INDEX THEORY

GEORGE SKANDALIS

Lecture 1: Examples + constructions of Ind_{t}
Lecture 4: computations + generalizations

1. Unbounded $K K$-theory (BaAJ-Julg)

Recall the definition of cycles of $K K(A, B)$ are triples of form (\mathcal{E}, π, F) where
(1) $\mathcal{E}=\mathcal{E}^{(0)} \oplus \mathcal{E}^{(1)}$ is graded Hilbert B-module.
(2) A unital $\pi: A \rightarrow \mathscr{L}(\mathcal{E})$ is a graded $*$-representation of A.
(3) $F \in \mathscr{L}(\mathcal{E})$ is of odd grading satisfying $F=F^{*}, F^{2}-1 \in \mathcal{K}(\mathcal{E}),[F, \pi(a)] \in$ $\mathcal{K}(\mathcal{E})$.

To define a unbounded cycle A, π, \mathcal{E} have the same assumption, and F is replaced by a unbounded D with the following assumption:
(1) $D=D^{*}$. Recall definition of D^{*} : if $\operatorname{Dom}(D)$ dense in \mathcal{E} and $\forall x, y \in \mathcal{E}, \exists z \in \mathcal{E}$ such that $<D x, y>=<x, z>$, then $D^{*} y=z$.
(2) D has compact resolvent,i.e. $(D+\mathrm{i} I)^{-1} \in \mathcal{K}(\mathcal{E})$. Note that $D+\mathrm{i} I$ is invertibe because $\operatorname{Sp}(D) \subset \mathbb{R}$.
(3) There exists a dense algebra $\mathcal{A} \in A$ such that $[\pi(a), D]$ is bounded, $\forall a \in \mathcal{A}$.
(4) D is regular, i.e. $(\operatorname{Graph} D)^{\perp} \oplus \mathcal{U} \operatorname{Graph}(D)=\mathcal{E} \oplus \mathcal{E}$, where $\operatorname{Graph}(D)=$ $\{(x, D x), x \in \operatorname{Dom} D\}$ and $U:(x, y) \rightarrow(-y, x)$.
Remark 1.1. Every $K K$-element can be made unbounded. $K K$-product is sometimes easier for unbounded $K K$-elements, in particular outer KK-product over \mathbb{C}.

Construction form unbounded cycles to a bounded ones:

$$
(\mathcal{E}, \pi, D) \rightarrow\left(\mathcal{E}, \pi, D\left(1+D^{2}\right)^{-\frac{1}{2}}\right)
$$

Things to be checked:
(1) $F=D\left(1+D^{2}\right)^{-\frac{1}{2}}$ extends to a bounded operator on \mathcal{E}.
(2) $1-F^{2}=\left(1+D^{2}\right)^{-1}$ compact.
(3) $[F, \pi(a)] \subset \mathcal{K}(\mathcal{E})$ (It is enough to check on the dense algebra $\mathcal{A})$.

Note that

$$
\frac{1}{\sqrt{x}}=\frac{2}{\pi} \int_{0}^{\infty} \frac{1}{x+t^{2}} \mathrm{~d} t
$$

then

$$
\left(1+D^{2}\right)^{-\frac{1}{2}}=\frac{2}{\pi} \int_{0}^{\infty}\left(I\left(1+t^{2}\right)+D^{2}\right)^{-1} \mathrm{~d} t
$$

is a uniformly convergent integral.
Given $[D, \pi(a)]$ bounded we have $\left[D\left(1+t^{2}+D^{2}\right)^{-1}, \pi(a)\right]$ compact, then the norm convergence of the integral

$$
[F, \pi(a)]=\frac{2}{\pi} \int_{0}^{\infty}\left[D\left(1+t^{2}+D^{2}\right)^{-1}, \pi(a)\right] \mathrm{d} t
$$

gives rise to a compact limit.

