Chapter 4

Bott periodicity

4.1 What we are going to prove

The aim of this section is to show the following formula:

$$
\mathrm{KK}\left(A, S^{2} B\right) \cong \operatorname{KK}(A, B) \cong \operatorname{KK}\left(S^{2} A, B\right)
$$

for all graded σ-unital C^{*}-algebras A and B (with A separable). In fact, we are going to show that for all $n \in \mathbb{N}$ the graded C^{*}-algebra \mathbb{C}_{n} and the trivially graded C^{*}-algebra $\mathcal{C}_{0}\left(\mathbb{R}^{n}\right)$ are KK-equivalent; this implies that \mathbb{C}_{2} and S^{2} are KK-equivalent and hence $\mathbb{C}_{2} \hat{\otimes} A$ and $S^{2} A$ are KK-equivalent (and likewise for B). Hence the formula follows from the corresponding formula for \mathbb{C}_{2}.

First note that it suffices to consider the case $n=1$ because if x is a KK-equivalence from S to \mathbb{C}_{1} then $x \hat{\otimes} x$ is a KK-equivalence from $S^{2} \cong S \otimes S$ to $\mathbb{C}_{2} \cong \mathbb{C}_{1} \hat{\otimes} \mathbb{C}_{1}$, etc.

Note that it suffices to find an equivalence β between the algebras \mathbb{C} and $\mathbb{C}_{1} \hat{\otimes} \mathcal{C}_{0}(\mathbb{R}) \cong$ $\mathcal{C}_{0}\left(\mathbb{R}, \mathbb{C}_{1}\right)$ because in this case

$$
1_{\mathbb{C}_{1}} \otimes \beta \in \operatorname{KK}\left(\mathbb{C}_{1} \hat{\otimes} \mathbb{C}, \mathbb{C}_{1} \hat{\otimes} \mathbb{C}_{1} \hat{\otimes} \mathcal{C}_{0}(\mathbb{R})\right)
$$

is a KK-equivalence between $\mathbb{C}_{1} \hat{\otimes} \mathbb{C} \cong \mathbb{C}_{1}$ and $\mathbb{C}_{1} \hat{\otimes} \mathbb{C}_{1} \hat{\otimes} \mathcal{C}_{0}(\mathbb{R}) \cong \mathrm{M}_{2}(\mathbb{C}) \hat{\otimes} \mathcal{C}_{0}(\mathbb{R})$ where we take the standard even grading on $\mathrm{M}_{2}(\mathbb{C})$; the latter algebra is KK-equivalent to $\mathcal{C}_{0}(\mathbb{R})$ because $\mathrm{M}_{2}(\mathbb{C})$ is gradedly Morita equivalent to \mathbb{C}.

So we are looking for elements $\alpha \in \operatorname{KK}\left(\mathcal{C}_{0}\left(\mathbb{R}, \mathbb{C}_{1}\right), \mathbb{C}\right)$ and $\beta \in \operatorname{KK}\left(\mathbb{C}, \mathcal{C}_{0}\left(\mathbb{R}, \mathbb{C}_{1}\right)\right)$ such that $\alpha \hat{\otimes} \mathbb{C} \beta=1_{\mathcal{C}_{0}\left(\mathbb{R}, \mathbb{C}_{1}\right)}$ and $\beta \hat{\otimes}_{\mathcal{C}_{0}\left(\mathbb{R}, \mathbb{C}_{1}\right)} \alpha=1_{\mathbb{C}}$.

