
AN INTRODUCTION TO KK-THEORY

These are the lecture notes of Walther Paravicini in the Focused Semester 2009 in
Münster; the notes were taken by Lin Shan.
In these notes, all C∗-algebras are complex algebras.

1. Hilbert modules and adjointable operators

Let B be a C∗-algebra.

DEFINITION 1. A (right) pre-Hilbert module E over B is a complex vector
space E which is at the same time a (right) B-module compatible with the vector
space structure of E and is equipped with a map

〈·, ·〉 : E × E → B,

such that

(1) 〈·, ·〉 is sesquilinear (linear in the right component);
(2) ∀b ∈ B and ∀e, f ∈ E, 〈e, fb〉 = 〈e, f〉b;
(3) ∀e, f ∈ E, 〈e, f〉∗ = 〈f, e〉 ∈ B;
(4) ∀e ∈ E, 〈e, e〉 ≥ 0 and 〈e, e〉 = 0 if and only if e = 0.

Define ‖e‖ =
√
〈e, e〉 for all e ∈ E. If E is complete with respect to this norm, then

we call E a Hilbert B-module. E is called full if 〈E,E〉 = B.

Exercise 2. Show that ‖·‖ defines a norm on E.

Example 3.

(1) If B = C, then a Hilbert module over B is the same as a Hilbert space;

(2) B itself is a B-module with the module action

e · b = eb ∀e, b ∈ B

and the inner product

〈e, f〉 = e∗f ∈ B ∀e, f ∈ B;

(3) More generally, any closed right ideal I ≤ B is a right Hilbert B-module;
(4) Let (Ei)i∈I be a family of pre-Hilbert B-modules. Then the direct sum
⊕i∈IEi is a pre-Hilbert B-module with the inner product

〈(ei), (fi)〉 =
∑
i∈I
〈ei, fi〉Ei .

Because the completion of a pre-Hilbert B-module is a Hilbert B-module,
we can form the completion of ⊕i∈IEi, and also call it ⊕i∈IEi;

(5) In the above example, let I = N and Ei = B. Define HB = ⊕i∈NB to be
the Hilbert B-module.
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Example 4. Define

`2(N, B) =

{
(bi)i∈N|bi ∈ B ∀ i ∈ N and

∑
i∈N
‖bi‖2 <∞

}
.

Show that `2(N, B) ⊂ HB and find an example such that `2(N, B) 6= HB .

LEMMA 5. If E is a pre-Hilbert B-module, then for all e, f ∈ E

‖e‖ ‖f‖ ≥ ‖〈e, f〉‖ .

Proof. If f 6= 0, define b =
−〈f, e〉
‖f‖2

. Then the inequality follows from 〈e + fb, e +

fb〉 ≥ 0. �

REMARK 6. Let H be a Hilbert space and T ∈ L(H). Then T ∗ is the unique
operator such that

〈Tx, y〉 = 〈x, T ∗y〉
for all x, y ∈ H. Such T ∗ alsways exists and this star operator turns L(H) into a
iC∗-algebra.

DEFINITION 7. Let EB and FB be Hilbert B-modules. Let T be a map from
E to F . Then T ∗ : F → E is called the adjoint of T if for all e ∈ E, f ∈ F

〈Te, f〉 = 〈e, T ∗f〉.

If such T ∗ exists, we call T adjointable. The set of all such operator is denoted by
L(E,F ).

Exercise 8. Find an example such that a continuous linear map T : E → F is not
adjointable.

PROPOSITION 9. Let E,F be Hilbert B-modules, and let T be an adjointable
map from E to F . Then

(1) T ∗ is unique, and T ∗ is also adjointable and (T ∗)∗ = T ,
(2) T is linear, B-linear and continuous,
(3) ‖T‖2 = ‖T ∗‖2 = ‖TT ∗‖ = ‖T ∗T‖.

PROPOSITION 10. Let E,F be Hilbert B-modules, then L(E) = L(E,E) is a
C∗-algebra and L(E,F ) is a Banach space.

DEFINITION 11. Let E,F be Hilbert B-modules. For all e ∈ E, f ∈ F , define

θf,e : E → F

by
θf,e(e′) = f〈e, e′〉E .

PROPOSITION 12. In the above situation, we have
(1) θf,e ∈ L(E,F ) and θ∗f,e = θe,f ,
(2) for all T ∈ L(F ) and S ∈ L(E), we have

T ◦ θf,e = θTf,e, θf,e ◦ S = θf,S∗e.

DEFINITION 13. Define K(E,F ) = KB(E,F ) to be the closed linear span of
{θf,e|e ∈ E, f ∈ F}. Elements in K(E,F ) is called compact operators.
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PROPOSITION 14.

L(F )K(F,E) = K(F,E);

K(E,F )L(F ) = K(E,F );

K(E,F )∗ = K(F,E).

In particular, K(E) = K(E,E) is a closed, ∗-closed two-sided ideal of L(E).

LEMMA 15. Let E,F be Hilbert B-modules. Then

K(E,F ) = {T ∈ L(E,F )|TT ∗ ∈ K(F )} .

Proof. “ ⊂ ” is obvious.

“ ⊃ ”: Let (Uλ)λ be a bounded approximate unit for K(F ). Then using Uλ = U∗λ ,

‖UλT − T‖2 = ‖UλTT ∗Uλ − UλTT ∗ − TT ∗Uλ + TT ∗‖ .
Since TT ∗ ∈ K(F ) implies UλT → T ∈ L(E,F ) and UλT ∈ K(E,F ), we have
T ∈ K(E,F ). �

Example 16.
(1) Let B = C, and let H be a Hilbert space. Then K(H) is the usual algebra

of compact operators,
(2) If B is arbitrary, and if you regard B as a Hilbert B-module, then K(B) =

B.

Proof. Define Φ : B → L(B) by b(b′) = bb′ for all b′ ∈ B. Then Φ is a
∗-homomorphism and Φ(b∗c) = θb,c for all b, c ∈ B. So Φ(B · B) ⊂ K(B).
But B ·B = B. �

(3) If E = E1 ⊕ E2 and F = F1 ⊕ F2, then

K(E,F ) = ⊕
i=1,2

⊕
j=1,2

K(Ei, Fj),

and every T ∈ K(E,F ) can be expressed as a matrix(
T11 T12

T21 T22

)
.

(4) As a consquence of above, we have K(Bm, Bn) = Mm×n(B).

DEFINITION 17. If B is a C∗-algebra, then we define

M(B) = L(B).

M(B) is called the multiplier algebra of B. For example M(C0(X)) = Cb(X) if X
is a locally compact space.

PROPOSITION 18. If E is a Hilbert B-module, then

M(K(E)) = L(E).

Sketch of proof. If T ∈ L(E), then S → TS defines an element T · ∈ M(K(E)) =
L(K(E)). This defines a ∗-homomorphism Ψ : L(E)→M(K(E)).
For T ∈ ker(Ψ): Let e ∈ E.

0 = 〈Ψ(T )(θe,Te)(Te),Ψ(T )(θe,Te)(Te)〉 = 〈(Tθe,Te)(Te), (Tθe,Te)(Te)〉 = 〈Te, Te〉3

So Te = 0 for all e ∈ E. Hence T = 0 and Ψ is injective.
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If m ∈M(K(E)) and e ∈ E, we define

T (e) = lim
ε→0

m(θe,e)(e)(〈e, e〉+ ε)−1.

Then this is a well-defined element of L(E) and Ψ(T ) = m. So Ψ is surjective. �

DEFINITION 19. Let B,B′ be C∗-algebras, and let ψ : B → B′ be a ∗-
homomorphism. Let EB is a Hilbert B-module and E′B′ is a Hilbert B′-module. A
homomorphism with coefficient map ψ from EB to E′B′ is a map Φ : EB → E′B′
such that

(1) Φ is C-linear,
(2) Φ(eb) = Φ(e)ψ(b) for all e ∈ EB and b ∈ B,
(3) 〈Φ(e),Φ(f)〉 = φ(〈e, f〉) ∈ B′ for all e, f ∈ EB .

We denote such a map also by Φψ by emphsizing ψ.

REMARK 20. From the definition, it follows that ‖Φ(e)‖ ≤ ‖e‖ for all e ∈ EB
and equality holds when ψ is injective.

REMARK 21. There is an obvious composition of homomorphisms with coeffi-
cient maps: for Φψ : EB → E′B′ and Ψχ : E′B′ → E′′B′′ , we have a homomorphism

(Ψ ◦ Φ)χ◦ψ : EB → E′′B′′ .

Also (IdE)IdB : EB → EB is a homomorphism.

DEFINITION 22. Two Hilbert B-modules EB and EB′ are called isomorphic if
there is a homomorphism ΦIdB : EB → E′B which is bijective. Then Φ−1

IdB
: E′B →

EB . Write EB ∼= E′B . Note that in this case, ΦIdB ∈ L(EB , E′B) and Φ∗IdB = Φ−1
IdB

.

