GEORGE SKANDALIS

Lecture 1: Examples + constructions of Ind_t Lecture 4: computations + generalizations

1. UNBOUNDED KK-THEORY (BAAJ-JULG)

Recall the definition of cycles of KK(A, B) are triples of form (\mathcal{E}, π, F) where (1) $\mathcal{E} = \mathcal{E}^{(0)} \oplus \mathcal{E}^{(1)}$ is graded Hilbert B-module.

(2) A unital $\pi: A \to \mathscr{L}(\mathcal{E})$ is a graded *-representation of A.

(3) $F \in \mathscr{L}(\mathcal{E})$ is of odd grading satisfying $F = F^*, F^2 - 1 \in \mathcal{K}(\mathcal{E}), [F, \pi(a)] \in$ $\mathcal{K}(\mathcal{E}).$

To define a unbounded cycle A, π, \mathcal{E} have the same assumption, and F is replaced by a unbounded D with the following assumption:

(1) $D = D^*$. Recall definition of D^* : if Dom(D) dense in \mathcal{E} and $\forall x, y \in \mathcal{E}, \exists z \in \mathcal{E}$ such that $\langle Dx, y \rangle = \langle x, z \rangle$, then $D^*y = z$.

(2) D has compact resolvent, i.e. $(D+iI)^{-1} \in \mathcal{K}(\mathcal{E})$. Note that D+iI is invertibe because $\operatorname{Sp}(D) \subset \mathbb{R}$.

(3) There exists a dense algebra $\mathcal{A} \in \mathcal{A}$ such that $[\pi(a), D]$ is bounded, $\forall a \in \mathcal{A}$. (4) D is regular, i.e. $(\operatorname{Graph} D)^{\perp} \oplus \mathcal{U} \operatorname{Graph}(D) = \mathcal{E} \oplus \mathcal{E}$, where $\operatorname{Graph}(D) =$ $\{(x, Dx), x \in \text{Dom } D\}$ and $U : (x, y) \to (-y, x)$.

Remark 1.1. Every KK-element can be made unbounded. KK-product is sometimes easier for unbounded KK-elements, in particular outer KK-product over \mathbb{C} .

Construction form unbounded cycles to a bounded ones:

$$(\mathcal{E}, \pi, D) \to (\mathcal{E}, \pi, D(1+D^2)^{-\frac{1}{2}})$$

Things to be checked:

 $(1)F = D(1+D^2)^{-\frac{1}{2}}$ extends to a bounded operator on \mathcal{E} . $(2)1 - F^2 = (1 + D^2)^{-1}$ compact.

 $(3)[F, \pi(a)] \subset \mathcal{K}(\mathcal{E})$ (It is enough to check on the dense algebra \mathcal{A}). Note that

$$\frac{1}{\sqrt{x}} = \frac{2}{\pi} \int_0^\infty \frac{1}{x+t^2} \mathrm{d}t,$$

then

$$(1+D^2)^{-\frac{1}{2}} = \frac{2}{\pi} \int_0^\infty (I(1+t^2) + D^2)^{-1} \mathrm{d}t$$

is a uniformly convergent integral.

Given $[D, \pi(a)]$ bounded we have $[D(1 + t^2 + D^2)^{-1}, \pi(a)]$ compact, then the norm convergence of the integral

$$[F, \pi(a)] = \frac{2}{\pi} \int_0^\infty [D(1+t^2+D^2)^{-1}, \pi(a)] \mathrm{d}t$$

gives rise to a compact limit.

2. Examples of elliptic differential operator

2.1. de Rham operator. : M compact manifold, $n = \dim M$

Let d be exterior differential on M, $\Omega^0 = C^{\infty}(M, \mathbb{C})$, $\Omega^1 \cong T^*M \otimes \mathbb{C}$, $\Omega^k = \bigwedge^k T^*M \otimes \mathbb{C}$, $\Omega = \bigoplus_{k=0}^n \Omega^k$. Then $d: C^{\infty}(\Omega^k) \to C^{\infty}(\Omega^{k+1})$, $\forall \omega_1 \in C^{\infty}(\Omega^j)$, $\omega_2 \in C^{\infty}(\Omega^k)$.

