] + [G,N

1
2 ]G+N

1
2 [G,G]

= 0 +M
1
4 [G,F1 ⊗ 1]M

1
4 + 0 + 2N

1
4G2N

1
4 mod KC(E12).

Hence we have for every a ∈ A, because φ12(A) commutes with M and N modulo compacts:

φ12(a)[G,FM ]φ12(a)∗ = φ12(a)M
1
4 [G,F1 ⊗ 1]M

1
4φ12(a)∗ + 2φ12(a)N

1
4G2N

1
4φ12(a)∗

= M
1
4φ12(a)[G,F1 ⊗ 1]φ12(a)∗M

1
4 + 2N

1
4φ12(a)G2φ12(a)∗N

1
4 mod KC(E12).

The first term is positive becauseG ∈ F1]F2. The second term is positive because φ12(a)G2φ12(a)∗ =
φ12(a)φ12(a)∗ mod KC(E12). Thus we see that φ12(a)[G,FM ]φ12(a)∗ ≥ 0 mod KC(E12) for every
a ∈ A. This shows that G and FM are operator homotopic.

So letG andG′ be in F1]F2. Now the trick is to modify the above proof to produceM andN such that
M

1
2 (F1 ⊗B 1) +N

1
2G as well as M

1
2 (F1 ⊗B 1) +N

1
2G′ are in F1]F2 and differ by a compact operator.

The difference is N
1
2 (G−G′). After everything we have done, it is obvious that a good choice would be

A1 := KC(E12) + KB(E1)⊗B 1,
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A2 := C∗ ([G,F1 ⊗B 1]φ12(A), [G′, F1 ⊗B 1]φ12(A), (G−G′)φ12(A),KC(E12)) ,

F := 〈F1 ⊗B 1, G,G′, φ12(A)〉C.

Note that the algebra A2 is now defined in a way that ensures that it contains the one defined above
because it follows from G,G′ ∈ F1]F2 that the operators (G2− 1)φ12(a) etc. are contained in the algebra
KC(E12) ⊆ A2.

The size conditions are obviously met. When proving A1A2 ⊆ KC(E12) just note that G − G′ is a
0-connection. The rest is trivial. Note that the “old” A2 for G and G′ is contained in the new one. This
ensures that M

1
2 (F1 ⊗B 1) +N

1
2G is in F1]F2 and operator homotopic to G, M

1
2 (F1 ⊗B 1) +N

1
2G′ is

in F1]F2 and operator homotopic to G′, and N
1
2 (G−G′)φ12(A) ⊆ KC(E12).

3.3 The Kasparov product on the level of KK-theory
For the rest of this section, let A be separable.

The proof of the following lemma is straightforward but tedious and will be left to the reader.

Lemma 3.8 (Poor man’s associativity). Let D be another C∗-algebra, f : A −→ B, g : B −→ C, h : C
−→ D be ∗-homomorphisms. Let E1 = (E1, φ1, F1) ∈ E(A,B), E2 = (E2, φ2, F2) ∈ E(B,C), and
E3 = (E3, φ3, F3) ∈ E(C,D).

1. If E23 is a Kasparov product for E2 and E3, then f∗(E23) is a Kasparov product for f∗(E2) and E3.

2. Define
Ψ: (E1 ⊗g C)⊗φ3 E3 −→ E1 ⊗φ3◦g E3, (e1 ⊗ c)⊗ e3 7→ e1 ⊗ ce3.

Then Ψ is an isomorphism of Hilbert A-D-bimodules. Let F ∈ LD (E1 ⊗φ3◦g E3). Define F ′ :=
Ψ−1 ◦ F ◦ Ψ. Then (E1 ⊗ E3, φ1 ⊗ 1, F ) is a Kasparov product for E1 and g∗(E3) if and only if
((E1 ⊗ C)⊗ E3, (φ1 ⊗ 1)⊗ 1, F ′) is a Kasparov product for g∗(E1) and E3.

3. If E12 is a Kasparov product for E1 and E2, then h∗(E12) is canonically isomorphic to a Kasparov
product of E1 and h∗(E2), the isomorphism being

Φ: (E1 ⊗φ2 E2)⊗h D −→ E1 ⊗φ2⊗1 (E2 ⊗h D), (e1 ⊗ e2)⊗ d 7→ e1 ⊗ (e2 ⊗ d).

Remark 3.9. We will use the preceding lemma to show that the Kasparov product is well-defined on the
level of KK-elements. If this is achieved, the lemma yields the following corollary: Let f, g, h be as above,
x ∈ KK(A,B), y ∈ KK(B,C) and z ∈ KK(C,D). Then

1.
([f ]⊗B y)⊗C z = f∗(y)⊗C z = f∗ (y ⊗C z) = [f ]⊗B (y ⊗C z),

2.
(x⊗B [g])⊗C z = g∗(x)⊗C z = x⊗B g∗(z) = x⊗B ([g]⊗C z),

3.
(x⊗B y)⊗C [h] = h∗ (x⊗B y) = x⊗B h∗(y) = x⊗B (y ⊗C [h]).

This explains the name of the lemma. Note that the lemma gives some additional information as it does not
involve homotopies but gives proper isomorphisms.

The following lemma is a direct consequence of lemma 3.8, 3:

Lemma 3.10 (Homotopy invariance in the second variable). Let E1 = (E1, φ1, F1) ∈ E(A,B) and E2 =
(E2, φ2, F2) ∈ E(B,C[0, 1]) (this a homotopy!). Let E12 ∈ E(A,C[0, 1]) be a Kasparov product for E1
and E2 (this is again a homotopy!). Then for every t ∈ [0, 1] we have that πt,∗(E12) is isomorphic to a
Kasparov product of E1 and πt,∗(E2).

