Chapter 4

Bott periodicity

4.1 What we are going to prove

The aim of this section is to show the following formula:

KK(A, S?B) 2 KK(A, B) = KK(S%A, B)

for all graded o-unital C*-algebras A and B (with A separable). In fact, we are going to show
that for all n € N the graded C*-algebra C,, and the trivially graded C*-algebra Cy(R"™) are
KK-equivalent; this implies that C, and S? are KK-equivalent and hence C,®A and S%A are
KK-equivalent (and likewise for ). Hence the formula follows from the corresponding formula
for C,.

First note that it suffices to consider the case n = 1 because if x is a KK-equivalence from S
to C; then z®x is a KK-equivalence from S? = S ® S to Cy = C,®C4, etc.

Note that it suffices to find an equivalence 3 between the algebras C and C;®Cy(R) =
Co(R, C,) because in this case

1, ® B € KK(C,&C, C,&C1&Co(R))

is a KK-equivalence between C;®@C =2 C; and C;®@C;®Cy(R) = My(C)&Cy(R) where we take
the standard even grading on M,(C); the latter algebra is KK-equivalent to Cy(IR) because My (C)
is gradedly Morita equivalent to C.

So we are looking for elements o € KK(Cy(R, C;),C) and g € KK(C, Cy(R, Cy)) such that

OZ®C5 = 1C0(R,<C1) and ﬁ®CO(R,C1)a = 1(:-
4.2 The elements o and (3
Let us describe the element o € KK (Cy(R, C,), C) first. Observe that R is homeomorphic to the
open intervall [ = (—m, ), so we can replace Cy(R, C;) with A := Cy(I, C,). The element « is

now given by the triple (H, ¢, F') where H is the Hilbert space L*(I) @ L*(I) = L*(I) ® A C (if
we equip A C with the canonical inner product making it a complex Hilbert space). The action
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¢ of A = Cy(I,Cy) on H = L*(I,AC) is given by a pointwise Clifford action: We just have
to specify the action of C; on A C; the generator 1 = (1,0) € C @ C = C; acts as identity on
C @ C = A C and the generator (0, 1) € C; acts as the matrix

01
(1 o)

Now we have to specify the operator F'. Let d be the operator on C3°(I, A C) which sends a
function t — (f(t), g(t)) tot — (0,2 f(t)) (the de Rahm derivative). Let d* be it’s adjoint and
D := d + d*. We would like to define F' := D, but D is an unbounded operator on L*(I, A C),
so we have to make it bounded.

The reason why we work on / and not on R is that we now can use Fourier series instead

of Fourier transforms on R. We can identify L*(I) with L*(S') and by Fourier analysis with
(*(Z). Hence L*(I, A C) can be identified with ¢>(Z) @ ¢*(Z). The operator D is now given by

the matrix
0 n
—n 0

where we write in for the operator which maps the basis vector e,, to ine,.
We replace this operator by the matrix

where d := i sign(n) is the operator which maps e,, to —ie,, if n. < 0, 0if n = 0 and ie,, if n. > 0.
Note that we have

e (i(—i)s(i)gn(”)Q i(_i)sggnw) _ (%0 ]f)

where py is the orthogonal projection given by ey. Hence 1 — F? is compact.

We have to show that the graded commutator [f, F'] is compact where f denotes the multi-
plication operator given by a function f in A = Cy(I,C;). We can actually show this for all
functions f € C(S',C,) if we identify I with S* \ {—1} in the obvious way.

First we consider the case that f(t) = o(t) = (0,1) for all ¢ € S*. It is straighforward to
see that o F' = —F'o, so the graded (!) commutator [0, F'| = o F + Fo vanishes. Because every
odd element of C(S*, C;) can be written as a product of an even element with ¢ it hence suffices
to consider functions ( fy,0) of the form f(t) = (fy(¢),0). Because the map which sends f; to
[(f0,0), F] is continuous and linear it suffices to consider functions f; of the form fo(t) = e
with k € Z.

Mulitplication by e*** on L?(S') corresponds to the shift operator s;: €, — €, on £%(7Z)
after taking the Fourier transform. Hence the commutator [s, F'] is a finite rank operator and
therefore compact.

We have shown that (H, ¢, F') is in E( A, C) and therefore defines an element v € KK (A, C).

Now we come to the element 3 € KK(C, A). Itis given by a triple (A, 1,v-) € E(C, A):
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We consider A as a Hilbert module over itself and let C act on it by scalar multiplication
(so 1 € C acts as identity on A). The operator on A is given by (Clifford) multiplication by
an odd element v of Cy(I,C;) (i.e., a bounded multiplier). To this end, let v be the function
t +— (0,sin(¢/2)); note that sin(—n/2) = —1 and sin(r/2) = 1, and actually, we could have
chosen any continuous function on [—7 /2, 7/2| with these properties instead of sin. The sin
function will soon turn out to be a good choice, however.

Pointwise Clifford multiplication by v defines an odd linear continuous operator on A. Note
that v2(¢) = (sin?(#/2),0) so (1 — v?)(t) = (cos?(¢/2),0) which is an element of A. So multi-
plication by 1 — v? is compact. The commutator [z, v-] vanishes for all z € C. Hence (A, 1,v-)
is in E(C, A) and defines an element 5 € KK(C, A).