2. Examples of elliptic differential operator

2.1. de Rham operator. : M compact manifold, $n=\operatorname{dim} M$

Let d be exterior differential on $M, \Omega^{0}=C^{\infty}(M, \mathbb{C}), \Omega^{1} \cong T^{*} M \otimes \mathbb{C}, \Omega^{k}=$
$\bigwedge^{k} T^{*} M \otimes \mathbb{C}, \Omega=\oplus_{k=0}^{n} \Omega^{k}$.
Then d : $C^{\infty}\left(\Omega^{k}\right) \rightarrow C^{\infty}\left(\Omega^{k+1}\right), \forall \omega_{1} \in C^{\infty}\left(\Omega^{j}\right), \omega_{2} \in C^{\infty}\left(\Omega^{k}\right)$.
$\omega_{1} \wedge \omega_{2}=(-1)^{j k} \omega_{2} \wedge \omega_{1}$
$\mathrm{d}\left(\omega_{1} \wedge \omega_{2}\right)=\mathrm{d} \omega_{1} \wedge \omega_{2}+(-1)^{j} \omega_{1} \wedge \mathrm{~d} \omega_{2}$.
$\mathrm{d}^{2}=0$.
Choose a Riemannian metric on M, then we have a Hermitian structure on $C^{\infty}(\Omega)$, denote H as the completion of $C^{\infty}(\Omega)$ under the inner product:
$H=H^{(0)} \oplus H^{(1)}, H^{(0)}=\bigoplus_{k \text { even }} L^{2}\left(\Omega^{k}\right), H^{(1)}=\bigoplus_{k \text { odd }} L^{2}\left(\Omega^{k}\right)$.
Let π denote the representation of $C(M)$ on H by point-wise multiplication.
Claim: $\left(H, \pi, \mathrm{~d}+\mathrm{d}^{*}\right)$ is an unbounded cycle. In fact:
$(1) \forall f \in C^{\infty}(M, \mathbb{C}),[\mathrm{d}, \pi(f)] \omega=\mathrm{d} f \wedge \omega$ this is bounded (with norm $\|\mathrm{d} f\|_{\infty}$, where $\|\cdot\|$ is maximal norm)

In addition, $\left[\mathrm{d}^{*}, \pi(f)\right]=-\left[\mathrm{d}, \pi\left(f^{*}\right)\right]^{*}$, so $\left[\mathrm{d}+\mathrm{d}^{*}, \pi(f)\right]$ is bounded on H.
(2) $\mathrm{d}+\mathrm{d}^{*}$ has compact resolvent.

Remark 2.1. $\mathrm{d}+\mathrm{d}^{*}$ does not depend on metric and manifold.
Let $M=\mathbb{T}^{n}=(\mathbb{R} / 2 \pi \mathbb{Z})^{n}$, then basis for Ω are of the form: $x \rightarrow e^{-i<k, x>} d x_{I}=$ $\omega_{k, I} \in \Omega$ for $k \in \mathbb{Z}^{n}, I \subset\{1, \ldots, n\}$.

One can check that $\left(\mathrm{d}+\mathrm{d}^{*}\right)^{2} \omega_{k, I}=\left(\mathrm{dd}^{*}+\mathrm{d}^{*} \mathrm{~d}\right) \omega_{k, I}=|k|^{2} \omega_{k, I}$, where $|k|=$ $\sum_{i=1}^{\infty} k_{i}^{2}$ and observe that $\left(\mathrm{d}+\mathrm{d}^{*}\right)^{2}$ has compact inverse.

The analytical index of $d+d^{*}$ is defined as

$$
\operatorname{ind}_{a}\left(\mathrm{~d}+\mathrm{d}^{*}\right)=\operatorname{dim}\left(\left.\operatorname{ker}\left(\mathrm{d}+\mathrm{d}^{*}\right)\right|_{H^{(0)}}\right)-\operatorname{dim}\left(\left.\operatorname{ker}\left(\mathrm{d}+\mathrm{d}^{*}\right)\right|_{H^{(1)}}\right)
$$

So

$$
\operatorname{ind}_{a}\left(\mathrm{~d}+\mathrm{d}^{*}\right)=\sum(-1)^{k} \beta_{k}(M), \text { where } \beta_{k}(M)=: \operatorname{dim} H^{k}(M, \mathbb{C})
$$

the Euler number of M.
2.2. Signature Operator. M oriented $4 k$-dimensional, $\Omega, \mathrm{d}+\mathrm{d}^{*}, \operatorname{ker}\left(\mathrm{~d}+\mathrm{d}^{*}\right)=$ $H^{*}(M)=H^{0} \oplus \cdots \oplus H^{4 k}$.

