AN INTRODUCTION TO KK-THEORY

These are the lecture notes of Walther Paravicini in the Focused Semester 2009 in
Miinster; the notes were taken by Lin Shan.
In these notes, all C*-algebras are complex algebras.

1. HILBERT MODULES AND ADJOINTABLE OPERATORS

Let B be a C'*-algebra.

DEFINITION 1. A (right) pre-Hilbert module E over B is a complex vector
space FE which is at the same time a (right) B-module compatible with the vector
space structure of F¥ and is equipped with a map

():ExE— B,

such that

(1) (,-) is sesquilinear (linear in the right component);
(2) Vb e B and Ve, f € E, (e, fby = (e, f)b;
(3) Ve, f € E, (e, )" = (f,e) € B;
(4) Ve € E, (e,e) > 0 and (e,e) = 0 if and only if e = 0.
Define |le|| = 1/(e, e) for all e € E. If E is complete with respect to this norm, then

we call E a Hilbert B-module. E is called full if (E, F) = B.
Exercise 2. Show that ||-|| defines a norm on E.

Example 3.
(1) If B =C, then a Hilbert module over B is the same as a Hilbert space;

(2) B itself is a B-module with the module action
e-b=eb Ve be B
and the inner product
(e,fy=¢e"f€B Ve, fe€B;

(3) More generally, any closed right ideal I < B is a right Hilbert B-module;
(4) Let (E;)ier be a family of pre-Hilbert B-modules. Then the direct sum
®;crF; is a pre-Hilbert B-module with the inner product

((ea); (£)) =Y _(ew fi) -
iel
Because the completion of a pre-Hilbert B-module is a Hilbert B-module,
we can form the completion of @®;c;F;, and also call it ©;crFy;
(5) In the above example, let I = N and E; = B. Define Hg = @®;enB to be
the Hilbert B-module.
1
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Example 4. Define
KQ(N,B) = {(bi)ieNlbi € BYieNand Z ||bz||2 < OO} .
ieN
Show that ¢*(N, B) C Hp and find an example such that ¢*(N, B) # Hp.
LEMMA 5. If E is a pre-Hilbert B-module, then for alle, f € E

lellIL£1F = ll{e, A1 -
Proof. If f # 0, define b = _||<J{|’2e> Then the inequality follows from (e + fb,e +
fby > 0. O

REMARK 6. Let H be a Hilbert space and T € L(H). Then T* is the unique
operator such that

(Tz,y) = (z,T"y)
for all z,y € H. Such T* alsways exists and this star operator turns £(H) into a
iC*-algebra.

DEFINITION 7. Let Eg and Fg be Hilbert B-modules. Let T be a map from
E to F. Then T* : F — F is called the adjoint of T'if foralle € E, f € F

(Te, f) = (e,T"f).
If such T exists, we call T' adjointable. The set of all such operator is denoted by
L(E,F).

Exercise 8. Find an example such that a continuous linear map T : £ — F is not
adjointable.

PROPOSITION 9. Let E, F be Hilbert B-modules, and let T be an adjointable
map from E to F. Then
(1) T* is unique, and T* is also adjointable and (T*)* =T,
(2) T is linear, B-linear and continuous,
2 %112 * *
@) T =177 = ITT*|| = | T*T]|.

PROPOSITION 10. Let E, F be Hilbert B-modules, then L(E) = L(E,E) is a
C*-algebra and L(E, F) is a Banach space.

DEFINITION 11. Let E, F be Hilbert B-modules. For all e € E, f € F, define
O¢e: BE— F
by
Ope(e’) = fle,€)p.
PROPOSITION 12. In the above situation, we have

(1) Ofe € L(E,F) and 9;76 =0c,f,
(2) for allT € L(F) and S € L(E), we have

Tobje="0rfe 0Ofc0S =055

DEFINITION 13. Define K(E,F) = Kp(E, F) to be the closed linear span of
{0fcle € E, f € F}. Elements in K(FE, F) is called compact operators.
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PROPOSITION 14.
L(F)K(F,E) =K(F,E);
K(E,F)L(F)=K(E,F),
K(E,F)* = K(F, E).
In particular, K(E) = K(E, E) is a closed, x-closed two-sided ideal of L(E).
LEMMA 15. Let E, F be Hilbert B-modules. Then
K(E,F)={T € L(E,F)|TT* € K(F)}.

Proof. “ C 7 is obvious.

“D7: Let (Ux)x be a bounded approximate unit for IC(F'). Then using Uy = U},
|UNT = T||* = |[U\TT*Uy — U\TT* — TT*Uy + TT"||.

Since TT* € K(F) implies U\T — T € L(E,F) and U\T € K(E,F), we have

T e K(E,F). O

Example 16.

(1) Let B =C, and let H be a Hilbert space. Then IC(H) is the usual algebra
of compact operators,

(2) If B is arbitrary, and if you regard B as a Hilbert B-module, then K(B) =
B.

Proof. Define ® : B — L(B) by b(b') = bb’ for all ¥’ € B. Then @ is a
s-homomorphism and ®(b*c) = 6 . for all b,c € B. So ®(B - B) C K(B).
But B- B = B. O

(3) IfE:El@EQ anszFl @Fg,then

K(E,F) = K(E;, F;),
( ) ) i:a?,ZjZG?Q ( j)

and every T € K(F, F') can be expressed as a matrix
( T The )
Tor Tee )
(4) As a consquence of above, we have IC(B™, B") = M, xn(B).
DEFINITION 17. If B is a C*-algebra, then we define
M(B) = L(B).

M (B) is called the multiplier algebra of B. For example M (Cy(X)) = Cp(X) if X
is a locally compact space.

PROPOSITION 18. If E is a Hilbert B-module, then
M(K(E)) = L(E).

Sketch of proof. It T € L(E), then S — T'S defines an element T- € M(K(F)) =
L(K(F)). This defines a *-homomorphism ¥ : L(F) — M (K(E)).
For T € ker(V¥): Let e € E.

0= (U(T)(0e,re)(Te), U(T)(bc,re)(Te)) = ((T0c,re)(Te), (T0c,re)(Te)) = (Te, Te)?
SoTe =0 for all e € E. Hence T'= 0 and ¥ is injective.
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If me M(K(E)) and e € E, we define
T(e) = liH(lJ m(0e.c)(e)((e,e) +¢€)7 .
Then this is a well-defined element of L(E) and ¥(T') = m. So ¥ is surjective. O

DEFINITION 19. Let B, B’ be C*-algebras, and let ¢ : B — B’ be a *-
homomorphism. Let Ep is a Hilbert B-module and E’;, is a Hilbert B’-module. A
homomorphism with coefficient map v from Ep to E%, is a map ® : Eg — El,
such that

(1) ® is C-linear,

(2) ®(eb) = P(e)ip(b) for all e € Eg and b € B,

(3) (D(e),d(f)) =o({e, f)) € B' for all e, f € Ep.
We denote such a map also by ®, by emphsizing 1.

REMARK 20. From the definition, it follows that |®(e)| < |le|| for all e € Ep
and equality holds when ¢ is injective.

REMARK 21. There is an obvious composition of homomorphisms with coeffi-
cient maps: for &, : Ep — Ep, and ¥, : B, — E%,,, we have a homomorphism

(U0 ®)yop : B — Bl
Also (Idg)1a, : Ep — Ep is a homomorphism.

