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BIVARIANT K-THEORY FOR SMOOTH MANIFOLDS I

LECTURES BY: HEATH EMERSON (JOINT WORK WITH RALF MEYER)
NOTES BY: ROBIN DEELEY AND ELKAIOUM MOUTUOU

A. The aim of this talk and the next is to explain two important aspects
of equivariant Kasparov theory, especially for smooth manifolds: duality, and
the topological description of equivariant KK-groups using equivariant corre-
spondences. In the first talk we will review the basic definitions of KK-theory,
including the Thom isomorphism. We then explain duality, which gives a way
of reducing KK groups to K-theory groups with support conditions. This will
be used in the second talk to prove that equivariant KK-groups for smooth
manifolds can be described in topological terms.

1. D   KK-

Goal: Give a geometric description of KKG(C0(X),C0(Y)) where G is a proper
groupoid, and X and Y are smooth G-manifolds.

Remark 1.1. A priori the condition that G is proper is restrictive. However, the
Baum-Connes conjecture implies that

KKG(C0(X),C0(Y)) −→� KKGoEG(C0(X × EG),C0(Y × EG))

so long as G acts amenably on X. Moreover, GoEG is proper so we study a non-proper
groupoid, G, by replacing it with G o EG. A protypical example is the case when G is
an infinite discrete group. This example implies that even if we are only interested in
group actions, we must study groupoids.
One may also wonder why smoothness is required. The point is that smoothness leads
to duality (see Definitions 5.2 and 5.3 for the precise definitions of the duality we will
be studying).

2. P

Let G //r
s

// G(0) be a locally compact, second countable and Hausdorff groupoid

(not necessary proper). Let Z denote the base (i.e., unit space, G(0)) of G. We re-
quire our groupoids to have a Haar systemµx; recall that by this we mean a family
of Haar measures with the property that Suppµx = r−1(x) and x 7−→

∫
Gx f dµx is

continuous for any f ∈ Cc(G).
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2LECTURES BY: HEATH EMERSON (JOINT WORK WITH RALF MEYER) NOTES BY: ROBIN DEELEY AND ELKAIOUM MOUTUOU

In addition, if γ ∈ G, s(γ) = x, r(γ) = x′ and we denote the translation by γ by
Lγ : Gx

→ G
x′ , then we require that (Lγ)∗(µx) = µx′ .

Definition 2.1. A space over Z is a space X together with a map pX : X −→ Z.

We note that a vector bundle over Z is an example of a space over Z.

Functoriality: f : Z′ −→ Z, and X a space over Z then put

f ∗X = {(z′, x)| f (z′) = PX(x)}

It is a space over Z′. This is a generalization of the pull-back construction from
vector bundle theory.

Definition 2.2. AG-space X is a space X over Z together with a homeomorphism
of spaces over G:

s∗(X) −→ r∗(X), (g, s) 7−→ (g, gx)
satisfying associativity and unitality conditions.

Definition 2.3. A G-space X is proper if the map

s∗(X) −→ X × X, (g, x) 7−→ (gx, x)

is proper (as a map).
A groupoid G is proper is G acts properly on Z, i.e.

(r, s) : G −→ Z × Z

is proper.

Examples 2.4. If G acts on X, then form

G o X := {(g, x)|s(g) = PX(x)}

This groupoid has base (i.e. object space) X, and source and range maps given
by s(g, x) = x and r(g, x) = gx.

Remark 2.5. IfG is a group, thenG acts properly on a point if and only ifG is compact.
However, G o EG is always proper. As we discussed in Remark 1.1, the Baum-Connes
conjecture allows one to study G via G o EG.

Definition 2.6 (G-C∗-algebras). A C∗-algebra over Z is a C∗-algebra A together
with an essential C∗-homomorphism C0(Z) −→ ZM(A).

Functoriality: Given f : Z′ → Z, then if A is a C∗-algebra over Z, we form a
C∗-algebra over Z′ given by f ∗(A) := C0(Z′)⊗C0(Z) A. f ∗(A) is a C∗-algebra over Z′.
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BIVARIANT K-THEORY FOR SMOOTH MANIFOLDS I 3

Restriction: Given a C∗-algebra over Z and S ⊆ Z (S is assumed to be closed
or open). Then we define the restriction to S via

A|S =

{
C0(S) · A S open,
A/A|Sc S closed

Every C∗-algebra over Z is the C∗-algebra of continuous field of C∗-algebras via
the restriction to points. (The fiber at z is given by A|z, for z ∈ Z).

