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GENNADI KASPAROV

1. Dirac and dual Dirac element on Rn

1.1. Bott (dual Dirac) element [β]. Let Cn = Cliff(Rn)⊗C be complex Clifford
algebra generated by bases of Rn: ε1, · · · , εn under the relation εiεj + εjεi = 2δij

and ε∗
i = εi.(R is viewed as a subalgebra of Cn)

Define Cτ (Rn) = C0(Rn) ⊗ Cn, its multiplier M(Cτ (Rn)) can be identified as
Cb(Rn, Cn), the bounded map on Rn with coefficient in Cn. (Recall that multiplier
of Cτ (Rn) is the same as L(Cτ (Rn))).

For x ∈ Rn we define Bott element β : Rn → Cn by

β(x) =
x√

x2 + 1
,

and so β ∈ Cb(Rn, Cn) = L(Cτ (Rn)).
View E = Cτ (Rn) as Hilbert module over itself and β as above, then it is easy

to check the class (E , β) defines an element [β] in K0(Cτ (Rn)) = KK0(C, Cτ (Rn))
(K-theory for graded algebra), we will call [β] Bott element or dual Dirac element.

1.2. Dirac element [D]. We will construct Dirac element [D] ∈ K0(Cτ (Rn)) =
KK0(Cτ (Rn), C).

We view Λ∗(Rn) as a finite dimensional Hilbert space and on it we define a
representation of Cn → L(Λ∗(Rn)) by

(ξ ∈ Rn) 7→ c−(ξ) = ext(ξ) − int(ξ)

where c(ξ) means clifford multiplication by ξ, ext means the exterior multiplication
by ξ and int means the adjoint of ext.

We also take Hilbert space L2(Rn) and on it we have a representation of C0(Rn)
on it by multiplication.

Combining the two we get a representation of ϕ : Cτ (Rn) = C0(Rn) ⊗ Cn on
L2(Rn) ⊗ Λ∗(Rn) = L2(Λ∗(Rn)).

Denote H = L2(Rn) ⊗ Λ∗(Rn) = L2(Λ∗(Rn)) and ∂i = ∂
∂xi

define operator D on
H by

D =
X

i

c−(ei)∂i

where ei ∈ Rn ⊂ Cn are generators for Rn.

Remark 1.1. Using the fact that c−(ξ∗) = −c−(ξ), c−(ξ)2 = −kξk2, ∂∗
i = −∂i we

know D self-adjoint.

Proposition 1.2. (H, φ, D) = [D] ∈ K0(Cτ (Rn)), [D] or its bounded version
[F ] = [D(1 + D2)− 1

2 ] is called the Dirac element of Rn.

1



2 GENNADI KASPAROV

Proof. (1)ϕ(a)(F 2 − 1) ∈ K(H), ∀a ∈ Cτ (Rn).
We may assume a ∈ Cc(Rn, Cn), then ϕ(a)(1 − F 2) ∈ K(H) follows from Rellich

lemma (i.e. the inverse of an elliptic differential operator multiplied by a function
with compact support is a compact operator).

(2) [ϕ(a), F ] ∈ K(H).

F =
D√

D2 + 1
=

2
π

Z ∞

0

D

1 + D2 + λ2
dλ

is strongly convergent. From this we have

[ϕ(a), F ] =
2
π

Z ∞

0
(1+D2+λ2)−1([ϕ(a), D](1+λ2)+D[ϕ(a), D]D)(1+D2+λ2)−1dλ

The integrant is compact and the integral converges in norm. Assume a ∈ Cc(Rn, Cn)
and still use Rellich lemma we get the claim. §

1.3. Product of Dirac and dual Dirac. What is the intersection product of [β]
and [D] in K0(Cτ (Rn)) ⊗ K0(Cτ (Rn)) → Z?

Recall that Bott element acts on E = Cτ (Rn), then the product should act on
Hilbert space E ⊗Cτ (Rn) L2(Λ∗(Rn)) = L2(Λ∗(Rn)).

We now want to find an operator Φ corresponds to the product,i.e.

Φ ∈ x√
x2 + 1

]
D√

1 + D2
.

Let c+ : Cn → L(L2(Λ∗(Rn))) be the Clifford multiplication operator defined
by (ξ ∈ Rn) 7→ c+(ξ) = ext(ξ) + int(ξ) (property: c+(ξ)2 = kξk2, c+(ξ)∗ = c+(ξ)).
And we claim

Φ =
D + c+(x)p

1 + (D + c+(x))2
.

We denote B = D + c+(x) : L2(Λ∗Rn) → L2(Λ∗Rn) as the unbounded version
of Φ, it is related to harmonic oscillator theory. In fact we have

B2 =
nX

k=1

(− ∂

∂x2
k

+ x2
k) + 2N − n, N = deg(ω), ω ∈ L2(Λ∗Rn),

a harmonic oscillator operator.