Then $d: C^{\infty}(\Omega^k) \to C^{\infty}(\Omega^{k+1}), \forall \omega_1 \in C^{\infty}(\Omega^j), \omega_2 \in C^{\infty}(\Omega^k)$ $\omega_1 \wedge \omega_2 = (-1)^{jk} \omega_2 \wedge \omega_1$ $d(\omega_1 \wedge \omega_2) = d\omega_1 \wedge \omega_2 + (-1)^j \omega_1 \wedge d\omega_2.$ $d^2 = 0.$ Choose a Biomennian matrix on M, then we have a Hermitian $d^2 = 0$.

Choose a Riemannian metric on M, then we have a Hermitian structure on $C^{\infty}(\Omega)$, denote H as the completion of $C^{\infty}(\Omega)$ under the inner product:

 $H = H^{(0)} \oplus H^{(1)}, H^{(0)} = \bigoplus_{k \text{ even}} L^2(\Omega^k), H^{(1)} = \bigoplus_{k \text{ odd}} L^2(\Omega^k).$

Let π denote the representation of C(M) on H by point-wise multiplication. Claim: $(H, \pi, d + d^*)$ is an unbounded cycle. In fact:

 $(1) \forall f \in C^{\infty}(M, \mathbb{C}), [d, \pi(f)]\omega = df \wedge \omega$ this is bounded (with norm $||df||_{\infty}$, where $||\cdot||$ is maximal norm)

In addition, $[d^*, \pi(f)] = -[d, \pi(f^*)]^*$, so $[d + d^*, \pi(f)]$ is bounded on H. (2)d + d^{*} has compact resolvent.

Remark 2.1. $d + d^*$ does not depend on metric and manifold.

Let $M = \mathbb{T}^n = (\mathbb{R}/2\pi\mathbb{Z})^n$, then basis for Ω are of the form: $x \to e^{-i < k, x >} dx_I = \omega_{k,I} \in \Omega$ for $k \in \mathbb{Z}^n, I \subset \{1, \ldots, n\}$.

One can check that $(d + d^*)^2 \omega_{k,I} = (dd^* + d^*d)\omega_{k,I} = |k|^2 \omega_{k,I}$, where $|k| = \sum_{i=1}^{\infty} k_i^2$ and observe that $(d + d^*)^2$ has compact inverse.

The analytical index of $d + d^*$ is defined as

$$\operatorname{ind}_{a}(d + d^{*}) = \dim(\ker(d + d^{*})|_{H^{(0)}}) - \dim(\ker(d + d^{*})|_{H^{(1)}}).$$

 So

$$\operatorname{ind}_{a}(d+d^{*}) = \sum (-1)^{k} \beta_{k}(M), \text{ where } \beta_{k}(M) =: \dim H^{k}(M, \mathbb{C}),$$

the Euler number of M.

2.2. Signature Operator. *M* oriented 4*k*-dimensional, Ω , d + d^{*}, ker(d + d^{*}) = $H^*(M) = H^0 \oplus \cdots \oplus H^{4k}$.

We define a quadratic form on Ω :

$$Q(\omega_1, \omega_2) = (-1)^{\frac{l(l-1)}{2}} \int_M \overline{\omega_1} \wedge \omega_2, \, \forall w_1, w_2 \in \Omega, \, \deg \omega_1 = l$$

Note that if $\deg \omega_1 + \deg \omega_2 \neq 4k$, $Q(\omega_1, \omega_2) = 0$.

We define the signature of M as the signature of the quadratic form, note that if $\dim(M) \neq 4k$, the signature is 0.

There exists a grading operator τ on Ω with $\tau^2 = id, \tau^* = \tau$ satisfying

$$Q(\omega_1,\omega_2) = <\tau\omega_1,\omega_2>$$

 $(\tau \text{ is the Hodge } * \text{ operator when } p = 2k.)$

Observe that $\int d\omega = 0 \Rightarrow \int d(\overline{\omega_1} \wedge \omega_2) = 0 \Rightarrow d\tau = -\tau d^* \Rightarrow \tau (d + d^*)\tau = -(d + d^*) \Rightarrow d + d^*$ is odd in the grading given by τ .