DEFINITION 23. A C∗-algebra B is called σ-unital if there exists a countable
bounded approximate unit.

DEFINITION 24. A positive element h ∈ B is called strictly positive if φ(h) > 0
for all states φ of B.

LEMMA 25. B is σ-unital if and only if B contains a strictly positive element.

LEMMA 26. A positive element h ∈ B is strictly positive if and only if hB = B.

LEMMA 27. Let E be a Hilbert B-module, and let T ∈ L(E) be positive. Then
T is strictly positive if and only if T (E) = E.

DEFINITION 28. A Hilbert B-module E is called countably generated if there is
a set {xn : xn ∈ E,∀ n ∈ N} such that the span of the set {xnb : xn ∈ E b ∈ B, ∀ n ∈ N}
is dense in E.

We will show that E is countably generated if and only if K(E) is σ-unital. This is
a consquence of the following important theorem.

THEOREM 29 (Kasparov’s Stabilization Theorem). If E is a countably generated
Hilbert B-module, then

E ⊕HB
∼= HB .

Proof. Without loss of generality, we assume that B is unital. We want to define a
unitary V : HB → E ⊕HB .
Instead of defining V directly, we define T ∈ L(HB , E ⊕ HB) such that T and
|T | = (T ∗T )

1
2 have dense range. Then the isometry V defined by V (|T |(x)) = T (x)
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can be extended to an isometry from HB to E ⊕ HB with Range(V ) ⊃ Range(T )
(which is dense, so V is a unitary).
Let ξn be the n-th standard basis vector in HB , and let (ηn) be a generating
sequence of E such that for all n ∈ N, {l ∈ N|ηn = ηl} is an infinite set. WLOG,
we assume that ‖ηn‖ ≤ 1 for all n ∈ N. Define

T =
∑
k

2−kθ(ηk,2−kξk),ξk .

(1) T has a dense range: Let k ∈ N. Then for any l ∈ N with ηk = ηl, we have
that T (ξl) = 2−l(ηk, 2−lξl), so

T (2lξl) = (ηk, 2−l)→ (ηk, 0)

as l → ∞. Hence (ηk, 0) ∈ T (HB), and also 2l((ηk, 2−lξl) − (ηk, 0)) =
(0, ξl) ∈ T (HB);

(2) T ∗T has dense range:

T ∗T =
∑
k,l

= 2−k−lθξk(〈ηk,ηl〉+〈2−kξk,2−lξl〉),ξl

=
∑
k

4−2kθξk,ξk +

(∑
k

2−kθ(ηk,0),ξk

)∗(∑
k

2−kθ(ηk,0),ξk

)
≥
∑
k

4−2kθξk,ξk(
def
= S).

S is positive and has dense range, so it is strictly positive in K(HB). Hence
T ∗T is stricly positive in K(H) and has dense range;

(3) |T | has dense range because Range(|T |) ⊃ Range(T ∗T ).
�

COROLLARY 30. EB is countably generated if and only if K(E) is σ-unital.

Proof.
(1) If B is unital and E = HB . Let ξi be the standard i-th basis vector in HB .

Then
h =

∑
i

2−iθξi,ξi

is strictly positive in K(E) since it has dense range;
(2) If B is unital and E = PHB for some P ∈ L(HB) with P ∗ = P = P 2.

(This is almost generic my the above theorem.) Then

PhP =
∑
i

2−iθPξi,Pξi

is strictly positive in K(E);
(3) B is countable generated if and only if B+ is countably generated. So
KB+(E) is σ-unital if and only if KB(E) is σ-unital since KB+(E) = KB(E).

�

DEFINITION 31. Let B,C be C∗-algebras, and let EB and FC be Hilbert B,C-
modules respectively and let φ : B → L(FC) be a ∗-homomorphism. On E ⊗alg
F × E ⊗alg F , define

〈e⊗ f, e′ ⊗ f ′〉 = 〈f, φ(〈e, e′〉)f ′〉 ∈ C.
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This defines a C-valued bilinear map. Define N = {t ∈ E ⊗alg F |〈t, t〉 = 0}. Then
〈·, ·〉 defines an inner product on E ⊗alg F/N which turns it to be a pre-Hilbert
C-module.
The completion is called the inner tensor product of E and F and is denoted by
E ⊗B F or E ⊗φ F .

LEMMA 32. Let E1B , E2B and FC be Hilbert B,C module respectively, and let
φ : B → L(F ) be a ∗-homomorphism. Let T ∈ L(E1, E2). Then e1⊗f → T (e1)⊗f
defines a map T⊗1 ∈ L(E1⊗BF,E2⊗BF ) such that (T⊗1)∗ = T ∗⊗1 and ‖T ⊗ 1‖ ≤
‖T‖. If φ(B) ⊂ K(F ), then T ∈ K(E1, E2) implies T ⊗ 1 ∈ K(E1 ⊗ F,E2 ⊗ F ).

Proof. We only prove the last assertion here. The map T → T ⊗ 1 is linear and
contractive from L(E1, E2) to L(E1⊗F,E2⊗F ). So it suffices to consider T of the
form θe2,e1 with e1 ∈ E1 and e2 ∈ E2. Because E2 = E2 · B, it suffices to consider
θe2b,e1 with b ∈ B. Now for all e′1 ⊗ f ∈ E1 ⊗ F ,

(θe2b,e1 ⊗ 1)(e′1 ⊗ f) = θe2b,e1(e′1)⊗ f
= e2b(e1, e

′
1)⊗ f

= e2 ⊗ φ(b)φ(〈e1, e
′
1〉)f

= (Me2 ◦ φ(b) ◦Ne1)(e′1 ⊗ f),

where Me2 : F → E2 ⊗B F by f ′ → e2 ⊗ f ′ and Ne1 : E1 ⊗B F → F by e′1 ⊗ f ′ →
φ(〈e1, e

′
1〉)f ′. Because Me2 ∈ L(F,E2⊗BF ), Ne1 ∈ L(E1⊗BF, F ) and φ(b) ∈ K(F ),

we have θe2b,e1 ⊗ 1 ∈ K(E1 ⊗ F,E2 ⊗ F ). �

LEMMA 33. Let B and C be C∗-algebras, and let φ : B → C be a ∗-homomorphism.
Define φ̃ : B → L(C) = M(C) by b→ (c→ φ(b)c). Then φ̃(B) ⊂ K(C).

DEFINITION 34. Let EB be a Hilbert B-module, and let φ : B → C be a
∗-homomorphism. Define the push-forward φ∗(E) as E ⊗B C = E ⊗φ C.

LEMMA 35.
(1) (idB)∗(E) = E ⊗B B ∼= E canonically;
(2) ψ∗(φ∗(E)) ∼= (ψ◦φ)∗(E) naturally, where ψ : C → D is a ∗-homomorphism.

LEMMA 36. T ∈ K(E1, E2) implies φ∗(T ) ∈ K(φ∗(E1), φ∗(E2)). Moreover,

φ∗(θe2b2,e1b1) = θe2⊗φ(b2),e1⊗φ(b1)

for all b1, b2 ∈ B, e1 ∈ E1 and e2 ∈ E2.

REMARK 37.
(1) The push-forward has the following universal property. If φ : B → C

and if EB is a Hilbert B-module, then there is a natural homomorphism
Φφ : EB ∼= EB ⊗ B → E ⊗B C = φ∗(E) defined by Φ(e ⊗ b) = e ⊗ φ(b).
If Ψφ : EB → FC is any homomorphism with coefficient map φ, there is a
unique homomorphism ΦidC : φ∗(E)C → FC defined by Ψ̃(e ⊗ c) = Ψ(e)c
such that the following diagram commutes

E ∼= E ⊗B

Φφ &&MMMMMMMMMM
Ψφ

// F

φ∗(E)
Ψ̃idC

<<yyyyyyyy

.
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(2) You can show that K(·) is a functor. If Φφ : EB → FC is a homomorphism
with coefficient map φ, then there is a unique ∗-homomorphism Θ : K(E)→
K(F ) such that Θ(θe,e′) = θφ(e),φ(e′) ∈ K(F ) for all e, e′ ∈ E.

DEFINITION 38. Let B,B′ be C∗-algebras, and let EB , E′B′ be Hilberts B,B′

modules respectively. Then define a bilinear map

〈·, ·〉 : E ⊗alg E′ × E ⊗alg E′ → B ⊗B′

by
〈e1 ⊗ e′1, e2 ⊗ e′2〉 = 〈e1, e2〉 ⊗ 〈e2, e

′
2〉.

This defines an inner product on E ⊗C E
′. Its completion, denoted by E ⊗E′, is a

Hilbert B ⊗B′-module, called the external tensor product of E and E′.