We define a quadratic form on Ω :

$$
Q\left(\omega_{1}, \omega_{2}\right)=(-1)^{\frac{l(l-1)}{2}} \int_{M} \overline{\omega_{1}} \wedge \omega_{2}, \forall w_{1}, w_{2} \in \Omega, \operatorname{deg} \omega_{1}=l .
$$

Note that if $\operatorname{deg} \omega_{1}+\operatorname{deg} \omega_{2} \neq 4 k, Q\left(\omega_{1}, \omega_{2}\right)=0$.
We define the signature of M as the signature of the quadratic form, note that if $\operatorname{dim}(M) \neq 4 k$, the signature is 0 .

There exists a grading operator τ on Ω with $\tau^{2}=\mathrm{id}, \tau^{*}=\tau$ satisfying

$$
Q\left(\omega_{1}, \omega_{2}\right)=<\tau \omega_{1}, \omega_{2}>
$$

(τ is the Hodge $*$ operator when $p=2 k$.)
Observe that $\int \mathrm{d} \omega=0 \Rightarrow \int \mathrm{~d}\left(\overline{\omega_{1}} \wedge \omega_{2}\right)=0 \Rightarrow \mathrm{~d} \tau=-\tau \mathrm{d}^{*} \Rightarrow \tau\left(\mathrm{~d}+\mathrm{d}^{*}\right) \tau=$ $-\left(\mathrm{d}+\mathrm{d}^{*}\right) \Rightarrow \mathrm{d}+\mathrm{d}^{*}$ is odd in the grading given by τ.

Then by definition

$$
\operatorname{ind}\left(\mathrm{d}+\mathrm{d}^{*}, \tau\right)=\operatorname{dim}(\text { eigenspace of } 1) \cap H^{*}-\operatorname{dim}\left(\text { eigenspace of }(-1) \cap H^{*}\right)
$$

$=\operatorname{dim}\left((\right.$ eigenspace of 1$\left.) \cap H^{2 k}\right)-\operatorname{dim}($ eigenspace of $(-1)) \cap H^{2 k}=$ signature of M
Remark 2.2. The de Rham operator and signature operator are the same but acting on spaces with different grading.

2.3. Dirac Operator.

Definition 2.3. A Clifford bundle is a graded Hermitian vector bundle E over M together with a smooth vector bundle map $c: T^{*} M \otimes E \rightarrow E$ or $c: T^{*} M \rightarrow \mathscr{L}(E)$, such that $\forall \xi \in T_{x}^{*} M, c(\xi)=c(\xi)^{*}, c(\xi)^{2}=\|\xi\|^{2} \operatorname{id}_{E}, c(\xi) \in L(E)^{1}$.

Remark 2.4. Use the universal property of Clifford algebra, $c: T^{*} M \rightarrow L(E)$ can be extended to an algebra homomorphism $c: \operatorname{Cliff}\left(T^{*} M\right) \rightarrow L(E)$, where $\operatorname{Cliff}\left(T^{*} M\right)$ is a bundle over M with each fiber as Clifford algebra generated by $T_{x}^{*} M$.

Definition 2.5. Let E be a vector bundle over M and $C^{\infty}(E)$ is the set of smooth section of M in E. A connection is a linear map $\nabla: C^{\infty}(E) \rightarrow C^{\infty}\left(T^{*} M \otimes E\right)$ satisfying $\nabla(f \xi)=\mathrm{d} f \otimes \xi+f(\nabla \xi)$, where $f \in C^{\infty}(M), \xi \in C^{\infty}(E)$
Remark 2.6. There always exists a connection on E which respects scalar product and grading.
Definition 2.7. Dirac operator $\not \partial: C^{\infty}(E) \rightarrow C^{\infty}(E)$ is the composition $C^{\infty}(E) \rightarrow$ $C^{\infty}\left(T^{*} M \otimes E\right) \rightarrow C^{\infty}(E)$ where the first arrow is the connection and the second is the Clifford multiplication of $c(\xi), \xi \in T^{*} M$.

