INDEX THEORY

GEORGE SKANDALIS

Lecture 1: Examples + constructions of Ind¢
Lecture 4: computations + generalizations

1. Unbounded KK-theory (Baaj-Julg)

Recall the definition of cycles of KK (A, B) are triples of form (E, , F) where

(1) E=EO® [E® is graded Hilbert B-module.

(2) Aunital m: A - L (E) is a graded [=representation of A.

(3) F I (E) is of odd grading satisfying F = F5'F2 — 1 [CKI(E), [F,n(a)] 1
K(E).

To define a unbounded cycle A, 1, E have the same assumption, and F is replaced
by a unbounded D with the following assumption:

(1) D = D~'Recall definition of D ~if Dom(D) dense in E and [X]y [E] [ZI[E]
such that < Dx,y >=< x,z >, then D= z.

(2) D has compact resolvent,i.e. (D+il)~! CKI(E). Note that D +il is invertibe
because Sp(D) [RI

(3) There exists a dense algebra A Al such that [r(a), D] is bounded, [al CA.

(4) D is regular, i.e. (GraphD) —FUGraph(D) = E [E] where Graph(D) =
{(x,Dx),x [DomD} and U : (X,y) - (=Y, X).

Remark 1.1. Every KK-element can be made unbounded. KK-product is some-
times easier for unbounded KK-elements, in particular outer KK-product over C.

Construction form unbounded cycles to a bounded ones:

(E,m,D) - (E,m,D(1+D?)~%)
Things to be checked:
(DF =D(1+ DZ)‘% extends to a bounded operator on E.
(2)1—F2 = (1+ D?)~! compact.
(3)[F.m(a)] CKIE) (It is enough to check on the dense algebra A).
Note that
2 — 1
= - ——dt,
M o X+t2

then o, 1

1+DH)72 == (I0+1t)+ D) dt

0

Se

is a uniformly convergent integral.
Given [D, m(a)] bounded we have [D(1 + t> + D?)™1,(a)] compact, then the
norm convergence of the integral

[D(1+ t? + D?)™ 1 n(a)]dt
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gives rise to a compact limit.

2. Examples of elliptic differential operator

2.1. de Rham operator. : M compact manifold, n = dim M
Iﬁt d be exterior dilefential on M, Q° = C=(M, C), Q' £FW ) ok =

TV [Tl Q= )0k

Then d : C=(QX) - C=(Q*Y), [y CA=(Q), wy CT(QK).

op [0} = (-1 0 Cal

dgwl [w}) = dw; [Cwp + (—1) 0, Cdby.

dc=0.

Choose a Riemannian metric on M, then we have a Hermitian structure on
C*(Q), denote H as the com%n of C*(Q) underlmiipner product:

H=HO HO HO® = " L2(Q%),H® = — 4 L2(Q).

Let 1t denote the representation of C(M) on H by point-wise multiplication.

Claim: (H,m,d + dYis an unbounded cycle. In fact:

(D) EI A= (M, ), [d,i(F)Je = df [Cwl this is bounded (with norm [dFf [,
where [=1—is maximal norm)

In addition, [d5H(F)] = —[d, n(f D5 so [d + d5 i (F)] is bounded on H.

(2)d + d“has compact resolvent.

Remark 2.1. d + d™#oes not depend on metric and manifold.

Let M = T" = (R/2nZ)", then basis for Q are of the form: x — e 1<kxX>dx, =
Wk, CAfor k 2, 1 L3,...,n}
Srg can check that (d + dH%wx, = (dd™¥F d'd)wx, = |k|?wk 1, where |K]|
—, k? and observe that (d + d")? has compact inverse.
The analytical index of d + d™s defined as

inda(d + d9'= dim(ker(d + dY,y0») — dim(ker(d + dS ).

So 1
inda(d +d9'=  (—1)XB(M), where Bx(M) =: dimHKX(M, C),
the Euler number of M.

2.2. Signature Operator. M oriented 4k-dimensional, Q,d + d5ker(d + dD'=
HtM) = H® =1 CHPX
We define a quadratic form on QI:I

Q1 wp) = (-1)7> 7 Cwb, W, wp QI degwy = .
M

Note that if degw; + degw, & 4k, Q(w1, w2) = 0.

We define the signature of M as the signature of the quadratic form, note that
if dim(M) & 4k, the signature is 0.