DEFINITION 22. Two Hilbert B-modules Ep and Eps are called isomorphic if
there is a homomorphism ®14,, : Eg — EJ; which is bijective. Then <I>{dlB B —
Ep. Write Ep = E};. Note that in this case, ®1q,, € L(Ep, Ej) and ®f; = &} .

DEFINITION 23. A (C*-algebra B is called o-unital if there exists a countable
bounded approximate unit.

DEFINITION 24. A positive element h € B is called strictly positive if ¢(h) > 0
for all states ¢ of B.

LEMMA 25. B is o-unital if and only if B contains a strictly positive element.
LEMMA 26. A positive element h € B is strictly positive if and only if hB = B.

LEMMA 27. Let E be a Hilbert B-module, and let T € L(E) be positive. Then
T is strictly positive if and only if T(E) = E.
DEFINITION 28. A Hilbert B-module F is called countably generated if there is

aset {z, : &, € E,V n € N} such that the span of the set {z,b: z, € E b€ B,V n € N}
is dense in E.

We will show that E is countably generated if and only if JC(E) is o-unital. This is
a consquence of the following important theorem.

THEOREM 29 (Kasparov’s Stabilization Theorem). If E is a countably generated
Hilbert B-module, then
EoHp = Hpg.

Proof. Without loss of generality, we assume that B is unital. We want to define a
unitary V : Hp — F ® Hp.

Instead of defining V' directly, we define T € L(Hp, E @ Hp) such that T and
IT| = (T*T)2 have dense range. Then the isometry V defined by V(|T|(z)) = T(z)
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can be extended to an isometry from Hp to E @ Hp with Range(V) D Range(T)
(which is dense, so V is a unitary).

Let &, be the n-th standard basis vector in Hpg, and let (7,) be a generating
sequence of E such that for all n € N, {l € N|n,, =} is an infinite set. WLOG,
we assume that ||, || < 1 for all n € N. Define

T = Z 2_k0(nk:27kfk)7£k'
k
(1) T has a dense range: Let k € N. Then for any | € N with 7, = 7;, we have
that T(fl) = 2_l(?7k, —l&)
T(2'¢) = (77k7 ) = (1, 0)

as | — oo. Hence (1;,0) € T(Hp), and also 2'((n,27'&) — (m,0)) =

(0,&) € T(Hp);
(2) T*T has dense range:

* k-1
Tr= Z =2 ofk((ﬂk,7Il>+<2_k€k72_151>)751

k.l
= 24_2k95k,sk + <Z 2_k9(nk,0>,§k> (Z Q_ka(nkm,sk)
k k

>Z4 %9519 Ek ; S)'

S is positive and has dense range, so it is strictly positive in (Hp). Hence
T*T is stricly positive in JC(H) and has dense range;
(3) |T| has dense range because Range(|T'|) D Range(T*T).

O
COROLLARY 30. Ep is countably generated if and only if IC(E) is o-unital.

Proof.
(1) If B is unital and E = Hp. Let & be the standard i-th basis vector in Hp.

Then A
h = Z 270, ¢,

is strictly positive in C(E) since it has dense range;
(2) If B is unital and E = PHp for some P € L(Hg) with P* = P = P2
(This is almost generic my the above theorem.) Then

PhP =7 2 '0p¢, p,

is strictly positive in (FE);
(3) B is countable generated if and only if B is countably generated. So
Kp+(F) is o-unital if and only if K (F) is o-unital since Kp+ (FE) = Kp(E).
O

DEFINITION 31. Let B, C be C*-algebras, and let Fg and F¢ be Hilbert B, C-
modules respectively and let ¢ : B — L(F¢) be a s-homomorphism. On E ®q4
F X E®qq F, define

(e@ fe @ f") = (f,0((e,e')) ) € C.
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This defines a C-valued bilinear map. Define N = {t € E ®q4 F|(t,t) = 0}. Then
(-,-) defines an inner product on E ®44 F/N which turns it to be a pre-Hilbert
C-module.

The completion is called the inner tensor product of E and F and is denoted by
E®pFor E®yeF.

LEMMA 32. Let E1p, Eop and F¢ be Hilbert B,C module respectively, and let
¢ : B — L(F) be a x-homomorphism. Let T € L(E1,E3). Thene1 @ f — T(e1)® f
defines a map T®1 € L(EA®pF, E2®pF) such that (T®1)* = T*®1 and ||T @ 1] <
IT|. If ¢(B) C K(F), then T € K(E1, E2) implies T®1 € K(E1 @ F,E;Q F).
Proof. We only prove the last assertion here. The map T'— T ® 1 is linear and
contractive from L(F1, E2) to L(E; ® F, Ea ® F). So it suffices to consider T of the
form 0., ., with e; € E; and e € E>. Because Ey = E5 - B, it suffices to consider
Oesbe, With b€ B. Now for all ¢) @ f € E1 ® F,

(Oesb,er ® D(ei®f) = Ocsb,e, (D@ f
= eab(e1,€1) ® f
=e2® ¢(b)d((er, 1)) f
= (Me, 0 $(b) o Ne, ) (€1 ® f),
where M., : F - Eo@p Fby f/ —ea® f'and N, : E1®p F — F by e ® f' —
o({e1,€}))f'. Because M, € L(F,Ea®pF), N, € LIE1®pF, F) and ¢(b) € K(F),
we have Oeype, ® 1 € K(E1 @ F,E; ® F). O
LEMMA 33. Let B and C be C*-algebras, and let ¢ : B — C' be a x-homomorphism.
Define ¢ : B — L(C) = M(C) by b — (¢ — ¢(b)c). Then ¢(B) C K(C).
DEFINITION 34. Let Ep be a Hilbert B-module, and let ¢ : B — C be a
*-homomorphism. Define the push-forward ¢.(E) as E®p C = E ®, C.
LEMMA 35.
(1) (idg)«(F) = E®p B = E canonically;
(2) Yu(Pu(F)) = (¥00)«(E) naturally, where : C — D is a x-homomorphism.
LEMMA 36. T € K(E1, E2) implies ¢.(T) € K(¢(E1), d«(E2)). Moreover,

¢*(962b2,€1b1) = 062®¢(b2)7€1®¢'(b1)
for all by,bs € B, e; € E1 and es € Fs.

REMARK 37.

(1) The push-forward has the following universal property. If ¢ : B — C
and if Fp is a Hilbert B-module, then there is a natural homomorphism
@y : Ep 2 Ep® B — E®p C = ¢.(E) defined by ®(e ® b) = e ® ¢(b).
If Wy : Ep — F¢ is any homomorphism with coefficient map ¢, there is a
unique homomorphism ®iq.. : ¢.(E)c — Fe defined by ¥(e ® ¢) = ¥(e)c
such that the following diagram commutes
Yo

E=2E®B F

¢+(E)
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(2) You can show that IC(-) is a functor. If &4 : Ep — F(¢ is a homomorphism
with coefficient map ¢, then there is a unique *-homomorphism © : K(E) —
KC(F) such that ©(0e.c) = Og(e),4(er) € K(F) for all e, e’ € E.

DEFINITION 38. Let B, B’ be C*-algebras, and let Eg, E%;, be Hilberts B, B’
modules respectively. Then define a bilinear map

(,): EQaig ' x E®qq E' — B® B’
by

(e1 @€, ea ®eh) = (e, e2) @ (ea, eh).

This defines an inner product on F ®c E’. Its completion, denoted by E® E’, is a
Hilbert B ® B’-module, called the external tensor product of E and E’.

