Chapter 4

Bott periodicity

4.1 What we are going to prove

The aim of this section is to show the following formula:

$$\operatorname{KK}(A, S^2B) \cong \operatorname{KK}(A, B) \cong \operatorname{KK}(S^2A, B)$$

for all graded σ -unital C^{*}-algebras A and B (with A separable). In fact, we are going to show that for all $n \in \mathbb{N}$ the graded C^{*}-algebra \mathbb{C}_n and the trivially graded C^{*}-algebra $\mathcal{C}_0(\mathbb{R}^n)$ are KK-equivalent; this implies that \mathbb{C}_2 and S^2 are KK-equivalent and hence $\mathbb{C}_2 \otimes A$ and $S^2 A$ are KK-equivalent (and likewise for B). Hence the formula follows from the corresponding formula for \mathbb{C}_2 .

First note that it suffices to consider the case n = 1 because if x is a KK-equivalence from S to \mathbb{C}_1 then $x \hat{\otimes} x$ is a KK-equivalence from $S^2 \cong S \otimes S$ to $\mathbb{C}_2 \cong \mathbb{C}_1 \hat{\otimes} \mathbb{C}_1$, etc.

Note that it suffices to find an equivalence β between the algebras \mathbb{C} and $\mathbb{C}_1 \hat{\otimes} \mathcal{C}_0(\mathbb{R}) \cong \mathcal{C}_0(\mathbb{R}, \mathbb{C}_1)$ because in this case

$$1_{\mathbb{C}_1} \otimes \beta \in \mathrm{KK}(\mathbb{C}_1 \hat{\otimes} \mathbb{C}, \mathbb{C}_1 \hat{\otimes} \mathbb{C}_1 \hat{\otimes} \mathcal{C}_0(\mathbb{R}))$$

is a KK-equivalence between $\mathbb{C}_1 \hat{\otimes} \mathbb{C} \cong \mathbb{C}_1$ and $\mathbb{C}_1 \hat{\otimes} \mathbb{C}_1 \hat{\otimes} \mathcal{C}_0(\mathbb{R}) \cong M_2(\mathbb{C}) \hat{\otimes} \mathcal{C}_0(\mathbb{R})$ where we take the standard even grading on $M_2(\mathbb{C})$; the latter algebra is KK-equivalent to $\mathcal{C}_0(\mathbb{R})$ because $M_2(\mathbb{C})$ is gradedly Morita equivalent to \mathbb{C} .

So we are looking for elements $\alpha \in \mathrm{KK}(\mathcal{C}_0(\mathbb{R},\mathbb{C}_1),\mathbb{C})$ and $\beta \in \mathrm{KK}(\mathbb{C},\mathcal{C}_0(\mathbb{R},\mathbb{C}_1))$ such that $\alpha \hat{\otimes}_{\mathbb{C}}\beta = 1_{\mathcal{C}_0(\mathbb{R},\mathbb{C}_1)}$ and $\beta \hat{\otimes}_{\mathcal{C}_0(\mathbb{R},\mathbb{C}_1)}\alpha = 1_{\mathbb{C}}$.

4.2 The elements α and β

Let us describe the element $\alpha \in \text{KK}(\mathcal{C}_0(\mathbb{R}, \mathbb{C}_1), \mathbb{C})$ first. Observe that \mathbb{R} is homeomorphic to the open intervall $I = (-\pi, \pi)$, so we can replace $\mathcal{C}_0(\mathbb{R}, \mathbb{C}_1)$ with $A := \mathcal{C}_0(I, \mathbb{C}_1)$. The element α is now given by the triple (H, ϕ, F) where H is the Hilbert space $L^2(I) \oplus L^2(I) \cong L^2(I) \otimes \Lambda \mathbb{C}$ (if we equip $\Lambda \mathbb{C}$ with the canonical inner product making it a complex Hilbert space). The action

 ϕ of $A = C_0(I, \mathbb{C}_1)$ on $H = L^2(I, \Lambda \mathbb{C})$ is given by a pointwise Clifford action: We just have to specify the action of \mathbb{C}_1 on $\Lambda \mathbb{C}$; the generator $1 = (1, 0) \in \mathbb{C} \oplus \mathbb{C} \cong \mathbb{C}_1$ acts as identity on $\mathbb{C} \oplus \mathbb{C} \cong \Lambda \mathbb{C}$ and the generator $(0, 1) \in \mathbb{C}_1$ acts as the matrix