Remark 1.3. B is an elliptic differential operator on Rn. In fact, it is obtained

by the (exterior) intersection product of Bi =
µ

0 Di + c+(xi)
(Di + c+(xi))∗ 0

∂
on

L2(ΛoddR) ⊕ L2(ΛevenR): B = B1⊗̂1⊗̂ · · · ⊗̂1 + · · · + 1⊗̂ · · · ⊗̂1⊗̂Bn. For example,

B2
1 |L2(ΛevenR) = − ∂

∂x2
1

+ x2
1 − 1 = (− ∂

∂x1
+ x1)(

∂

∂x1
+ x1),

It is a positive elliptic operator, ker(D1 + c+(xi)) = {e− x2
2 } and one can find its

eigenvalues are 0, 2, 4, · · · .

We need to verify that Φ satisfy the property to be the product of Bott and
Dirac element, and that are done in the following lemmas.

Lemma 1.4. Φ is Fredholm.
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Proof. Φ = B√
B2+1

, where B is an unbounded elliptic operator with eigenvalues
0, 2, 4, · · · , then 1−(Φ)2 = 1

1+B2 has eigenvalues 1, 1
3 , 1

5 , 1
7 , · · · and therefore implied

compactness. §

Lemma 1.5. Φ = B√
B2+1

is a F = D√
1+D2 -connection.

Proof. Observe that F can be viewed as a F -connection, so it is enough to show
ϕ(a) ⊗ 1(Φ − F ) ∈ K(L2(Λ∗Rn)), ∀a ∈ Cτ (Rn). But it is easy if we express Φ and
F in integrals and calculate and then apply Rellich lemma. §

Lemma 1.6. ∀a ∈ Cτ (Rn), ϕ(a)⊗1[ x√
1+x2 , B]ϕ(a)⊗1 ≥ 0 up to compact operators.

Remark 1.7. B has one dimensional kernel and surjective, ind(Φ) = ind(B) = 1.
In fact both the Bott and Dirac element are invariant under rotation, so Φ can

be viewed as the multiplicative identity in the representation ring of O(n).
In general, If Rn admit an action from a local compact group G, the orient-

preserving action on Rn is the composition of translation and rotation.
If g ∈ G, g : Rn → Rn : x 7→ x − a, x√

x2+1
− x−a√

(x−a)2+1
∈ C0(Rn, Cn), and

a(g(F )−F ) ∈ K(L2(Λ∗Rn)). The Bott and Dirac element can be viewed as elements
of equivariant KK-theory and there paring is in KKG(C, C).

1.4. Bott periodicity. Now [β] ∈ KK(C, Cτ (Rn)), [D] ∈ KK(Cτ (Rn), C), and
we know that [β] ⊗Cτ (Rn) [D] = 1 ∈ Z. By Atiyah’s rotation trick [D] ⊗C [β] =
1Cτ (Rn) ∈ KK(Cτ (Rn), Cτ (Rn)). Then we get Bott isomorphism

⊗[β] : K0(A) → K0(A⊗̂Cτ (Rn)).

2. Dirac and dual Dirac element on complete Riemannian manifold

2.1. Dirac element. Let X be a complete Riemannian manifold G-manifold, τ is
the cotangent vector bundle of X equipped with Riemannian metric and involution.
Consider the Clifford bundle Cliff(τ, Q) associated to the cotangent bundle. Let
Cτ (X) denote the sections of bundle of Clifford algebras vanish at infinity onX.

The graded Hilbert space is H = L2(Λ∗(X)), L2-forms on X. On it there is a
homomorphism ϕ : Cτ (X) → L(H) by Clifford multiplication of ext(ξ) + int(ξ) on
the forms.

Let d be exterior derivative and d∗ be its adjoint. One can check that D = d+d∗

is an essential self-adjoint element on H, and F = D(D2 + 1)− 1
2 ∈ L(H). Use the

similar procedure as in the last section, we get a Dirac element [D] in K0
G(Cτ (X)).

Lemma 2.1. (L2(Λ∗X), ϕ, F ) is a (Cτ (X), C)-bimodule and its class gives an el-
ement in KKG(Cτ (X), C) = K0

G(Cτ (X)) and denoted by [D], which will be called
the Dirac element of the manifold X.

2.2. construction of Bott (dual Dirac) element. While Dirac element exists
globally for a Riemannian manifold, there is generally no global Bott(dual Dirac)
element. However, we can always construct a local dual Dirac element [Θ] for a
complete Riemannian manifold, as an element in RKKG(X, C, Cτ (X)).