Then by definition

 $\operatorname{ind}(d + d^*, \tau) = \operatorname{dim}(\operatorname{eigenspace of } 1) \cap H^* - \operatorname{dim}(\operatorname{eigenspace of } (-1) \cap H^*)$

 $= \dim((\text{eigenspace of } 1) \cap H^{2k}) - \dim(\text{eigenspace of } (-1)) \cap H^{2k} = \text{signature of } M$

Remark 2.2. The de Rham operator and signature operator are the same but acting on spaces with different grading.

2.3. Dirac Operator.

Definition 2.3. A Clifford bundle is a graded Hermitian vector bundle E over M together with a smooth vector bundle map $c: T^*M \otimes E \to E$ or $c: T^*M \to \mathscr{L}(E)$, such that $\forall \xi \in T^*_x M, c(\xi) = c(\xi)^*, c(\xi)^2 = ||\xi||^2 \operatorname{id}_E, c(\xi) \in L(E)^1$.

Remark 2.4. Use the universal property of Clifford algebra, $c: T^*M \to L(E)$ can be extended to an algebra homomorphism $c: \text{Cliff}(T^*M) \to L(E)$, where $\text{Cliff}(T^*M)$ is a bundle over M with each fiber as Clifford algebra generated by T_x^*M .

Definition 2.5. Let *E* be a vector bundle over *M* and $C^{\infty}(E)$ is the set of smooth section of *M* in *E*. A connection is a linear map $\nabla : C^{\infty}(E) \to C^{\infty}(T^*M \otimes E)$ satisfying $\nabla(f\xi) = df \otimes \xi + f(\nabla\xi)$, where $f \in C^{\infty}(M), \xi \in C^{\infty}(E)$

Remark 2.6. There always exists a connection on E which respects scalar product and grading.

Definition 2.7. Dirac operator $\partial : C^{\infty}(E) \to C^{\infty}(E)$ is the composition $C^{\infty}(E) \to C^{\infty}(T^*M \otimes E) \to C^{\infty}(E)$ where the first arrow is the connection and the second is the Clifford multiplication of $c(\xi), \xi \in T^*M$.

Remark 2.8. One need to check $/\partial$ has compact resolvent and commute with $\pi(a), \forall a \in C(M)$ up to compact operator $(\pi : C(M) \to \mathcal{L}(L^2(E)))$ by multiplication).

Remark 2.9. If $E = \Omega$ and define $c(\xi) = e(\xi) + e(\xi)^*$ where $e(\xi)\omega = \xi \wedge \omega$ then one can check the last two subsections are examples of Dirac Operators.

Question: Let T be a real Euclidean vector bundle over an even dimensional space M, we can form a bundle $\operatorname{Cliff}_{\mathbb{C}} T$ over M with fiber $\operatorname{Cliff}_{\mathbb{C}} T_x \cong M_{2^m}(\mathbb{C})$. Does there exist a graded vector bundle E such that $\operatorname{Cliff}_{\mathbb{C}} T \cong \mathcal{L}(E)$? (E is irreducible representation of $\operatorname{Cliff}_{\mathbb{C}} T$?)

Answer: It is not always true. There is an obstruction (Dixmier-Douady obstruction). Giving such a bundle is what we call a $Spin^c$ structure on T.

Remark 2.10. Each Riemannian vector bundle E gives rise to a principal O(n) bundle over M. We say E is oriented if we can lift the structure group O(n) to SO(n).

An oriented vector bundle T is spin^c if the structure group SO(n) lifts to to $\operatorname{spin}^{c}(n) = U(1) \times_{\mathbb{Z}/2} \operatorname{spin}(n)$, where $\operatorname{spin}(n)$ is a double cover of SO(n) (If $n \geq 3$, $\operatorname{spin}(n)$ is the universal cover of SO(n)).

