
INDEX THEORY

GEORGE SKANDALIS

Lecture 1: Examples + constructions of Indt

Lecture 4: computations + generalizations

1. Unbounded KK-theory (Baaj-Julg)

Recall the definition of cycles of KK(A, B) are triples of form (E , π, F ) where
(1) E = E(0) ⊕ E(1) is graded Hilbert B-module.
(2) A unital π : A → L (E) is a graded ∗-representation of A.
(3) F ∈ L (E) is of odd grading satisfying F = F ∗, F 2 − 1 ∈ K(E), [F, π(a)] ∈

K(E).

To define a unbounded cycle A, π, E have the same assumption, and F is replaced
by a unbounded D with the following assumption:

(1) D = D∗. Recall definition of D∗: if Dom(D) dense in E and ∀ x, y ∈ E , ∃z ∈ E
such that < Dx, y >=< x, z >, then D∗y = z.

(2) D has compact resolvent,i.e. (D+iI)−1 ∈ K(E). Note that D+iI is invertibe
because Sp(D) ⊂ R.

(3) There exists a dense algebra A ∈ A such that [π(a), D] is bounded, ∀ a ∈ A.
(4) D is regular, i.e. (GraphD)⊥ ⊕ UGraph(D) = E ⊕ E , where Graph(D) =

{(x, Dx), x ∈ Dom D} and U : (x, y) → (−y, x).

Remark 1.1. Every KK-element can be made unbounded. KK-product is some-
times easier for unbounded KK-elements, in particular outer KK-product over C.

Construction form unbounded cycles to a bounded ones:

(E , π, D) → (E , π, D(1 + D2)− 1
2 )

Things to be checked:
(1)F = D(1 + D2)− 1

2 extends to a bounded operator on E .
(2)1 − F 2 = (1 + D2)−1 compact.
(3)[F, π(a)] ⊂ K(E) (It is enough to check on the dense algebra A).
Note that

1√
x

=
2
π

Z ∞

0

1
x + t2

dt,

then
(1 + D2)− 1

2 =
2
π

Z ∞

0
(I(1 + t2) + D2)−1dt

is a uniformly convergent integral.
Given [D, π(a)] bounded we have [D(1 + t2 + D2)−1, π(a)] compact, then the

norm convergence of the integral

[F, π(a)] =
2
π

Z ∞

0
[D(1 + t2 + D2)−1, π(a)]dt

1
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gives rise to a compact limit.

2. Examples of elliptic differential operator

2.1. de Rham operator. : M compact manifold, n = dim M
Let d be exterior differential on M , Ω0 = C∞(M, C), Ω1 ∼= T ∗M ⊗ C, Ωk =Vk T ∗M ⊗ C, Ω = ⊕n

k=0Ωk.
Then d : C∞(Ωk) → C∞(Ωk+1), ∀ ω1 ∈ C∞(Ωj), ω2 ∈ C∞(Ωk).
ω1 ∧ ω2 = (−1)jkω2 ∧ ω1

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)jω1 ∧ dω2.
d2 = 0.
Choose a Riemannian metric on M , then we have a Hermitian structure on

C∞(Ω), denote H as the completion of C∞(Ω) under the inner product:
H = H(0) ⊕ H(1), H(0) =

L
k even L2(Ωk), H(1) =

L
k odd L2(Ωk).

Let π denote the representation of C(M) on H by point-wise multiplication.
Claim: (H, π, d + d∗) is an unbounded cycle. In fact:
(1)∀f ∈ C∞(M, C), [d, π(f)]ω = df ∧ ω this is bounded (with norm kdfk∞,

where k ·k is maximal norm)
In addition, [d∗, π(f)] = −[d, π(f∗)]∗, so [d + d∗, π(f)] is bounded on H.
(2)d + d∗ has compact resolvent.

Remark 2.1. d + d∗ does not depend on metric and manifold.

Let M = Tn = (R/2πZ)n, then basis for Ω are of the form: x → e−i<k,x>dxI =
ωk,I ∈ Ω for k ∈ Zn, I ⊂ {1, . . . , n}.

