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Ducci Matrices
Achim Clausing

Abstract. For a real square matrix A, its Ducci map takes a vector x to |Ax|, where the
absolute value is meant elementwise. We study the class of matrices with the property that for
almost all x their orbit under the Ducci map suddenly “stops” at the zero vector, sometimes
after a few iterations, sometimes after thousands of steps, in a seemingly unpredictable way.
This generalizes the well known Four Number Game of E. Ducci.

1. DUCCI’S OBSERVATION. In the 1930s, the Italian mathematician Enrico Ducci
(1864–1940, [20]) observed a peculiar property of the map

δ : (x1, x2, x3, x4) 7→ (|x1 − x2|, |x2 − x3|, |x3 − x4|, |x4 − x1|).

For every x ∈ N4 the sequence of iterates x, δ(x), δ2(x), . . . , known as the Ducci
sequence of x, reaches the null tuple [10].

It is striking how fast this happens in most cases. If the components of x are chosen
at random in [0, N ] for some (not too small) numberN, then in about 95% of the cases
no more than 7 iterations are needed to reach zero. Moreover, this behavior does not
seem to depend very much on the size of N .

On the other hand, there exist 4-tuples with arbitrary long Ducci sequences, among
others the tuples τn = (tn, tn+1, tn+2, tn+3), where tn denotes the nth Tribonacci
number [21]. For τn, the number of steps necessary to reach zero is greater than 3n

2
.

What if one allows tuples with real entries? Surprisingly, most Ducci sequences of
tuples x ∈ R4 also arrive at zero after a few iterations, as in the following case. e

π√
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→ (
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√
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)1
1
1
1

→
0

0
0
0

.
Of course, some tuples may take longer. Starting from x = (e− 1, π, 4

√
2, 1)T, the

rather large number of 11 steps is needed. And then there is a tuple where the magic
fails completely. The Ducci sequence of x0 =(1, r, r2, r3)T, with r = 1.839. . .
satisfying 1 + r + r2 = r3, never reaches zero as δk(x0) = (r − 1)kx0 6= 0 for all k.
Up to trivial variants, x0 is the only such tuple.

This real-valued version of Ducci’s original result has been noted and proved inde-
pendently at least three times (see [3], [4], [14]).

Over 80 papers have been written on this subject (in [5], a fairly comprehensive
bibliography up to the year 2007 can be found, some newer articles are listed in the
references below). Nevertheless, Ducci’s observation is still widely considered to be
merely “una interessante curiosità” [10], a more or less isolated phenomenon.

It is the purpose of this article to show that this impression is wrong. The map δ is
just one representative of a large class of maps with a similar iterative behavior.

2. DUCCI MATRICES. Let A denote a real n× n matrix. In what follows we are
going to study iterates of the Ducci map corresponding to A, defined on Rn by

δA(x) = |Ax|,
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where the absolute value is taken componentwise: |x| = (|x1|, . . . , |xn|)T. The par-

ticular case A0 =

(
1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1

)
yields the original Ducci map δ = δA0

.

For x ∈ Rn, the sequence of iterates x, δA(x), δ2A(x), . . . will be called the Ducci
sequence of x with respect to A. If it contains the zero vector, then we say that the
Ducci sequence terminates.

Our main aim is to prove that besides A0 there exist many other matrices A whose
Ducci sequences terminate for almost all x ∈ Rn. A matrix having this property will
be called a Ducci matrix.

Let us begin by looking at a number of examples, with proofs mostly postponed.

Example 1. The map (x1, x2, x3, x4) 7→ (|4x1 − s|, |4x2 − s|, |4x3 − s|, |4x4 − s|),
where s = x1 + x2 + x3 + x4, behaves quite similar to Ducci’s map. The Ducci
sequences of all x ∈ R4 terminate, with the exception of those vectors for which three,
but not all four, of the components are equal [11]. In the above notation, this is δA1

for

the matrix A1 =

(
3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

)
.

A typical Ducci sequence for A1 is short: 1
10
17
3

→
27

9
37
19

→ 8

2
7
7
2

→ 80

1
1
1
1

→
0

0
0
0

.
About two thirds of all starting vectors x (chosen at random in [0, N ]4 for suffi-

ciently large N ) terminate after just 4 steps. On average about 4.5 steps are needed,
whereas in the classical situation this would be about 5 steps.

If you like to see long Ducci sequences, start with x = (s, t1, t2, t3)
T, where the ti

are similar in size (but not all equal) and s is rather different from them.
If xs,t = (s, t, t, t)T with s 6= t, then δnA1

(xs,t) = (|s − t|)n(3, 1, 1, 1)T for all
n ≥ 1. Thus the Ducci sequences of such xs,t do not terminate.

Example 2. There are lots of 3× 3 Ducci matrices. Some, like A2 =
(

2 1 −3
1 3 −4
0 5 −5

)
, pro-

duce remarkably short Ducci sequences. For a randomly chosen x ∈ [0, N ]3 (N suf-
ficiently large), zero is reached on average after only 2.5 iterations. A typical Ducci
sequence for A2 looks like this one:(

19360002
90627986
96763715

)
→ 5

(
32188631
19162180
6135729

)
→ 325661275

(
1
1
1

)
→
(
0
0
0

)
.