DEFINITION 39. A graded C∗-algebra is a C∗-algebra B equipped with an order
two ∗-homomorphism βB , called the grading automorphism of B, i.e. β2

B = βB . A
∗-homomorphism φ from a graded algebra (B, βB) to a graded algebra (C, βC) is
graded if βC ◦ φ = φ ◦ βB .
If (B, βB) is graded, then B = B0 ⊕ B1 with B0 = {b ∈ B|βB(b) = b} and B1 =
{b ∈ B|βB(b) = −b}. The element b ∈ B0 is called even with deg(b) = 0 and the
element b ∈ B1 is called odd with deg(b) = 1. An element of B0 ∪ B1 is called
homogeneous.

REMARK 40. Note we have

B0 ·B1 ⊂ B1 B1 ·B0 ⊂ B1

B0 ·B0 ⊂ B0 B1 ·B1 ⊂ B0.

Moreover, φ : B → C is graded if and only if φ(Bi) ⊂ Ci for i = 0, 1.

DEFINITION 41 (Definition and lemma). If B is graded, then the graded com-
mutator of B is defined on homogeneous elements a, b, c by

[a, b] = ab− (−1)deg(a) deg(b)ba.

It satisfies the following properties.
(1) [a, b] = −(−1)deg(a) deg(b)[b, a];
(2) [a, bc] = [a, b]c+ (−1)deg(a) deg(b)b[a, c];
(3) (−1)deg(a) deg(c)[[a, b], c]+(−1)deg(a) deg(b)[[b, c], a]+(−1)deg(b) deg(c)[[c, a], b] =

0.

DEFINITION 42. Let A and B be graded C∗-algebras. Define their graded
tensor product as follows. On A⊗alg B, define

(a1⊗̂b1)(a2⊗̂b2) = (−1)deg(a1) deg(b1)(a1a2⊗̂b1b2)

and
(a1⊗̂b1)∗ = (−1)deg(a1) deg(b1)(a∗1⊗̂b∗1)

for all homogeneous element a1, a2 ∈ A and b1, b2 ∈ B. Define a grading automor-
phism by βA⊗̂B = βA ⊗ βB .
Just as in the ungraded case, there are several feasible norms on A⊗algB and among
them there is a maximal one. Completed for this norm the algebra A⊗algB becomes
the maximal graded tensor product A⊗̂maxB. There is also a spacial graded tensor
product A⊗̂B. In general these completions can be different from there ungraded
counterparts, but in the cases we are interested in, they agree. Hence we will not
make a fuss about these norms.
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PROPOSITION 43. The spatial graded tensor product A⊗̂B is associative (A⊗̂(B⊗̂C) =
(A⊗̂B)⊗̂C) and commutative (A⊗̂B ∼= B⊗̂A via a⊗̂b→ (−1)deg(a) deg(b)b⊗̂a).

Example 44.
(1) If A is an ungraded C∗-algebra, then idA is a grading automorphism on A

which we call the trivial grading. With this grading, A is called trivially
graded;

(2) If A is a C∗-algebra and u ∈ M(A) satisfies u = u∗ = u−1, then one can
define a grading on A by a→ uau. Such a grading is called an inner grading.
We will see later that inner gradings are the less interesting gradings.

(3) On C(1) = C⊕ C, define the following grading automorphism:

(a, b)→ (b, a).

Then (C(1))0 = {(a, a)|a ∈ C} and (C(1))1 = {(a,−a)|a ∈ C}. This grading
is called the standard odd grading;

(4) More generally, define the odd grading also on A(1) = A ⊕ A for any C∗-
algebra A. Note that A(1)

∼= A⊗̂C(1);
(5) Alternatively, define C1 = C⊕ C as follows.

The multiplication is given by

(1, 0)(1, 0) = (0, 1)(0, 1) = (1, 0);

(1, 0)(0, 1) = (0, 1)(1, 0) = (0, 1).

The involution is given by (a, b)∗ = (ā, b̄).
The norm is given by ‖(a, b)‖ = max {|a+ b|, |a− b|}.
The grading is given by (a, b)→ (a,−b).
Then C1 is a graded C∗-algebra.
Also C1

∼= C(1) as a graded C∗-algebra. Let C1 act on C⊕ C by

(a, b)→
(
a b
b a

)
.

This is a faithful representation.

DEFINITION 45. Let n ∈ N. Let Cn be the universal unital C-algebra defined
in the following way, called the n-th complex Clifford algebra:

(1) there is an R-linear map i : Rn → Cn such that

i(v) · i(v) = 〈v, v〉 · 1Cn ∈ Cn
for all v ∈ Rn;

(2) if φ : Rn → A is any R-linear map from Rn to a unital C-algebra satisfying
the above condition, then there is a unique unital C-linear homomorphism
φ̂ : Cn → A such that φ = φ̂ ◦ i.

Consider the complexified exterior algebra Λ∗CRn. It has a canonical Hilbert space
structure. Let Cn act on Λ∗CRn as follows: if v ∈ Rn then define µ(v) = ext(v) +
ext(v)∗ ∈ L(Λ∗CRn). From the universal property of the Clifford algebra we obtain
a homomorphism from Cn to L(Λ∗CRn).
On Cn we have an involution induced by the map

(v1 · v2 · · · vk)∗ = vk · vk−1 · · · v1

for all v1, · · · , vk ∈ Rn. With this involution, Cn is a ∗-algebra and µ : Cn →
L(Λ∗CRn) a ∗-homomorphism. It defines a C∗-algebra structure on Cn.
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Example 46.
(1) C1 is the two-dimensional algebra defined above;
(2) C2 is the four-dimensional algebra with the basis 1, e1, e2, e1e2 such that

e2
1 = e2

2 = 1 and e1e2 = −e2e1.

DEFINITION 47. The unitary map v → −v in Rn lifts to an isomorphism
βn : Cn → Cn such that (βn)2 = 1. It is a grading on Cn.

Exercise 48. Show that C2 is isomorphic to M2×2(C) with the inner grading given

by
(

1 0
0 −1

)
.

PROPOSITION 49. We have Cm+n
∼= Cm⊗̂Cn for all m,n ∈ N.

Proof. Define V = Rm and W = Rn. Let im : V → Cm, in : W → Cn and
im+n : V ⊕W → Cm+n be the canonical injections. Let πV : V ⊕W → V and
πW : V ⊕W →W be the canonical projections. Then

i = (iV ⊗̂1) ◦ πV ⊕ (1⊗̂iW ) ◦ πW : V ⊕W → Cm⊗̂Cn
satisfies i(x)i(x) = 〈x, x〉1Cm⊗̂Cn , so there is a unital C-linear homomorphism
î : Cm+n → Cm⊗̂Cn such that i = î ◦ im+n. Similarly, one can construct ho-
momorphisms Cm → Cm+n and Cn → Cm+n which gradedly commute, so there is
a homomophism Cm⊗̂Cn → Cm+n. It is an inverse of î. �

PROPOSITION 50. If n ∈ N is even, then Cn ∼= M2m×2m(C) with an inner
grading. If n = 2m+ 1 is odd, then Cn ∼= M2m×2m(C)⊕M2m×2m(C) with standard
odd grading.

DEFINITION 51. Let (B, βB) be a graded C∗-algebra and EB be a Hilbert B-
module. A grading automorphism σE : E → E is a homomorphism with coefficient
map βB such that σ2

E = idE , i.e.

〈σE(e), σE(f)〉 = βE(〈e, f〉)
and σE(eb) = σE(e)βB(b) for all e, f ∈ E and b ∈ B.

REMARK 52. With E0 = {e ∈ E|σE(e) = e} and E1 = {e ∈ E|σE(e) = −e}, we
have

〈Ei, Ej〉 ⊂ Bi+j
and

EiBj ⊂ Ei+j .
If B is trivially graded, then it still makes sense to consider graded Hilbert B-
modules; they are just orthogonal direct sums of two Hilbert B-modules.

DEFINITION 53 (Definition and Lemma). If E and F are graded Hilbert mod-
ules over the graded C∗-algebra B, then define

σL(E,F )(T ) = σF ◦ T ◦ σE
for all T ∈ L(E,F ).
This map satisfies:

(1) σ2
L(E,F )(T ) = T for all T ∈ L(E,F );

(2) σL(F,E)(T ∗) = [σL(E,F )(T )]∗ for all T ∈ L(E,F );
(3) σL(E,G)(T ◦ S) = σL(F,G)(T ) ◦ σL(E,F )(S) for all T ∈ L(F,G) and S ∈
L(E,F ) where GB is another Hilbert B-module;
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(4) σL(E,F )(K(E,F )) ⊂ K(E,F ) with σL(E,F )(θf,e) = θσF (f),σE(e) for all e ∈ E
and f ∈ F .