Remark 2.8. One need to check $/ \partial$ has compact resolvent and commute with $\pi(a), \forall a \in C(M)$ up to compact operator $\left(\pi: C(M) \rightarrow \mathcal{L}\left(L^{2}(E)\right)\right.$ by multiplication).

Remark 2.9. If $E=\Omega$ and define $c(\xi)=e(\xi)+e(\xi)^{*}$ where $e(\xi) \omega=\xi \wedge \omega$ then one can check the last two subsections are examples of Dirac Operators.

Question: Let T be a real Euclidean vector bundle over an even dimensional space M, we can form a bundle Cliff $_{\mathbb{C}} T$ over M with fiber Cliff $_{\mathbb{C}} T_{x} \cong M_{2^{m}}(\mathbb{C})$. Does there exist a graded vector bundle E such that Cliff $_{\mathbb{C}} T \cong \mathcal{L}(E)$? (E is irreducible representation of Cliff $_{\mathbb{C}} T$?)

Answer: It is not always true. There is an obstruction (Dixmier-Douady obstruction). Giving such a bundle is what we call a $S_{p i n}{ }^{c}$ structure on T.
Remark 2.10. Each Riemannian vector bundle E gives rise to a principal $O(n)$ bundle over M. We say E is oriented if we can lift the structure group $O(n)$ to $S O(n)$.

An oriented vector bundle T is spin^{c} if the structure group $S O(n)$ lifts to to $\operatorname{spin}^{c}(n)=U(1) \times_{\mathbb{Z} / 2} \operatorname{spin}(n)$, where $\operatorname{spin}(n)$ is a double cover of $S O(n)$ (If $n \geq 3$, $\operatorname{spin}(n)$ is the universal cover of $S O(n))$.

3. Topological Index

The Atiyah-Singer Index theorem computes the index of such operators. It can be stated as:

$$
\operatorname{ind}_{a}(P)=\operatorname{ind}_{t}\left(\sigma_{P}\right)
$$

where P is an elliptic (pseudo)differential operator and σ_{P} is (the K-theory class of) its principal symbol.

We now give a few explanations on these and define the map $\operatorname{ind}_{t}: K^{0}\left(T^{*} M\right) \rightarrow$ \mathbb{Z}.

Given a elliptic operator $P: C^{\infty}(M, E) \rightarrow C^{\infty}(M, E)$ on a compact manifold M, its symbol $\sigma(P)$ is a matrix valued map defined on $T^{*} M\left(\sigma(P): T^{*} M \rightarrow \operatorname{End}(V)\right)$. The definition of ellipticity implies $\sigma(P)$ invertible off the zero section.

Using relative K-theory we know the symbol $\sigma(P)$ gives rise to an element in $K^{0}\left(T^{*} M\right)$. Apply ind_{t} to this element we get an integer, we will call it topological index of P.

The construction of $\operatorname{ind}_{t}: K\left(T^{*} M\right) \rightarrow \mathbb{Z}$ needs the following ingredients: Thom isomorphism, tubular neighborhood and Bott.
3.1. Bott element. Bott element is β is the generator of $K_{0}\left(C_{0}\left(\mathbb{R}^{2 n}\right)\right)$, the map given by

$$
\begin{aligned}
K^{0}(M) & \cong K_{0}(C(M)) \\
& \rightarrow K_{0}\left(C_{0}\left(\mathbb{R}^{2 n}\right)\right) \otimes K_{0}(C(M)) \cong K_{0}\left(C_{0}\left(M \times \mathbb{R}^{2 n}\right)\right)=K^{0}\left(M \times \mathbb{R}^{2 n}\right): \\
K^{0}(M) & \rightarrow K^{0}\left(M \times \mathbb{R}^{2 n}\right): p \mapsto \beta \otimes p \text { is called Bott map. This map is an isomor- }
\end{aligned}
$$ phism.

3.2. Thom isomorpism.

Theorem 3.1. If T is a spin^{c} bundle over M then there is an isomorphism $K^{0}(M) \rightarrow K^{0}(T)$. In particular, any complex vector bundle carries a spin^{c} - structure, so we have Thom isomorphism for complex vector bundles.