4.2 The elements α and β

Let us describe the element $\alpha \in \operatorname{KK}\left(\mathcal{C}_{0}\left(\mathbb{R}, \mathbb{C}_{1}\right), \mathbb{C}\right)$ first. Observe that \mathbb{R} is homeomorphic to the open intervall $I=(-\pi, \pi)$, so we can replace $\mathcal{C}_{0}\left(\mathbb{R}, \mathbb{C}_{1}\right)$ with $A:=\mathcal{C}_{0}\left(I, \mathbb{C}_{1}\right)$. The element α is now given by the triple (H, ϕ, F) where H is the Hilbert space $\mathrm{L}^{2}(I) \oplus \mathrm{L}^{2}(I) \cong \mathrm{L}^{2}(I) \otimes \Lambda \mathbb{C}$ (if we equip $\Lambda \mathbb{C}$ with the canonical inner product making it a complex Hilbert space). The action
ϕ of $A=\mathcal{C}_{0}\left(I, \mathbb{C}_{1}\right)$ on $H=\mathrm{L}^{2}(I, \Lambda \mathbb{C})$ is given by a pointwise Clifford action: We just have to specify the action of \mathbb{C}_{1} on $\Lambda \mathbb{C}$; the generator $1=(1,0) \in \mathbb{C} \oplus \mathbb{C} \cong \mathbb{C}_{1}$ acts as identity on $\mathbb{C} \oplus \mathbb{C} \cong \Lambda \mathbb{C}$ and the generator $(0,1) \in \mathbb{C}_{1}$ acts as the matrix

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Now we have to specify the operator F. Let d be the operator on $\mathcal{C}_{0}^{\infty}(I, \Lambda \mathbb{C})$ which sends a function $t \mapsto(f(t), g(t))$ to $t \mapsto\left(0, \frac{d}{d t} f(t)\right)$ (the de Rahm derivative). Let d^{*} be it's adjoint and $D:=d+d^{*}$. We would like to define $F:=D$, but D is an unbounded operator on $\mathrm{L}^{2}(I, \Lambda \mathbb{C})$, so we have to make it bounded.

The reason why we work on I and not on \mathbb{R} is that we now can use Fourier series instead of Fourier transforms on \mathbb{R}. We can identify $\mathrm{L}^{2}(I)$ with $\mathrm{L}^{2}\left(S^{1}\right)$ and by Fourier analysis with $\ell^{2}(\mathbb{Z})$. Hence $\mathrm{L}^{2}(I, \Lambda \mathbb{C})$ can be identified with $\ell^{2}(\mathbb{Z}) \oplus \ell^{2}(\mathbb{Z})$. The operator D is now given by the matrix

$$
\left(\begin{array}{cc}
0 & i n \\
-i n & 0
\end{array}\right)
$$

where we write $i n$ for the operator which maps the basis vector e_{n} to $i n e_{n}$.
We replace this operator by the matrix

$$
F:=\left(\begin{array}{cc}
0 & i \operatorname{sign}(n) \\
-i \operatorname{sign}(n) & 0
\end{array}\right)
$$

where $\tilde{d}:=i \operatorname{sign}(n)$ is the operator which maps e_{n} to $-i e_{n}$ if $n<0,0$ if $n=0$ and $i e_{n}$ if $n>0$. Note that we have

$$
1-F^{2}=1-\left(\begin{array}{cc}
i(-i) \operatorname{sign}(n)^{2} & 0 \\
0 & i(-i) \operatorname{sign}(n)^{2}
\end{array}\right)=\left(\begin{array}{cc}
p_{0} & 0 \\
0 & p_{0}
\end{array}\right)
$$

where p_{0} is the orthogonal projection given by e_{0}. Hence $1-F^{2}$ is compact.
We have to show that the graded commutator $[f, F]$ is compact where f denotes the multiplication operator given by a function f in $A=\mathcal{C}_{0}\left(I, \mathbb{C}_{1}\right)$. We can actually show this for all functions $f \in \mathcal{C}\left(S^{1}, \mathbb{C}_{1}\right)$ if we identify I with $S^{1} \backslash\{-1\}$ in the obvious way.