One can check that (d + d∗)2ωk,I = (dd∗ + d∗d)ωk,I = |k|2ωk,I , where |k| =P∞
i=1 k2

i and observe that (d + d∗)2 has compact inverse.
The analytical index of d + d∗ is defined as

inda(d + d∗) = dim(ker(d + d∗)|H(0)) − dim(ker(d + d∗)|H(1)).

So
inda(d + d∗) =

X
(−1)kβk(M), where βk(M) =: dim Hk(M, C),

the Euler number of M.

2.2. Signature Operator. M oriented 4k-dimensional, Ω, d + d∗, ker(d + d∗) =
H∗(M) = H0 ⊕ · · · ⊕ H4k.

We define a quadratic form on Ω:

Q(ω1, ω2) = (−1)
l(l−1)

2

Z

M
ω1 ∧ ω2, ∀w1, w2 ∈ Ω, degω1 = l.

Note that if degω1 + degω2 6= 4k, Q(ω1, ω2) = 0.
We define the signature of M as the signature of the quadratic form, note that

if dim(M) 6= 4k, the signature is 0.
There exists a grading operator τ on Ω with τ2 = id, τ∗ = τ satisfying

Q(ω1, ω2) =< τω1, ω2 > .

(τ is the Hodge ∗ operator when p = 2k.)
Observe that

R
dω = 0 ⇒

R
d(ω1 ∧ ω2) = 0 ⇒ dτ = −τd∗ ⇒ τ(d + d∗)τ =

−(d + d∗) ⇒ d + d∗ is odd in the grading given by τ .
Then by definition

ind(d + d∗, τ) = dim(eigenspace of 1) ∩ H∗ − dim(eigenspace of (-1) ∩ H∗)



INDEX THEORY 3

= dim((eigenspace of 1) ∩ H2k) − dim(eigenspace of (-1)) ∩ H2k=signature of M

Remark 2.2. The de Rham operator and signature operator are the same but acting
on spaces with different grading.

2.3. Dirac Operator.

Definition 2.3. A Clifford bundle is a graded Hermitian vector bundle E over M
together with a smooth vector bundle map c : T ∗M ⊗E → E or c : T ∗M → L (E),
such that ∀ξ ∈ T ∗

x M , c(ξ) = c(ξ)∗, c(ξ)2 = kξk2 idE , c(ξ) ∈ L(E)1.

Remark 2.4. Use the universal property of Clifford algebra, c : T ∗M → L(E) can be
extended to an algebra homomorphism c : Cliff(T ∗M) → L(E), where Cliff(T ∗M)
is a bundle over M with each fiber as Clifford algebra generated by T ∗

x M.

Definition 2.5. Let E be a vector bundle over M and C∞(E) is the set of smooth
section of M in E. A connection is a linear map ∇ : C∞(E) → C∞(T ∗M ⊗ E)
satisfying ∇(fξ) = df ⊗ ξ + f(∇ξ), where f ∈ C∞(M), ξ ∈ C∞(E)

Remark 2.6. There always exists a connection on E which respects scalar product
and grading.

Definition 2.7. Dirac operator 6 ∂ : C∞(E) → C∞(E) is the composition C∞(E) →
C∞(T ∗M ⊗ E) → C∞(E) where the first arrow is the connection and the second
is the Clifford multiplication of c(ξ), ξ ∈ T ∗M.

Remark 2.8. One need to check 6 ∂ has compact resolvent and commute with
π(a), ∀a ∈ C(M) up to compact operator (π : C(M) → L(L2(E)) by multipli-
cation).

Remark 2.9. If E = Ω and define c(ξ) = e(ξ) + e(ξ)∗ where e(ξ)ω = ξ ∧ ω then one
can check the last two subsections are examples of Dirac Operators.

Question: Let T be a real Euclidean vector bundle over an even dimensional
space M , we can form a bundle CliffC T over M with fiber CliffC Tx

∼= M2m(C).
Does there exist a graded vector bundle E such that CliffC T ∼= L(E)? (E is
irreducible representation of CliffC T?)

Answer: It is not always true. There is an obstruction (Dixmier-Douady ob-
struction). Giving such a bundle is what we call a Spinc structure on T .