Remark 3.2. The inverse of Thom isomorphism is constructed as follows:
T, spin ${ }^{c}$-bundle over $M, \exists T^{\prime}$ such that $T \oplus T^{\prime}=M \times \mathbb{R}^{2 n}$. There is a natural spin^{c} structure on T^{\prime}. Then $T \oplus T^{\prime}$ is a spin ${ }^{c}$ bundle over T so

$$
K(T) \rightarrow K\left(T \oplus T^{\prime}\right) \cong K\left(M \times \mathbb{R}^{2 m}\right) \rightarrow K(M)
$$

the first arrow is Thom isomorphism and the last one is the inverse Bott map.
3.3. Tubular neighborhood theorem. When we embed M in $\mathbb{R}^{n}, T M \rightarrow T \mathbb{R}^{n} \cong$ $\mathbb{R}^{2 n}$, the normal bundle N of M also embed in $\mathbb{R}^{2 n}\left(N \oplus T M=M \times \mathbb{R}^{n}\right)$.

By the tubular neighborhood theorem, there is an open neighborhood U of M in \mathbb{R}^{n} such that N is diffeomorphic with $U \subset \mathbb{R}^{n}$.
3.4. Construction of ind_{t}. Embed M in \mathbb{R}^{n}, n is even, $T M \rightarrow T \mathbb{R}^{n}=\mathbb{R}^{2 n}$, normal bundle $N \cong U \rightarrow \mathbb{R}^{n}\left(U\right.$ is a open neighborhood of M in $\left.\mathbb{R}^{n}\right)$ and $T M \oplus N \cong$ $M \times \mathbb{R}^{n}$

Since $U \cong N$ is a vector bundle over M, so $T U$ is a vector bundle of $T M$. In fact,

$$
T U \cong \pi^{*}(N \oplus N) \cong \pi^{*}\left(N \otimes_{\mathbb{R}} \mathbb{C}\right)
$$

where $\pi: T M \rightarrow M$.
By Thom isomorphism, we have

$$
K^{0}(T U) \cong K^{0}(T M)
$$

Since U is open in \mathbb{R}^{n}, so $T U$ is open in $T \mathbb{R}^{n} \cong \mathbb{R}^{2 n}$. Hence we get a map $K(T N) \rightarrow \mathbb{R}^{2 n}$ induced by inclusion map. Therefore, we have

$$
K^{0}\left(T^{*} M\right) \cong K^{0}(T M) \cong K^{0}(T U) \rightarrow K^{0}\left(\mathbb{R}^{2 n}\right) \cong \mathbb{Z}
$$

The image of $[\sigma(P)] \in K^{0}\left(T^{*} M\right)$ under these process is defined as the topological index of P.

4. Computation of index of some elliptic operator

(a)Take $M=S^{1}$. We will construct two elliptic operators whose symbol is respectively the generator of $K^{1}\left(S^{1}\right)=\mathbb{Z}$ and of $K^{0}\left(\mathbb{R} \times S^{1}\right)=K^{1}\left(S^{1}\right)=\mathbb{Z}$.

For the first one, (writing $S^{1}=\mathbb{R} / 2 \pi \mathbb{Z}$ and x the real variable) just take

$$
-i \frac{\partial}{\partial x}: L^{2}\left(S^{1}\right) \rightarrow L^{2}\left(S^{1}\right)
$$

whose principal symbol is $(x, \xi) \mapsto \xi$. Here $L^{2}\left(S^{1}\right)$ is generated by $\left\{z^{n}\right\}_{n \in \mathbb{Z}}, z=$ $e^{i x}, x \in S^{1}$ and denote $e_{i}=z^{n}$ and clearly we have $-i \frac{\partial}{\partial x} z^{n}=n z^{n}$.