There exists a grading operator T on Q with t2 = id, T =% 1 satisfying

Q(w1, w2) =< TWy, W2 >.
(T is the Hodge [dperator whep-p = 2k.)
Observe that dw = 0 [C_d#(®; [wp) =0 [Cddl= —td~CT® +dHt =
—(d+dY d#+ d™s odd in the grading given by T.
Then by definition

ind(d + d5 1) = dim(eigenspace of 1) n H~L dim(eigenspace of (-1) n HY!
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= dim((eigenspace of 1) n H?X) — dim(eigenspace of (-1)) n H?*=signature of M

Remark 2.2. The de Rham operator and signature operator are the same but acting
on spaces with di Lerknt grading.

2.3. Dirac Operator.

Definition 2.3. A Clilard bundle is a graded Hermitian vector bundle E over M
together with a smooth vector bundle mapc: T"™ CE1- Eorc: T - L (E),

such that [EICTIM, c(&) = c(§)5c(€)? = ET%1dg, c(§) CLXE) .

Remark 2.4. Use the universal property of Cli[and algebra, ¢ : T™M - L(E) can be
extended to an algebra homomorphism ¢ : Cli (I ") - L(E), where CIi (T "M)
is a bundle over M with each fiber as Cli[and algebra generated by T,:M.

Definition 2.5. Let E be a vector bundle over M and C*(E) is the set of smooth
section of M in E. A connection is a linear map C—C*(E) - C°(T"™M [CE)
satisfying [(¥d) = df ¥ f( &) Iwhere f CO>~(M), & CA*(E)

Remark 2.6. There always exists a connection on E which respects scalar product
and grading.

Definition 2.7. Dirac operator [@ : C*°(E) - C°°(E) is the composition C**(E) -
C>=(T™™W1 [E) - C=(E) where the first arrow is the connection and the second
is the Cli[and multiplication of ¢(&), & CTI'M.

Remark 2.8. One need to check [0 has compact resolvent and commute with
n(a), @ (M) up to compact operator (m : C(M) - L(L?(E)) by multipli-
cation).

Remark 2.9. If E = Q and define ¢(€) = e(€) + e(§) “Where e(§)w = & Lalthen one
can check the last two subsections are examples of Dirac Operators.

Question: Let T be a real Euclidean vector bundle over an even dimensional
space M, we can form a bundle CliLcT over M with fiber Cli gy £-Mym(C).
Does there exist a graded vector bundle E such that Clilelr £H(E)? (E is
irreducible representation of Cli [T ?)

Answer: It is not always true. There is an obstruction (Dixmier-Douady ob-
struction). Giving such a bundle is what we call a Spin® structure on T.

Remark 2.10. Each Riemannian vector bundle E gives rise to a principal O(n)
bundle over M. We say E is oriented if we can lift the structure group O(n) to
SO(n).

An oriented vector bundle T is spin® if the structure group SO(n) lifts to to
spin®(n) = U (1) %2/, spin(n), where spin(n) is a double cover of SO(n) (If n = 3,
spin(n) is the universal cover of SO(n)).

3. Topological Index

The Atiyah-Singer Index theorem computes the index of such operators. It can
be stated as:
inda(P) = ind¢(op)
where P is an elliptic (pseudo)di Lerkntial operator and op is (the K-theory class
of) its principal symbol.
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We now give a few explanations on these and define the map ind, : K°(T 'M) -
Z.

Given a elliptic operator P : C*°(M,E) - C*(M, E) on a compact manifold M,
its symbol a(P) is a matrix valued map defined on T™™M (a(P) : T"™™ - End(V)).
The definition of ellipticity implies o(P) invertible o [the zero section.

Using relative K-theory we know the symbol o(P) gives rise to an element in
KO(T BW1). Apply indy to this element we get an integer, we will call it topological
index of P.

The construction of ind; : K(T BM) - Z needs the following ingredients: Thom
isomorphism, tubular neighborhood and Bott.

. . Ol O, M
3.1. Bott element. Bott element is B is the generator of K Co R?" , the map
given by
K°(M) £Kh(cm
(M) Ii? I%IZ))[D] 1 2 [ 0 L1 5 1]
~ Ko Co R L[Kph(C(M)) £ Co(M xR?™) =K° M xR?"
KO(M) -~ KO(M x R2") : p 3 B [pls called Bott map. This map is an isomor-
phism.
3.2. Thom isomorpism.

Theorem 3.1. If T is a spin® bundle over M then there is an isomorphism
KO(M) - KO(T). In particular, any complex vector bundle carries a spin°- struc-
ture, so we have Thom isomorphism for complex vector bundles.