Definition 2.7. A G C∗-algebra is a C∗-algebra over Z and an isomorphism (of
C∗-algebras over G) between s∗(A) and r∗(A). We note that this isomorphism
induces an isomorphism between the fibers of s∗(A) and r∗(A).

2.1. Tensor Products. Let A and B be G-C∗-algebras. Then their tensor product
is defined by

A ⊗Z B := (A ⊗ B)|∆(Z×Z)

where ∆(Z × Z) is the diagonal in Z × Z and G acts diagonally on A ⊗Z B.

Example 2.8. Take A = C0(U) and B = C0(V); then one can show that A ⊗Z B =
C0(U ×Z V), where U ×Z V := {(u, v)|pU(u) = pV(v)}.

Definition 2.9. A symmetric monoidal category is a category with tensor prod-
uct operation ⊗ such that (A ⊗ B) ⊗ C � A ⊗ (B ⊗ C) , A ⊗ B � B ⊗ A, and there is
an element 1 (the identity) such that 1 ⊗ A � A ⊗ 1.

Proposition 2.10. The category of G-C∗-algebras is a symmetric monoidal category
with identity 1 = C0(Z).

Definition 2.11. Let A and B be G-algebras. Then we define KKG(A,B) to be
the quotient of EG(A,B) by homotopy; where EG(A,B) is the set of pairs (E,F),
where E is a Z2-graded G-equivariant Hilbert B-module with a G-equivariant
∗-homomorphism, φ : A→ B(E), and F ∈ B(E) is odd and each of the following
are compact: [F, φ(a)], (F2

− I)φ(a), (F∗ − F)φ(a), and (g · F − F)φ(a) (This last this
condition is vague; it is an exercise for the reader to precisely define it).

Theorem 2.12 (Kasparov). KKG is a symmetric monoidal category. We note that the
tensor product operation required is given by the exterior product in KKG.
Moreover, we have a functor (of symmetric monoidal categories):

G-algebras −→ KKG

The composition (i.e. the Kasparov product) in KKG will be denote by:

KKG(A,B) × KKG(B,C) −→ KKG(A,C), ( f , h) 7−→ f ⊗B h.
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4LECTURES BY: HEATH EMERSON (JOINT WORK WITH RALF MEYER) NOTES BY: ROBIN DEELEY AND ELKAIOUM MOUTUOU

3. E K-T

We now consider KKG(C0(Z),C0(X)) under the condition that G is proper.

Remark 3.1. Properness of the groupoid is required to ensure topological dependence.
For example, if G is an infinite group and X a G-space, then KKG(C,C0(X)) is NOT
topological in nature. It is related to coarse geometry.

Kasparov cycles (E,F) in this case are of the form: E is a field of Hilbert spaces
{Hx|x ∈ X} over X vanishing at infinity; and F corresponds to a field of operators
{Fx|x ∈ X} such that certain Fredholm conditions hold, which we now discuss.

Fredholm condition: f ∈ C0(Z), f · (F2
− 1) ∈ K (E) implies that for each x ∈ X,

Fx is a Fredholm. Moreover, the {Fx} is a norm continuous family, which vanishes
at infinity (in the sense that, (ρ◦ pX) · (F2

x− 1) is required to be a norm continuous
compact operator valued function that vanishes at infinity). This last condition
should to be thought of as a condition on the support (of {Fx}) in the vertical
direction (i.e., in the direction of the fibers of X over Z).
We note that, in this case, we can assume that F is G-equivariant (rather than
just equivariant up to compacts).

Theorem 3.2. Let HG be a bundle of Hilbert spaces x 7−→ L2(Gx) ⊗ l2(N). Then
KKG(C0(Z),C0(X)) is isomorphic to homotopy classes of G-equivariant maps X −→∐

x∈X Fred(HGx). (The topology on the space
∐

x∈X Fred(HGx) is defined in [1]).

Definition 3.3. Let G //r
s

// G(0) be a groupoid, X a proper G-space. Then the

G-equivariant representable K-theory of X is

RKG(X) := KKGoX(C0(X),C0(X)).

The G-equivariant representable K-theory of Y, where Y is a space over X with
X-compact supports is

RKG(X) := KKGoX(C0(X),C0(Y)).

Example 3.4. We now consider an example of a class in representable K-theory.
Let X be a proper G-space, V a G-equivariant vector bundle over X, which is
K-oriented. Fix a G-equivariant Euclidean metric on V and form the Clifford
bundle Cl(V) over X (i.e. the family {Cl(Vx)|x ∈ X}). The K-oriented condition
implies that there exists a G-vector bundle S over X such that cx : Cl(Vx) −→
End(Sx) are ∗-isomorphisms for each x (i.e. we have c : Cl(V) � End(S)). This is
a global condition. Locally, we always have such an S and K-orientablity allows
us to “paste” these locally defined objects together.