COROLLARY 54. If E is a graded Hilbert B-module, then L(E) and K(E) are
graded C∗-algebras.

DEFINITION 55. The elements of L(E,F )0 are called even, written L(E,F )even,
the elements of L(E,F )1 are called off, written L(E,F )odd.

REMARK 56. An even element of L(E,F ) maps E0 to F0 and E1 to F1, and an
odd element maps E0 to F1 and E1 to F0.

REMARK 57. The following concepts and results can easily be adapted from the
trivially graded case to the general graded case.

(1) graded homomorphism with graded coefficient maps;
(2) Kasparov stabilization theorem: HB has to be replaced by ĤB = HB ⊕HB

with grading S = (βB , βB , · · · ) on the first summand and −S on the second
summand;

(3) the interior tensor product of graded Hilbert modules;
(4) the exterior tensor product of graded Hilbert modules. The inner product

is defined by

〈e1⊗̂f1, e2⊗̂f2〉 = (−1)deg(f1)(deg(e1)+deg(e2))〈e1, e2〉⊗̂〈f1, f2〉.
(5) the push-forward along graded ∗-homomorphisms.

2. The definition of KK-theory

All C∗-algebras A,B,C, · · · in this section will be σ-unital. Let A,B be graded
C∗-algebras.

DEFINITION 58. A Kasparov A-B-module or a Kasparov A-B-cycle is a triple
E = (E, φ, T ) where E is a countably generated graded Hilbert B-module, φ : A→
L(E) is a graded ∗-homomorphism and T ∈ L(E) is an odd operator such that

(1) ∀ a ∈ A : [φ(a), T ] ∈ K(E);
(2) ∀ a ∈ A : φ(a)(T 2 − idE) ∈ K(E);
(3) ∀ a ∈ A : φ(a)(T − T ∗) ∈ K(E).

Note that the commutator in 1) is graded. The class of all Kasparov A-B-modules
will be denoted by E(A,B). Sometimes we denote elements of E(A,B) also as pairs
(E, T ) without making reference to the action φ.

REMARK 59. We are not going to discuss many examples at this point. They
will occur later in the talks dedicated to applications of KK-theory.

DEFINITION 60 (Definition and Lemma).
(1) If E1 = (E1, φ1, T1) and E2 = (E2, φ2, T2) are elements of E(A,B), then
E1 ⊕ E2 := (E1 ⊕ E2, φ1 ⊕ φ2, T1 ⊕ T2 ∈ E(A,B);

(2) If C is another graded C∗-algebra and ψ : B → C is an even ∗-homomorphism
and E = (E, φ, T ) ∈ E(A,B) then

ψ∗(E) := (ψ∗(E), φ⊗̂1, ψ∗(T ) = T ⊗̂1) ∈ E(A,C).

(3) If C is another graded C∗-algebra, ϕ : A→ B is an even ∗-homomorphism
and E = (E, φ, T ) ∈ E(B,C), then

φ∗(E) := (E, φ ◦ ϕ, T ) ∈ E(A,C);
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(4) If E = (E, φ, T ) ∈ E(A,B) then

−E := (−E, φ−,−T ) ∈ E(A,B),

where −E is the same Hilbert B-module as E but with the grading σ−E :=
−σE , and φ− := φ ◦ βA where βA is the grading on A.

Proof. We only show parts of (2). Let a ∈ A. Then

(φ⊗̂1)(a)((T ⊗̂1)2 − idE⊗ψC = (φ(a)⊗̂ idC)(T 2⊗̂ idC − idE ⊗̂ idC)

= (φ(a)(T 2 − idE))⊗ idC

= ψ∗(φ(a)(T 2 − idE)) ∈ K(ψ∗(E)).

Here we use that φ(a)(T 2− idE) ∈ K(E). The other conditions follow similarly. �

DEFINITION 61. Let ϕ : A→ A′ and ψ : B → B′ be ∗-homomorphisms and let
E = (E, φ, T ) ∈ E(A,B) and E ′ ∈ E(A′, B′). A homomorphism from E to E ′ with
coefficient maps ϕ and ψ is a homomorphism Φψ from EB to E′B such that

(1) ∀ a ∈ A∀ e ∈ E,Φ(φ(a)e) = φ′(ϕ(a))Φ(e) i.e. Φ has coefficient map ϕ on
the left;

(2) Φ ◦ T = T ′ ◦ Φ;
The most important case is the case that Φ is bijective and ϕ = idA, ψ = idB . Then
E and E ′ are called isomorphic.

LEMMA 62. We have up to isomorphism (for all E , E1, E2, E3 ∈ E(A,B)):
(1) (E1 ⊕ E2)⊕ E3 ∼= E1 ⊕ (E2 ⊕ E3);
(2) E1 ⊕ E2 ∼= E2 ⊕ E1;
(3) E ⊕ (0, 0, 0) ∼= E;
(4) If ψ : B → C and ψ′ : C → C ′ then

ψ′∗(ψ∗(E)) ∼= (ψ′ ◦ ψ)∗(E);

(5) (idB)∗(E) ∼= E;
(6) If φ : A′ → A and φ′ : A′′ → A then

φ
′∗(φ∗(E)) = (φ ◦ φ′)∗(E), id∗A(E) = E ;

(7) ψ∗(E1 ⊕ E2) ∼= ψ∗(E1)⊕ ψ∗(E2), ψ∗(−E) = −ψ∗(E);
(8) φ∗(E1 ⊕ E2) ∼= φ∗(E1)⊕ φ∗(E2), φ∗(−E) = −φ∗(E);
(9) φ∗(ψ∗(E)) = ψ∗(φ∗(E)).

DEFINITION 63. Let C be a graded C∗-algebra and E = (E, φ, T ) ∈ E(A,B).
We now give the definition of a cycle τC(E) = E⊗̂ idC ∈ E(A⊗̂C,B⊗̂C): the module
is EB⊗̂CC , the action of A⊗̂C is φ⊗̂ idC and the operator is T ⊗̂ idC .

Example 64. If C = C([0, 1]) = {f : [0, 1]→ C, f continuous}, then A⊗̂C ∼=
A[0, 1] = {f : [0, 1]→ A, f continuous} and B⊗̂C ∼= B[0, 1]. Similarly EB⊗̂CC ∼=
E[0, 1] if E = (E, φ, T ) ∈ E(A,B). Now τC[0,1](E) ∼= (E[0, 1], φ[0, 1], T [0, 1]) ∈
E(A[0, 1], B[0, 1]) under this identifications.

DEFINITION 65 (Notions of homotopy). Let E0 and E1 be in E(A,B):
(1) An operator homotopy from E0 to E1 is a norm-continuous path (Tt)t∈[0,1]

in L(E) for some graded Hilbert B-module E equipped with a graded left
action φ : A→ L(E) such that
(a) ∀ t ∈ [0, 1] : (E, φ, Tt) ∈ E(A,B);
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(b) E0 ∼= (E, φ, T0), E1 ∼= (E, φ, T1).
(2) A homotopy from E0 to E1 is an element E ∈ E(A,B[0, 1]) such that

evB0,∗(E) ∼= E0 and evB1,∗(E) ∼= E1, where evBt : B[0, 1] → B, β → β(t)
for all t ∈ [0, 1]. We write E0 ∼ E1 if such that a homotopy exists.

LEMMA 66. Homotopy is an equivalence relation on E(A,B).

Proof.
(1) Reflexivity: let E = (E, φ, T ) ∈ E(A,B). Then i∗A(τC[0,1](E)) ∼= (E[0, 1], φ[0, 1]◦

iA, T [0, 1]) is a homotopy from E to E , where iA : A→ A[0, 1] is the inclu-
sion as constant functions.

(2) Symmetry: let E ∈ E(A,B[0, 1]) and ψ : B[0, 1]→ B[0, 1], β → (t→ β(1−
t)). Then evBt,∗(ψ∗(E)) = (evBt ◦ψ)(E) = (evB1−t,∗(E), where evBt ◦ψ = evB1−t.

(3) Transitivity: this is a non-trivial exercise.
�

DEFINITION 67. Define KK(A,B) := E(A,B)/ ∼. If E ∈ E(A,B) then we
denote the corresponding element of KK(A,B) by [E ].

LEMMA 68. KK(A,B) is an abelian group when equipped with the well-defined
operation

[E1]⊕ [E2] = [E1 ⊕ E2].

In particular, KK(A,B) is a set. We have

[E ]⊕ [−E ] = [0, 0, 0],

where [0, 0, 0] is the zero element of KK(A,B).

Before we come to the proof of this important lemma, we define:

DEFINITION 69. The class D(A,B) ⊂ E(A,B) of degenerate Kasparov A −
B-modules is the class of all elements (E, φ, T ) such that [φ(a), T ], φ(a)(T 2 −
1), φ(a)(T − T ∗) = 0 for all a ∈ A.