Remark 3.2. The inverse of Thom isomorphism is constructed as follows:
T, spin®-bundle over M, [T”such that T CTH= M x R?". There is a natural
spin® structure on TY Then T [T ¥is a spin® bundle over T so
K(T) - K(T CTH £K(M =< R2™) -, K(M),
the first arrow is Thom isomorphism and the last one is the inverse Bott map.
3.3. Tubular neighborhood theorem. When we embed M inR", TM — TR" £
R?", the normal bundle N of M also embed in RZ"(N [CTM =M x R").

By the tubular neighborhood theorem, there is an open neighborhood U of M
in R™ such that N is di[edmorphic with U [CRY.

3.4, Construction of ind;. Embed M in R", nis even, TM - TR" = R2",
normal bundle N £1 _, R" (U is a open neighborhood of M in R") and TM N1
M x R"

Since U £\ is a vector bundle over M, so TU is a vector bundle of TM. In

fact,
TU LIN ) LrIN r@)
wherem: TM - M.

By Thom isomorphism, we have
KO(TU) £P(TMm).

Since U is open in R", so TU is open in TR" £ RP". Hence we get a map
K(TN) - R?" induced by inclusion map. Therefore, we have

KO(T "™ £P(T M) £P(TU) - KO(R?™) £ Z]
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The image of [0(P)] [CKI°(T 5M1) under these process is defined as the topological
index of P.

4. Computation of index of some elliptic operator
(a)Take M = S'. We will construct two elliptic operators whose symbol is
respectively the generator of K!(S!) = Z and of K°(R x S1) = K1(S1) = Z.
For the first one, (writing S = R/2nZ and x the real variable) just take
.0
—i—— 1 L*(S") - L3St
o tL3(SY) - LAY,
whose principal symbol is (x,§) B &. Here L2(S?) is generated by {z"}nzz =
eX,x CSE and denote e; = z" and clearly we have —ia‘lxz” = nz".

Then making it bounded we obtain H (the Hilbert transform) given by
C1

B n>0

4.1) H(en) = %‘ n<o
n=20

whose principal syml’])%f (x,&) B sign(¢) = Ig_l Putalso P = % whose principal
1 &=>0
0 &<0
To define the second element, write R = R [{3Foo} and use the exact sequence:
0 - Co(RxS') - C(RxS') - c(sh) CIs?) -0

The connecting map K*(S?) [K#(S!) -~ K°(S'xR) = K1(S?) is the map (a,b) B
a—h. It follows that the principal symbol of F = zP + (1 — P) is the generator of
KO(R x S1). Therefore, using KO(T 'S1) £ KP(S! x R):

ind, : KYTSY & Z:6(F) B ind(F).

symbol is (X, §) =

en n<

Since F(en) =
en+1 n 2

8, we have ind(F) = —1.

(b) Let A be a lattice in C (A = Za + Zb, a,b independent over R) then M =
V== compact. E is a graded complex bundle over M, we want to compute
the index of the Dirac operator D : L2(E@) - L2(E™), more precisely, the index
of the Dolbeault operator dg with the coe [cieht in E. In fact, {Og}, where E is
complex vector bundle over X, generates Ko(M), K-homology of M.

An easy example: When E is 1 dim trivial line bundle:

9 _L1of  of
9z  2'0x 9y

the symbol of which is the cli Ladd multiplication by i& —n. Since

f [Kéro - (%f =0 = T holomorphic on M

9:C=(M,C) -~ C=(M,C):f ),
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and T is bounded on compact M, f can be lifted to a bounded holomorphic function
on C with the same value on the orbit, which implied f to be constant. We have
dimkerd = dimkerd™~% 1, so B

ind(9) = 0.

Remark 4.1. For any complex bundle E over M with dim large enough, E has a
complex sub line bundle L (E = CK ). It is enough to compute ind(d.). The
kernel of g, are all holomorphic sections of the line bundle L. (We will assume
L a holomorphic line bundle, i.e. the transition function gj; : Ui n U; —» CH
are holomorphic and satisfy the cocycle equality. If w; is a nowhere vanishing
holomorphic section over U;, then on U; n Uj, we have wj = gijwj.)

Now we define 9, on the section in L locally by
oL (fwi) = (9F)wi,
it is well defined because gij is holomorphic.

Now choose a Hermitian metric on L: 08 [C=: a; with o; : Ui — RSsmooth.
The inner product is locally

<fw;, hw; >=  FhaZdxdy, [FICCE (U)),
M

so 8 ocally is
- ] ]

< o Hw;, fw; >=< hw;,d_fw; >=  (@F)haldxdy = —  Fa(ha?)dxady.