Next, we let E be the sections of the bundle π∗V(S) and note that it forms a
C0(X)-module. We define F ∈ B(H) as follows: If x ∈ X and v ∈ Vx, then Fv is
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BIVARIANT K-THEORY FOR SMOOTH MANIFOLDS I 5

define to act as Clifford multiplication by v (i.e. acts by c(v) ∈ End(S)). One can
can check that (E,F) forms a cycle in KKGoX(C0(X),C0(V)) (i.e. RK∗

G,X(V)). The
class of this cycle is call the Thom class. We note that it is invertible and induces
the Thom isomorphism (in representable K-theory).

4. K-

Suppose (X, pX) is a proper G-equivariant K-oriented manifold. We now
construct the (fiberwise) Dirac operator DX of X. To begin, fix a cover of X
by charts containing open sets of the form L × Rn where L ⊆ Z (recall Z is the
base space of G). Moreover, we assume that given any chart homeomorphism,
φ : U → L ×Rn, we have that, (for x ∈ U), pX(x) = (proj1 ◦ φ)(x). We then define
the fiberwise Dirac operator DX to be the pullback of the Dirac operators on the
Rn fibers of the open cover described above. We denote this by DX and denote
its class by [DX] ∈ KKG(C0(X),C0(Z)).

Example 4.1. Let V be a K-oriented G-equivariant vector bundle over X. Then
[DV] ∈ KKGoX(C0(V),C0(X)) is the inverse to [ξV] (where [ξV] is the Thom class
which was defined in the previous section).

5. D

Theorem 5.1 (Kasparov). For a compact manifold X, there exists a canonical isomor-
phism

KK(C(X),C) −→ KK(C,C0(TX))

which maps the class [D] of all elliptic operator on X to the class [σD] of its symbol
[σD] ∈ KK(C,C0(TX)).

Definition 5.2. Let X be a G-space. An abstract dual for X is a pair (P, θ) where P
is a G-algebra, and θ ∈ KKGoX(C0(X),C0(X) ⊗ P) such that the map

KKG(P⊗A,B) −→ KKGoX(C0(X)⊗P⊗A,C0(X)⊗B) −→G⊗ KKGoX(C0(X)×A,C0(X)⊗B)

is an isomorphism for all A and B.

Definition 5.3. A Kasparov dual for X is a triple (P,D, θ) where P is aGoX-algebra,
θ ∈ KKGoX(C0(X),C0(X) ⊗ P) and D ∈ KKG(P,C0(Z) with the properties

(1) θ ⊗P D = 1X ∈ KKGoX(C0(X),C0(X));
(2) θ⊗X f = θ⊗PTP( f ) ∈ KKGoX(C0(X)⊗A,C0(X)⊗B⊗P) for f ∈ KKGoX(C0(X)⊗

A,C0(X) ⊗ B);
(3) TP(θ) ⊗P⊗P fP = TP(θ).
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6LECTURES BY: HEATH EMERSON (JOINT WORK WITH RALF MEYER) NOTES BY: ROBIN DEELEY AND ELKAIOUM MOUTUOU

We note that TP is defined by the following sequence of maps:

KKGoX(C0(X)⊗A,C0(X)⊗B)→ KKGoX(C0(X)⊗A⊗P,C0(X)⊗B⊗P)→ KKGoX(A⊗P,B⊗P)

where the first map is given by exterior product with [idP] ∈ KKG(P,P) and the
second forgets the C0(X)-structure.

Theorem 5.4. If (P,D, θ) is a Kasparov dual for X, then (P, θ) is an abstract dual and
the inverse of the duality map in Definition 5.2 is given by

(• ⊗ [D]) ◦ Tp : KKGoX(C0(X) ⊗ A,C0(X) ⊗ B)→ KKG(P ⊗ A,B)

Remark 5.5. We note that this form of duality occurs naturally in certain nonsmooth
cases.

Theorem 5.6. Let X be a smooth proper G-manifold. Then there exists natural isomor-
phisms

KKG(C0(TX) ⊗ A,B) � KKGoX(C0(X) ⊗ A,C0(X) ⊗ B)
KKGX(C0(X) ⊗ A,B) � KKGoX(C0(X) ⊗ A,C0(TX) ⊗ B)

R

[1] H. Emerson and R. Meyer Equivariant representable K-theory, J. Topol. 2 (2009), no. 1, 123-156.