LEMMA 70. If E = (E, φ, T ) ∈ D(A,B), then E ∼ 0.

Proof. We construct a homotopy using a mapping cylinder, in this case for the
rather trivial homomorphism 0 σ→ E. Consider the following diagram

Z −−−−→ E[0, 1]B[0,1]y yevE0
0B

σ−−−−→ EB

The pull-back Z in this diagram can be identitfied with the Hilbert B[0, 1]-module
E(0, 1] = {ε : [0, 1]→ E, ε continuous and ε(0) = 0}. On E(0, 1] define anA-action
by (a · ε)(t) = a(ε(t)) for all a ∈ A, ε ∈ E(0, 1] and t ∈ [0, 1]. Define T̃ ∈
L(E(0, 1]), ε → T ◦ ε. Then Ẽ = (E(0, 1], T̃ ) ∈ E(A,B[0, 1]) and evB0,∗(Ẽ) ∼= 0
and evB1,∗(Ẽ) ∼= E . �

Proof of the important lemma. It is obvious that KK(A,B) is a set because the
class of isomorphism classes of countable generated Kasparov A − B-modules is
small. Moreover, the direct sum is well-defined and [0] is the zero element. The
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addition is commutative. What is left to show is that E⊕−E ∼ 0 for E = (E, φ, T ) ∈
E(A,B). Define Gt ∈ L(E ⊕−E) to be the element given by the matrix:

Gt =
(

cos t · T sin t idE
sin t idE − cos tT

)
.

Then G0 =
(
T 0
0 −T

)
= (T ⊕ (−T )), so (E ⊕−E, φ⊕ φ−, G0) = (E ⊕−E, φ⊕

φ−, T ⊕−T ). Also G1 =
(

0 1
1 0

)
, so (E ⊕−E, φ⊕ φ−, G1) ∈ D(A,B). That Gt

is odd and (E ⊕−E, φ⊕ φ−, Gt) ∈ E(A,B) for all t ∈ R can be checked by direct
calculations. �

LEMMA 71. KK(A,B) is a bifunctor from the category of graded (σ-unital)
C∗-algebras and graded ∗-homomorphism to the category of abelian groups.

Proof. Let ψ : B → C be a graded ∗-homomorphism. Then E → ψ∗(E) lifts to a
map ψ∗ : KK(A,B)→ KK(A,C). Here using the diagram

B[0, 1]
ψ[0,1]−−−−→ C[0, 1]yevB∗ yevC∗

B −−−−→ C

.

It is a group homomorphism and the constructoin is functorial. �

DEFINITION 72. Define M(A,B) ⊂ E(A,B) be the class of what I call Morita
cycles from A to B by (E, φ, T ) ∈M(A,B) if T = 0. Note that (E, φ, 0) ∈ E(A,B)
if and only if φ(A) ⊂ K(E). If ψ : A → B is a graded ∗-homomorphism, then we
define (ψ) = (B,ψ, 0) ∈ M(A,B) ⊂ E(A,B). We define [ψ] = [(ψ)] ∈ KK(A,B).
If AEB is a graded Morita equivalence, then A ∼= K(E), and if φ is the left action of
A on E then (E, φ, 0) ∈ M(A,B) ⊂ E(A,B), we write (E) for (E, φ, 0) ∈ E(A,B)
and [E] for [(E)] ∈ KK(A,B).

DEFINITION 73 (Definition and lemma). If E = (E, φ, T ) ∈ E(A,B) and F =
(F, φ′, 0) ∈ M(B,C) then define E⊗̂BF = (E⊗̂BF, φ⊗̂1, T ⊗̂1). Then E⊗̂BF ∈
E(A,C). This defines a group homomorphism

⊗̂BF : KK(A,B)→ KK(A,C)

such that
(1) E⊗̂B(ψ) = ψ∗(E) for all ψ : B → C;
(2) (E⊗̂BF)⊗̂CF ′ ∼= E⊗̂B(F⊗̂CF ′) for all F ′ ∈M(C,D);
(3) E⊗̂B(ψ)C⊗̂F ′ ∼= ψ∗(E)⊗̂CF ′ ∼= E⊗̂Bψ∗(F ′).

Proof. (1) ⊗̂BF is well-defined on the level of KK. If Ẽ ∈ E(A,B[0, 1]) then,
because F [0, 1] ∈M(B[0, 1], C[0, 1]),

evCt,∗(Ẽ⊗̂B[0,1]F [0, 1]) ∼= evBt,∗(Ẽ)⊗̂F .

(2) ⊗̂BF is a group homomorphism. If E1, E2 ∈ E(A,B), then

(E1 ⊕ E2)⊗̂BF ∼= E1⊗̂BF ⊕ E2⊗̂F .

�



14 AN INTRODUCTION TO KK-THEORY

COROLLARY 74. If B and B′ are (gradedly) Morita equivalent with Morita
equivalence BEE′ , then ⊗BE is an isomorphism.

KK(A,B) ∼= KK(A,B′).

Proof. Let B′ĒB denote the flipped equivalence. Then

BE⊗̂B′ĒB ∼= BBB and B′Ē⊗̂BEB′ ∼= B′B
′
B′ ,

so
(E⊗̂BE)⊗̂B′Ē ∼= E⊗̂B(E⊗̂B′Ē) ∼= E⊗̂BB = idB,∗(E) ∼= E

and likewise
E ′⊗̂B′Ē⊗̂BE ∼= E ′

for all E ∈ E(A,B) and E ′ ∈ E(A,B′). �

LEMMA 75 (Stability of KK-theory). Let K carry the grading given by (1,−1)
under an identification K ∼= M2(K).

(1) τK is an isomorphism KK(A,B) ∼= KK(A⊗̂K, B⊗̂K).
(2) We have KK(A,B) ∼= KK(A⊗̂K, B) ∼= KK(A,B⊗̂K).

LEMMA 76 (Homotopy invariance). Let ψ0, ψ1 : B → C be graded ∗-homomorphisms
and ψ : B → C[0, 1] such that ψt = evCt ◦ ψ for t = 0, 1. Then [ψ0] = [ψ1] ∈
KK(B,C) and (ψ) is a homotopy from (ψ0) to (ψ1).
It follows that ψ0,∗(E) ∼ ψ1,∗(E) for all E ∈ E(A,B).

COROLLARY 77. If A ∼ 0 is contractible, then KK(A,A) ∼= KK(A, 0) ∼= 0.

PROPOSITION 78. If B is σ-unital, then it suffices in the definition of KK(A,B)
to consider only those triples (E, φ, T ) where E = ĤB.

Proof. (ĤB , 0, 0) ∈ D(A,B) and hence (E, φ, T ) ∼ (E ⊕ ĤB , φ ⊕ 0, T ⊕ 0). (and
evBt,∗(ĤB[0,1]) ∼= ĤB for all t ∈ [0, 1].) �

DEFINITION 79. Let E = (E, φ, T ) ∈ E(A,B). Then a “compact perturbation”
of T (or of E) is an operator T ′ (or the cycle (E, φ, T ′)) such that

∀ a ∈ A : φ(a)(T − T ′) ∈ KB(E).

LEMMA 80. In this case: E ′ = (E, φ, T ′) ∈ E(A,B) and E ∼ E ′.

Proof. Consider the straight line segment. �

PROPOSITION 81. If (E, φ, T ) ∈ E(A,B), then there is a compact perturbation
(E, φ, S) of (E, φ, T ) such that S∗ = S, so in the definition of KK(A,B) it suffices
to consider only those triples with self-adjoint operator; and compact perturbations,
homotopies and operator homotopies may be taken within this class.

Proof. Replace T with T−T∗
2 . �

PROPOSITION 82. If (E, φ, T ) ∈ E(A,B), then there is a compact perturbation
(E, φ, S) ∈ E(A,B) of (E, φ, T ) with S = S∗ and ‖S‖ ≤ 1. If A is unital we may in
addition obtain an S with S2 − 1 ∈ K(E), compact perturbations, homotopies and
operator homotopies may be taken within this class.
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Proof. WLOG, T ∗ = T , use functional calculus for

f(x) =


1, x > 1
x, −1 ≤ x ≤ 1
−1, x < −1.