Then making it bounded we obtain H (the Hilbert transform) given by

$$
H\left(e_{n}\right)= \begin{cases}e_{n} & n>0 \tag{4.1}\\ -e_{n} & n<0 \\ 0 & n=0\end{cases}
$$

whose principal symbol is $(x, \xi) \mapsto \operatorname{sign}(\xi)=\frac{\xi}{|\xi|}$. Put also $P=\frac{H+1}{2}$ whose principal symbol is $\sigma(x, \xi)= \begin{cases}1 & \xi>0 \\ 0 & \xi<0\end{cases}$

To define the second element, write $\overline{\mathbb{R}}=\mathbb{R} \cup\{ \pm \infty\}$ and use the exact sequence:

$$
0 \rightarrow C_{0}\left(\mathbb{R} \times S^{1}\right) \rightarrow C\left(\overline{\mathbb{R}} \times S^{1}\right) \rightarrow C\left(S^{1}\right) \oplus C\left(S^{1}\right) \rightarrow 0
$$

The connecting map $K^{1}\left(S^{1}\right) \oplus K^{1}\left(S^{1}\right) \rightarrow K^{0}\left(S^{1} \times \mathbb{R}\right)=K^{1}\left(S^{1}\right)$ is the map $(a, b) \mapsto$ $a-b$. It follows that the principal symbol of $F=z P+(1-P)$ is the generator of $K^{0}\left(\mathbb{R} \times S^{1}\right)$. Therefore, using $K^{0}\left(T^{*} S^{1}\right) \cong K^{0}\left(S^{1} \times \mathbb{R}\right)$:

$$
\operatorname{ind}_{a}: K^{0}\left(T^{*} S^{1}\right) \rightarrow \mathbb{Z}: \sigma(F) \mapsto \operatorname{ind}(F)
$$

Since $F\left(e_{n}\right)=\left\{\begin{array}{ll}e_{n} & n<0 \\ e_{n+1} & n \geq 0\end{array}\right.$, we have $\operatorname{ind}(F)=-1$.
(b) Let Λ be a lattice in $\mathbb{C}(\Lambda=\mathbb{Z} a+\mathbb{Z} b, a, b$ independent over $\mathbb{R})$ then $M=$ $\mathbb{C} / \Lambda \cong \mathbb{T}^{2}$ compact. E is a graded complex bundle over M, we want to compute the index of the Dirac operator $D: L^{2}\left(E^{(0)}\right) \rightarrow L^{2}\left(E^{(1)}\right)$, more precisely, the index of the Dolbeault operator $\bar{\partial}_{E}$ with the coefficient in E. In fact, $\left\{\bar{\partial}_{E}\right\}$, where E is complex vector bundle over X, generates $K_{0}(M)$, K-homology of M.

An easy example: When E is 1 dim trivial line bundle:

$$
\bar{\partial}: C^{\infty}(M, \mathbb{C}) \rightarrow C^{\infty}(M, \mathbb{C}): f \mapsto \frac{\partial}{\partial \bar{z}} f=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right)
$$

the symbol of which is the clifford multiplication by $i \xi-\eta$. Since

$$
f \in \operatorname{ker} \bar{\partial} \Leftrightarrow \frac{\partial}{\partial \bar{z}} f=0 \Leftrightarrow f \text { holomorphic on } M
$$

and f is bounded on compact M, f can be lifted to a bounded holomorphic function on \mathbb{C} with the same value on the orbit, which implied f to be constant. We have $\operatorname{dim} \operatorname{ker} \bar{\partial}=\operatorname{dim} \operatorname{ker} \bar{\partial}^{*}=1$, so

$$
\operatorname{ind}(\bar{\partial})=0
$$

Remark 4.1. For any complex bundle E over M with dim large enough, E has a complex sub line bundle $L\left(E=\mathbb{C}^{k} \oplus L\right)$. It is enough to compute ind $\left(\bar{\partial}_{L}\right)$. The kernel of $\bar{\partial}_{L}$ are all holomorphic sections of the line bundle L. (We will assume L a holomorphic line bundle, i.e. the transition function $g_{i j}: U_{i} \cap U_{j} \rightarrow \mathbb{C}^{*}$ are holomorphic and satisfy the cocycle equality. If ω_{i} is a nowhere vanishing holomorphic section over U_{i}, then on $U_{i} \cap U_{j}$, we have $\omega_{i}=g_{i j} \omega_{j}$.)