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Now we have to specify the operator F. Let d be the operator on $\mathcal{C}_0^{\infty}(I, \Lambda \mathbb{C})$ which sends a function $t \mapsto (f(t), g(t))$ to $t \mapsto (0, \frac{d}{dt}f(t))$ (the de Rahm derivative). Let d^* be it's adjoint and $D := d + d^*$. We would like to define F := D, but D is an unbounded operator on $L^2(I, \Lambda \mathbb{C})$, so we have to make it bounded.

The reason why we work on I and not on \mathbb{R} is that we now can use Fourier series instead of Fourier transforms on \mathbb{R} . We can identify $L^2(I)$ with $L^2(S^1)$ and by Fourier analysis with $\ell^2(\mathbb{Z})$. Hence $L^2(I, \Lambda \mathbb{C})$ can be identified with $\ell^2(\mathbb{Z}) \oplus \ell^2(\mathbb{Z})$. The operator D is now given by the matrix

$$\begin{pmatrix} 0 & in \\ -in & 0 \end{pmatrix}$$

where we write in for the operator which maps the basis vector e_n to ine_n .

We replace this operator by the matrix

$$F := \begin{pmatrix} 0 & i \operatorname{sign}(n) \\ -i \operatorname{sign}(n) & 0 \end{pmatrix}$$

where $\tilde{d} := i \operatorname{sign}(n)$ is the operator which maps e_n to $-ie_n$ if n < 0, 0 if n = 0 and ie_n if n > 0. Note that we have

$$1 - F^{2} = 1 - \begin{pmatrix} i(-i)\operatorname{sign}(n)^{2} & 0\\ 0 & i(-i)\operatorname{sign}(n)^{2} \end{pmatrix} = \begin{pmatrix} p_{0} & 0\\ 0 & p_{0} \end{pmatrix}$$

where p_0 is the orthogonal projection given by e_0 . Hence $1 - F^2$ is compact.

We have to show that the graded commutator [f, F] is compact where f denotes the multiplication operator given by a function f in $A = C_0(I, \mathbb{C}_1)$. We can actually show this for all functions $f \in C(S^1, \mathbb{C}_1)$ if we identify I with $S^1 \setminus \{-1\}$ in the obvious way.

First we consider the case that $f(t) = \sigma(t) = (0, 1)$ for all $t \in S^1$. It is straightforward to see that $\sigma F = -F\sigma$, so the graded (!) commutator $[\sigma, F] = \sigma F + F\sigma$ vanishes. Because every odd element of $\mathcal{C}(S^1, \mathbb{C}_1)$ can be written as a product of an even element with σ it hence suffices to consider functions $(f_0, 0)$ of the form $f(t) = (f_0(t), 0)$. Because the map which sends f_0 to $[(f_0, 0), F]$ is continuous and linear it suffices to consider functions f_0 of the form $f_0(t) = e^{ikt}$ with $k \in \mathbb{Z}$.

Mulitplication by e^{ikt} on $L^2(S^1)$ corresponds to the shift operator $s_k \colon e_n \mapsto e_{n+k}$ on $\ell^2(\mathbb{Z})$ after taking the Fourier transform. Hence the commutator $[s_k, F]$ is a finite rank operator and therefore compact.

We have shown that (H, ϕ, F) is in $\mathbb{E}(A, \mathbb{C})$ and therefore defines an element $\alpha \in \text{KK}(A, \mathbb{C})$. Now we come to the element $\beta \in \text{KK}(\mathbb{C}, A)$. It is given by a triple $(A, 1, v \cdot) \in \mathbb{E}(\mathbb{C}, A)$:

4.3. THE PRODUCT $\beta \hat{\otimes}_{\mathcal{C}_0(\mathbb{R},\mathbb{C}_1)} \alpha = 1_{\mathbb{C}}$

We consider A as a Hilbert module over itself and let \mathbb{C} act on it by scalar multiplication (so $1 \in \mathbb{C}$ acts as identity on A). The operator on A is given by (Clifford) multiplication by an odd element v of $C_b(I, \mathbb{C}_1)$ (i.e., a bounded multiplier). To this end, let v be the function $t \mapsto (0, \sin(t/2))$; note that $\sin(-\pi/2) = -1$ and $\sin(\pi/2) = 1$, and actually, we could have chosen any continuous function on $[-\pi/2, \pi/2]$ with these properties instead of sin. The sin function will soon turn out to be a good choice, however.