First we consider the case that $f(t)=\sigma(t)=(0,1)$ for all $t \in S^{1}$. It is straighforward to see that $\sigma F=-F \sigma$, so the graded (!) commutator $[\sigma, F]=\sigma F+F \sigma$ vanishes. Because every odd element of $\mathcal{C}\left(S^{1}, \mathbb{C}_{1}\right)$ can be written as a product of an even element with σ it hence suffices to consider functions $\left(f_{0}, 0\right)$ of the form $f(t)=\left(f_{0}(t), 0\right)$. Because the map which sends f_{0} to $\left[\left(f_{0}, 0\right), F\right]$ is continuous and linear it suffices to consider functions f_{0} of the form $f_{0}(t)=e^{i k t}$ with $k \in \mathbb{Z}$.

Mulitplication by $e^{i k t}$ on $L^{2}\left(S^{1}\right)$ corresponds to the shift operator $s_{k}: e_{n} \mapsto e_{n+k}$ on $\ell^{2}(\mathbb{Z})$ after taking the Fourier transform. Hence the commutator $\left[s_{k}, F\right]$ is a finite rank operator and therefore compact.

We have shown that (H, ϕ, F) is in $\mathbb{E}(A, \mathbb{C})$ and therefore defines an element $\alpha \in \operatorname{KK}(A, \mathbb{C})$. Now we come to the element $\beta \in \operatorname{KK}(\mathbb{C}, A)$. It is given by a triple $(A, 1, v \cdot) \in \mathbb{E}(\mathbb{C}, A)$:

We consider A as a Hilbert module over itself and let \mathbb{C} act on it by scalar multiplication (so $1 \in \mathbb{C}$ acts as identity on A). The operator on A is given by (Clifford) multiplication by an odd element v of $\mathcal{C}_{b}\left(I, \mathbb{C}_{1}\right)$ (i.e., a bounded multiplier). To this end, let v be the function $t \mapsto(0, \sin (t / 2))$; note that $\sin (-\pi / 2)=-1$ and $\sin (\pi / 2)=1$, and actually, we could have chosen any continuous function on $[-\pi / 2, \pi / 2]$ with these properties instead of \sin. The sin function will soon turn out to be a good choice, however.

Pointwise Clifford multiplication by v defines an odd linear continuous operator on A. Note that $v^{2}(t)=\left(\sin ^{2}(t / 2), 0\right)$ so $\left(1-v^{2}\right)(t)=\left(\cos ^{2}(t / 2), 0\right)$ which is an element of A. So multiplication by $1-v^{2}$ is compact. The commutator $[z, v \cdot]$ vanishes for all $z \in \mathbb{C}$. Hence $(A, 1, v \cdot)$ is in $\mathbb{E}(\mathbb{C}, A)$ and defines an element $\beta \in \operatorname{KK}(\mathbb{C}, A)$.

4.3 The product $\beta \hat{\otimes}_{\mathcal{C}_{0}\left(\mathbb{R}, \mathbb{C}_{1}\right)} \alpha=1_{\mathbb{C}}$

We now use a Lemma from Blackadars book (Lemma 18.10.1) to calculate the Kasparov product of β and α. We use it in the following form (without readjusting the notation):

Lemma. Let A, B, C be graded σ-compact C^{*}-algebras, let A be separable, and let $x_{1}:=$ $\left(E_{1}, \phi_{1}, T_{1}\right) \in \mathbb{E}(A, B)$ and let $x_{2}:=\left(E_{2}, \phi_{2}, T_{2}\right) \in \mathbb{E}(B, C)$ such that $T_{1}^{*}=T_{1}$ and $\left\|T_{1}\right\| \leq 1$. Let G be any T_{2}-connection of degree 1 on $E_{12}:=E_{1} \hat{\otimes}_{B} E_{2}$. Define $\phi_{12}(a):=\phi_{1}(a) \hat{\otimes} 1$ for all $a \in A$ and

$$
T_{12}:=T_{1} \hat{\otimes} 1+\left[\left(1-T_{1}^{2}\right)^{1 / 2} \hat{\otimes} 1\right] G
$$

If $\left[T_{12}, \phi_{12}(a)\right] \in \mathrm{K}_{C}\left(E_{12}\right)$ for all $a \in A$, then $\left(E_{12}, \phi_{12}, T_{12}\right)$ is in $\mathbb{E}(A, C)$ and represents the Kasparov product of $\left[x_{1}\right]$ and $\left[x_{2}\right]$.