Now we define $\bar{\partial}_{L}$ on the section in L locally by

$$
\bar{\partial}_{L}\left(f w_{i}\right)=(\bar{\partial} f) w_{i}
$$

it is well defined because $g_{i j}$ is holomorphic.
Now choose a Hermitian metric on $L:\left\|w_{i}\right\|=: \alpha_{1}$ with $\alpha_{i}: U_{i} \rightarrow \mathbb{R}_{+}^{*}$ smooth. The inner product is locally

$$
<f w_{i}, h w_{i}>=\int_{M} \bar{f} h \alpha_{i}^{2} \mathrm{~d} x \mathrm{~d} y, \forall f \in C_{c}^{\infty}\left(U_{i}\right)
$$

so $\bar{\partial}_{L}^{*}$ locally is

$$
<\bar{\partial}_{L}^{*} h w_{i}, f w_{i}>=<h w_{i}, \bar{\partial}_{L} f w_{i}>=\int(\bar{\partial} f) \bar{h} \alpha_{i}^{2} \mathrm{~d} x \mathrm{~d} y=-\int f \bar{\partial}\left(h \alpha_{i}^{2}\right) \mathrm{d} x \mathrm{~d} y
$$

This means we have an anti-linear bundle map $\varphi_{L}: L \rightarrow L^{*}=\operatorname{Hom}(L, \mathbb{C})$ where the holomorphi c section on L^{*} is given by $w_{i}^{*}, \varphi_{L}\left(h w_{i}\right)=\bar{h} \alpha_{i}^{2} w_{i}^{*}$ is a well-defined isometric map. One need to check that $\bar{\partial}_{L}^{*}=-\varphi^{-1} \circ \bar{\partial}_{L^{*}} \circ \varphi_{L}$, therefore,

$$
\operatorname{ind}\left(\bar{\partial}_{L}\right)=\operatorname{dim}\left(\operatorname{ker} \bar{\partial}_{L}\right)-\operatorname{dim}\left(\operatorname{ker} \bar{\partial}_{L^{*}}\right)
$$

Definition 4.2. A divisor on M is a function $D: M \rightarrow \mathbb{Z}$ with finite discrete support, denoted by $D=\sum_{p \in M} D(p) p$. The degree of D is $\operatorname{deg}(D)=\sum_{p \in M} D(p)$. Divisor of a meromorphic function f on M is $D(f)=\sum_{p \in M} s_{f(p)} p$, where $s_{f(p)}=1$ if p is a simple zero of f. In general, $s_{f(p)}$ is equal to the multiplicity of the zero p or minus the multiplicity of the pole p.

Given a divisor $D: a_{1}, \cdots a_{k} \in M, n_{1}, \cdots, n_{k} \in \mathbb{Z}$, we can construct a holomorphic line bundle L as follows:

Let $U_{0}=M \backslash a_{1}, \cdots, a_{k}, U_{i}=($ disjointed $)$ disc around $a_{i},(i>0)$ be the open cover of M with the transition function $g_{0 i}(z)=\left(z-a_{i}\right)^{-n_{i}} .\left(L^{*}\right.$ is constructed through $\left.g_{0 i}=\left(z-a_{i}\right)^{n_{i}}\right)$.

For any global holomorphic section in L, locally we have $f w_{0}=f_{i} w_{i}, w_{0}=g_{0 i} w_{i}$, and $f=\left(z-a_{i}\right)^{n_{i}} f_{i}$ near a_{i}, then a holomorphic section correspond to a unique meromorphic function f on M such that the multiplicity of the pole at a_{i} is no more than $-n_{i}$ if n_{i} and the multiplicity of zero at a_{i} is no less than n_{i} if $n_{i}>0$, this is equivalent to say that $D(f) \geq D$, so

$$
\operatorname{dim}\left(\operatorname{ker} \bar{\partial}_{L}\right)=\operatorname{dim}(\text { holo. sections in } \mathrm{L})=\operatorname{dim}\{f \text { mero. on } \mathrm{M} \mid D(f) \geq D\}
$$

Similarly,

$$
\operatorname{dim}\left(\operatorname{ker} \bar{\partial}_{L^{*}}\right)=\operatorname{dim}\left(\text { holo. sections in } L^{*}\right)=\operatorname{dim}\{f \text { mero. on } \mathrm{M} \mid D(f) \geq-D\}
$$

So we have

$$
\begin{aligned}
\operatorname{ind}\left(\bar{\partial}_{L}\right) & =\operatorname{dim}\{f \text { mero. } \mid D(f)-D \geq 0\}-\operatorname{dim}\{f \text { mero. } \mid D(f)+D \geq 0\} \\
& =g-1-D=-\operatorname{deg}(D)
\end{aligned}
$$

where L is the line bundle correspond to divisor D. The second equality is due to Riemann Roch theorem.