�

REMARK 83 (The Fredholm picture of KK(A,B).). If A is unital: P = φ(1).
Replace S with PSP + (1−P )S(1−P ). Let A be unital (the σ-unital case is more
complicated). In the definition of KK-theory it suffices to consider only those
triples (E, φ, T ) with φ unital (replace E with PE and T with PTP ). If there
exists a unital graded ∗-homomorphism from A to LB(ĤB), then WLOG E = ĤB .
If A and B are trivially graded: Identity L(ĤB) with M2(L(HB)) with grading

given by
(

1 0
0 −1

)
. φ =

(
φ0 0
0 φ1

)
with φi : A → LB(HB) unital. T =(

0 S∗

S 0

)
for some S ∈ LB(HB) with ‖S‖ ≤ 1. The intertwining conditions

become S∗S − 1, SS∗ − 1 ∈ KB(HB), Sφ1(a)− φ0(a)S ∈ KB(HB) for all a ∈ A.
Homotopy becomes homotopy of triples (φ0, φ1, S) (with strong continuity).1 In
this picture modules are denoted by

(E0 ⊕ E1, φ0 ⊕ φ1, S) where S ∈ LB(E0, E1).

In particular, if A = C, then

KK(C, B) ∼= {[T ] : T ∈ LB(HB), T ∗T − 1, TT ∗ − 1 ∈ KB(HB)} .
THEOREM 84. KK(C, B) ∼= K0(B) for B trivially graded and σ-unital.

Proof. Three methods of proof:
(1) Assuming KK(C, B) can be described as the set of all triples (ĤB , φ, T )

where φ is unital, T = T ∗, ‖T‖ ≤ 1 and T 2 − 1 ∈ K(ĤB) modulo the
equivalence relations generated by
(a) operator homotopy and
(b) addition of degenerate cycles with unital C-action,

i.e. we assume that KK(C, B) = K̂K(C, B). Then for all such triples T

has the form T =
(

0 S∗

S 0

)
. The condition on T is equivalent to π(S)

being unitary in Q = LB(HB)/KB(HB) = LB/KB , where π : LB(HB)→ Q
is the canonical projection. So every cycle E for KK(C, B) gives an element
in K1(Q). The exact sequence 0→ KB → LB → Q→ 0 gives a long exact
sequence in K-theory:

K0(KB) −−−−→ K0(LB)(= 0) −−−−→ K0(Q)xindex y
K1(Q) ←−−−− K1(LB)(= 0) ←−−−− K1(KB)

1This is not very precise and actually hardly correct. One should instead consider strictly
continuous functions if we regard L(HB) as the multiplier algebra M(K⊗B); moreover, Michael

Joachim has pointed out to me that it is necessary to require the additional condition that for
all a ∈ A the function t 7→ Sφ1,t(a)− φ0,t(a)S is not only strictly/strongly continuous but norm-

continuous; here t 7→ φi,t denotes the homotopies of representations of A on L(HB).
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So K1(Q) ∼= K0(KB) = K0(K ⊗ B) ∼= K0(B). So we obtain a map from
KK(C, B) to K0(B) after observing that the K1 elements are invariant
under the elementary moves (operator homotopy and degenerate element
addition). By a general lifting argument you can lift homotopies from Q to
LB , so Φ is injective. It is clearly surjecitve and a homomorphism.

(2) Let B be unital. Let (ĤB , φ, T ) be a cycle as above, so T =
(

0 S∗

S 0

)
.

We try to define an index of S : HB → HB as an element of K0(B).
Problem: The image of S does not have to be closed and kerS, cokerS

do not have to be finitely generated and projective.
Solution: One can show that there is an S′ ∈ LB(HB) such that

S − S′ ∈ KB(HB)

and kerS′, cokerS
′∗ are finitely generated and projective.

Definition: index(S) = [kerS′]− [cokerS
′∗] ∈ K0(B).

Exercise:
(a) Is this well-defined and a homomorphism?
(b) Is this invariant under homotopy?
(c) Is it bijective on the level of KK(C, B)?

(3) (after Vincent Lafforgue) We define a map from K0(B)→ KK(C, B) for B
unital. Start with a finitely generated projective B-module E. Find a B-
valued inner product on E (one can show that there is an essentially unique
one). Define Φ([E]) = (E
0

0 0) ∈ E(C, B). Moreover, define Φ([−E]) =
(0 
0

0E). Then Φ([E] ⊕ [−E]) = (E
0
0E) ∼ (E
id

idE) ∼ 0 because
idE ∈ KB(E) (which one has to show). So Φ is well-defined as a map from
K0(B) to KK(C, B). We indicate how to show that it is surjective.

Let E = (E0 
f
g E1) ∈ E(C, B). Find an n ∈ N, R ∈ KB(Bn, E1), S ∈

KB(E1, B
n) such that

‖1− fg −RS‖ < 1
2

which means that every compact operator almost factors through some Bn.
Then fg+RS is invertible in LB(E1). Define w = (fg+RS)−1. Note that
w ∈ 1 +KB(E1). Now

(E0

f


g
E1)⊕ (Bn

0


0

0) = (E0 ⊕Bn
(f,0)



(g,0)
E1)

∼ (E0 ⊕Bn
f̆=(f,R)



ğ=(g,S)w

E1) = (∗).

Observe that

f̆ ğ = fgw +RSw = (fg +RS)w = idE .

Hence p̆ = ğf̆ ∈ LB(E0⊕Bn) is an idempotant. Let us assume that p̆ = p̆∗,
Then E0 ⊕Bn ∼= Im p̆⊕ Im(1− p̆). This implies

(∗) = (Im p̆
f̆


ğ
E1)⊕ (Im(1− p̆)

0


0

0),

where (Im p̆
f̆
ğ E1) ∼ 0 in KK(C, B). Observe f̆ p̆ = f̆ and p̆ğ = ğ. Note

1− p̆ ∈ KB(E0 ⊕Bn).
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Then Im(1 − p̆) has a compact identity. This implies Im(1 − p̆) is finitely
generated and projective. Hence

[E ] = [Im(1− p̆)]− [Bn] ∈ Φ(K0(B)).

Injectivity is similar.
�

3. The Kasparov product

THEOREM 85. Let A,B,C,D be graded σ-unital C∗-algebras. Let A be separa-
ble. Then there exists a map

⊗̂B : KK(A,B)×KK(B,C)→ KK(A,C),

called the Kasparov product, that has the following properties:
(1) biadditivity:

(x1 ⊕ x2)⊗̂By = x1⊗̂By ⊕ x2⊗̂By
and

x⊗̂B(y1 ⊕ y2) = x⊗̂By1 ⊕ x⊗̂By2.

(2) associativity, if B is separable as well, then

x⊗̂B(y⊗̂CZ) = (x⊗̂By)⊗̂CZ,

for all x ∈ KK(A,B), y ∈ KK(B,C) and z ∈ KK(C,D).
(3) unit elements: if we define 1A = [idA] ∈ KK(A,A) and 1B = [idB ] ∈

KK(B,B), then for all x ∈ KK(A,B):

1A⊗̂Ax = x = x⊗̂B1B .

(4) functoriality: if φ : A → B and ψ : B → C are graded ∗-homomorphism,
then

x⊗̂B [ψ] = ψ∗(x) and [φ]⊗̂By = φ∗(y)

for all x ∈ KK(A,B) and y ∈ KK(B,C).
(5) it generalizes the product of Morita cycles defines before.

REMARK 86.
(1) The separable graded C∗-algebras form an additive category when equipped

with the KK-groups as morphism sets and the flipped Kasparov product
as compositions. The ψ → [ψ] is a functor from the category of separable
graded C∗-algebras with graded ∗-homomorphism in this category.

(2) isomorphisms in this category are also called KK-equivalences. Conse-
quently we know that Morita equivalences give KK-equivalences. In par-
ticular, KK-theory is also Morita invariant in the first component.

Idea of proof. Let (E1, φ1, T1) ∈ E(A,B) and (E2, φ2, T2) ∈ E(B,C). As module
for the product we can take E12 = E1⊗̂E2 and as module action we can take
φ12 = φ1⊗̂1. The problem is to find the operator.
A very naive approach is to define T12 = T1⊗̂1 + 1⊗̂T2. T1⊗̂1 is okay, but 1⊗̂T2

does not make any sense as long as T2 is not B-linear on the left. If we neglect this
problem, then we calculate

T 2
12 = T 2

1 ⊗̂1 + 1⊗̂T 2
2 ,
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so we end up with something which is rather 2 than 1 up to compact operators.
So the idea is to find suitable “coefficient” operators M,N ∈ LC(E12) such that
M2 +N2 = 1 and M,N ≥ 0. Define

T12 = MT1⊗̂1 +N1⊗̂T2.

Then
T 2

12 ≈M2T 2
1 ⊗̂1 +N21⊗̂T 2

2 + rest ≈ 1 + rest.
The critical point is that we need a lemma which ensures the existence of such coef-
ficients such that the calculations are justified and rest=0 up to compact operators.
This is the subject of “Kasparov’s Technical Lemma”.
To give a sense to an expression like 1⊗̂T2 is subject of the theory of connections.
Such connections will only be unique up to “compact perturbation” and also the
technical lemma involves some choices, so there is need for a contition when two
operators are homotopic so that they give the same element in KK. These are the
three tools which we introduce before we come to the proof of the existence of the
product. �

PROPOSITION 87 (A sufficient condition for operator homotopy). Let A,B be
graded C∗-algebras, E = (E, φ, T ), E ′ = (E, φ, T ′) ∈ E(A,B). If

∀ a ∈ A : φ(a)[T, T ′]φ(a∗) ≥ 0 mod KB(E),

where mod means that φ(a)[T, T ′]φ(a∗) + k ≥ 0 for some k ∈ KB(E), then E and
E ′ are operator homotopic.