Pointwise Clifford multiplication by v defines an odd linear continuous operator on A. Note that $v^2(t) = (\sin^2(t/2), 0)$ so $(1 - v^2)(t) = (\cos^2(t/2), 0)$ which is an element of A. So multiplication by $1 - v^2$ is compact. The commutator $[z, v \cdot]$ vanishes for all $z \in \mathbb{C}$. Hence $(A, 1, v \cdot)$ is in $\mathbb{E}(\mathbb{C}, A)$ and defines an element $\beta \in \text{KK}(\mathbb{C}, A)$.

4.3 The product $\beta \hat{\otimes}_{\mathcal{C}_0(\mathbb{R},\mathbb{C}_1)} \alpha = \mathbb{1}_{\mathbb{C}}$

We now use a Lemma from Blackadars book (Lemma 18.10.1) to calculate the Kasparov product of β and α . We use it in the following form (without readjusting the notation):

Lemma. Let A, B, C be graded σ -compact C*-algebras, let A be separable, and let $x_1 := (E_1, \phi_1, T_1) \in \mathbb{E}(A, B)$ and let $x_2 := (E_2, \phi_2, T_2) \in \mathbb{E}(B, C)$ such that $T_1^* = T_1$ and $||T_1|| \leq 1$. Let G be any T_2 -connection of degree 1 on $E_{12} := E_1 \hat{\otimes}_B E_2$. Define $\phi_{12}(a) := \phi_1(a) \hat{\otimes} 1$ for all $a \in A$ and

$$T_{12} := T_1 \hat{\otimes} 1 + [(1 - T_1^2)^{1/2} \hat{\otimes} 1]G.$$

If $[T_{12}, \phi_{12}(a)] \in K_C(E_{12})$ for all $a \in A$, then $(E_{12}, \phi_{12}, T_{12})$ is in $\mathbb{E}(A, C)$ and represents the Kasparov product of $[x_1]$ and $[x_2]$.

We use this lemma for $(\mathbb{C}, A, \mathbb{C})$ instead of (A, B, C) and $x_1 = (H, \phi, F)$ and $x_2 = (A, 1, v \cdot)$. First we determine E_{12} , i.e. $A \otimes_A H$: Because A acts non-degenerately on H (i.e. AH = H), we can (and will) identify $A \otimes_A H$ and H. If we regard an odd operator G on H as an operator also on $A \otimes_A H$, then G is an F-connection if and only if $aG - (-1)^{\partial a}Fa$ and $aF - (-1)^{\partial a}Ga$ are compact for all $a \in A$. So it is easy to see that F is an F-connection in this sense because we have already checked that the graded commutator [a, F] is always compact. So the lemma applies and we obtain that

$$\tilde{F} := (v \cdot) \hat{\otimes} 1 + ((1 - v \cdot)^{1/2} \hat{\otimes} 1)F$$

is an operator on $H = L^2(I, \Lambda \mathbb{C})$ such that $(H, 1, \tilde{F}) \in \mathbb{E}(\mathbb{C}, \mathbb{C})$ is homotopic to a Kasparov product of $(A, 1, v \cdot)$ and (H, ϕ, F) . The operator $(v \cdot) \hat{\otimes} 1$ can be identified with the canonical action of the odd element $v = (t \mapsto \sin(t/2)\sigma) \in A = \mathcal{C}_0(I, \mathbb{C}_1)$ on $H = L^2(I, \Lambda \mathbb{C})$ (where $\sigma = (0, 1) \in \mathbb{C}_1$)). And $((1 - v \cdot)^{1/2} \hat{\otimes} 1)$ can be identified with the canonical action of the even element $t \mapsto \cos(t/2)1$) of A on H. So we have