This is amazingly short. In fact, more than 95% of all Ducci sequences forA2 reach
zero in at most four steps. Trying to find longer-lasting vectors by random search can
be really frustrating. However, the following lemma shows that for A2 arbitrary long
Ducci sequences indeed exist.

Lemma 1. Let the numbers tn be defined by t0 = 2, tn =
11tn−1−7
3tn−1−1

for n > 0, with

limn→∞ tn = 2 +
√
15
3

= t∞. The Ducci sequence of xn = (tn, 1, tn − 2)T termi-
nates after n + 2 applications of δA2

. The Ducci sequence of x∞ = limn→∞ xn =
(t∞, 1, t∞ − 2)T does not terminate.

The last statement is confirmed by observing that δA(x∞) = (5 −
√
15)x∞, the

complete proof is given on page 10.
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What exactly is a Ducci matrix? Intuitively, a square matrix A of size n is a Ducci
matrix if the Ducci sequence of almost all x ∈ Rn contains zero. But just how many
exceptions do we have to allow for?

There can be many exceptions. For example, if A and B are Ducci matrices
of size n and m, then for C = ( A 0

0 B ) a Ducci sequence with the starting point
z = ( xy ) ∈ Rn+m, where x ∈ Rn and y ∈ Rm, is composed of two Ducci sequences:

δkC(z) =
(
δkA(x)

δkB(y)

)
. Only if the Ducci sequences for x or y reach zero will the Ducci

sequence for z also reach zero.
But still, the Ducci sequence of a randomly chosen z ∈ Rn+m will terminate, so C

should be considered to be a Ducci matrix. Therefore we choose to define “almost all”
in the sense of Lebesgue measure:

Definition 1. Let A 6= 0 be a real-valued matrix of size n× n.
– The (Ducci-) length λA(x) of x ∈ Rn is the smallest k such that δkA(x) = 0, and∞

if there is no such k.
– The matrix A is called a Ducci matrix if the set {x ∈ Rn : λA(x) = ∞} has

Lebesgue measure 0.
– For a Ducci matrix A, x ∈ Rn such that λA(x) =∞ is called an exception vector.

We remark that for c ∈ R \ {0}, δA(cx) = δcA(x) = |c| δA(x) holds, and
also δA(x + y) = δA(x) holds for y ∈ KerA. This implies λA(x) = λA(cx) =
λcA(x) = λA(x+ y).

Let us look at a few further examples.
Example 3. The Ducci matrix A3 =

(
8 1 −9
0 1 −1
8 −1 −7

)
, although of the same size as A2,

has far longer Ducci sequences. If we randomly choose x ∈ [0, N ]3 for sufficiently
large N , we observe the following distribution of the lengths λA3

(x):

Figure 1. The distribution of lengths λA3
(x) for 10.000 random tuples x.

Several features are worth mentioning here: Not a single vector in the sample had a
length under 19. More than a quarter had the exact length 20. The largest length was
71, which is enormous when compared with the outcome of the same experiment for,
say, A2 and for many other Ducci matrices of size 3. Also, among the larger Ducci
lengths there seems to be a preference for odd numbers.
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Example 4. Another outstanding matrix is A4 =

(
6 −7 −8 9
7 −8 9 6
8 9 6 −7
9 6 −7 −8

)
. It produces tremen-

dously long Ducci sequences, although we have to admit that presently it is only a
conjecture that A4 is a Ducci matrix. If a vector is chosen randomly as above, then on
average its length is somewhere between 800 and 1000. And, still more surprising, one
encounters vectors whose Ducci lengths are still much larger than that. Consider this
example:(

5
33
11
47

)
→ 2

(
67
41
3

105

)
→ 8

(
259
35
221
3

)
→ 16

(
216
43
226
485

)
→ · · · → c

(
1
1
1
1

)
→
(

0
0
0
0

)
︸ ︷︷ ︸

20430 applications of δA4

.

This Ducci sequence is 20430 steps long. Towards the end, the components of the
vectors each have almost 14000 decimal places. The constant in the next to last vector
c·(1, 1, 1, 1)T is c = 222982k for some odd integer k still having more than 7000 digits.

Example 5. For our next example we need some further notation.

Definition 2. Let us call a square matrixA a difference matrix if it contains the entries
1 and −1 exactly once in every row, and zeros otherwise. Also, we call an integer
matrix A of size n× n a Z-Ducci matrix if the length λA(x) is finite for all x ∈ Zn.1

The name difference matrix is due to the fact that for a matrix of this type the
components of Ax all have the form xi − xj .

Difference matrices have turned out to be good candidates for being Ducci matrices.
This is perhaps not too surprising since the archetypeA0 of all Ducci matrices belongs
to this class. On the other hand, it is known (see [10]) that the difference matrices

A0,n =


1 −1 0 ··· 0 0
0 1 −1 ··· 0 0
...

...
. . .

...
...

0 0 0 ··· 1 −1
−1 0 0 ··· 0 1


are Z-Ducci matrices only if n is a power of 2.

We prove an easy lemma about difference matrices.

Lemma 2. Let A be a difference matrix. If there is some integer k such that Ak con-
tains only even entries, then A is a Z-Ducci matrix.