We use this lemma for $(\mathbb{C}, A, \mathbb{C})$ instead of (A, B, C) and $x_{1}=(H, \phi, F)$ and $x_{2}=(A, 1, v \cdot)$. First we determine E_{12}, i.e. $A \hat{\otimes}_{A} H$: Because A acts non-degenerately on H (i.e. $A H=H$), we can (and will) identify $A \hat{\otimes}_{A} H$ and H. If we regard an odd operator G on H as an operator also on $A \hat{\otimes}_{A} H$, then G is an F-connection if and only if $a G-(-1)^{\partial a} F a$ and $a F-(-1)^{\partial a} G a$ are compact for all $a \in A$. So it is easy to see that F is an F-connection in this sense because we have already checked that the graded commutator $[a, F]$ is always compact. So the lemma applies and we obtain that

$$
\tilde{F}:=(v \cdot) \hat{\otimes} 1+\left((1-v \cdot)^{1 / 2} \hat{\otimes} 1\right) F
$$

is an operator on $H=\mathrm{L}^{2}(I, \Lambda \mathbb{C})$ such that $(H, 1, \tilde{F}) \in \mathbb{E}(\mathbb{C}, \mathbb{C})$ is homotopic to a Kasparov product of $(A, 1, v \cdot)$ and (H, ϕ, F). The operator $(v \cdot) \hat{\otimes} 1$ can be identified with the canonical action of the odd element $v=(t \mapsto \sin (t / 2) \sigma) \in A=\mathcal{C}_{0}\left(I, \mathbb{C}_{1}\right)$ on $H=\mathrm{L}^{2}(I, \Lambda \mathbb{C})$ (where $\left.\sigma=(0,1) \in \mathbb{C}_{1}\right)$). And $\left((1-v \cdot)^{1 / 2} \hat{\otimes} 1\right)$ can be identified with the canonical action of the even element $t \mapsto \cos (t / 2) 1)$ of A on H. So we have

$$
\tilde{F}:=\sin (t / 2) \sigma+\cos (t / 2) F .
$$

We hence have to calculate the Fredholm index of the operator

$$
T:=\sin (t / 2)+\cos (t / 2) \tilde{d}
$$

from $\mathrm{L}^{2}(I)$ to itself, where \tilde{d} is the operator which, in the Fourier picture, sends e_{n} to $i \operatorname{sign}(n) e_{n}$. To make our calculations more pleasant we compute the (unchanged) index of the operator

$$
S:=2 i e^{i t / 2} T=\left(e^{i t}-1\right)+i\left(e^{i t}+1\right) \tilde{d} .
$$

For all $n \in \mathbb{Z}$ we calculate (in the Fourier picture):

$$
S\left(e_{n}\right)= \begin{cases}-2 e_{n}, & n>0 \\ e_{1}-e_{0}, & n=0 \\ 2 e_{n+1}, & n<0\end{cases}
$$

In other words, if $x \in \ell^{2}(\mathbb{Z})$ then

$$
(S x)_{n}= \begin{cases}-2 x_{n}, & n>1 \\ x_{0}-2 x_{1}, & n=1 \\ 2 x_{-1}-e_{0}, & n=0 \\ 2 e_{n+1}, & n<0\end{cases}
$$

From this it follows that the kernel of S is the span of $e_{1}+e_{-1}+2 e_{0}$, and on the other hand, we have

$$
e_{n}= \begin{cases}S\left(-1 / 2 e_{n}\right), & n>1 \\ S\left(e_{1}+1 / 2 e_{-1}\right), & n=1 \\ S\left(1 / 2 e_{-1}\right), & n=0 \\ S\left(1 / 2 e_{n-1}\right), & n<0\end{cases}
$$

so S is surjective (because we can define a split in an obvious way). So the index of S (and thus of T) is 1 . So $\beta \hat{\otimes}_{A} \alpha=1 \in \operatorname{KK}(\mathbb{C}, \mathbb{C})$.