DEFINITION 39. A graded C*-algebra is a C*-algebra B equipped with an order
two *-homomorphism 5, called the grading automorphism of B, i.e. % = 5. A
x-homomorphism ¢ from a graded algebra (B, 8g) to a graded algebra (C, ¢) is
graded if 60 @) ¢ = (;50 ﬂB.

If (B, pp) is graded, then B = By ® B; with By = {b € B|Bg(b) =b} and B; =
{b € B|B3g(b) = —b}. The element b € By is called even with deg(b) = 0 and the
element b € By is called odd with deg(b) = 1. An element of By U By is called
homogeneous.

REMARK 40. Note we have
By-BiCB, B,-ByCB
By-ByC By By-BiC By.

Moreover, ¢ : B — C'is graded if and only if ¢(B;) C C; for i =0, 1.

DEFINITION 41 (Definition and lemma). If B is graded, then the graded com-
mutator of B is defined on homogeneous elements a, b, ¢ by

[a,b] = ab — (—1)dee(e) des(®)pg
It satisfies the following properties.
(1) [a,b] = —(—1)des(@) dee®)[p g
(2) [a,bc] = [a,b]c 4 (—1)des(@) dee®)p[q, ];
(3) (_1)deg(a) deg(c) Ha7 b]v c]+(_1)deg(a) deg() [[b7 C], a]+(_1)deg(b) deg() [[Cv a]v b] =
0.

DEFINITION 42. Let A and B be graded C*-algebras. Define their graded
tensor product as follows. On A ®,;4 B, define

(a18b1) (ag@by) = (—1)de8la) des®r) (g, g0 &b, by)

and

(016" = (—1yes(o) dslon) (g7
for all homogeneous element a1,as € A and by, by € B. Define a grading automor-
phism by G,¢p5 = 64 ® 5.
Just as in the ungraded case, there are several feasible norms on A®,;y B and among
them there is a maximal one. Completed for this norm the algebra A®q;, B becomes
the maximal graded tensor product A®masB. There is also a spacial graded tensor
product A®B. In general these completions can be different from there ungraded
counterparts, but in the cases we are interested in, they agree. Hence we will not
make a fuss about these norms.
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PROPOSITION 43. The spatial graded tensor product AR B is associative (AQ(B&C) =
(A®B)&C') and commutative (AQB = B&A via a®b — (—1)des(@)dee®)pgyg ),

Example 44.

(1) If A is an ungraded C*-algebra, then idy4 is a grading automorphism on A
which we call the trivial grading. With this grading, A is called trivially
graded;

(2) If A is a C*-algebra and u € M(A) satisfies u = u* = u~!, then one can
define a grading on A by a — uau. Such a grading is called an inner grading.
We will see later that inner gradings are the less interesting gradings.

(3) On C(;y = C® C, define the following grading automorphism:

(a,0) = (b, a).
Then (C(1y)o = {(a,a)|a € C} and (C(yy)1 = {(a, —a)|a € C}. This grading
is called the standard odd grading;

(4) More generally, define the odd grading also on Ay = A @ A for any C*-
algebra A. Note that A = A®(C(1);

(5) Alternatively, define C; = C & C as follows.

The multiplication is given by

(1,0)(0,1) = (0,1)(1,0) = (0, 1).
The involution is given by (a,b)* = (a,b).
The norm is given by ||(a,b)|| = max {|a + b|, |a — b|}.
The grading is given by (a,b) — (a, —b).
Then C; is a graded C*-algebra.
Also C; = Cy) as a graded C*-algebra. Let C; act on C & C by

(a,b)—><‘b‘ 2)

This is a faithful representation.

DEFINITION 45. Let n € N. Let C,, be the universal unital C-algebra defined
in the following way, called the n-th complex Clifford algebra:

(1) there is an R-linear map i : R® — C,, such that
i(v) -i(v) = (v,v) - 1¢, € C,
for all v € R™;

(2) if ¢ : R™ — A is any R-linear map from R" to a unital C-algebra satisfying
the above condition, then there is a unique unital C-linear homomorphism
¢ : C, — A such that ¢ = $oi.

Consider the complexified exterior algebra AZR™. It has a canonical Hilbert space
structure. Let C,, act on AFR"™ as follows: if v € R™ then define pu(v) = ext(v) +
ext(v)* € LIALR™). From the universal property of the Clifford algebra we obtain
a homomorphism from C,, to L(AEZR™).

On C,, we have an involution induced by the map

(Ul 'UQ"'Uk)* :’Uk.vk_l...vl

for all vy, ,vr € R™ With this involution, C,, is a *-algebra and u : C,, —
L(AFR™) a *-homomorphism. It defines a C*-algebra structure on C,,.
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Example 46.

(1) Cq is the two-dimensional algebra defined above;
(2) Cs is the four-dimensional algebra with the basis 1,eq,eq, e1e5 such that
e% = e% =1 and ejea = —eqe.

DEFINITION 47. The unitary map v — —v in R™ lifts to an isomorphism
B : C, — C, such that (3,)? = 1. It is a grading on C,,.

Exercise 48. Show that C, is isomorphic to Myx2(C) with the inner grading given

1 0
by < 0 -1 )
PROPOSITION 49. We have C,,, 4y, & C,,,&C,, for all m,n € N.

Proof. Define V.= R™ and W = R". Let i, : V — Cp, @, : W — C,, and
Imin V& W — Cpqp be the canonical injections. Let my : V& W — V and
mw : V @ W — W be the canonical projections. Then
i= (iy®@1)omy @ (1&iw) omw : VO W — C,,&C,

satisfies i(z)i(r) = (z,2)1c g, , so there is a unital C-linear homomorphism
i Cimgn — Cp®C, such that i = io im+n- OSimilarly, one can construct ho-
momorphisms C,,, — C,,,+,, and C,, — C,,1,, which gradedly commute, so there is
a homomophism C,,®C,, — C,,1,. It is an inverse of . O

PROPOSITION 50. If n € N is even, then C,, & Maomyom(C) with an inner
grading. If n = 2m+1 is odd, then C,, = Mam yxom (C) @ Mam xom (C) with standard
odd grading.

DEFINITION 51. Let (B, 85) be a graded C*-algebra and Eg be a Hilbert B-

module. A grading automorphism og : E — E is a homomorphism with coefficient
map 3p such that 0% = idg, i.e.

(op(e),0u(f)) = Be((e, f))

and op(eb) = op(e)fp(b) for alle, f € E and b € B.
REMARK 52. With Ey = {e € E|log(e) = e} and Ey = {e € E|og(e) = —e}, we
have

(Ei, Ej) C Biy,
and

E;B; C Ei4;.
If B is trivially graded, then it still makes sense to consider graded Hilbert B-
modules; they are just orthogonal direct sums of two Hilbert B-modules.

DEFINITION 53 (Definition and Lemma). If E and F are graded Hilbert mod-
ules over the graded C*-algebra B, then define

O'ﬁ(E,F)(T) =0fr OTOO’E
for all T € L(E, F).
This map satisfies:
(1) O’%(EVF)(T) =T forall T € L(E, F);
(2) or(rp)(T7) = [0,y (T)]" for all T € L(E, F);
(3) UL(E,G)(T o S) = U,C(F,G)(T) o UL(E,F)(S) for all T € L:(F, G) and S €
L(E,F) where Gp is another Hilbert B-module;
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(4) O'[:(E7F)(’C(E, F)) C ’C(E,F) with Uﬁ(E,F)(ef,e) = 90F(f),oE(e) foralle e
and f € F.