Remark 2.10. Each Riemannian vector bundle E gives rise to a principal O(n)
bundle over M . We say E is oriented if we can lift the structure group O(n) to
SO(n).

An oriented vector bundle T is spinc if the structure group SO(n) lifts to to
spinc(n) = U(1) ×Z/2 spin(n), where spin(n) is a double cover of SO(n) (If n ≥ 3,
spin(n) is the universal cover of SO(n)).

3. Topological Index

The Atiyah-Singer Index theorem computes the index of such operators. It can
be stated as:

inda(P ) = indt(σP )
where P is an elliptic (pseudo)differential operator and σP is (the K-theory class
of) its principal symbol.
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We now give a few explanations on these and define the map indt : K0(T ∗M) →
Z.

Given a elliptic operator P : C∞(M, E) → C∞(M, E) on a compact manifold M ,
its symbol σ(P ) is a matrix valued map defined on T ∗M (σ(P ) : T ∗M → End(V )).
The definition of ellipticity implies σ(P ) invertible off the zero section.

Using relative K-theory we know the symbol σ(P ) gives rise to an element in
K0(T ∗M). Apply indt to this element we get an integer, we will call it topological
index of P.

The construction of indt : K(T ∗M) → Z needs the following ingredients: Thom
isomorphism, tubular neighborhood and Bott.

3.1. Bott element. Bott element is β is the generator of K0

°
C0

°
R2n

¢¢
, the map

given by

K0(M) ∼= K0(C(M))

→ K0

°
C0

°
R2n

¢¢
⊗ K0 (C (M)) ∼= K0

°
C0(M × R2n)

¢
= K0

°
M × R2n

¢
:

K0(M) → K0(M × R2n) : p 7→ β ⊗ p is called Bott map. This map is an isomor-
phism.

3.2. Thom isomorpism.

Theorem 3.1. If T is a spinc bundle over M then there is an isomorphism
K0(M) → K0(T ). In particular, any complex vector bundle carries a spinc- struc-
ture, so we have Thom isomorphism for complex vector bundles.

Remark 3.2. The inverse of Thom isomorphism is constructed as follows:
T, spinc-bundle over M , ∃ T 0 such that T ⊕ T 0 = M × R2n. There is a natural

spinc structure on T 0. Then T ⊕ T 0 is a spinc bundle over T so

K(T ) → K(T ⊕ T 0) ∼= K(M × R2m) → K(M),

the first arrow is Thom isomorphism and the last one is the inverse Bott map.

3.3. Tubular neighborhood theorem. When we embed M in Rn, TM → TRn ∼=
R2n, the normal bundle N of M also embed in R2n(N ⊕ TM = M × Rn).

By the tubular neighborhood theorem, there is an open neighborhood U of M
in Rn such that N is diffeomorphic with U ⊂ Rn.

3.4. Construction of indt. Embed M in Rn, n is even, TM → TRn = R2n,
normal bundle N ∼= U → Rn (U is a open neighborhood of M in Rn) and TM ⊕N ∼=
M × Rn

Since U ∼= N is a vector bundle over M , so TU is a vector bundle of TM . In
fact,

TU ∼= π∗(N ⊕ N) ∼= π∗(N ⊗R C)
where π : TM → M .

By Thom isomorphism, we have

K0(TU) ∼= K0(TM).

Since U is open in Rn, so TU is open in TRn ∼= R2n. Hence we get a map
K(TN) → R2n induced by inclusion map. Therefore, we have

K0(T ∗M) ∼= K0(TM) ∼= K0(TU) → K0(R2n) ∼= Z.
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The image of [σ(P )] ∈ K0(T ∗M) under these process is defined as the topological
index of P.

4. Computation of index of some elliptic operator

(a)Take M = S1. We will construct two elliptic operators whose symbol is
respectively the generator of K1(S1) = Z and of K0(R × S1) = K1(S1) = Z.