Proof. Corresponding entries of the vectors Ax and δA(x) = |Ax| are equal mod 2.
Therefore the condition on Ak implies that for x = (x1, . . . , xn)

T ∈ Zn we have
δ kA (x) = 2y for some y ∈ Nn. Let m be the maximum of |x1|, . . . , |xn|. Since A
is a difference matrix, the components yi of y satisfy 0 ≤ 2yi ≤ m, that is, the maxi-
mum of y1, . . . , yn is at most m/2. Hence after dk log2me steps, the Ducci sequence
of x must have reached zero.

A computer search produces lots of difference matrices fulfilling the condition of
the lemma. Examples of sizes 5 to 9 are

1According to this definition, A1 is not a Z-Ducci matrix. In order to include matrices like A1 we have to
allow for a few x ∈ Zn not to reach zero. It is, however, not entirely clear what “a few” should actually mean.
Therefore for our present purposes we prefer the simpler form of the definition.
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A5 =

( 1 −1 0 0 0
0 1 −1 0 0
1 0 0 −1 0
1 0 0 0 −1
0 0 1 −1 0

)
, A6=

 0 0 0 1 −1 0
0 0 1 0 0 −1
0 1 −1 0 0 0
1 0 0 −1 0 0
0 0 0 1 0 −1
0 0 1 0 −1 0

, A7=


1 0 0 0 −1 0 0
0 1 0 0 0 −1 0
0 0 0 1 0 0 −1
0 0 0 0 0 1 −1
1 0 0 0 0 0 −1
0 1 −1 0 0 0 0
0 0 0 0 1 −1 0

,

A8=


0 1 0 −1 0 0 0 0
0 0 1 0 0 −1 0 0
0 0 0 1 0 0 −1 0
0 0 0 0 1 −1 0 0
0 0 0 0 1 0 0 −1
0 1 0 0 0 −1 0 0
1 −1 0 0 0 0 0 0
1 0 −1 0 0 0 0 0

, A9 =


0 1 0 0 −1 0 0 0 0
0 0 1 0 0 0 −1 0 0
1 0 0 0 0 −1 0 0 0
1 0 0 0 0 0 −1 0 0
1 0 0 0 0 0 0 −1 0
0 0 0 0 1 0 0 0 −1
0 0 0 1 0 −1 0 0 0
0 0 0 1 0 0 −1 0 0
0 1 0 0 0 0 −1 0 0

.
The list could easily be continued. For each of the matrices A5 to A9 the condi-

tion of the lemma is met since in each case all entries of Ann are even. For example,

A5
5 = 2

( 2 −4 3 −2 1
−1 2 −2 2 −1
0 −1 1 −1 1
2 −3 1 0 0
−1 1 0 −1 1

)
.

3. MAPS WITH TRAPS. The main question about Ducci matrices is not whether
they generate long or short sequences of iterates but rather this: What causes the Ducci
sequences of some matrices to suddenly terminate at all after a (large or small) number
of iterations? Is there a common reason for this behavior? It is certainly quite different
from what one observes with most square matrices.

Before we try to answer this question we would like to remind the reader of one of
the lesser known features of dynamical systems, known as transient chaos [17]. There
exist self-maps of, say, the real line where the iterates of most points exhibit seemingly
chaotic behavior for a long time and then all of a sudden become quite regular, that is,
periodic or even constant. This is not unlike what we observe in Ducci sequences.

As an example, let us consider the tent map f : [0, 1]→ [0, 1] which is defined by

f(x) =

{
2x if 0 ≤ x ≤ 1

2
,

2− 2x if 1
2
≤ x ≤ 1.

It has the fixed point x0 = 2
3
. We choose 0 < ε < 1

6
and modify f to a mapfε by

installing a trap [16].
This is done as follows. Outside of the interval Iε = [x0 − ε, x0 + ε] the functions

f and fε coincide. Within the subinterval Iε/2 = [x0 − ε
2
, x0 +

ε
2
] we put fε(x) = x0.

Finally, in the remaining intervals (x0 − ε, x0 − ε
2
) and (x0 +

ε
2
, x0 + ε) we define

fε in such a way that it is linear in both and continuous on [0, 1].
It is well known that the tent map is chaotic [13]. This implies that in every non-

empty subinterval of [0, 1] there are points whose f -orbit eventually reaches Iε. As
long as they avoid Iε, their orbits with respect to f and fε coincide. If an fε-orbit
reaches Iε, but not Iε/2, it will be repelled: It leaves Iε quickly and continues its chaotic
manner. But once it reaches Iε/2 it stops, since fε(x) = x0 for all x ∈ Iε/2. These or-
bits have a fate similar to Ducci sequences: after a certain period of chaotic wandering
they suddenly get trapped at a fixed point.

Figure 2 shows the graph of fε for ε = 1
30

and the fε-orbit of x = 1√
10

. It reaches
Iε/2 after 126 iterations of fε, from then on the orbit is constant:

1√
10
→
√
10

5
→ 2− 2

√
10

5
→ · · · → n1 −

n2

√
10

5
→ 2

3
→ 2

3
→ · · · ,

where n1 and n2 are two large integers (each having 38 decimal places).
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Figure 2. The tent map with a trap. The orbit of 1√
10

showing 10, respectively 126, iterations.