COROLLARY 54. If E is a graded Hilbert B-module, then L(E) and K(E) are
graded C*-algebras.

DEFINITION 55. The elements of L(E, F')g are called even, written L(E, F)¢Ve",
the elements of L(E, F); are called off, written £(E, F')°%.

REMARK 56. An even element of L(F, F') maps Fy to Fy and F; to Fy, and an
odd element maps Fy to Fi and E; to Fyp.

REMARK 57. The following concepts and results can easily be adapted from the
trivially graded case to the general graded case.

(1) graded homomorphism with graded coefficient maps;

(2) Kasparov stabilization theorem: Hpg has to be replaced by ]Hfg =Hg®Hp
with grading S = (8, 8B, - - - ) on the first summand and —S on the second
summand;

(3) the interior tensor product of graded Hilbert modules;

(4) the exterior tensor product of graded Hilbert modules. The inner product
is defined by

<€1®f1,62®f2> — (_1)ng(fl)(ng(el)+dcg(e2))<el762>®<f17f2>_

(5) the push-forward along graded *-homomorphisms.

2. THE DEFINITION OF KK-THEORY

All C*-algebras A, B,C,--- in this section will be o-unital. Let A, B be graded
C*-algebras.

DEFINITION 58. A Kasparov A-B-module or a Kasparov A-B-cycle is a triple
€ =(E,¢,T) where FE is a countably generated graded Hilbert B-module, ¢ : A —
L(E) is a graded s-homomorphism and T' € £L(F) is an odd operator such that

(1) Vaec A: [¢p(a), T) € K(E);

(2)Vaec A: ¢(a)(T? —idg) € K(E);

(B) Vae A: ¢(a)(T —T*) € K(E).
Note that the commutator in 1) is graded. The class of all Kasparov A-B-modules
will be denoted by E(A, B). Sometimes we denote elements of E(A, B) also as pairs
(E,T) without making reference to the action ¢.

REMARK 59. We are not going to discuss many examples at this point. They
will occur later in the talks dedicated to applications of K K-theory.
DEFINITION 60 (Definition and Lemma).
(1) If & = (F1,61,Th) and & = (FEa, ¢2,Ts) are elements of E(A, B), then
E1® & = (B1® Ba, 01 @ ¢, Ty @ T, € E(A, B);
(2) If C is another graded C*-algebra and ¢ : B — C'is an even *-homomorphism
and £ = (F,¢,T) € E(A, B) then
i (€) = (u(E), p@1, 4. (T) = T®1) € E(4,C).
(3) If C is another graded C*-algebra, ¢ : A — B is an even *-homomorphism
and £ = (E,¢,T) € E(B,(C), then
¢* (€)= (E,pop,T) e E(AC);
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(4) If € = (E, ¢,T) € E(A, B) then
—&:=(~E,¢_,-T) € E(A, B),
where — F is the same Hilbert B-module as E but with the grading o_g :=
—og, and ¢_ := ¢ o B4 where (34 is the grading on A.
Proof. We only show parts of (2). Let a € A. Then
(p®1)(a)(T®1)? — idpe,c = (¢(a)®idc)(T*®idc —idg ®@idc)
= (¢(a)(T? —idp)) ® idc
= . (¢(a)(T? - idp)) € K(¢u(E)).
Here we use that ¢(a)(T? —idg) € K(E). The other conditions follow similarly. [J

DEFINITION 61. Let ¢ : A — A’ and ¢ : B — B’ be x-homomorphisms and let
E=(F,¢T)€EAB) and & € E(4A',B’). A homomorphism from £ to & with
coefficient maps ¢ and 7 is a homomorphism ®,, from Ep to Ej; such that

(1) Vae AV e € E, ®(¢p(a)e) = ¢'(p(a))®P(e) i.e. ® has coefficient map ¢ on

the left;

(2) PoT =T 0
The most important case is the case that @ is bijective and ¢ = id4, ¢ = idg. Then
& and &’ are called isomorphic.

LEMMA 62. We have up to isomorphism (for all £,&1,E2,E € E(A, B)):
(1) (&10&E)PEZE D (EDEs);
(2) E1DE=EdE;
(3) £®(0,0,0) =¢&;
(4) IfYy: B— C and ' : C — C" then

VL (E)) = (¢ 0 )4 (E);

(5) (idp).(£) =¢&;
(6) Ifp: A — Aand ¢ : A — A then

¢ (7€) = (90 ¢) (), iy (€) = &;
(7) (&1 @ E2) Zhe(E1) D Yu(E2), Yu(=E) = —1u(E);

(8) ¢*(&1 @ &) = ¢"(61) & ¢"(&2), ¢7(=E) = —¢"(€);
(9) ¢"(¥«(€)) = ¥u(97(£)).

DEFINITION 63. Let C be a graded C*-algebra and & = (F,¢,T) € E(A, B).
We now give the definition of a cycle 7¢(€) = E®ide € E(A®C, B&C): the module
is Eg®Cc, the action of AQC is ¢®idc and the operator is T®idc.

Example 64. If C = C([0,1]) = {f:[0,1] — C, f continuous}, then A®C
A[0,1] = {f : [0,1] — A, f continuous} and B&C = B0, 1]. Similarly Ep®Cc
E[0,1] if &€ = (E,¢,T) € E(A,B). Now 7¢(01)(€) = (E[0,1],¢[0,1],70,1])
E(A[0,1], B]0, 1]) under this identifications.

DEFINITION 65 (Notions of homotopy). Let & and & be in E(A4, B):

(1) An operator homotopy from & to &; is a norm-continuous path (7%)e0,1]
in L(E) for some graded Hilbert B-module E equipped with a graded left
action ¢ : A — L(F) such that

(a) V€ [0,1]: (B 6T ¢ E(4,B);

m IR IR
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(b) 50 = (Ea¢aT0)7 51 = (Ea¢aT1)'

(2) A homotopy from & to & is an element & € E(A, B[0,1]) such that
evf (E) = & and evf, (£) = &, where evf : B[0,1] — B, — f(t)
for all t € [0,1]. We write & ~ &; if such that a homotopy exists.

LEMMA 66. Homotopy is an equivalence relation on E(A, B).

Proof.

(1) Reflexivity: let € = (E, ¢, T) € E(A, B). Then i (rc(0.1(€)) = (E[0, 1], ¢[0,
ia,T[0,1]) is a homotopy from & to &, where i4 : A — A0, 1] is the inclu-
sion as constant functions.

(2) Symmetry: let £ € E(A4, B[0,1]) and ¢ : B[0,1] — B[0,1], 8 — (t — G(1 —
t)). Then evf, (1.(€)) = (evf otp) (&) = (evf , . (E), where evforp = evf .

(3) Transitivity: this is a non-trivial exercise.

U

DEFINITION 67. Define KK (A, B) := E(A,B)/ ~. If & € E(A, B) then we
denote the corresponding element of KK (A, B) by [€].

LEMMA 68. KK(A, B) is an abelian group when equipped with the well-defined
operation

(&1] @ [&2] = [&1 @ &
In particular, KK (A, B) is a set. We have

[5] D [_5] = [07070}7
where [0,0,0] is the zero element of KK (A, B).
Before we come to the proof of this important lemma, we define:

DEFINITION 69. The class D(A, B) C E(A, B) of degenerate Kasparov A —
B-modules is the class of all elements (E,¢,T) such that [¢(a),T], ¢(a)(T? —
1),¢(a)(T —T*) =0 for all a € A.