∀x ∈ X, ∃ a neighborhood Ux ⊂ X, the image of a small open ball in TxX under
the exponential map, such that for any two points in Ux there is unique geodesic
connecting them. Let rx be the radius of Ux and s(x, y) be the distance between x
and y.
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In analogy with the definition of the Bott element on Rn we have the same
definition on Ux under the homeomorphism of it with the euclidean space. Precisely,
The one form Θx defined by

Θx(y) =
s(x, y)

rx
(dys)(x, y)

on Ux is the Bott (dual Dirac) element in local sense. (Note that Θx ∈ L(Cτ (Ux))
and Θ2

x −1 vanish at the boundary of Ux, so it is compact when consider Cτ (Ux) =
C0(Ux) ⊗ Cn as a Hilbert module over Cτ (X).)

Definition 2.2. The field of pairs {(Cτ (Ux), Θx)x∈X} gives an element of RKKG(X; C, Cτ (X)),
and we denote the element by [Θ], this is the dual Dirac element we are looking
for.

Remark 2.3. [Θ] can be viewed as an element in KKG(C0(X), C0(X)⊗Cτ (X)) with
the special requirement that the action of C0(X) is represent on the Hilbert C0(X)⊗
Cτ (X) by multiplication and operator Θx always commute with the representation.

Recall that for any σ-unital G − C0(X)-algebra D, there is a natural homomor-
phism

σX,D : RKKG(X; A, B) → KKG(A⊗̂C0(X)D, B⊗̂C0(X)D).

Lemma 2.4.
σX,Cτ (X)(Θ) ∈ KKG(Cτ (X), Cτ (X)⊗̂Cτ (X))

and the element is invariant under the flip automorphism of Cτ (X)⊗̂Cτ (X).

2.3. Duality.

Theorem 2.5. Let X be a G-manifold, then

[Θ] ⊗Cτ (X) [D] = 1X ∈ RK0
G(X)and

σX,Cτ (X)([Θ]) ⊗Cτ (X) [D] = 1Cτ (X) ∈ KKG(Cτ (X), Cτ (X)).

Proof. For the second statement, there are two possibilities to take the product
with Dirac element, but the last lemma shows that they lead to the same result.
The second statement follows from the first one.

The product of the first statement is a family of pairs (Hx, Sx), x ∈ X, where

Hx = L2(Λ∗(Ux)), Sx = Θx + (1 − Θ2
x)

1
4 F (1 − Θ2

x)
1
4 .

One need to show this element is 1 in RK0
G(X) use a homotopy. For detail see

[1]4.8 page 181. §

Theorem 2.6 (Poincare Duality). Let X be G-manifold and A, B be G-algebra,
then

RKKG(X; A, B) ∼= KKG(Cτ (X)⊗̂A, B).

Proof. ”⇒” is given by σX,Cτ (X) : RKKG(X; A, B) → KKG(Cτ (X)⊗̂A, Cτ (X)⊗̂B)
and then take intersection product with [D] ∈ KKG(Cτ (C), C).

” ⇐ ” is essentially taking intersection product of [Θ] with elements in KKG(Cτ (X)⊗̂A, B).
§
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3. special manifold and γ element

3.1. special manifold. Special manifold a manifold where there is a global dual
Dirac operator on X.

Definition 3.1. A G-manifold Xwill be called special if there is an element η ∈
KG

0 (Cτ (X)) satisfying one of the following equivalent conditions:
(1) p∗(η) = [Θ] ∈ RKKG(X; C, Cτ (X)) where p : X → pt.
(2) [D] ⊗ η = 1Cτ (X) ∈ KKG(Cτ (X), Cτ (X)).

Remark 3.2. The element η is defined uniquely. It is the global dual Dirac element.
The intersection product η ⊗ [D] ∈ R(G) is denoted by γ.

Remark 3.3. property (2) follows from theorem 2.6 and implies the surjectivity part
for the Bott periodicity when X is a euclidean space.

Example 3.4. Let X be a simply connected G-manifold of non-positive sectional
curvature, then X is special.

To see that, consider Cτ (X) as a Hilbert module over itself and for a fixed x ∈ X
define ξx(y) = dy(1 + s(x, y)2) 1

2 , an operator of left multiplication by the 1-form
ξx as an element ξx ∈ L(Cτ (X)). We claim that (Cτ (X), ξx) ∈ KG

0 (Cτ (X)), is the
global dual Dirac element.

(Use the cosine inequality on non-positive curvature manifold a2 + b2 − c2 ≤
2ab cos α one can show the crucial property ξx is G-continuous, g(ξx) − ξx ∈
K(Cτ (X)), and ξx − ξx0 ∈ K(Cτ (X)), ∀x0 ∈ X.)