This is perhaps the most simple case of a map whose orbits show a sudden change
in behavior, sometimes after a long time. It also illustrates how by choosing smaller
ε > 0 the trap can be made smaller so that on average it will be reached later.

After having seen the concept of a trap it is natural to ask whether a similar device
is causing what we have observed in Ducci matrices. This is indeed the case.

4. TRAP MATRICES. But where can we find a trap in connection with a Ducci
matrix? The key to the answer is provided by a simple reformulation of the Ducci
map.

Definition 3. Let A be a real n× n matrix. The signed Ducci map of A is the map
σA : u 7→ A |u| in Rn. The sequence x, σA(x), σ2

A(x), . . . will be called the signed
Ducci sequence of x ∈ Rn with respect to A.

The Ducci sequence of x ∈ Rn consists, after the leading element x, of the absolute
values of the signed Ducci sequence of Ax, that is, we have

Ducci sequence of x: x, |Ax|, |A |Ax||, |A |A |Ax||, . . . ,
Signed Ducci sequence of Ax: Ax, A |Ax|, A |A |Ax||, . . . .

The additional information contained in the signed Ducci sequence will be seen to be
quite useful.

We can partition Rn into regions where σA is linear as follows:

Definition 4. For a sign tuple s = (s1, . . . , sn) ∈ {−1, 1}n, let the region Rs ⊂ Rn
be the closure of {(x1, . . . , xn)

T : s1x1 > 0, . . . , snxn > 0}.

Linearity of σA in Rs is obvious: σA(x) = A|x| = ASx holds for all x ∈ Rs,

where s = (s1, . . . , sn) and S =

( s1 0
. . .

0 sn

)
.

Furthermore, we need not consider σA on the whole of Rn. We may restrict it to the
image space ImA of A since the signed Ducci sequence of any x ∈ Rn after the first
step proceeds completely within ImA. Notice that for a Ducci matrix, ImA is always
a proper subspace of Rn, as the last nonzero element in any nontrivial Ducci sequence
clearly belongs to the kernel KerA of A.

We can now explain what is meant by a trap in our setting. The definition may
appear to be a little unmotivated, but later it will be seen that it is completely analogous
to the idea of a trap as described in the preceding section.

Definition 5. Let A be a real n × n matrix. A trap for A is a region Rs such that
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for its corresponding sign matrix S the map u 7→ ASu is not invertible on ImA. The
matrix A is called a trap matrix if it has at least one trap.

The key point here is the noninvertibility on the proper subspace ImA. As a map
on the whole vector space Rn, the map u 7→ ASu, where A is a Ducci matrix and S a
sign matrix, is never invertible as Ducci matrices are always singular.

The intuition behind this definition of a trap Rs is that σA, when acting on the
convex cone C = Rs ∩ ImA, compresses C in the sense that σA(C) has a lower
dimension than C, quite similar to how the modified tent function fε compresses the
interval [x0 − ε

2
, x0 +

ε
2
] to the single point x0.

The following simple lemma is important.

Lemma 3. Every Ducci matrix is a trap matrix.

Proof. The next to last element x 6= 0 in a signed Ducci sequence in ImA satisfies
y = σA(x) 6= 0, σA(y) = 0. If S is the sign matrix with the signs of y, then σA(y) =
ASy = 0 for y ∈ ImA. Thus the map u 7→ ASu is not invertible on ImA.

For example, the classical Ducci matrix A0 has six traps corresponding to the sign
tuples +– (1, 1,−1,−1), +– (1,−1, 1,−1), and +– (1,−1,−1, 1). Let us verify this for

s = (1, 1,−1,−1). Call the corresponding sign matrix S and letB =

(
1 0 0 1
0 1 0 1
0 0 1 1
−1 −1 −1 1

)
,

whose first three column vectors form a basis of ImA0. The matrix B−1A0SB =(
1 −1 0 0
0 1 1 2
−1 −1 −2 0
0 0 0 0

)
then represents A0S with respect to this basis, and its upper left 3× 3

submatrix C =
(

1 −1 0
0 1 1
−1 −1 −2

)
represents (u 7→ A0Su)| ImA0

. Since detC = 0, we
see that Rs is a trap.

Calculating the traps of a matrix can be cumbersome. The following lemma from
linear algebra is helpful.

Lemma 4. Let A be an n× n matrix over the reals. Then the following conditions on
A are equivalent.

1. The map u 7→ Au is invertible on ImA.
2. ImA⊕KerA = Rn.
3. rankA2 = rankA.

If A is singular, the following condition is also equivalent.

4. If K and C are matrices whose columns constitute a basis of KerA and of
CokerA (= KerAT), respectively, then det(CTK) 6= 0.

Proof. The equivalence of conditions 1–3 is left to the reader. Now assume that
KerA 6= {0}. Then det(CTK) 6= 0 holds if and only if CT(Kx) 6= 0 for all x 6= 0.
Since K is a basis of KerA, this means CTy 6= 0 for all y ∈ KerA, y 6= 0, which
can be written as KerA ∩ KerCT = {0}. But KerCT = ImA, so this amounts to
KerA ∩ ImA = {0}. Thus conditions 2 and 4 are equivalent.