3. TOPOLOGICAL INDEX

The Atiyah-Singer Index theorem computes the index of such operators. It can be stated as:

$$\operatorname{ind}_{a}(P) = \operatorname{ind}_{t}(\sigma_{P})$$

where P is an elliptic (pseudo)differential operator and σ_P is (the K-theory class of) its principal symbol.

GEORGE SKANDALIS

We now give a few explanations on these and define the map $\operatorname{ind}_t : K^0(T^*M) \to \mathbb{Z}$.

Given a elliptic operator $P: C^{\infty}(M, E) \to C^{\infty}(M, E)$ on a compact manifold M, its symbol $\sigma(P)$ is a matrix valued map defined on T^*M ($\sigma(P): T^*M \to \text{End}(V)$). The definition of ellipticity implies $\sigma(P)$ invertible off the zero section.

Using relative K-theory we know the symbol $\sigma(P)$ gives rise to an element in $K^0(T^*M)$. Apply ind_t to this element we get an integer, we will call it topological index of P.

The construction of $\operatorname{ind}_t : K(T^*M) \to \mathbb{Z}$ needs the following ingredients: Thom isomorphism, tubular neighborhood and Bott.

3.1. Bott element. Bott element is β is the generator of $K_0(C_0(\mathbb{R}^{2n}))$, the map given by

$$K^{0}(M) \cong K_{0}(C(M))$$

$$\rightarrow K_{0}\left(C_{0}\left(\mathbb{R}^{2n}\right)\right) \otimes K_{0}\left(C\left(M\right)\right) \cong K_{0}\left(C_{0}(M \times \mathbb{R}^{2n})\right) = K^{0}\left(M \times \mathbb{R}^{2n}\right):$$

 $K^0(M)\to K^0(M\times\mathbb{R}^{2n}):p\mapsto\beta\otimes p$ is called Bott map. This map is an isomorphism.

3.2. Thom isomorpism.

Theorem 3.1. If T is a spin^c bundle over M then there is an isomorphism $K^0(M) \to K^0(T)$. In particular, any complex vector bundle carries a spin^c- structure, so we have Thom isomorphism for complex vector bundles.

Remark 3.2. The inverse of Thom isomorphism is constructed as follows:

T, spin^c-bundle over M, $\exists T'$ such that $T \oplus T' = M \times \mathbb{R}^{2n}$. There is a natural spin^c structure on T'. Then $T \oplus T'$ is a spin^c bundle over T so

$$K(T) \to K(T \oplus T') \cong K(M \times \mathbb{R}^{2m}) \to K(M),$$

the first arrow is Thom isomorphism and the last one is the inverse Bott map.

3.3. Tubular neighborhood theorem. When we embed M in \mathbb{R}^n , $TM \to T\mathbb{R}^n \cong \mathbb{R}^{2n}$, the normal bundle N of M also embed in $\mathbb{R}^{2n}(N \oplus TM = M \times \mathbb{R}^n)$.

By the tubular neighborhood theorem, there is an open neighborhood U of M in \mathbb{R}^n such that N is diffeomorphic with $U \subset \mathbb{R}^n$.

3.4. Construction of ind_t . Embed M in \mathbb{R}^n , n is even, $TM \to T\mathbb{R}^n = \mathbb{R}^{2n}$, normal bundle $N \cong U \to \mathbb{R}^n$ (U is a open neighborhood of M in \mathbb{R}^n) and $TM \oplus N \cong M \times \mathbb{R}^n$

Since $U \cong N$ is a vector bundle over M, so TU is a vector bundle of TM. In fact,

$$TU \cong \pi^*(N \oplus N) \cong \pi^*(N \otimes_{\mathbb{R}} \mathbb{C})$$

where $\pi: TM \to M$.

By Thom isomorphism, we have

$$K^0(TU) \cong K^0(TM).$$

Since U is open in \mathbb{R}^n , so TU is open in $T\mathbb{R}^n \cong \mathbb{R}^{2n}$. Hence we get a map $K(TN) \to \mathbb{R}^{2n}$ induced by inclusion map. Therefore, we have

$$K^0(T^*M) \cong K^0(TM) \cong K^0(TU) \to K^0(\mathbb{R}^{2n}) \cong \mathbb{Z}.$$

4

The image of $[\sigma(P)] \in K^0(T^*M)$ under these process is defined as the topological index of P.