Theorem 3.5. Let P → Z be a principal fiber bundle with fiber Γ. Assume P has a
G action which commutes with Γ action and the projection. Let Y be a Γ-manifold
and form G-manifold X = P ×Γ Y, a bundle over Z (q : X → Z).

We choose a Riemannian metric which compatible with the metric on the fiber
and such that q∗ : T ∗

q(x)Z → T ∗
x X is isometric for all x ∈ X.

If Z is a special G-manifold and Y is a special Γ-manifold, X is a special G-
manifold.

Proof. Construction of the dual Dirac element on X will be given here, for detailed
proof see [1] 5.4 on page 186.

Since Y and Z are special, there are element θ ∈ KΓ
0 (Cτ (Y )) and ξ ∈ KG

0 (Cτ (Z)).
Let E be the algebra of all bounded Γ-equivariant continuous maps P → Cτ (Y )

and E0 = C0(X) · E.
We can define an operator on E0 (considered as a Hilbert module over itself) by

averaging:

θ̃(x) =
Z

Γ
c(g−1x)g(θ(x))dg, x ∈ Y,

where c : Y → R+ is a cut off function on Y (i.e.
R

Γ c(g−1x)dg = 1, ∀x ∈ Y ).
This defines an element of the group KKG(C(Z), E0) with the additional prop-

erty that the action of C0(Z) on E0 is by multiplication via the homomorphism q∗.
Also, σCτ (Z)(θ̃) ∈ KKG(Cτ (Z), Cτ (X)), then

ξ ⊗Cτ (Z) σCτ (Z)(θ) ∈ KG
0 (Cτ (X))

is the global dual Dirac element of X. Property (1) of the definition 3.1 is easy to
verify. §
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3.2. γ element. Let G0 be the connected component of identity of the group G,
G is called almost connected if G/G0 is compact. We are now going to prove that
all homogeneous space G/K where G is almost connected and K is its maximal
compact subgroup, are special G-manifold.

Theorem 3.6. Let G be an almost connected group and K is its maximal compact
subgroup, then X = G/K is a special G. The element γ ∈ R(G) does not depend
on the choice of K and will denoted by γG.

The following structure lemma is to be used to prove the theorem:

Lemma 3.7. Let G be almost connected, then there is a series of normal subgroups
of G: {1} = N0 ⊂ N1 ⊂ · · · ⊂ Nm ⊂ G, so that Nk+1/Nk are either compact or
Euclidean Rn, and G/Nm is a semisimple Lie group.

Idea of proof of the last theorem:
Consider G/Nm−i and take induction on i:
When i = 0, we need to prove a semisimple group G quotient its maximal

compact K is G special. Denote π be the center of G and Γ be the inverse of
the maximal compact subgroup of G0 = G/π in G,then K acts on Γ and one can
show that Y = Γ/K is homeomorphic to Rn and G/K = G ×Γ Y , observe that
G/Γ = G0/K0(K0 is maximal compact subgroup of G0) is a Riemannian symmetric
space of noncompact type, hence have non-positive sectional curvature. Since G/Γ
and Y are G and Γ special respectively, G/K is G-special by theorem 3.4.

Now assume G/Nk+1 have the property and we want to prove G/Nk also have
the property. Replace Nk+1/Nk by Γ and G/Nk by G, then it is equivalent to prove
if Γ is compact or Euclidean as a normal group of G with statement true for G/Γ,
then it is true for G. This can be proved by theorem 3.4 again.

γ element does not depend on K because all maximal compact subgroup of G
are Ad(G0)-conjugate. (G0 is connected component of identity in G).

Corollary 3.8. Let G be an almost connected group and K its maximal compact
subgroup. Then for any σ-compact G-space Y , any separable G-algebra A and any
G-algebra B, the restriction homomorphism

resG
K : RKKG(Y ; A, B) → RKKK(Y ; A, B)

maps the subgroup γG · RKKG(Y ; A, B) isomorphically onto RKKK(Y ; A, B).
In particular, γG · R(G) ∼= R(K).

Proof. [1] page 189 §

Theorem 3.9. Let f : G1 → G2 be a homomorphism between almost connected
groups with Ker f amenable and Imf closed. Then resG2

G1
(γ(G2)) = γ(G1). In partic-

ular, γ(G) = 1 for amenable almost connected group G.

Proof. [1] theorem 5.9. §

Theorem 3.10. If γG = 1, then the Baum-Connes conjecture holds for G with
arbitrary coefficient.

For example, γG = 1 for SU(n, 1), SO(n, 1). But for Sp(n, 1), γG is not 1.

Reference:
[1] Kasparov, G.G., Equivariant KK-theory and the Novikov conjecture, Inven-

tiones mathematicae, Volume 91,1988.