4.4 The product $\alpha \hat{\otimes}_{\mathbb{C}} \beta=1_{\mathcal{C}_{0}\left(\mathbb{R}, \mathbb{C}_{1}\right)}$

Instead of calculating the product on the level of cycles, we use the commutativity of the (general) product over \mathbb{C} and a trick which is a variant of Atiyah rotation trick. In the calculations, we suppress tensor products by \mathbb{C} (and hence also the canonical flip homomorphisms between tensor products by \mathbb{C} from the left and from the right). Observe that

$$
\alpha \hat{\otimes}_{\mathbb{C}} \beta=\beta \hat{\otimes}_{\mathbb{C}} \alpha=\left(\beta \hat{\otimes} 1_{A}\right) \hat{\otimes}_{A \hat{\otimes} A}\left(1_{A} \hat{\otimes} \alpha\right)=\left(\beta \hat{\otimes} 1_{A}\right) \hat{\otimes}_{A \hat{\otimes} A}\left(\left[\Sigma_{A, A}\right] \hat{\otimes}_{A \hat{\otimes} A}\left(\alpha \hat{\otimes} 1_{A}\right)\right)
$$

where $\Sigma_{A, A}$ is the automorphism of $A \hat{\otimes} A$ flipping the factors. If we can show that $\Sigma_{A, A}$ is homotopic to an isomorphism of the form $\operatorname{Id}_{A} \hat{\otimes} \psi$ where ψ is an automorphism of A, then we are done because then

$$
\begin{aligned}
\left(\beta \hat{\otimes} 1_{A}\right) \hat{\otimes}_{A \hat{\otimes} A}\left[\Sigma_{A, A}\right] \hat{\otimes}_{A \hat{\otimes} A}\left(\alpha \hat{\otimes} 1_{A}\right) & =\left(\beta \hat{\otimes} 1_{A}\right) \hat{\otimes}_{A \hat{\otimes} A}\left(1_{A} \hat{\otimes}[\psi]\right) \hat{\otimes}_{A \hat{\otimes} A}\left(\alpha \hat{\otimes} 1_{A}\right) \\
& =\left(\beta \hat{\otimes} 1_{A}\right) \hat{\otimes}_{A \hat{\otimes} A}\left(\alpha \hat{\otimes} 1_{A}\right) \hat{\otimes}_{\mathbb{C} \hat{\otimes} A}\left(1_{\mathbb{C}} \hat{\otimes}[\psi]\right) \\
& =\left(\left(\beta \hat{\otimes_{A}} \alpha\right) \hat{\otimes} 1_{A}\right) \hat{\otimes_{A}}[\psi] \\
& =\left(1_{\mathbb{C}} \hat{\otimes} 1_{A}\right) \hat{\otimes}_{A} \psi=1_{A} \hat{\otimes}_{A}[\psi]=[\psi] .
\end{aligned}
$$

This shows that $\alpha \hat{\otimes}_{\mathbb{C}} \beta$ is an automorphism of A while $\beta \hat{\otimes}_{A} \alpha=1_{\mathbb{C}}$. So α is a right inverse of β and β also has a left inverse, so α is also a left inverse and $[\psi]$ is the identity in $\operatorname{KK}(A, A)$.