This means we have an anti-linear bundle map ¢, : L - L™%= Hom(L, C) where
the holomorphi ¢ section on L s given by w5'¢, (hw;) = ha?w s a well-defined
isometric map. One need to check that 0= —¢~1 = 3, c» ¢, therefore,

ind(9,) = dim(ker 9,) — dim(ker 9, o

Definition 4.2. A divisof-eaM is a function D : M - Z with finite—¢gjiscrete
support, denoted by D = pEM]D(p)p. The degree ofID__isIdeg(D) = om D(p).
Divisor of a meromorphic function f on M is D(f) = p (1 SF() P where sgy =1
if p is a simple zero of f. In general, s¢ ) is equal to the multiplicity of the zero p
or minus the multiplicity of the pole p.

Given a divisor D : aj,---ax [M,nq,---,nx [Z1 we can construct a holomor-
phic line bundle L as follows:

Let Up = M \ ay, - ,ak, Uj = (disjointed) disc around aj, (i > 0) be the open
cover of M with the transition function goi(z) = (z —a;)™™. (L™s constructed
through goi = (z — a))™).

For any global holomorphic section in L, locally we have fwg = fijwi, Wo = goiWwi,
and f = (z — a;)"ifj near aj, then a holomorphic section correspond to a unique
meromorphic function f on M such that the multiplicity of the pole at a; is no
more than —n; if n; and the multiplicity of zero at a; is no less than n; if n; > 0,
this is equivalent to say that D(f) = D, so

dim(ker 5._) = dim(holo. sections in L) = dim{fmero. on M|D(f) = D}.
Similarly,
dim(ker5._c)n: dim(holo. sections in LY'= dim{f mero. on M|D(f) = —D}.
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So we have
ind(5._) = dim{f mero.|D(f) — D = 0} — dim{f mero.|D(f) + D =0}
=g—1—D = —deg(D),

where L is the line bundle correspond to divisor D. The second equality is due to
Riemann Roch theorem.

Remark 4.3. |Lt—_i£r|fact that for any holmhic line bundle L it correspond to a
divisor D = nj[aj], then indd_ =— n;.

5. Generalization of proof of the index theorem

Recall in the proof of Atiyah-Singer index theorem we use the tangent groupoid
G [CMIx [0,1] where G = (0,1] x M x M [0} x THM. G as a continuous field
over [0,1], M x M continuous deform into T "M1. The normal bundle with respect
the inclusion M —~ M x M is T

Analogously if there is an embedding i : M - V we form a normal bundle
Ni(X) = Tip/di(TxM),x [M, and define a manifold

D(i) = N; x {0} C(MI1x R™

with the smooth topology defined by ((Xn, An) CMIXRY & ((%,&,0) [CN;x<{0}) =
An - 0,Xn - (X)), p(Xn — I(X))/A\i - &, where p is the projection to the quotient
in the definition of N;j(x). (deformation to the normal cone)

(a)Atiyah-Singer index theorem for families:

Let p: M - Y be a map with fiber My = p~%(y) and (My)yrvaa family of
manifold. Define the groupoid G = M xy M = {(X,y) : p(X) = p(y),x,y M}
and the inclusion M -~ M xy M : x B (X, X).

By the normal cone method we can construct ind : K(T ™) - K(Y) and get
the fiberwised index theorem.

(b)Non-commutative fiberation:

Let M be a compact manifold and M is the universal covering space of M, and
r=m (M), then M = M/T.

Construct groupoid G = MxM /I CMIT by s((%, §)/T) = §/T and r((X, §)/T) =
K/T. (X,¥) and (y5z) is compossible if [g1CTIsuch that ¥ = y'g and the compo-
sition is (X, Zg). Clearly it is well defined.

The groupoid G is transitive, i.e. [X]y [CM, [r1d such that s(r) = x, r(r) =vy.
Also GX = {r CQs(r) = r(r) =x} £ Fl

Take the inclusion i : M - G and the normal bundle to this is the cotangent
bundle to M, then D(i) = T [(Q, 1] x G and we get a index map

ind : KO(T"M) £KP(D(i)) - Ko(G) £Kb(C/F).

Remark 5.1. Baum-Connes Conjecture: If " is torsion free, then

1.Every element in Ko(C5F) can be constructed using the index of elliptic oper-
ator in the above way.

2.1f two elliptic operator have the same index, there is a good topological reason.
(This will imply Novikov conjecture).