We call a square matrix fulfilling the conditions of this lemma range regular. (There
seems to be no well-established name for this elementary matrix property.) For matri-
ces of rank n− 1, range regularity is particularly easy to check:

Lemma 5. Let A be a real n× n matrix of rank n− 1 and let x, y be vectors gen-
erating the kernel and the cokernel, respectively, of A. Then A is range regular if and
only if 〈x, y〉 6= 0. In particular, A is a trap matrix if and only if there exists a sign
matrix S such that 〈Sx, y〉 = 0.
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Proof. If rankA = n− 1, then in condition 4 of Lemma 4 the matrixK can be taken
to be the single column x and C the single column y. Hence CTK = (〈x, y〉), which
proves the first claim of the lemma. The second claim follows immediately from the
definition of trap matrices.

The examples in Section 2 were all n× nmatrices of rank n− 1 with the additional
property that their row sums are 0, which is equivalent to the kernel being generated
by the constant vector (1, . . . , 1)T. In this case, 〈Sx, y〉 =

∑n
i=1 siyi, so that A is a

trap matrix if and only if for the generating vector y of the cokernel of A this sum is
zero for at least one choice of s1, . . . , sn.

To be still more specific, consider A = A0,n as defined on page 4. Here y =
(1, . . . , 1)T generates the cokernel since all column sums are zero. Hence the pre-
ceding lemma implies that A0,n is a trap matrix if and only if there is a sign tuple
(s1, . . . , sn) for which

∑n
i=1 si = 0. This happens if and only if n is an even number.

However, we know that A0,n is a Z-Ducci matrix only for n = 2k [10].
Why do the Ducci matrices in Section 2 all have row sum 0? Is this perhaps a

necessary condition for being a Ducci matrix? It turns out that this is not so, it is just a
convenient “normal form.” This follows from the next lemma.

Lemma 6. Let A and D be real n× n matrices and assume that D is invertible and
D|x| = |Dx| holds for all x ∈ Rn. Then if A is a Ducci matrix, so is B = D−1AD.

Proof. Writing f(x) = Dx and using D|x| = |Dx|, we find that σB = f−1◦σA◦f
and hence (σB)

k = f−1◦(σA)k◦f for k ∈ N. Therefore the signed Ducci sequences
according to A and B terminate after the same number of steps.

We emphasize two special cases of the lemma. The first one isD =

 d1 0d2

0
. . .

dn

,

where di > 0 for all i. If the kernel ofA is generated by (x1, . . . , xn)
T, then the kernel

of B is generated by (x1
d1
, . . . , xn

dn
)T. Thus, if we have a Ducci matrix whose kernel is

generated by (x1, . . . , xn)
T and xi 6= 0 for all i, then we may simply transform it

into a Ducci matrix whose kernel is generated by (1, . . . , 1)T, that is, one whose row
sums are 0. This works, of course, the other way also: From the matrices in Section 2
we can generate arbitrarily many Ducci matrices with a different kernel. For instance,

from A =
(

2 1 −3
1 3 −4
0 5 −5

)
we obtain the Ducci matrices B =

(
2 d2/d1 −3 d3/d1

d1/d2 3 −4 d3/d2
0 5 d2/d3 −5

)
.

The other special case of the lemma are permutation matrices, that is, matrices
whose rows are obtained by a permutation of an identity matrix. If D is of this type,
then Dx is a permutation of the entries of x; therefore D|x| = |Dx| obviously holds
for all x ∈ Rn. Thus the two matrices A and B = D−1AD generate the same Ducci
sequences up to a renaming of the variables.

5. THE REDUCED DUCCI MAP. By switching from δA to σA we have lowered
the dimension of the relevant domain of our maps from n to rankA = r < n. We
are now going to cut this down to r − 1 by taking into account the fact that σA is
homogeneous.

Recall that δA(c x) = |c|x and σA(c x) = |c|σA(x), for c 6= 0, so that the Ducci
sequences of x and c x are the same up to a constant factor. Hence we may consider
vectors x, y ∈ Rn such that y = c x for some c 6= 0 as equivalent, x ∼ y, with [x]
denoting the equivalence class of x. Also, we write 0 for the equivalence class [0] of
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the zero vector. The iterative behavior of σA on equivalent vectors will be identical, so
we may as well factor out by this equivalence.

The quotient space Rn/∼ by this relation, with the quotient topology, is the real
projective space RPn−1, augmented by the isolated point 0. It is best thought of as the
unit sphere in Rn with antipodal points identified, plus the point 0 at its center.

Definition 6. Let A be a real-valued n × n matrix, and PA = ImA/∼. The map
ρA : PA → PA defined by ρA([x]) = [σA(x)] is called the reduced Ducci map of A.

Clearly, this map is well-defined. Since ImA is an r-dimensional real vector space,
where r = rankA, its domain PA is homeomorphic to RPr−1 ∪ {0}. The map ρA is
continuous on (ImA \KerA)/∼.