So what is left to show is that $\Sigma_{A, A}$ actually is homotopic to some $1_{A} \hat{\otimes} \psi$. To this end, we first identify $A \hat{\otimes} A$ with $\mathcal{C}_{0}\left(\mathbb{R}^{2}, \mathbb{C}_{2}\right)$ (if you like, you can think of this algebra as an algebra of sections in the complex Clifford bundle over \mathbb{R}^{2}).

Now observe that every linear isometry U of \mathbb{R}^{2} induces a canonical graded $*$-automorphism \tilde{U} of $\mathcal{C}_{0}\left(\mathbb{R}^{2}, \mathbb{C}_{2}\right):$ If f is in $\mathcal{C}_{0}\left(\mathbb{R}^{2}, \mathbb{C}_{2}\right)$, then $\tilde{U}(f):=\operatorname{Cliff}_{\mathbb{C}}(U) \circ f \circ U^{-1}$ where Cliff $\mathbb{C}(U)$ is the canonical unital automorphism of \mathbb{C}_{2} induced by U given by the universal property of the Clifford algebra.

If U is the identity of \mathbb{R}^{2}, then $\mathrm{Cliff}_{\mathbb{C}}(U)$ is the identity on \mathbb{C}_{2} and \tilde{U} is of course the identity on $A \otimes A$.

On the other hand, if U is the map $(x, y) \mapsto(-y, x)$, then we obtain the following automorphism Cliff $\mathbb{C}(U)$: Let e_{1}, e_{2} denote the standard basis vectors in \mathbb{R}^{2} and let e denote the standard basis vector in \mathbb{R}. Let Φ denote the canonical unital isomorphism $\mathbb{C}_{1} \hat{\otimes} \mathbb{C}_{1} \cong \mathbb{C}_{2}$, it sends $e \hat{\otimes} 1$ to $e_{1} \in \mathbb{C}_{2}, 1 \hat{\otimes} e$ to $e_{2} \in \mathbb{C}_{2}$ and $e \hat{\otimes} e$ to $e_{1} e_{2} \in \mathbb{C}_{2}$. Now Cliff $\mathbb{C}_{C}(U)$ sends e_{1} to e_{2}, e_{2} to $-e_{1}$ and hence $e_{1} e_{2}$ to $-e_{2} e_{1}=e_{1} e_{2}$. So $\Phi^{-1} \circ \operatorname{Cliff}_{\mathbb{C}} \circ \Phi$ is the same as $\Sigma_{\mathbb{C}_{1}, \mathbb{C}_{1}} \circ\left(1 \otimes \operatorname{Cliff}_{\mathbb{C}}\left(-\operatorname{Id}_{\mathbb{R}}\right)\right)$ (note that the graded flip $\Sigma_{\mathbb{C}_{1}, \mathbb{C}_{1}}$ sends $e \hat{\otimes} e$ to $\left.-e \hat{\otimes} e\right)$.

Similarly, you calculate that \tilde{U} can be identified with $\Sigma_{A, A} \circ\left(\operatorname{Id}_{A} \hat{\otimes} \psi\right)$ where $\psi:=-\tilde{I} d_{\mathbb{R}}$ is the automorphism of $\mathcal{C}_{0}\left(\mathbb{R}, \mathbb{C}_{1}\right)$ induced by $-\operatorname{Id}_{\mathbb{R}}$ defined analogously to \tilde{U}.

Now observe that the automorphism \tilde{V} of $A \hat{\otimes} A$ depends continuously on the isometry V of \mathbb{R}^{2}. Moreover, the above-mentioned isometry U is homotopic to the identity via a rotation. Hence \tilde{U} is homotopic to the identity. It follows, that $\Sigma_{A, A} \circ\left(\operatorname{Id}_{A} \hat{\otimes} \psi\right)$ is homotopic to the identity, and after multiplying with $\Sigma_{A, A}$ from the left we see that $\operatorname{Id}_{A} \hat{\otimes} \psi$ is homotopic to $\Sigma_{A, A}$. Hence we are done.