LEMMA 70. If € = (E,¢,T) € D(A, B), then & ~ 0.

Proof. We construct a homotopy using a mapping cylinder, in this case for the
rather trivial homomorphism 0 % E. Consider the following diagram

Z —— E01]ppy

I

0op —2— Eg
The pull-back Z in this diagram can be identitfied with the Hilbert B[0, 1]-module
E(0,1] = {e:[0,1] — E, € continuous and €(0) = 0}. On E(0, 1] define an A-action
by (a-€)(t) = a(e(t)) for all a € A, e € E(0,1] and ¢t € [0,1]. Define T €
L(E(0,1]), € » Toe. Then & = (E(0,1],T) € E(A, B[0,1]) and evf,(£) = 0
and ele:*(é) = O
Proof of the important lemma. It is obvious that KK (A, B) is a set because the

class of isomorphism classes of countable generated Kasparov A — B-modules is
small. Moreover, the direct sum is well-defined and [0] is the zero element. The
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addition is commutative. What is left to show is that E&—E ~ 0 for £ = (E,¢,T) €
E(A, B). Define Gy € L(E @ —F) to be the element given by the matrix:
_( cost-T sintidg
7\ sintidg  —costT

T

69

ThenGo(:g 0 ) ~T)),s0 (E® —E,¢®¢_,Go) = (E® —E, ¢ @

¢_,T@®-T). Also G; = (1)) so(E@—E, 0@ ¢_,Gy) € D(A, B). That G,

isodd and (E® —FE,¢ @ ¢_,G;) € E(A4, B) for all t € R can be checked by direct
calculations. O

AN
— O

LEMMA 71. KK(A, B) is a bifunctor from the category of graded (o-unital)
C*-algebras and graded x-homomorphism to the category of abelian groups.

Proof. Let 1 : B — C be a graded x-homomorphism. Then £ — ¢, (&) lifts to a
map ¢, : KK(A,B) — KK(A,C). Here using the diagram

B[0,1] Y2, ¢0,1]

B G
J/Q’U* JVC’U*

B — C

It is a group homomorphism and the constructoin is functorial. ([

DEFINITION 72. Define M(A, B) C E(A, B) be the class of what I call Morita
cycles from A to B by (E,¢,T) € M(A, B) if T'=0. Note that (E, ¢,0) € E(A, B)
if and only if ¢(A) C K(E). If ¢ : A — B is a graded *-homomorphism, then we
define (¢) = (B,%,0) € M(A, B) C E(A, B). We define [¢)] = [(¢)] € KK(A, B).
If 4Ep is a graded Morita equivalence, then A = KC(E), and if ¢ is the left action of
A on E then (E,¢,0) € M(A, B) C E(A, B), we write (E) for (F,¢,0) € E(A, B)
and [E] for [(E)] € KK (A, B).

DEFINITION 73 (Definition and lemma). If £ = (F,¢,T) € E(A, B) and F =
(F,¢',0) € M(B,C) then define £&pF = (E®pF,¢®1,T®1). Then EQpF €
E(A,C). This defines a group homomorphism

®pF: KK(A,B) — KK(A,C)
such that

(1) E@p(¥) = ¥u(€) for all ¢ : B — C;
(2) (E@pF)@cF = E@p(FOcF') for all F' € M(C, D);
(3) E&B(Y)oRF = (E)DcF = EQpy*(F).

Proof. (1) &pF is well-defined on the level of KK. If £ € E(A, B[0,1]) then,
because F[0,1] € M(BJ0,1],C[0,1]),

evg*(5~®3[0,1}7:[07 1]) = evy] PE)&F.
(2) ®pF is a group homomorphism. If £, & € E(A, B), then
(E1 @ E)OF X EQRF @ E2RF.
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COROLLARY 74. If B and B’ are (gradedly) Morita equivalent with Morita
equivalence gEg:, then Qg FE is an isomorphism.

KK(A,B) 2 KK(A,B).
Proof. Let 5’ Ep denote the flipped equivalence. Then
BE®B’EB = BBB and B’E®BEB/ =~ B/B/B”
SO
(EQBE)op E=EQp(EQp E) = EQpB =idp.(£) =&
and likewise
g/®B/E®BE % gl

for all £ € E(A, B) and &' € E(A, B'). O
LEMMA 75 (Stability of K K-theory). Let K carry the grading given by (1,—1)
under an identification K = Ms(K).

(1) 1 is an isomorphism KK (A, B) = KK (A®K, BRK).

(2) We have KK (A, B) = KK(A®K, B) = KK (A, BRK).

LEMMA 76 (Homotopy invariance). Let 1o, 1 : B — C' be graded x-homomorphisms
and ¢ : B — C[0,1] such that ¥y = evS ot fort = 0,1. Then [tpo] = [1] €
KK(B,C) and (¢) is a homotopy from (1g) to (11).

It follows that 1o «(E) ~ 1 .(E) for all € € E(A, B).

COROLLARY 77. If A~ 0 is contractible, then KK(A, A) = KK(A,0) 0.

PROPOSITION 78. If B is o-unital, then it suffices in the definition of KK (A, B)
to consider only those triples (E, ¢, T) where E = Hp.

Proof. (Hp,0,0) € D(A, B) and hence (E,$,T) ~ (E & Hg, ¢ ®0,T & 0). (and
61}5*(1[’]13[0,1]) ~ Hpg for all t € [0, 1]) O

DEFINITION 79. Let £ = (E,¢,T) € E(A, B). Then a “compact perturbation”
of T (or of &) is an operator T (or the cycle (E,$,T")) such that

VaeA: ¢(a)(T—T'") € Kp(E).
LEMMA 80. In this case: &' = (E,¢,T") € E(A,B) and &€ ~ &'.

Proof. Consider the straight line segment. O

PROPOSITION 81. If (E,¢,T) € E(A, B), then there is a compact perturbation
(E,0,8) of (E,¢,T) such that S* = S, so in the definition of KK (A, B) it suffices
to consider only those triples with self-adjoint operator; and compact perturbations,
homotopies and operator homotopies may be taken within this class.

1 T-T*
Proof. Replace T' with ==—. O

PROPOSITION 82. If (E,¢,T) € E(A, B), then there is a compact perturbation
(E,0,5) € E(A,B) of (E,¢,T) with S = S* and ||S|| < 1. If A is unital we may in
addition obtain an S with S* —1 € K(E), compact perturbations, homotopies and
operator homotopies may be taken within this class.
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Proof. WLOG, T* =T, use functional calculus for

1, z>1
fley=<=z, -1<z<1
-1, rx<-—1.

O

REMARK 83 (The Fredholm picture of KK (A, B).). If A is unital: P = ¢(1).
Replace S with PSP+ (1 — P)S(1— P). Let A be unital (the o-unital case is more
complicated). In the definition of K K-theory it suffices to consider only those
triples (E, ¢,T) with ¢ unital (replace E with PE and T with PTP). If there
exists a unital graded *-homomorphism from A to LB(HB), then WLOG E = Hj.
If A and B are trivially graded: Identity £(Hp) with My(£(Hpg)) with grading

given by < (1) 01 ) ¢ = < %0 £ ) with ¢; : A — Lp(Hg) unital. T =
- 1

( g, % ) for some S € Lp(Hp) with ||S|| < 1. The intertwining conditions
become S*S — 1,55* — 1 € Kg(Hp), So1(a) — ¢po(a)S € Kp(Hp) for all a € A.
Homotopy becomes homotopy of triples (¢o, ¢1,S) (with strong continuity).! In
this picture modules are denoted by

(Eo® E1,¢0 ® ¢1,S) where S € Lg(Ey, Fy).
In particular, if A = C, then
KK(C,B)={[T]:T e Lz(Hp), T*T —1,TT* —1 € K(Hp)}.
THEOREM 84. KK(C, B) = Ky(B) for B trivially graded and o-unital.