$$\tilde{F} := \sin(t/2)\sigma + \cos(t/2)F.$$

We hence have to calculate the Fredholm index of the operator

$$T := \sin(t/2) + \cos(t/2)d$$

from $L^2(I)$ to itself, where \tilde{d} is the operator which, in the Fourier picture, sends e_n to $i \operatorname{sign}(n) e_n$. To make our calculations more pleasant we compute the (unchanged) index of the operator

$$S := 2ie^{it/2}T = (e^{it} - 1) + i(e^{it} + 1)\tilde{d}.$$

For all $n \in \mathbb{Z}$ we calculate (in the Fourier picture):

$$S(e_n) = \begin{cases} -2e_n, & n > 0, \\ e_1 - e_0, & n = 0, \\ 2e_{n+1}, & n < 0. \end{cases}$$

In other words, if $x \in \ell^2(\mathbb{Z})$ then

$$(Sx)_n = \begin{cases} -2x_n, & n > 1, \\ x_0 - 2x_1, & n = 1 \\ 2x_{-1} - e_0, & n = 0, \\ 2e_{n+1}, & n < 0. \end{cases}$$

From this it follows that the kernel of S is the span of $e_1 + e_{-1} + 2e_0$, and on the other hand, we have

$$e_n = \begin{cases} S(-1/2e_n), & n > 1, \\ S(e_1 + 1/2e_{-1}), & n = 1 \\ S(1/2e_{-1}), & n = 0, \\ S(1/2e_{n-1}), & n < 0, \end{cases}$$

so S is surjective (because we can define a split in an obvious way). So the index of S (and thus of T) is 1. So $\beta \hat{\otimes}_A \alpha = 1 \in \text{KK}(\mathbb{C}, \mathbb{C})$.

4.4 The product $\alpha \hat{\otimes}_{\mathbb{C}} \beta = 1_{\mathcal{C}_0(\mathbb{R},\mathbb{C}_1)}$

Instead of calculating the product on the level of cycles, we use the commutativity of the (general) product over \mathbb{C} and a trick which is a variant of Atiyah rotation trick. In the calculations, we suppress tensor products by \mathbb{C} (and hence also the canonical flip homomorphisms between tensor products by \mathbb{C} from the left and from the right). Observe that

$$\alpha \hat{\otimes}_{\mathbb{C}} \beta = \beta \hat{\otimes}_{\mathbb{C}} \alpha = (\beta \hat{\otimes} 1_A) \hat{\otimes}_{A \hat{\otimes} A} (1_A \hat{\otimes} \alpha) = (\beta \hat{\otimes} 1_A) \hat{\otimes}_{A \hat{\otimes} A} ([\Sigma_{A,A}] \hat{\otimes}_{A \hat{\otimes} A} (\alpha \hat{\otimes} 1_A))$$

where $\Sigma_{A,A}$ is the automorphism of $A \otimes A$ flipping the factors. If we can show that $\Sigma_{A,A}$ is homotopic to an isomorphism of the form $\mathrm{Id}_A \otimes \psi$ where ψ is an automorphism of A, then we are done because then

$$\begin{aligned} (\beta \hat{\otimes} 1_A) \hat{\otimes}_{A \hat{\otimes} A} [\Sigma_{A,A}] \hat{\otimes}_{A \hat{\otimes} A} (\alpha \hat{\otimes} 1_A) &= (\beta \hat{\otimes} 1_A) \hat{\otimes}_{A \hat{\otimes} A} (1_A \hat{\otimes} [\psi]) \hat{\otimes}_{A \hat{\otimes} A} (\alpha \hat{\otimes} 1_A) \\ &= (\beta \hat{\otimes} 1_A) \hat{\otimes}_{A \hat{\otimes} A} (\alpha \hat{\otimes} 1_A) \hat{\otimes}_{\mathbb{C} \hat{\otimes} A} (1_{\mathbb{C}} \hat{\otimes} [\psi]) \\ &= ((\beta \hat{\otimes}_A \alpha) \hat{\otimes} 1_A) \hat{\otimes}_A [\psi] \\ &= (1_{\mathbb{C}} \hat{\otimes} 1_A) \hat{\otimes}_A \psi = 1_A \hat{\otimes}_A [\psi] = [\psi]. \end{aligned}$$

4.4. THE PRODUCT $\alpha \hat{\otimes}_{\mathbb{C}} \beta = 1_{\mathcal{C}_0(\mathbb{R},\mathbb{C}_1)}$

This shows that $\alpha \hat{\otimes}_{\mathbb{C}} \beta$ is an automorphism of A while $\beta \hat{\otimes}_A \alpha = 1_{\mathbb{C}}$. So α is a right inverse of β and β also has a left inverse, so α is also a left inverse and $[\psi]$ is the identity in KK(A, A).