DEFINITION 88. If (B, β) is a graded C∗-algebra and A ⊂ B is a sub-C∗-
algebra then A is called graded if β(A) ⊂ A. [All subalgebras of graded algebras
will be assumed graded.]

DEFINITION 89. Let B be a C∗-algebra and A ⊂ B a subalgebra. Let F ⊂ B
be a subset. We say that F derives A if ∀ a ∈ A, f ∈ F , [f, a] ∈ A, where it is a
graded commutator.

THEOREM 90. Let B be a graded σ-unital C∗-algebra. Let A1, A2 be σ-unital
sub-C∗-algebras of M(B) and let F be a separable, closed linear subspace of M(B)
such that βB(F) = F . Assume that

(1) A1 ·A2 ⊂ B [A1⊥A2 mod B];
(2) [F , A1] ⊂ A1 [F derives A1].

Then there exist elements M,N ∈M(B) of degree 0 such that M+N = 1, M,N ≥
0, MA1 ⊂ B, NA2 ⊂ B, [N,F ] ⊂ B.

REMARK 91.
(1) The larger A1, A2 and F1, the stronger the lemma;
(2) we can always assume WLOG: B ⊂ A1, A2.

Proof. We can replace Ai with Ai + B = A′i. A′i is a graded sub-C∗-
algebra that is σ-unital. If b is strictly positive in B and ai is strictly
positive in Ai then b + ai is strictly positive in A′i because b + ai ≥ 0 and
(ai + b)(Ai +B) ⊃ aiA+ bB (dense in A′i.) �

(3) we will use the lemma in the case B = K(E),M(B) = L(E) for a countably
generated Hilbert module E.
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Exercise 92. Let X be a locally compact, σ-compact Hausdorff space and δX =
βX\X its “corona space”. Then δX is stonean, i.e. the closure of open sets are
open or ∀U, V ⊂ δX open, U ∩ V = ∅ then ∃ f : δX → [0, 1] continuous such that
f |U = 0, f |V = 1.

Next we will define connections. In this part let B,C be graded C∗-algebras,
E1 a Hilbert B-module, E2 a Hilbert C-module, φ : B → LC(E2) a graded ∗-
homomorphism, E12 = E1⊗̂BE2.

REMARK 93. Let T2 ∈ LC(E2) and assume that

(∗) ∀ b ∈ B : [φ(b), T2] = 0.

Define 1⊗̂T2 ∈ LC(E12) on elementary tensors by

(1⊗̂T2)(e1⊗̂e2) = (−1)δT2δe1e1⊗̂T2(e2).

in the sense that you first split T2 into odd and even parts......
If T2 is just B-linear up to compact operators, i.e. if

(∗∗) ∀ b ∈ B [φ(b), T2] ∈ KC(E2),

then this construction no longer works. We can however construct a substitute for
1⊗̂T2 “up to compact operators”.

DEFINITION 94. For any x ∈ E1 define

Tx : E2 → E12, e2 → x⊗̂e2.

LEMMA 95. If T2 ∈ LC(E2) satisfies (*), then

(∗ ∗ ∗)1

E2
T2−−−−→ E2

Tx

y yTx
E12 −−−−→ E12

gradedly commutes for all x ∈ E1 (i.e. Tx ◦T2 = (1⊗̂T2)◦Tx · (−1)δxδT2). Similarly

(∗ ∗ ∗)2

E2
T2−−−−→ E2

T∗x

x xT∗x
E12 −−−−→

1⊗T2
E12

gradedly commutes.

LEMMA 96. For all x ∈ E, we have Tx ∈ LC(E2, E12) with T ∗x : E12 → E2,
e1 ⊗ e2 → φ(〈x, e1〉)e2.

DEFINITION 97. Let T2 ∈ LC(E2). Then an operator F12 ∈ LC(E12) is called
a T2-connection for E1 (on E12) if for all x ∈ E1 the diagrams (***)1 and (***)2
commute up to compact operators.

PROPOSITION 98. Let T2, T
′
2 ∈ LC(E2), let T12 be a T2-connection and T ′12 be

a T ′2-connection.
(1) T ∗12 is a T ∗2 -connection;
(2) T

(i)
12 is a T (i)

2 -connection for i = 0, 1;
(3) T12 + T ′12 is a (T2 + T ′2)-connection;
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(4) T12 · T ′12 is a (T2T
′
2)-connection;

(5) if T2 and T12 are normal, then f(T12) is an f(T2)-connection for every
continuous function f such that the spectra of T2 and T12 are contained in
its domain of definition.

(6) if E3 is a Hilbert D-module, ψ : C → LD(E3) is a graded ∗-homomorphism
and T3 ∈ LD(E3) with [T3, ψ(C)] ⊂ KD(E3), and if T23 is a T3-connection
on E2⊗̂CE3 and if T is a T23-connection on E = E1⊗̂B(E2⊗̂CE3), then T
is a T3-connection on E ∼= (E1⊗̂BE2)⊗̂CE3.

(7) if E1 = E′1 ⊕ E′′1 and if we identify E1⊗̂BE2 with E′1⊗̂BE2 ⊕ E′′1 ⊗̂BE2,

then T2 has the form
(
A2 B2

C2 D2

)
and T12 has the form

(
A12 B12

C12 D12

)
and A12 is an A2-connection on E′1⊗̂BE2 and D12 is a D2-connection on

E′′1 ⊗̂BE2. Conversely if T2 =
(
A2 0
0 D2

)
and A12/D12 is an A2/D2-

connection, then
(
A12 0
0 D12

)
is a T2-connection.

PROPOSITION 99. Let T2 ∈ LC(E2) and let T12 be a T2-connection.
(1) ∀ k ∈ KB(E1) : [T12, k ⊗ 1] ∈ KC(E12).
(2) T12 is a zero-connection on E12 if and only if

∀ k ∈ KB(E1) : T12(k⊗̂1), (k⊗̂1)T12 ∈ KC(E12).

Proof. (1) Let k ∈ KB(E1). WLOG k = θy,x for x, y ∈ E1. WLOG x, y, T2, T12

are homogeneous with δT2 = δT12. Then

θy,x⊗̂1 = TyT
∗
x

by definition of Tx, Ty. Hence

(θy,x⊗̂1) ◦ T12 = Ty ◦ T ∗x ◦ T12 = Ty ◦ (−1)δxδT2T2 ◦ T ∗x
= (−1)δxδT2(−1)δyδT2T12 ◦ Ty ◦ T ∗x = (−1)δθy,xδT2T12 ◦ (θy,x⊗̂1) mod KC(E12)

i.e. [k, T12] ∈ KC(E12).
(2) T12 is a 0-connection if and only if ∀ z ∈ E1 : T ∗z T12, T12Tz are compact.

Let k ∈ KB(E1). As above, WLOG k = θy,x for x, y ∈ E1, we hence
have T12(k⊗̂1) = T12(TyT ∗x ) = (T12Ty)T ∗x is compact if and only if T12 is a
0-connection. This shows ⇒.

Conversely, if T12(k⊗̂1) is compact for all k, then T12(θz,z⊗̂1)T ∗12 =
T12TzT

∗
z T
∗
12 is compact for all z ∈ E1. So (T12Tz)(T12Tz)∗ ∈ KC(E12),

hence by a lemma from the first section: T12Tz ∈ KC(E1, E12). Similarly
for T ∗z T12. So T12 is a 0-connection.

�

LEMMA 100. Let T2, T
′
2 ∈ LC(E2) such that ∀ b ∈ B : φ(b)(T2 − T ′2), (T2 −

T ′2)φ(b) ∈ KC(E2). Then T12 is a T2-connection if and only if T12 is a T ′2-
connection.

Proof. Let T12 be a T2-connection. Let x ∈ E1. Find x̃ ∈ E1, b ∈ B such that
x = x̃b. Then Tx = Tx̃ ◦ φ(b).

T12 ◦ Tx = (−1)δxδT12Tx ◦ T2 = (−1)δxδT12Tx̃ ◦ φ(b) ◦ T2

(−1)δxδT12Tx̃ ◦ φ(b) ◦ T ′2 = (−1)δxδT12Tx ◦ T ′2 mod KC(E2, E12)
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and similarly for T ∗x ◦ T12. �

THEOREM 101 (Existence of connections). Let E be a countably generated
Hilbert B-module, E2 a Hilbert C-module, φ : B → LC(E2) a graded ∗-homomorphism.
If T2 ∈ LC(E2) satisfies ∀ b ∈ B : [T2, φ(b)] ∈ KC(E2), then there exists an T2-
connection on E1⊗̂BE2.