It is obvious that the Ducci sequence and the Ducci length of any x ∈ PA are well-
defined notions. The sets [Rs] = {[x] ∈ PA : x ∈ Rs ∩ ImA} define regions within
PA in a natural way. Clearly, [Rs] = [R−s] since R−s = −Rs. With this in mind, we
may omit the brackets and speak of the regions Rs of PA restricted to which ρA is the
quotient of a linear map.

To calculate ρA for a specific matrix A, we have to do two things:

1. Find matrix representations of the maps (u 7→ ASu)| ImA.

2. Choose a representation for RPr−1 and then calculate an explicit form of ρA.

For step 1 we choose a matrix B whose column vectors include a basis for ImA and
calculate B−1ASB for the sign matrices S. In step 2, we can represent the lines of
ImA by their intersection vectors with a hyperplane H ⊂ ImA not containing zero.
Lines parallel to H will be considered as points at infinity.

Figure 3. The real projective space RP1.

Figure 3 shows the idea for RP1. We choose H = {(x1, x2)
T ∈ ImA : x2 = 1}.

For x = (x1, x2)
T ∈ ImA with x2 6= 0, [x] can be identified with [(t, 1)T], where

t = x1
x2

, and hence with t ∈ R. The equivalence class [(x1, 0)
T] can be identified with

a point of RP1 at infinity. Note that [(x1, 0)
T] = [(−x1, 0)

T]. The real projective space
RP1 has the topology of a circle (Figure 3 illustrates this). The nonzero points on the
lineL are represented by the point at (x1, 1)

T on the line parallel to the x1-axis through
(0, 1)T. The x1-axis itself “is” the point at infinity.

Example 2 (continued). Let us demonstrate this approach for A = A2 =
(

2 1 −3
1 3 −4
0 5 −5

)
of Section 2. A basis for ImA is given by {

(
1
0
−1

)
,
(

0
1
2

)
}, and CokerA is spanned by
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(
1
−2
1

)
. Since ImA⊕ CokerA = R3, the column vectors of B =

(
1 0 1
0 1 −2
−1 2 1

)
form a

basis for R3. From B−1ASB =
(

2s1+3 s2−6 2s1−2s2−3
s1+4 3s2−8 s1−6s2−4

0 0 0

)
, where S =

(
s1 0 0
0 s2 0
0 0 1

)
, we

obtain that A[s] =
(
2s1+3 s2−6
s1+4 3s2−8

)
is the matrix representation of (u 7→ ASu)| ImA

with respect to the above basis of ImA.
We choose H = {ht : t ∈ R}, where ht = t

(
1
0
−1

)
+
(

0
1
2

)
=
(

t
1

2−t

)
as our

hyperplane in ImA. Then by definition, t ∈ Rs holds if and only if either Sht ≥ 0 or
Sht ≤ 0 (componentwise).

In the Table 1, the regions Rs ⊂ RP1 and the matrices A[s] = ASs are given ex-
plicitly. The second line serves to show the calculation. Line 3 contains simplifications
of the conditions in line 2.

s (1, 1, 1) (−1, 1, 1) (1, 1,−1) (1, 1,−1)
Rs t ≥ 0 ∧ 2− t ≥ 0 t ≤ 0 ∧ 2− t ≥ 0 t ≤ 0 ∧ 2− t ≤ 0 t ≥ 0 ∧ 2− t ≤ 0

0 ≤ t ≤ 2 t ≤ 0 − 2 ≤ t
A[s]

(
5 −5
5 −5

) (
1 −5
3 −5

) (
5 −7
5 −11

) (
1 −7
3 −11

)
Table 1. Computation of the regions and the corresponding matrices A[s] for the Ducci matrix of Example 2.

We observe that the region according to s = (1, 1,−1) is empty, as Rs ∪R−s has
empty intersection with ImA \ {0}. If s = (1, 1, 1), then Rs is a trap since A[s] is
singular.

Using that A[s] ( t1 ) = ( x1x2 ) with x2 6= 0 means ρA(
[
t
1

]
) =

[
x1/x2

1

]
, we now can

give the explicit form of ρA : PA → PA, where we identify
[
t
1

]
with t and

[
1
0

]
with∞:

ρA(t) =



t−5
3t−5 if t ≤ 0,

1 if 0 ≤ t ≤ 2, t 6= 1,
t−7

3t−11 if 2 ≤ t and t 6= 11
3
,

∞ if t = 11
3
,

1
3

if t =∞,
0 if t = 1 or t = 0.

Figure 4 shows its graph with the trap [0, 2] and a sample ρA-orbit (of t = 17
5

,
corresponding to the vector (17, 5,−7)T). Note that, contrary to what the figure sug-
gests, ρA(1) = 0. The pole at t = 11

3
has no deeper significance, it reflects our choice

of H . Topologically, PA is a circle (plus the isolated point 0), on which ρA is continu-
ous except at t = 1.

It is now easy to give the proof of Lemma 1.

Proof. If 0 ≤ t ≤ 2, t 6= 0, then ρA(t) = 1. If t ≤ 0, then 0 ≤ ρA(t) ≤ 1 and 0 is
reached in two steps. In (2,∞), ρA has a unique fixed point at t? = 2 +

√
15
3

. Any
other value t > 2, t 6= t?, is repelled from t? and its ρA-iterates eventually reach one
of the two other regions, and from there, finally 0. Thus the Ducci sequence of every
t 6= t? reaches 0. This proves that A is a Ducci matrix.