Remark 4.3. It is fact that for any holomorphic line bundle L it correspond to a divisor $D=\sum n_{i}\left[a_{i}\right]$, then ind $\bar{\partial}_{L}=-\sum n_{i}$.

5. Generalization of proof of the index theorem

Recall in the proof of Atiyah-Singer index theorem we use the tangent groupoid $G \rightrightarrows M \times[0,1]$ where $G=(0,1] \times M \times M \cup\{0\} \times T^{*} M . G$ as a continuous field over $[0,1], M \times M$ continuous deform into $T^{*} M$. The normal bundle with respect the inclusion $M \rightarrow M \times M$ is $T^{*} M$

Analogously if there is an embedding $i: M \rightarrow V$ we form a normal bundle $N_{i}(x)=T_{i(x)} / d_{i}\left(T_{x} M\right), x \in M$, and define a manifold

$$
D(i)=N_{i} \times\{0\} \cup V \times \mathbb{R}^{*}
$$

with the smooth topology defined by $\left(\left(x_{n}, \lambda_{n}\right) \in V \times \mathbb{R}^{*}\right) \rightarrow\left((x, \xi, 0) \in N_{i} \times\{0\}\right) \Leftrightarrow$ $\lambda_{n} \rightarrow 0, x_{n} \rightarrow i(x), p\left(x_{n}-i(x)\right) / \lambda_{i} \rightarrow \xi$, where p is the projection to the quotient in the definition of $N_{i}(x)$. (deformation to the normal cone)
(a)Atiyah-Singer index theorem for families:

Let $p: M \rightarrow Y$ be a map with fiber $M_{y}=p^{-1}(y)$ and $\left(M_{y}\right)_{y \in Y}$ a family of manifold. Define the groupoid $G=M \times_{Y} M=\{(x, y): p(x)=p(y), x, y \in M\}$ and the inclusion $M \rightarrow M \times_{Y} M: x \mapsto(x, x)$.

By the normal cone method we can construct ind: $K\left(T^{*} M\right) \rightarrow K(Y)$ and get the fiberwised index theorem.
(b)Non-commutative fiberation:

Let M be a compact $\underset{\sim}{\sim}$ manifold and \tilde{M} is the universal covering space of M, and $\Gamma=\pi_{1}(M)$, then $M=\tilde{M} / \Gamma$.

Construct groupoid $G=\tilde{M} \times \tilde{M} / \Gamma \rightrightarrows \tilde{M} / \Gamma$ by $s((\tilde{x}, \tilde{y}) / \Gamma)=\tilde{y} / \Gamma$ and $r((\tilde{x}, \tilde{y}) / \Gamma)=$ $\tilde{x} / \Gamma .(\tilde{x}, \tilde{y})$ and $\left(\tilde{y^{\prime}}, \tilde{z^{\prime}}\right)$ is compossible if $\exists g \in \Gamma$ such that $\tilde{y}=\tilde{y^{\prime}} g$ and the composition is $(\tilde{x}, \tilde{z} g)$. Clearly it is well defined.

The groupoid G is transitive, i.e. $\forall x, y \in M, \exists r \in G$ such that $s(r)=x, r(r)=y$. Also $G_{x}^{x}=\{r \in G \mid s(r)=r(r)=x\} \cong \Gamma$.

Take the inclusion $i: M \rightarrow G$ and the normal bundle to this is the cotangent bundle to M, then $D(i)=T^{*} M \cup(0,1] \times G$ and we get a index map

$$
\text { ind }: K^{0}\left(T^{*} M\right) \cong K^{0}(D(i)) \rightarrow K_{0}(G) \cong K_{0}\left(C_{r}^{*} \Gamma\right)
$$

Remark 5.1. Baum-Connes Conjecture: If Γ is torsion free, then
1.Every element in $K_{0}\left(C_{r}^{*} \Gamma\right)$ can be constructed using the index of elliptic operator in the above way.
2.If two elliptic operator have the same index, there is a good topological reason. (This will imply Novikov conjecture).