Proof.
(1) Assume ∀ b ∈ B, [T2, φ(b)] = 0. Then 1⊗̂BT2 is a T2-connection. In

particular, 0 is a 0-connection, and if B = C and φ is unital, then the
above result always applies.

(2) Assume φ : B → LC(E2) non-degenerate and E1 = B. Then Φ : B⊗̂BE2 →
E2 via b ⊗ e2 → be2 is an isomorphism. This implies T12 = Φ∗T2Φ ∈
LC(B⊗̂BE2) is a T2-connection because φ(b) = Φ ◦ Tb for all b ∈ B and
hence

T12Tb = Φ∗T2ΦTb = Φ∗T2φ(b)
= (−1)δbδT2Φ∗φ(b)T2 = (−1)δbδT2TbT2 mod KC(E2, E12)

and similarly for T ∗12.
(3) Assume that B is unital, φ is unital and E1 = ĤB . Note that

ĤB⊗̂BE2
∼= (Ĥ⊗̂CB)⊗B E2

∼= Ĥ⊗̂C(B⊗̂BE2).

From (2), we know that there is a T2-connection T23 on B⊗̂BE2. From (1)
we know that there is a T23-connection T on ĤB⊗̂BE2.It follows that T is
a T2-connection on ĤB⊗̂BE2.

(4) B is unital, φ is unital and E1 is arbitrary. We have E1⊗̂ĤB
∼= ĤB . By

case (3) there is a T2-connection on ĤB⊗̂BE2. Hence there is also a T2-
connection on E1⊗̂BE2.

(5) general case: Let B+ be the unital algbra B⊕C and φ+ : B+ → LC(E2) be
the unital extension of φ. Then E1 is also a graded B+-Hilbert module. The
notion of a T2-connection does not depend on this change of coefficients and
E1⊗̂B+E2 = E1⊗̂BE2. Also [T2, φ

+(b+λ1)] ∈ KC(E2) for all b+λ1 ∈ B+.
So there is a T2-connection on E1⊗̂BE2 by case (4).

�

Exercise 102. Show: For every (E, φ, T ) ∈ E(A,B) there is some (E′, φ′, T ′) ∈
E(A,B) homotopic to (E, φ, T ) with φ′ non-degenerate (actually, you can take
E′ = A · E).

DEFINITION 103 (Kasparov product). E12 = (E12, φ12, T12) is called a Kas-
parov product for (E1, φ1, T1) and (E2, φ2, T2) if

(1) (E12, φ12, T12) ∈ E(A,C);
(2) T12 is a T2-connection on E12;
(3) ∀ a ∈ A : φ12(a)[T1⊗̂1, T12]φ12(a)∗ ≥ 0 mod KC(T12).

The set of all operators T12 on E12 such that E12 is a Kasparov product is denoted
by T1#T2.

THEOREM 104. Assume that A is separable. Then there exists a Kasparov
product E12 of E1 and E2. It is unique up to operator homotopy and T12 can be
chosen self-adjoint if T1 and T2 are self-ajoint. [It remains to show that the product
is well-defined on the level of KK-theory.]



22 AN INTRODUCTION TO KK-THEORY

Example 105.

(1) Assume T2 = 0, i.e. (E2, φ2, 0) ∈M(B,C). Then T12 = T1⊗̂1 is a Kasparov
product of T1 and 0.
(a) (E12, φ12, T1⊗̂1) ∈ E(A,C) as stated above.
(b) T1⊗̂1 is a 0-connection because (k⊗̂1)(T1⊗̂1) = (kT1)⊗̂1 ∈ KC(E12)

because φ2(B) ⊂ KC(E2). (Also T1k⊗̂1 ∈ KC(E12)) for all k ∈
KB(E1).

(c) let a ∈ A. Then φ12(a)[T1⊗̂1, T1⊗̂1]φ12(a)∗ = φ12(a)2T 2
1 ⊗̂1φ12(a)∗ =

2φ12(a)φ12(a)∗ ≥ 0 mod compact.
So the multiplication between E(A,B) and M(B,C) defined earlier agrees
with the Kasparov product.

(2) In particular, the push-forward along a ∗-homomorphism is a Kasparov
product.

(3) Also the pull-back is a special case of the Kasparov product. Assume that
we have shown that the product is well-defined on the level of homotopy
classes.

Let φ : A→ B be a ∗-homomorphism. Then one can assume WLOG that
φ2 : B → LC(E2) is non-degenerate. Then B⊗̂BE2

∼= E2 and we can regard
T2 as a T2-connection. The action of A on E2 under this identification is
φ2 ◦ ϕ. It is easy to see that we obtain an element in 0#T2 which is
isomorphic to ϕ∗(E2).

(4) In particualr, 1A⊗̂Ax = x = x⊗̂B1B for all x ∈ KK(A,B).

Proof of the main theorem. �

Also the product lifts to a biadditive, associative map on the level of KK.

LEMMA 106. Let A,B,C be as above. E1 = (E1, φ1, T1) ∈ E(A,B) with T ∗1 = T1

and ‖T1‖ ≤ 1 and E2 = (E2, φ2, T2) ∈ E(B,C). Let G be any T2-connection of
degree 1 on E12 = E1⊗̂BE2. Define

T12 = T1⊗̂1 + [(1− T 2
1 )

1
2 ⊗̂1]G.

Then φ12(a)(T 2
12−1) and φ12(a)(T12−T ∗12) are in KC(E12) and φ12(a)[T12, T1⊗̂1]φ12(a)∗ ≥

0 mod KC(E12) for all a ∈ A. Suppose [T12, φ12(a)] ∈ K(E12) for all a ∈ A, then
E12 = (E12, φ12, T12) ∈ E(A,C) and E12 is operator homotopic to an element of
E1#E2.

Proof. Let L = (1 − T 2
1 )

1
2 ⊗̂1. φ12(a)(T 2

12 − 1) = φ12(a)[T 2
1 ⊗̂1 + (T1⊗̂1)LG +

LG(T1⊗̂1) +LGLG− 1]. Now φ12(a)(T1⊗̂1)LG = φ12(a)L(T1⊗̂1)G and φ12(a)L ∈
KB(E1)⊗̂1, so φ12L(T1⊗̂1) ∈ KB(E1)⊗̂1, so [φ12(a)L(T1⊗̂1), G] ∈ KC(E12) and
hence

φ12(a)L(T1⊗̂1)G modK= −(−1)δaGφ12(a)L(T1⊗̂1) modK= −φ12(a)LG(T1⊗̂1).

Similarly φ12(a)LGLG = (−1)δaGφ12(a)L2G = (−1)δa+δaφ12(a)L2G2. So φ12(a)(T 2
12−

1) = φ12(a)((T 2
1 −1)⊗̂1 = ((1−T 2

1 )⊗̂1)G2) = [φ1(a)(T 2
1 −1)]⊗̂1(1−G2) ∈ KC(E12).

Similarly for φ12(a)(T12 − T ∗12) ∈ KC(E12) and φ12(a)[T12, T1⊗̂1]φ12(a)∗ ≥ 0 mod
KC(E12).
Now find M and N as in the existence proof of the product such that

T̃12 = M
1
2 (F1⊗̂1) +N

1
2G
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defines a Kasparov product Ẽ12 = (E12, φ12, T̃12) ∈ E(A,C) of E1 and E2. E12 is
operator homotopy to Ẽ12 via:

Tt = [tM + (1− t)] 1
2 (T1⊗̂1) + [tN + (1− t)((1− T 2

1 )
1
2 ⊗̂1)]

1
2G.

�

The general form of the product. Let A1, A2, B1, B2 and D be graded σ-unital
C∗-algebras and x ∈ KK(A1, B1⊗̂D), y ∈ KK(D⊗̂A2, B2). If A1 and A2 are
separable, then we define

x⊗D y = (x⊗̂1A1)⊗̂B1⊗̂D⊗̂A2
(1B1⊗̂y) ∈ KK(A1⊗̂A2, B1⊗̂B2).

If C = D, then we obtain a product

⊗C : KK(A1, B1)⊗KK(A2, B2)→ KK(A1⊗̂A2, B1⊗̂B2).

It is commutative in the following sense. Let

ΣA1,A2 : A1⊗̂A2 → A2⊗̂A1, a1⊗̂a2 → (−1)δa1δa2a2⊗̂a1

and define ΣB1,B2 analogously. Then

x⊗C y = Σ−1
B1,B2

◦ y ⊗C x ◦ ΣA1,A2 .