The sequence tn of Lemma 1 was defined as t0 = 2, tn = ρ−1A (tn−1). (The
function t → ρA(t) is invertible for 2 < t < 11

3
.) Also, xn = |yn| holds, where
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Figure 4. The reduced Ducci function ρA2
with the trap [0, 2].

yn = (tn, 1, 2 − tn)T ∈ ImA. Thus [σA(yn)] = [yn−1], and from λA(x0) = 2 we
obtain λA(xn) = n+ 2.

The reduced form of the Ducci map also makes it obvious why the Ducci se-
quences of A2 tend to be so remarkably short: For t ≤ 2 the length is bounded by 3,
and for t > 2 it is large only as long as t is close to t?. But the slope of ρA2

at
t? is 4 +

√
15 = 7.87. . . , a rather large value, so that the ρA2

-orbits of all points
near t? are repelled very quickly from this fixed point. The point t? corresponds to
x? = (6 +

√
15, 3,−

√
15)T, which is an eigenvector of A2S for S =

(
1 0 0
0 1 0
0 0 −1

)
. Its

absolute value |x?| is (up to multiples and the addition of constant vectors) the only
exception vector of A2.

6. FAMILIES OF DUCCI MATRICES. The preceding proof can be summarized
by saying that points t 6= t? are driven away from t? until they reach the trap. Next we
prove a result for a family of Ducci matrices of size 4 whose dynamics are similar to
this.

For p ∈ R, define Ac(p) =

(
p+1 −1 1−p −1
−1 p+1 −1 1−p
1−p −1 p+1 −1
−1 1−p −1 p+1

)
. The subscript indicates that

these are circulant matrices [12]. These matrices satisfy the nice functional equation

Ac(p)Ac(q) = 4Ac(
pq
2
). The value p = 2 produces the matrixA1 =

(
3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

)
of Example 1.

To analyze Ac(p), we need some further notation. As the number of regions
increases exponentially with the size of the matrices, it will be helpful to assign
indices to them. Which indexing we choose is not really relevant; we shall use
ι(s1, . . . , sn) =

∑n
k=1

1−sk
2

2k−1. Henceforth we shall write Ri for the regions and
Si, with i = ι(s1, . . . , sn), for the sign matrices, instead of R(s1,...,sn) and S(s1,...,sn).
Again, Ri can denote a subset of either Rn or PA. Also, for brevity, we shall write A
instead of Ac(p) in this section.

We want to determine the reduced Ducci function ρA. As a basis for R4 = ImA⊕
CokerA, we choose the columns of B =

(
1 0 0 1
0 1 0 1
0 0 1 1
−1 −1 −1 1

)
. Explicitly, ImA consists
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of the vectors x = (x1, x2, x3,−x1 − x2 − x3)
T, from which the regions Ri, defined

by the inequalities Six ≥ 0, can be calculated as in the preceding section. Instead of a
table, we display the regions graphically in Figure 5. As in the preceding example, we
have one empty region. In Figure 5 it is R0.

Figure 5. The seven regions of PAc(s).

Next we calculate the matrices A[i] = (B−1ASiB)| ImA:

A[1]=
(−p 0 2−p

p 2p p−2
p 0 p+2

)
, A[2]=

( p+2 2 2−p
p−2 −2 p−2
2−p 2 p+2

)
, A[3]=

(−p 2 2−p
p −2 p−2
p 2 p+2

)
, A[4]=

( p+2 0 p
p−2 2p p
2−p 0 −p

)
,

A[5]=
(−p 0 p

p 2p p
p 0 −p

)
, A[6]=

( p+2 2 p
p−2 −2 p
2−p 2 −p

)
, A[7]=

(−p 2 p
p −2 p
p 2 −p

)
.

In regionRi, the reduced function ρA is given by [x] 7→
[
A[i]x

]
, and if we represent

[(x1, x2, x3)
T] by (x1

x3
, x2
x3
)T ∈ R2 we obtain the explicit form of ρA. In order to avoid

indices, we write x, y instead of x1, x2. We also omit the cases where the denominator
becomes zero.

ρA(x, y)=



(−p−px+2
p+px+2

, p+px+2py−2
p+px+2

) if x+ y ≤ −1 ∧ 0 ≤ y (R1),

( 2x−p+2y+px+2
p+2x+2y−px+2

, −2x+p−2y+px−2
p+2x+2y−px+2

) if x+ y ≤ −1 ∧ 0 ≤ x (R2),

p−2y+px−2
p+2y+px+2

(−1, 1) if x+ y ≤ −1 ∧ x ≤ 0 ∧ y ≤ 0

∧ (x, y) 6= (−1,−1) (R3),

(−p−2x−px
p−2x+px ,

−p+2x−px−2py
p−2x+px ), if − 1 ≤ x+ y ∧ x ≤ 0 ∧ y ≤ 0 (R4),

(−1, x+2y+1
x−1 ) if − 1 ≤ x+ y ∧ 0 ≤ x ∧ y ≤ 0

∧ (x, y) 6= (1,−1) (R5),

( p+2x+2y+px
p−2x−2y+px ,−1) if − 1 ≤ x+ y ∧ x ≤ 0 ∧ 0 ≤ y

∧ (x, y) 6= (−1, 1) (R6),

(p+2y−px
2y−p+px ,

p−2y+px
2y−p+px), if 0 ≤ x ∧ 0 ≤ y (R7).