For the first one, (writing S1 = R/2πZ and x the real variable) just take

−i
∂

∂x
: L2(S1) → L2(S1),

whose principal symbol is (x, ξ) 7→ ξ. Here L2(S1) is generated by {zn}n∈Z, z =
eix, x ∈ S1 and denote ei = zn and clearly we have −i ∂

∂xzn = nzn.
Then making it bounded we obtain H (the Hilbert transform) given by

(4.1) H(en) =






en n > 0
−en n < 0
0 n = 0

whose principal symbol is (x, ξ) 7→ sign(ξ) = ξ
|ξ| . Put also P = H+1

2 whose principal

symbol is σ(x, ξ) =

(
1 ξ > 0
0 ξ < 0

To define the second element, write R = R ∪ {±∞} and use the exact sequence:

0 → C0(R × S1) → C(R × S1) → C(S1) ⊕ C(S1) → 0

The connecting map K1(S1)⊕K1(S1) → K0(S1 ×R) = K1(S1) is the map (a, b) 7→
a − b. It follows that the principal symbol of F = zP + (1 − P ) is the generator of
K0(R × S1). Therefore, using K0(T ∗S1) ∼= K0(S1 × R):

inda : K0(T ∗S1) → Z : σ(F ) 7→ ind(F ).

Since F (en) =

(
en n < 0
en+1 n ≥ 0

, we have ind(F ) = −1.

(b) Let Λ be a lattice in C (Λ = Za + Zb, a, b independent over R) then M =
C/Λ ∼= T2 compact. E is a graded complex bundle over M , we want to compute
the index of the Dirac operator D : L2(E(0)) → L2(E(1)), more precisely, the index
of the Dolbeault operator ∂̄E with the coefficient in E. In fact, {∂̄E}, where E is
complex vector bundle over X, generates K0(M), K-homology of M .

An easy example: When E is 1 dim trivial line bundle:

∂̄ : C∞(M, C) → C∞(M, C) : f 7→ ∂

∂z̄
f =

1
2

(
∂f

∂x
+ i

∂f

∂y
),

the symbol of which is the clifford multiplication by iξ − η. Since

f ∈ ker ∂̄ ⇔ ∂

∂z̄
f = 0 ⇔ f holomorphic on M
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and f is bounded on compact M , f can be lifted to a bounded holomorphic function
on C with the same value on the orbit, which implied f to be constant. We have
dim ker ∂̄ = dim ker ∂̄∗ = 1, so

ind(∂̄) = 0.

Remark 4.1. For any complex bundle E over M with dim large enough, E has a
complex sub line bundle L (E = Ck ⊕ L). It is enough to compute ind(∂̄L). The
kernel of ∂̄L are all holomorphic sections of the line bundle L. (We will assume
L a holomorphic line bundle, i.e. the transition function gij : Ui ∩ Uj → C∗

are holomorphic and satisfy the cocycle equality. If ωi is a nowhere vanishing
holomorphic section over Ui, then on Ui ∩ Uj , we have ωi = gijωj .)

Now we define ∂̄L on the section in L locally by

∂̄L(fwi) = (∂̄f)wi,

it is well defined because gij is holomorphic.
Now choose a Hermitian metric on L: kwik =: α1 with αi : Ui → R∗

+ smooth.
The inner product is locally

< fwi, hwi >=
Z

M
f̄hα2

i dxdy, ∀f ∈ C∞
c (Ui),

so ∂̄∗
L locally is

< ∂̄∗
Lhwi, fwi >=< hwi, ∂̄Lfwi >=

Z
(∂̄f)h̄α2

i dxdy = −
Z

f ∂̄(hα2
i )dxdy.

This means we have an anti-linear bundle map ϕL : L → L∗ = Hom(L, C) where
the holomorphi c section on L∗ is given by w∗

i , ϕL(hwi) = h̄α2
i w∗

i is a well-defined
isometric map. One need to check that ∂̄∗

L = −ϕ−1 ◦ ∂̄L∗ ◦ ϕL, therefore,

ind(∂̄L) = dim(ker ∂̄L) − dim(ker ∂̄L∗).

Definition 4.2. A divisor on M is a function D : M → Z with finite discrete
support, denoted by D =

P
p∈M D(p)p. The degree of D is deg(D) =

P
p∈M D(p).

Divisor of a meromorphic function f on M is D(f) =
P

p∈M sf(p)p, where sf(p) = 1
if p is a simple zero of f . In general, sf(p) is equal to the multiplicity of the zero p
or minus the multiplicity of the pole p.