Proof. Three methods of proof:

(1) Assuming KK (C, B) can be described as the set of all triples (Hp, ¢, T)
where ¢ is unital, T = T*, ||T]| < 1 and T2 — 1 € K(Hp) modulo the
equivalence relations generated by

(a) operator homotopy and

(b) addition of degenerate cycles with unital C-action,
i.e. we assume that KK(C,B) = I?T(((C, B). Then for all such triples T
has the form T = g % . The condition on T is equivalent to m(S)
being unitary in Q@ = Lp(Hp)/Kp(Hp) = Lg/Kp, where 7 : Lg(Hp) — @
is the canonical projection. So every cycle £ for KK (C, B) gives an element
in K1(Q). The exact sequence 0 — Kp — L — @Q — 0 gives a long exact
sequence in K-theory:

Ko(Kp) —— Ko(Lp)(=0) —— Ky(Q)

Tindea; J{

K1(Q) ——— Ki(£B)(=0) —— Ki(Kp)

IThis is not very precise and actually hardly correct. One should instead consider strictly
continuous functions if we regard L(Hpg) as the multiplier algebra M (K ® B); moreover, Michael
Joachim has pointed out to me that it is necessary to require the additional condition that for
all a € A the function t — S¢1 ¢(a) — ¢o,:(a)S is not only strictly/strongly continuous but norm-
continuous; here t — ¢; ; denotes the homotopies of representations of A on L(Hp).
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So K1(Q) =2 Ko(Kp) = Ko(K ® B) = Ko(B). So we obtain a map from
KK(C,B) to Ko(B) after observing that the K; elements are invariant
under the elementary moves (operator homotopy and degenerate element
addition). By a general lifting argument you can lift homotopies from @ to
Lp, so ® is injective. It is clearly surjecitve and a homomorphism.

Let B be unital. Let (]I:]IB,QS, T) be a cycle as above, so T = ( g' 5;) )

We try to define an index of S : Hp — Hp as an element of Ky(B).
Problem: The image of S does not have to be closed and ker S, coker S
do not have to be finitely generated and projective.
Solution: One can show that there is an S’ € Lg(Hp) such that

S— 8" e Kp(Hp)

and ker §’, coker S'* are finitely generated and projective.

Definition: index(S) = [ker §"] — [coker S'*] € Ko(B).

Ezercise:
(a) Is this well-defined and a homomorphism?
(b) Is this invariant under homotopy?

(c) Is it bijective on the level of KK (C, B)?

(after Vincent Lafforgue) We define a map from Ky(B) — KK (C, B) for B
unital. Start with a finitely generated projective B-module F. Find a B-
valued inner product on E (one can show that there is an essentially unique
one). Define ®([E]) = (E=)0) € E(C, B). Moreover, define ®([—E]) =
(0=9E). Then ®([E] ® [-E]) = (E=)E) ~ (E=4E) ~ 0 because
idg € Kp(E) (which one has to show). So ® is well-defined as a map from
Ky(B) to KK (C, B). We indicate how to show that it is surjective.

Let £ = (Eg =] F1) € E(C,B). Findann € N, R € Kp(B", E1),S €
Kp(E1, B™) such that

1
- g RSl < ;

which means that every compact operator almost factors through some B”.
Then fg+ RS is invertible in Lp(E;). Define w = (fg+ RS)~!. Note that
w €1+ Kp(Er). Now

! n 0 n (£0)
(Ey=F;)® (B"=0)=(Ey® B" = E)
g 0 9,0)

o =R
N(E()EBB o= El):(*)

g=(g,5)w

Observe that
fg = fgw+ RSw = (fg+ RS)w = idp .
Hence p = §f € Lp(Ey® B™) is an idempotant. Let us assume that p = p*,
Then Fo @ B™ = Imp @ Im(1 — p). This implies
W) 0
() = (Imp?El) & (Im(1 — ) = 0),

where (Imp=! F) ~ 0 in KK(C, B). Observe fp = f and pj = §. Note
g
1—peKp(Ey® B).



AN INTRODUCTION TO KK-THEORY 17

Then Im(1 — p) has a compact identity. This implies Im(1 — p) is finitely
generated and projective. Hence

(€] = [Im(1 - p)] = [B"] € ®(Ko(B)).

Injectivity is similar.

3. THE KASPAROV PRODUCT

THEOREM 85. Let A, B,C, D be graded o-unital C*-algebras. Let A be separa-
ble. Then there exists a map

®p: KK(A,B) x KK(B,C) — KK(A,C),
called the Kasparov product, that has the following properties:
(1) biadditivity:
(21 ® 22)®pY = 21QBY B T20BY
and
@By @ y2) = QY1 ® xRpY:.

(2) associativity, if B is separable as well, then
®p(YRcZ) = (&pY)Oc Z,

forallz € KK(A,B),y € KK(B,C) and z € KK(C, D).
(3) unit elements: if we define 14 = [ida] € KK(A,A) and 1 = [idp] €
KK(B, B), then for allx € KK (A, B):

1a®ar =2 = 2Rplg.

(4) functoriality: if ¢ : A — B and ¢ : B — C are graded *-homomorphism,
then

2@p[Y] = ¢u(z) and [g]@py = ¢"(y)
forallz € KK(A,B) andy € KK(B,C).
(5) it generalizes the product of Morita cycles defines before.

REMARK 86.

(1) The separable graded C*-algebras form an additive category when equipped
with the K K-groups as morphism sets and the flipped Kasparov product
as compositions. The 1) — [¢] is a functor from the category of separable
graded C*-algebras with graded s-homomorphism in this category.

(2) isomorphisms in this category are also called K K-equivalences. Conse-
quently we know that Morita equivalences give K K-equivalences. In par-
ticular, K K-theory is also Morita invariant in the first component.

Idea of proof. Let (E1,¢1,11) € E(A, B) and (Es, ¢2, 1) € E(B,C). As module
for the product we can take Ei3 = E1®FE; and as module action we can take
012 = 1 ®1. The problem is to find the operator.

A very naive approach is to define T = T} ®1 + 10T,. Th®1 is okay, but 1QT,
does not make any sense as long as T5 is not B-linear on the left. If we neglect this
problem, then we calculate

TE = To1 + 1873,
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so we end up with something which is rather 2 than 1 up to compact operators.
So the idea is to find suitable “coefficient” operators M, N € Lc(F12) such that
M? + N2 =1 and M,N > 0. Define

Tio = MTi®1 + N1QTs.

Then
T? ~ M*T?&1 + N*1&Ty + rest =~ 1 + rest.

The critical point is that we need a lemma which ensures the existence of such coef-
ficients such that the calculations are justified and rest=0 up to compact operators.
This is the subject of “Kasparov’s Technical Lemma”.