4. Computation of index of some elliptic operator

(a) Take $M = S^1$. We will construct two elliptic operators whose symbol is respectively the generator of $K^1(S^1) = \mathbb{Z}$ and of $K^0(\mathbb{R} \times S^1) = K^1(S^1) = \mathbb{Z}$.

For the first one, (writing $S^1 = \mathbb{R}/2\pi\mathbb{Z}$ and x the real variable) just take

$$-i\frac{\partial}{\partial x}: L^2(S^1) \to L^2(S^1),$$

whose principal symbol is $(x,\xi) \mapsto \xi$. Here $L^2(S^1)$ is generated by $\{z^n\}_{n \in \mathbb{Z}}, z = e^{ix}, x \in S^1$ and denote $e_i = z^n$ and clearly we have $-i\frac{\partial}{\partial x}z^n = nz^n$.

Then making it bounded we obtain H (the Hilbert transform) given by

(4.1)
$$H(e_n) = \begin{cases} e_n & n > 0\\ -e_n & n < 0\\ 0 & n = 0 \end{cases}$$

whose principal symbol is $(x,\xi) \mapsto \operatorname{sign}(\xi) = \frac{\xi}{|\xi|}$. Put also $P = \frac{H+1}{2}$ whose principal symbol is $\sigma(x,\xi) = \begin{cases} 1 & \xi > 0 \\ 0 & \xi < 0 \end{cases}$

To define the second element, write $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$ and use the exact sequence:

$$0 \to C_0(\mathbb{R} \times S^1) \to C(\overline{\mathbb{R}} \times S^1) \to C(S^1) \oplus C(S^1) \to 0$$

The connecting map $K^1(S^1) \oplus K^1(S^1) \to K^0(S^1 \times \mathbb{R}) = K^1(S^1)$ is the map $(a, b) \mapsto a - b$. It follows that the principal symbol of F = zP + (1 - P) is the generator of $K^0(\mathbb{R} \times S^1)$. Therefore, using $K^0(T^*S^1) \cong K^0(S^1 \times \mathbb{R})$:

$$\operatorname{ind}_a: K^0(T^*S^1) \to \mathbb{Z}: \sigma(F) \mapsto \operatorname{ind}(F).$$

Since $F(e_n) = \begin{cases} e_n & n < 0\\ e_{n+1} & n \ge 0 \end{cases}$, we have $\operatorname{ind}(F) = -1$.

(b) Let Λ be a lattice in \mathbb{C} ($\Lambda = \mathbb{Z}a + \mathbb{Z}b, a, b$ independent over \mathbb{R}) then $M = \mathbb{C}/\Lambda \cong \mathbb{T}^2$ compact. E is a graded complex bundle over M, we want to compute the index of the Dirac operator $D: L^2(E^{(0)}) \to L^2(E^{(1)})$, more precisely, the index of the Dolbeault operator $\bar{\partial}_E$ with the coefficient in E. In fact, $\{\bar{\partial}_E\}$, where E is complex vector bundle over X, generates $K_0(M)$, K-homology of M.

An easy example: When E is 1 dim trivial line bundle:

$$\bar{\partial}: C^{\infty}(M, \mathbb{C}) \to C^{\infty}(M, \mathbb{C}): f \mapsto \frac{\partial}{\partial \bar{z}} f = \frac{1}{2} (\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y}),$$

the symbol of which is the clifford multiplication by $i\xi - \eta$. Since

$$f \in \ker \bar{\partial} \Leftrightarrow \frac{\partial}{\partial \bar{z}} f = 0 \Leftrightarrow f$$
 holomorphic on M