Given a divisor D : a1, · · · ak ∈ M, n1, · · · , nk ∈ Z, we can construct a holomor-
phic line bundle L as follows:

Let U0 = M \ a1, · · · , ak, Ui = (disjointed) disc around ai, (i > 0) be the open
cover of M with the transition function g0i(z) = (z − ai)−ni . (L∗ is constructed
through g0i = (z − ai)ni).

For any global holomorphic section in L, locally we have fw0 = fiwi, w0 = g0iwi,
and f = (z − ai)nifi near ai, then a holomorphic section correspond to a unique
meromorphic function f on M such that the multiplicity of the pole at ai is no
more than −ni if ni and the multiplicity of zero at ai is no less than ni if ni > 0,
this is equivalent to say that D(f) ≥ D, so

dim(ker ∂̄L) = dim(holo. sections in L) = dim{fmero. on M|D(f) ≥ D}.

Similarly,

dim(ker ∂̄L∗) = dim(holo. sections in L∗) = dim{f mero. on M|D(f) ≥ −D}.
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So we have

ind(∂̄L) = dim{f mero.|D(f) − D ≥ 0} − dim{f mero.|D(f) + D ≥ 0}
= g − 1 − D = − deg(D),

where L is the line bundle correspond to divisor D. The second equality is due to
Riemann Roch theorem.

Remark 4.3. It is fact that for any holomorphic line bundle L it correspond to a
divisor D =

P
ni[ai], then ind ∂̄L = −

P
ni.

5. Generalization of proof of the index theorem

Recall in the proof of Atiyah-Singer index theorem we use the tangent groupoid
G ⇒ M × [0, 1] where G = (0, 1] × M × M ∪ {0} × T ∗M . G as a continuous field
over [0, 1], M × M continuous deform into T ∗M . The normal bundle with respect
the inclusion M → M × M is T ∗M

Analogously if there is an embedding i : M → V we form a normal bundle
Ni(x) = Ti(x)/di(TxM), x ∈ M, and define a manifold

D(i) = Ni × {0} ∪ V × R∗

with the smooth topology defined by ((xn, λn) ∈ V ×R∗) → ((x, ξ, 0) ∈ Ni ×{0}) ⇔
λn → 0, xn → i(x), p(xn − i(x))/λi → ξ, where p is the projection to the quotient
in the definition of Ni(x). (deformation to the normal cone)

(a)Atiyah-Singer index theorem for families:
Let p : M → Y be a map with fiber My = p−1(y) and (My)y∈Y a family of

manifold. Define the groupoid G = M ×Y M = {(x, y) : p(x) = p(y), x, y ∈ M}
and the inclusion M → M ×Y M : x 7→ (x, x).

By the normal cone method we can construct ind : K(T ∗M) → K(Y ) and get
the fiberwised index theorem.

(b)Non-commutative fiberation:
Let M be a compact manifold and M̃ is the universal covering space of M , and

Γ = π1(M), then M = M̃/Γ.
Construct groupoid G = M̃×M̃/Γ ⇒ M̃/Γ by s((x̃, ỹ)/Γ) = ỹ/Γ and r((x̃, ỹ)/Γ) =

x̃/Γ. (x̃, ỹ) and (ỹ0, z̃0) is compossible if ∃g ∈ Γ such that ỹ = ỹ0g and the compo-
sition is (x̃, z̃g). Clearly it is well defined.

The groupoid G is transitive, i.e. ∀x, y ∈ M, ∃r ∈ G such that s(r) = x, r(r) = y.
Also Gx

x = {r ∈ G|s(r) = r(r) = x} ∼= Γ.
Take the inclusion i : M → G and the normal bundle to this is the cotangent

bundle to M , then D(i) = T ∗M ∪ (0, 1] × G and we get a index map

ind : K0(T ∗M) ∼= K0(D(i)) → K0(G) ∼= K0(C∗
r Γ).

Remark 5.1. Baum-Connes Conjecture: If Γ is torsion free, then
1.Every element in K0(C∗

r Γ) can be constructed using the index of elliptic oper-
ator in the above way.

2.If two elliptic operator have the same index, there is a good topological reason.
(This will imply Novikov conjecture).