To give a sense to an expression like 1&T5 is subject of the theory of connections.
Such connections will only be unique up to “compact perturbation” and also the
technical lemma involves some choices, so there is need for a contition when two
operators are homotopic so that they give the same element in K K. These are the
three tools which we introduce before we come to the proof of the existence of the
product. O

PROPOSITION 87 (A sufficient condition for operator homotopy). Let A, B be
graded C*-algebras, £ = (E,¢,T),E' = (E,¢0,T") € E(A,B). If

VaeA: ¢)[T,T')¢(a*) >0 mod Kp(E),

where mod means that ¢(a)[T,T'|¢p(a*) + k > 0 for some k € Kp(E), then £ and
&' are operator homotopic.

DEFINITION 88. If (B,(5) is a graded C*-algebra and A C B is a sub-C*-
algebra then A is called graded if §(A) C A. [All subalgebras of graded algebras
will be assumed graded.]

DEFINITION 89. Let B be a C*-algebra and A C B a subalgebra. Let 7 C B
be a subset. We say that F derives AifVa € A, f € F, [f,a] € A, where it is a
graded commutator.

THEOREM 90. Let B be a graded o-unital C*-algebra. Let A1, As be o-unital
sub-C*-algebras of M(B) and let F be a separable, closed linear subspace of M(B)
such that Bp(F) = F. Assume that

(1) A -AyCB [AlLAQ mod B],

(2) [F,A1] C Ay [F derives Ay].
Then there exist elements M, N € M(B) of degree 0 such that M+ N =1, M, N >
0, MA, C B, NA, C B, [N, F] C B.

REMARK 91.

(1) The larger Ay, A5 and Fi, the stronger the lemma;
(2) we can always assume WLOG: B C Aq, As.

Proof. We can replace A; with 4, + B = A]. Al is a graded sub-C*-
algebra that is o-unital. If b is strictly positive in B and a; is strictly
positive in A; then b + a; is strictly positive in A because b+ a; > 0 and
(a; +b)(A; + B) D a; A+ bB (dense in AL.) O

(3) we will use the lemma in the case B = K(E), M(B) = L(FE) for a countably
generated Hilbert module F.
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Exercise 92. Let X be a locally compact, o-compact Hausdorff space and §X =
BX\X its “corona space”. Then §X is stonean, i.e. the closure of open sets are
open or YU,V C X open, UNV = () then 3 f: §X — [0, 1] continuous such that

flo=0, flv =1
Next we will define connections. In this part let B,C be graded C*-algebras,
E; a Hilbert B-module, Fy a Hilbert C-module, ¢ : B — Lc(FE3) a graded *-
homomorphism, Fi5 = EiQpEs.
REMARK 93. Let T € Lo (E3) and assume that
(x) Vbe B:[¢b),Tz] =0.

Define 1&T, € Lo (FE12) on elementary tensors by

(1®T2)(61®62) = (71)5T256161®T2(62).

in the sense that you first split 75 into odd and even parts......
If T, is just B-linear up to compact operators, i.e. if

(xx) Vbe B [p(b), Tz] € Ko(Es),

then this construction no longer works. We can however construct a substitute for
10T, “up to compact operators”.

DEFINITION 94. For any « € E; define
TI . E2 — E12, €y — $®62.

LEMMA 95. If Ty € Lo(Es) satisfies (*), then

E, —2 . R,

(# *x)1 Tml lT

Eyy —— Epp
gradedly commutes for allx € By (i.e. TpoTy = (180T5) 0Ty - (—1)90T2 ). Similarly

E, — 2. R,

(o )2 T;T TT;

Eis o Eio

gradedly commutes.

LEMMA 96. For all © € E, we have T, € Lc(Es, E12) with T : E15 — Es,
e1 ®@ ez — ¢((w,e1))es.
DEFINITION 97. Let Ty € Lo (E3). Then an operator Fio € Lo(Eq2) is called

a Th-connection for Ey (on Fis) if for all © € Fy the diagrams (***)1 and (***)2
commute up to compact operators.

PROPOSITION 98. Let 15,14 € Lo(E»), let Tia be a Ta-connection and T, be
a Th-connection.

(1) Ty, is a Ty -connection;
(2) Tl(;) s a Tél)—connection fori=0,1;
(3) Tia + Ty, is a (Tz + T4)-connection;
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Tio - Tiy is a (ToTy)-connection;

if To and Tyo are normal, then f(T12) is an f(Ts)-connection for every
continuous function f such that the spectra of To and T2 are contained in
its domain of definition.

if B3 is a Hilbert D-module, v : C — Lp(E3) is a graded x-homomorphism
and Ts € Lp(Es) with [T3,1%(C)] C Kp(Es), and if Tas is a Ts-connection
on Es®cEs and if T is a Thz-connection on E = E1&p(Es®cEs), then T
is a Ts-connection on E = (E1QpFEy)®cE3.

if By = B} @ EY and if we identify B1QpFEy with E1®pEy ® EYQpEs,

then T has the form ( Az By ) and Tio has the form ( A B )
2

Cy D Ci2 Dia
and Aqs is an As-connection on E{@BEz and D12 is a Dy-connection on
El&pEy. Conversely if Ty = < %2 lg > and Ai2/D1s is an Ag/Ds-

2

A12 0

connection, then ( 0 Dy

) is a Ty-connection.

PROPOSITION 99. Let Ty € L (F2) and let Tha be a Ta-connection.

(1)
(2)

Proof.

Vke ]CB(El) : [Tlg, k® 1} S ICC(ElZ).
T1o is a zero-connection on Fyo if and only if

YV ke K:B(El) : T]_Q(k‘@l), (k@l)Tlg S ICC(Elg).

(1) Let k € ICB(El) WLOG k = Qy,w for WA TS E;. WLOG x,y,T27T12
are homogeneous with 675 = §T15. Then

by definition of T;,7T,. Hence
(0y,0®1) 0 T12 =Ty o Ty 0Tz =Ty 0 (—1)°*2 Ty 0 Ty

= (1) (1) T2y 0 Ty o T = (1) =912 Ty 0 (0, ,&1) mod Ko (Fiz2)

(2)

i.e. [k},Tlg] S ’Cc(Elg).

T2 is a O-connection if and only if V 2z € Ey : T}T9,T12T, are compact.
Let k € Kp(E1). As above, WLOG k = 0, , for z,y € E;, we hence
have Th2(k®1) = Tio(T,T}) = (T12T,)T; is compact if and only if Tio is a
0-connection. This shows =.

Conversely, if T12(k®1) is compact for all k, then Tio(0, .&1)T}, =
T T.T;TY, is compact for all z € Eq. So (T121.)(Th2T1.)* € Ko(Er2),
hence by a lemma from the first section: T127, € Ko (F1, E12). Similarly
for T T12. So T is a 0-connection.

|

LEMMA 100. Let T», Ty € Lo(Es) such that Vb € B : ¢(b)(Ty — Ty), (To —
T))p(b) € Ko(E2). Then Tio is a To-connection if and only if Tio is a Th-
connection.

Proof. Let Tis be a Tr-connection. Let © € Fy. Find £ € Fy,b € B such that

x = Tb.

Then T, = T o ¢(b).
Tio 0Ty = (—1)°%°T2T, 0 Ty = (—1)°%T02T; 0 ¢ (b) 0 Ty
(=1)%2T2T o p(b) o Ty = (—=1)°*°T2T, o Ty mod K¢ (Fsy, E1o)



AN INTRODUCTION TO KK-THEORY 21

and similarly for 77} o T}s. [l

THEOREM 101 (Existence of connections). Let E be a countably generated
Hilbert B-module, Eo a Hilbert C-module, ¢ : B — Lc(FE2) a graded x-homomorphism.
If Ty € Lo(F2) satisfies V' b € B : [To, d(b)] € Ko(Es), then there exists an Ts-
connection on E1&pF>.