GEORGE SKANDALIS

and f is bounded on compact M, f can be lifted to a bounded holomorphic function on \mathbb{C} with the same value on the orbit, which implied f to be constant. We have dim ker $\bar{\partial} = \dim \ker \bar{\partial}^* = 1$, so

$$\operatorname{ind}(\partial) = 0$$

Remark 4.1. For any complex bundle E over M with dim large enough, E has a complex sub line bundle L ($E = \mathbb{C}^k \oplus L$). It is enough to compute $\operatorname{ind}(\bar{\partial}_L)$. The kernel of $\bar{\partial}_L$ are all holomorphic sections of the line bundle L. (We will assume L a holomorphic line bundle, i.e. the transition function $g_{ij} : U_i \cap U_j \to \mathbb{C}^*$ are holomorphic and satisfy the cocycle equality. If ω_i is a nowhere vanishing holomorphic section over U_i , then on $U_i \cap U_j$, we have $\omega_i = g_{ij}\omega_j$.)

Now we define $\bar{\partial}_L$ on the section in L locally by

$$\bar{\partial}_L(fw_i) = (\bar{\partial}f)w_i,$$

it is well defined because g_{ij} is holomorphic.

Now choose a Hermitian metric on L: $||w_i|| =: \alpha_1$ with $\alpha_i : U_i \to \mathbb{R}^*_+$ smooth. The inner product is locally

$$\langle fw_i, hw_i \rangle = \int_M \bar{f}h\alpha_i^2 \mathrm{d}x\mathrm{d}y, \forall f \in C_c^\infty(U_i),$$

so $\bar{\partial}_L^*$ locally is

$$<\bar{\partial}_{L}^{*}hw_{i}, fw_{i}>==\int (\bar{\partial}f)\bar{h}\alpha_{i}^{2}\mathrm{d}x\mathrm{d}y=-\int f\bar{\partial}(h\alpha_{i}^{2})\mathrm{d}x\mathrm{d}y.$$

This means we have an anti-linear bundle map $\varphi_L : L \to L^* = \operatorname{Hom}(L, \mathbb{C})$ where the holomorphic section on L^* is given by $w_i^*, \varphi_L(hw_i) = \bar{h}\alpha_i^2 w_i^*$ is a well-defined isometric map. One need to check that $\bar{\partial}_L^* = -\varphi^{-1} \circ \bar{\partial}_{L^*} \circ \varphi_L$, therefore,

$$\operatorname{ind}(\bar{\partial}_L) = \operatorname{dim}(\ker \bar{\partial}_L) - \operatorname{dim}(\ker \bar{\partial}_{L^*}).$$

Definition 4.2. A divisor on M is a function $D : M \to \mathbb{Z}$ with finite discrete support, denoted by $D = \sum_{p \in M} D(p)p$. The degree of D is $\deg(D) = \sum_{p \in M} D(p)$. Divisor of a meromorphic function f on M is $D(f) = \sum_{p \in M} s_{f(p)}p$, where $s_{f(p)} = 1$ if p is a simple zero of f. In general, $s_{f(p)}$ is equal to the multiplicity of the zero p or minus the multiplicity of the pole p.

Given a divisor $D: a_1, \dots, a_k \in M, n_1, \dots, n_k \in \mathbb{Z}$, we can construct a holomorphic line bundle L as follows:

Let $U_0 = M \setminus a_1, \dots, a_k$, $U_i = (\text{disjointed})$ disc around $a_i, (i > 0)$ be the open cover of M with the transition function $g_{0i}(z) = (z - a_i)^{-n_i}$. (L^{*} is constructed through $g_{0i} = (z - a_i)^{n_i}$).

For any global holomorphic section in L, locally we have $fw_0 = f_i w_i, w_0 = g_{0i} w_i$, and $f = (z - a_i)^{n_i} f_i$ near a_i , then a holomorphic section correspond to a unique meromorphic function f on M such that the multiplicity of the pole at a_i is no more than $-n_i$ if n_i and the multiplicity of zero at a_i is no less than n_i if $n_i > 0$, this is equivalent to say that $D(f) \ge D$, so

 $\dim(\ker \bar{\partial}_L) = \dim(\text{holo. sections in L}) = \dim\{f \text{mero. on } M | D(f) \ge D\}.$

Similarly,

 $\dim(\ker \bar{\partial}_{L^*}) = \dim(\text{holo. sections in } L^*) = \dim\{f \text{ mero. on } M | D(f) \ge -D\}.$

So we have

$$ind(\partial_L) = \dim\{f \text{ mero.} | D(f) - D \ge 0\} - \dim\{f \text{ mero.} | D(f) + D \ge 0\}$$
$$= g - 1 - D = -\deg(D),$$

where L is the line bundle correspond to divisor D. The second equality is due to Riemann Roch theorem.