4.3 The product f&¢,k ¢, = l¢

We now use a Lemma from Blackadars book (Lemma 18.10.1) to calculate the Kasparov product
of 5 and o. We use it in the following form (without readjusting the notation):

Lemma. Let A, B, C be graded o-compact C*-algebras, let A be separable, and let x| =
(Ev, 1, T1) € E(A, B) and let x5 := (Es, ¢2,Ts) € E(B,C) such that T} = T} and ||T1]| < 1.
Let G be any Ty-connection of degree 1 on Eyy := E\&pEs,. Define ¢15(a) := ¢1(a)®1 for all
a € Aand

Typ = Ti®1 4 [(1 — TH)V2&1]G.

If [Th2, $12(a)] € Ko(FEhs) for all a € A, then (Ey, ¢12,T12) is in E(A, C) and represents the
Kasparov product of [x1] and [x5)].

We use this lemma for (C, A, C) instead of (A, B,C)and z; = (H, ¢, F) and x5 = (A, 1, v-).
First we determine F,o, i.e. AQ4H: Because A acts non-degenerately on H (i.e. AH = H),
we can (and will) identify A% 4 H and H. If we regard an odd operator G on H as an operator
also on A® 4 H, then G is an F-connection if and only if aG — (—1)%*Fa and aF — (—1)%Ga
are compact for all « € A. So it is easy to see that F' is an F-connection in this sense because
we have already checked that the graded commutator [a, F| is always compact. So the lemma
applies and we obtain that

F = (v)®1 + ((1 —v)?®1)F

is an operator on H = L*(I,AC) such that (H,1, F) € E(C,C) is homotopic to a Kasparov
product of (A, 1,v-) and (H, ¢, F). The operator (v-)®1 can be identified with the canonical
action of the odd element v = (¢ + sin(t/2)o) € A = Cy(I,C;) on H = L*(I, AC) (where
o = (0,1) € Cy)). And ((1 — v-)*/2®1) can be identified with the canonical action of the even
element ¢ — cos(t/2)1) of Aon H. So we have

F :=sin(t/2)o + cos(t/2)F.
We hence have to calculate the Fredholm index of the operator

T := sin(t/2) 4 cos(t/2)d
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from L2 (I) to itself, where d is the operator which, in the Fourier picture, sends e,, to i sign(n)e,,.
To make our calculations more pleasant we compute the (unchanged) index of the operator

S = 2T = (e — 1) + (e 4 1)d.
For all n € Z we calculate (in the Fourier picture):

—2e,, n >0,
S(en) =< e —e, n=0,

2ep+1, n<O.
In other words, if z € (*(7Z) then

—2T,, n>1,
-2 =1
(Sz)n = Lo Ty, N
20 1 — ey, n=020,
2€n+17 n < 0.
From this it follows that the kernel of S is the span of e; + e_; + 2eq, and on the other hand, we
have

S(—1/2e,), n>1,
. S(er +1/2e_1), n=1
") S/2ey), n =0,
S(1/2en_1), n <0,

so S is surjective (because we can define a split in an obvious way). So the index of .S (and thus
of T)is 1. So B®4a =1 € KK(C, C).

4.4 The product a®¢cf = leyr.cy)

Instead of calculating the product on the level of cycles, we use the commutativity of the (general)
product over C and a trick which is a variant of Atiyah rotation trick. In the calculations, we
suppress tensor products by C (and hence also the canonical flip homomorphisms between tensor
products by C from the left and from the right). Observe that

a®cf = fOca = (BR14)@ 454 (14Q0) = (BR14)R454([2a,4]® 4g4(aR14))

where Y4 4 is the automorphism of A®A flipping the factors. If we can show that ¥4 4 is
homotopic to an isomorphism of the form Id 4 &7 where 1/ is an automorphism of A, then we
are done because then

(5®1A)®A®A [ZA,A] ®A®A(a®1A)
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This shows that a®¢/3 is an automorphism of A while 3@ 4o = 1¢. So « is a right inverse
of 3 and (3 also has a left inverse, so « is also a left inverse and [¢/] is the identity in KK (A, A).

So what is left to show is that >4 4 actually is homotopic to some 1 4. To this end, we
first identify A®A with Co(R?, Cy) (if you like, you can think of this algebra as an algebra of
sections in the complex Clifford bundle over R?).

Now observe that every linear isometry U of R? induces a canonical graded *-automorphism
U of Co(R?,Cy,) : If f is in Co(R?, C,), then U(f) := Cliffc(U) o f o U~ where Cliff¢(U) is
the canonical unital automorphism of C, induced by U given by the universal property of the
Clifford algebra.

If U is the identity of R?, then Cliffc(U) is the identity on C, and U is of course the identity
on A® A.

On the other hand, if U is the map (z,y) — (—y, ), then we obtain the following automor-
phism Cliffc(U): Let e, eo denote the standard basis vectors in R? and let e denote the standard
basis vector in R. Let ® denote the canonical unital isomorphism C;®C; = C,, it sends e®1 to
e1 € Cy, 1®e to ey € Cy and e®e to ejey € Cy. Now Cliffe(U) sends e; to ey, e; to —e; and
hence eje5 to —ege; = e1ez. So @1 o Cliffc o is the same as X, ¢, o (1 ® Cliffc(— Idg)) (note
that the graded flip ¢, ¢, sends e®e to —e®e).

Similarly, you calculate that U can be identified with ¥ a4 o (Idy @) where ¢ == — Idg is
the automorphism of Cy(IR, C;) induced by — Idg defined analogously to U.

Now observe that the automorphism V of A®A depends continuously on the isometry V'
of R?. Moreover, the above-mentioned isometry U is homotopic to the identity via a rotation.
Hence U is homotopic to the identity. It follows, that ¥4 4 o (Ida ®w) is homotopic to the
identity, and after multiplying with >4 4 from the left we see that Id 4 Q1 is homotopic to X4 4.
Hence we are done.