Proof.

(1) Assume V b € B, [Ty, 6(b)] = 0. Then 1®pTs is a Th-connection. In
particular, 0 is a O-connection, and if B = C and ¢ is unital, then the
above result always applies.

(2) Assume ¢ : B — Lc(E>) non-degenerate and Ey = B. Then ® : BopFEy —
Fs via b ® e — bes is an isomorphism. This implies T3 = &*To® €
Lc(B&pFE,) is a Ty-connection because ¢(b) = ® o T}, for all b € B and
hence

T12Ty = D*To®Ty, = O*Top(b)
= (—=1)°9T2p* (b)) Ty = (—1)°" 2Ty Ty mod K¢ (Es, E12)
and similarly for T75.
(3) Assume that B is unital, ¢ is unital and E; = Hp. Note that
HpbpEy = (H&cB) @p B2 2 HRc(BORE,).
From (2), we know that there is a Th-connection Thz on B&pgFEs. From (1)
we know that there is a Th3-connection 1" on HB® pEs.It follows that T is
a Th-connection on HB®BE2.

(4) B is unital, ¢ is unital and F; is arbitrary. We have E\®Hp =~ Hg. By
case (3) there is a Th-connection on HB®BE2. Hence there is also a Ts-
connection on E1&®pEs.

(5) general case: Let BT be the unital algbra B&C and ¢+ : Bt — Lo(Es) be
the unital extension of ¢. Then E is also a graded B¥-Hilbert module. The
notion of a Th-connection does not depend on this change of coefficients and
E1®B+E2 = E1®BE2. Also [TQ, ¢+(b+>\1)} S ICC(EQ) for all b+)\1 S B+.
So there is a Ty-connection on E1&pFEsy by case (4).

|

Exercise 102. Show: For every (E,¢,T) € E(A, B) there is some (E’,¢',T') €
E(A, B) homotopic to (E,$,T) with ¢’ non-degenerate (actually, you can take
E'=A-E).

DEFINITION 103 (Kasparov pI‘OdUCt). 812 = (E12,¢12,T12) is called a Kas-
parov product for (Eq, ¢1,T1) and (Ea, @2, T) if

(1) (Erz,¢12,T12) € E(A, C);

(2) T2 is a To-connection on Ejo;

(3) Va e A: ¢ra(a)[T1®1, Ti2)p12(a)* > 0 mod K (Ti2).
The set of all operators T2 on E15 such that &5 is a Kasparov product is denoted
by T1#T5.

THEOREM 104. Assume that A is separable. Then there exists a Kasparov
product E12 of &1 and E. It is unique up to operator homotopy and Tis can be

chosen self-adjoint if Ty and Ty are self-ajoint. [It remains to show that the product
is well-defined on the level of K K -theory.]



22 AN INTRODUCTION TO KK-THEORY

Example 105.

(1) Assume Ty = 0, i.e. (E3, ¢2,0) € M(B,C). Then T15 = T1®1 is a Kasparov
product of T; and 0.

(a) (E12,¢12, Ti®1) € E(A, O) as stated above.

(b) Ty®1 is a O-connection because (k®1)(T1®1) = (KT1)®1 € Ko (Er2)
because ¢2(B) C Kc(Es). (Also Thk®1 € Kc(Eig)) for all k €
Kp(E1).

(c) let a € A. Then ¢12(a)[T1®1, T1&1]¢12(a)* = d12(a)2T7 O1¢1a(a)* =
2¢12(a)p12(a)* > 0 mod compact.

So the multiplication between E(A, B) and M(B, C') defined earlier agrees

with the Kasparov product.

(2) In particular, the push-forward along a #-homomorphism is a Kasparov
product.

(3) Also the pull-back is a special case of the Kasparov product. Assume that
we have shown that the product is well-defined on the level of homotopy
classes.

Let ¢ : A — B be a x-homomorphism. Then one can assume WLOG that

@2 : B — Lc(F3) is non-degenerate. Then B&pFs = FE5 and we can regard

Ty as a Ty-connection. The action of A on Fs under this identification is

¢2 0 p. It is easy to see that we obtain an element in 0#75 which is

isomorphic to ¢ (52)

(4) In particualr, 14®a2 =z = 2®plp for all x € KK (A, B).

Proof of the main theorem. ([

Also the product lifts to a biadditive, associative map on the level of K K.

LEMMA 106. Let A, B,C be as above. & = (E1,¢1,Th) € E(A, B) with Ty =T
and |Th|| < 1 and E = (Ea,¢2,T2) € E(B,C). Let G be any Ts-connection of
degree 1 on E15 = EiQpEs. Define

Ty = Ti®1 + [(1 - T?)2&1]G.

Then ¢12(a)(THy—1) and ¢12(a)(Tha—T1s) are in K (Er2) and ¢12(a)[Tiz, Ti®1]¢12(a)* >
0 mod Ko (E12) for all a € A. Suppose [T, $12(a)] € K(FE12) for all a € A, then
E12 = (B2, ¢12,Th2) € E(A,C) and &2 is operator homotopic to an element of

E1#Es.

Proof. Let L = (1 — T2)2&1. ¢1a(a)(Th — 1) = ¢12(a)[TEG1 + (T1&1)LG +
LG(T1®1) —|—LGLG— 1] Now ¢12(CL)(T1®1)LG = ¢)12(G)L(T1®1)G and ¢12(CL)L S
Kp(E))®1, so ¢p12L(T1&1) € Kp(E1)®1, so [¢p12(a)L(T1®1),G] € Keo(Er2) and
hence

P12(a) L(T161)G ™LX —(=1)%G1a(a) L(T161) ™LX —415(a) LG(T1&1).

®1)
Similarly ¢12(a )LGLG (—1)°°G12(a) L*G = (=1)°+2%p15(a) L*G?. So ¢12(a)(TTh—
1) = ¢12(a)((T7 ~1)@1 = (1-T7)®1)G?) = [¢1(a)(T7 - 1)]@1(1-G?) € Kc(Era).
Slmllarly for ¢12( )(T12 — T12) S KC(Elg) and (ﬁlg(a)[Tlg,Tl@l}(blg( ) > 0 mod
Ke(Eh2).
Now find M and N as in the existence proof of the product such that

Tyy = M3 (F,®1) 4+ N2@
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defines a Kasparov progluct Ep = (E12,¢12,T12) € E(A,C) of & and &. &pp is
operator homotopy to &5 via:

T, = [tM + (1 — )]2(T1&1) + [tN + (1 — t)((1 — T?)2&1)]2G.
O

The general form of the product. Let Aj, As, Bi, By and D be graded o-unital
C*-algebras and © € KK(A,B1®D), y € KK(D®As,By). If A; and Ay are
separable, then we define

T ®py = (2®14,)®p 6psa,(18,0y) € KK(A1®As, Bi®By).
If C = D, then we obtain a product
®c: KK(A1,B1) ® KK(Az, By) — KK(A1®As, Bi®Bo).
It is commutative in the following sense. Let
Va4, A1RQAy — As®A;, a;®as — (—1)5‘“5“2&2@@1
and define ¥, p, analogously. Then

TRcyY = EE},BZ 0y ®cxo XA, A,-