In particular, E12 is a homotopy from a Kasparov product for E1 and π0,∗(E2) to a Kasparov product
for E1 and π1,∗(E2).
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For the moment, we need the following definition just for notational convenience but the notation will
be made clearer in the subsequent talks:

Definition 3.11. Suppose that E2 ∈ E(B,C). Then we define

τC[0,1](E2) := (E2[0, 1], φ2 ⊗ 1, F2 ⊗ 1) ∈ E(B[0, 1], C[0, 1]).

Note that we have for every t ∈ [0, 1]:

πt,∗
(
τC[0,1](E2)

) ∼= π∗t (E2).

Lemma 3.12 (Homotopy invariance in the first variable). Let E1 = (E1, φ1, F1) ∈ E(A,B[0, 1]) (yet
another homotopy!) and E2 = (E2, φ2, F2) ∈ E(B,C).

Let E12 ∈ E(A,C[0, 1]) be a Kasparov product for E1 and τC[0,1](E2) (homotopy!). Then for every
t ∈ [0, 1] we have that πt,∗(E12) is isomorphic to a Kasparov product of πt,∗(E1) and E2.

In particular, E12 is a homotopy from a Kasparov product for π0,∗(E1) and E2 to a Kasparov product
for π1,∗(E1) and E2.

Proof. By lemma 3.8, 3, we know that πt,∗(E12) is isomorphic to a Kasparov product of the cycles E1 and
πt,∗

(
τC[0,1](E2)

)
, where the latter is isomorphic to π∗t (E2). But by lemma 3.8, 2, this is in turn isomorphic

to a Kasparov product of πt,∗(E1) and E2.

Lemma 3.13. Let E1 = (E1, φ1, F1), E ′1 = (E′1, φ
′
1, F

′
1) ∈ E(A,B) and E2 = (E2, φ2, F2), E ′2 =

(E′2, φ
′
2, F

′
2) ∈ E(B,C).

1. If E12 is a Kasparov product of E1 by E2 and E ′12 is a Kasparov product of E ′1 by E2 then E12 ⊕E ′12 is
isomorphic to a Kasparov product of E1 ⊕ E ′1 by E2.

2. If E12 is a Kasparov product of E1 by E2 and E ′12 is a Kasparov product of E1 by E ′2 then E12 ⊕E ′12 is
isomorphic to a Kasparov product of E1 by E2 ⊕ E ′2.

Proof. 1. Let
Φ: (E1 ⊗B E2)⊕ (E′1 ⊗B E2) −→ (E1 ⊕ E′1)⊗B E2︸ ︷︷ ︸

=:E

be the obvious isomorphism. Note that Φ−1 = Φ∗. Let F := Φ ⊗ (F12 ⊕ F ′12) ◦ Φ−1 and φ(a) :=
Φ ◦ (φ12(a)⊕ φ′12(a)) ◦ Φ−1. Then E := (E, φ, F ) is in E(A,C) by definition. Now note that F is
an F2-connection by proposition 2.30. Moreover, we have

(F1 ⊕ F ′1)⊗B 1 = Φ ◦ (F1 ⊗B 1⊕F ′1 ⊗B 1) ◦ Φ−1.

Let a ∈ A. Then we have

φ(a)[(F1 ⊕ F ′1)⊗B 1, F ]φ(a∗)
= Φ(φ12(a)⊕ φ′12(a)) [(F1 ⊗B 1⊕F ′1 ⊗B 1), (F12 ⊕ F ′12)] (φ12(a∗)⊕ φ′12(a∗))Φ∗

= Φ ((φ12(a)[F1 ⊗B 1, F12]φ12(a∗))⊕ (φ′12(a)[F ′1 ⊗B 1, F ′12]φ′12(a∗))) Φ∗.

As the direct sum of two positive operators is positive and the direct sum of two compact operators
is compact, we conclude that we have indeed constructed an Kasparov product.

2. Let
Φ: (E1 ⊗B E2)⊕ (E1 ⊗B E′2) −→ E1 ⊗B (E2 ⊕ E′2)︸ ︷︷ ︸

=:E

be the obvious isomorphism. Let F := Φ⊗ (F12⊕F ′12) ◦Φ−1 and φ(a) := Φ ◦ (φ12(a)⊕φ′12(a)) ◦
Φ−1. Then E := (E, φ, F ) is in E(A,C) by definition. A short calculation similar to the one in
proposition 2.30 shows that F is an F2 ⊕ F ′2-connection. As above we can conclude that (E, φ, F )
is a Kasparov product for E1 and E2 ⊕ E ′2.



The Kasparov product, seminar on KK-theory, May 2004 23

From what we have done we can now derive the following theorem:

Theorem 3.14. The Kasparov product is a well-defined bi-additive map on the level KK-elements.

Proof. That the Kasparov product is invariant up to homotopy under homotopies in the first variable follows
from lemma 3.10. In the second this follows from 3.12. Biadditivity is a consequence of the preceding
lemma.

Theorem 3.15. The Kasparov product is associative.

This last theorem of this section will not be proved here as the proof is rather technical and the main
techniques used in it, e.g. the technical lemma, as well as the way they are applied have already been
presented in this talk. A proof of the associativity of the Kasparov product can be found in any introduction
to KK-theory, for example in [JT91].
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