So what is left to show is that $\Sigma_{A,A}$ actually **is** homotopic to some $1_A \hat{\otimes} \psi$. To this end, we first identify $A \hat{\otimes} A$ with $C_0(\mathbb{R}^2, \mathbb{C}_2)$ (if you like, you can think of this algebra as an algebra of sections in the complex Clifford bundle over \mathbb{R}^2).

Now observe that every linear isometry U of \mathbb{R}^2 induces a canonical graded *-automorphism \tilde{U} of $\mathcal{C}_0(\mathbb{R}^2, \mathbb{C}_2)$: If f is in $\mathcal{C}_0(\mathbb{R}^2, \mathbb{C}_2)$, then $\tilde{U}(f) := \text{Cliff}_{\mathbb{C}}(U) \circ f \circ U^{-1}$ where $\text{Cliff}_{\mathbb{C}}(U)$ is the canonical unital automorphism of \mathbb{C}_2 induced by U given by the universal property of the Clifford algebra.

If U is the identity of \mathbb{R}^2 , then $\text{Cliff}_{\mathbb{C}}(U)$ is the identity on \mathbb{C}_2 and \tilde{U} is of course the identity on $A \otimes A$.

On the other hand, if U is the map $(x, y) \mapsto (-y, x)$, then we obtain the following automorphism $\operatorname{Cliff}_{\mathbb{C}}(U)$: Let e_1, e_2 denote the standard basis vectors in \mathbb{R}^2 and let e denote the standard basis vector in \mathbb{R} . Let Φ denote the canonical unital isomorphism $\mathbb{C}_1 \otimes \mathbb{C}_1 \cong \mathbb{C}_2$, it sends $e \otimes 1$ to $e_1 \in \mathbb{C}_2$, $1 \otimes e$ to $e_2 \in \mathbb{C}_2$ and $e \otimes e$ to $e_1 e_2 \in \mathbb{C}_2$. Now $\operatorname{Cliff}_{\mathbb{C}}(U)$ sends e_1 to e_2, e_2 to $-e_1$ and hence $e_1 e_2$ to $-e_2 e_1 = e_1 e_2$. So $\Phi^{-1} \circ \operatorname{Cliff}_{\mathbb{C}} \circ \Phi$ is the same as $\Sigma_{\mathbb{C}_1,\mathbb{C}_1} \circ (1 \otimes \operatorname{Cliff}_{\mathbb{C}}(-\operatorname{Id}_{\mathbb{R}}))$ (note that the graded flip $\Sigma_{\mathbb{C}_1,\mathbb{C}_1}$ sends $e \otimes e$ to $-e \otimes e$).

Similarly, you calculate that \tilde{U} can be identified with $\Sigma_{A,A} \circ (\mathrm{Id}_A \otimes \psi)$ where $\psi := -\tilde{\mathrm{Id}}_{\mathbb{R}}$ is the automorphism of $\mathcal{C}_0(\mathbb{R}, \mathbb{C}_1)$ induced by $-\mathrm{Id}_{\mathbb{R}}$ defined analogously to \tilde{U} .

Now observe that the automorphism V of $A \otimes A$ depends continuously on the isometry V of \mathbb{R}^2 . Moreover, the above-mentioned isometry U is homotopic to the identity via a rotation. Hence \tilde{U} is homotopic to the identity. It follows, that $\Sigma_{A,A} \circ (\mathrm{Id}_A \otimes \psi)$ is homotopic to the identity, and after multiplying with $\Sigma_{A,A}$ from the left we see that $\mathrm{Id}_A \otimes \psi$ is homotopic to $\Sigma_{A,A}$. Hence we are done.