Remark 4.3. It is fact that for any holomorphic line bundle L it correspond to a divisor $D = \sum n_i[a_i]$, then ind $\bar{\partial}_L = -\sum n_i$.

5. Generalization of proof of the index theorem

Recall in the proof of Atiyah-Singer index theorem we use the tangent groupoid $G \rightrightarrows M \times [0,1]$ where $G = (0,1] \times M \times M \cup \{0\} \times T^*M$. G as a continuous field over [0,1], $M \times M$ continuous deform into T^*M . The normal bundle with respect the inclusion $M \to M \times M$ is T^*M

Analogously if there is an embedding $i: M \to V$ we form a normal bundle $N_i(x) = T_{i(x)}/d_i(T_xM), x \in M$, and define a manifold

$$D(i) = N_i \times \{0\} \cup V \times \mathbb{R}^*$$

with the smooth topology defined by $((x_n, \lambda_n) \in V \times \mathbb{R}^*) \to ((x, \xi, 0) \in N_i \times \{0\}) \Leftrightarrow \lambda_n \to 0, x_n \to i(x), p(x_n - i(x))/\lambda_i \to \xi$, where p is the projection to the quotient in the definition of $N_i(x)$. (deformation to the normal cone)

(a)Atiyah-Singer index theorem for families:

Let $p: M \to Y$ be a map with fiber $M_y = p^{-1}(y)$ and $(M_y)_{y \in Y}$ a family of manifold. Define the groupoid $G = M \times_Y M = \{(x, y) : p(x) = p(y), x, y \in M\}$ and the inclusion $M \to M \times_Y M : x \mapsto (x, x)$.

By the normal cone method we can construct $ind : K(T^*M) \to K(Y)$ and get the fiberwised index theorem.

(b)Non-commutative fiberation:

Let M be a compact manifold and \tilde{M} is the universal covering space of M, and $\Gamma = \pi_1(M)$, then $M = \tilde{M}/\Gamma$.

Construct groupoid $G = \tilde{M} \times \tilde{M}/\Gamma \Rightarrow \tilde{M}/\Gamma$ by $s((\tilde{x}, \tilde{y})/\Gamma) = \tilde{y}/\Gamma$ and $r((\tilde{x}, \tilde{y})/\Gamma) = \tilde{x}/\Gamma$. (\tilde{x}, \tilde{y}) and $(\tilde{y'}, \tilde{z'})$ is compossible if $\exists g \in \Gamma$ such that $\tilde{y} = \tilde{y'}g$ and the composition is $(\tilde{x}, \tilde{z}g)$. Clearly it is well defined.

The groupoid G is transitive, i.e. $\forall x, y \in M, \exists r \in G \text{ such that } s(r) = x, r(r) = y.$ Also $G_x^x = \{r \in G | s(r) = r(r) = x\} \cong \Gamma.$

Take the inclusion $i: M \to G$ and the normal bundle to this is the cotangent bundle to M, then $D(i) = T^*M \cup (0, 1] \times G$ and we get a index map

$$K_{nd}: K^{0}(T^{*}M) \cong K^{0}(D(i)) \to K_{0}(G) \cong K_{0}(C_{r}^{*}\Gamma).$$

Remark 5.1. Baum-Connes Conjecture: If Γ is torsion free, then

1. Every element in $K_0(C_r^*\Gamma)$ can be constructed using the index of elliptic operator in the above way.

2.If two elliptic operator have the same index, there is a good topological reason. (This will imply Novikov conjecture).