The formula may look somewhat forbidding, but one just has to compute (x1
x3
, x2
x3
)

from
(
x1
x2
x3

)
=A[i]

(
x
y
1

)
.
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Theorem 1. For every p ∈ R, the matrix A = Ac(p) is a Ducci matrix. If p 6= 0,
the reduced Ducci function ρA has four exception points in PA. For p > 0 these are
fixed points, and for p < 0 they are 2-periodic points of ρA. There exist points with
arbitrarily long Ducci lengths.

Proof. From the explicit representation of ρA it is obvious that regions 3, 5 and 6 are
traps. If v ∈ PA is in one of these regions, then v has a length of at most 3: R3 is
mapped onto the line x+ y = 0, ρA(x,−x) = (−1,−1), and ρA(−1,−1) = 0. Re-
gions 5 and 6 are similarly mapped onto the lines x = −1 and y = −1, respectively,
and then in two steps to 0. Thus all points in the three traps have a finite length.

The other four regions each contain a fixed or 2-periodic point of ρA. We discuss
R4 in detail. Regions 1, 2 and 7 can be dealt with in a completely analogous way.

Region R4 is the triangle with corners (0, 0), (0,−1) and (−1, 0). Let us de-
note ρA|R4

by f , that is, f(x, y) = (−p−2x−px
p−2x+px ,

−p+2x−px−2py
p−2x+px ). The image f(R4)

is the triangle, call it T0, with the vertices v1 = (−1, 1), v2 = (1,−1) and v3 =
(−1,−1). Since R4 is not a trap region, A[4] is invertible and, therefore, f is
a bijection between R4 and T0 = f(R4). Its inverse is g(x, y) = f−1(x, y) =
(− p+px

p−2x+px+2
,− 2y+2

p−2x+px+2
).

Now let us assume that p > 0. Then the images Tn = gn(T0) form a series of
triangles such that the vertices of Tn lie on the sides of Tn−1 (n > 0). One side of
each triangle is parallel to the x-axis (since the first component of f does not depend
on y). For each n, triangle Tn consists of four smaller triangles: T in (i = 0, . . . , 3),
where T 0

n = Tn+1 and T in contains the corner g(n)(vi) for i = 1, 2, 3. Triangle T in is
mapped by f bijectively to T in−1 (n > 0, i = 0, . . . , 3).

Figure 6. The ρA(6)-orbit of (− 7
16
,− 5

16
)

The intersection of the triangles Tn is the sole fixed point t?(p) = (x?, y?) of f .
It depends on p: t?(2) = −( 13 ,

1
3
) and t?(p) = ( r−p−1

p−2 , 3−r
2 p−4) if 0 < p 6= 2, where

r =
√
4 p+ 1.

Note that
(
x?
y?
1

)
is an eigenvector of A[4] in region 4 for all p > 0. Note further that
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lim
p→∞

t?(p) = (−1, 0) and lim
p↓0

t?(p) = (0,− 1
2
) and that the fixed points t?(p) all lie

on the line segment connecting these two limit points.
The dynamics of f in T1 = R4 are now easily described: For every v ∈ T1 \

{t?(p)} there is some n such that v ∈ Tn \ Tn+1. Then v ∈ T in for some i ∈ {1, 2, 3},
and fk(x) ∈ T in−k for k = 0, . . . , n. Now T 1

0 ⊂ R6, T 2
0 ⊂ R5 and T 3

0 ⊂ R3, that is,
the orbit of x reaches a trap region after n steps, and from there, 0 in at most three
further steps.

The proofs for regions 1, 2 and 7 are analogous. The fixed points of ρA in these
regions are (− r+p+1

p
, r+1

2p
), (1,− r+3

2
) and (1, r−1

2
) (with r as above).

If p < 0, the situation differs in one detail: The preimages of the points in R4, that
is, the points g(v) with v ∈ R4 all lie in R1, not in R4. But their preimages again lie
in R4. It is not difficult to see that points v ∈ R4 \ {t?} are driven away from t? by
repeated application of ρ2A until they reach one of the three traps. The point t? ∈ R4

(and its counterpart in R1) is a 2-periodic point of ρA in this case. But as for p > 0, its
Ducci sequence does not terminate. Figure 7 shows the fixed points and the 2-periodic
points, respectively, of ρAc(p) for p = 6 and p = −6.

Finally, the case p = 0 is trivial. All vectors reach zero in at most two steps.

Figure 7. The exception sets of Ac(6) (left, four fixed points) and of Ac(−6) (right, four 2-periodic points).

There are other families of Ducci matrices which are similar. For instance, the ma-

trices Aa(p) =

(
p+1 −1 1−p −1
−1 1−p −1 p+1
1−p −1 p+1 −1
−1 p+1 −1 1−p

)
show almost the same behavior. The subscript a

indicates that these are anticirculant matrices (see [12]). The exception set of Aa(p)
for p 6= 0 again consists of four points, but now two of these are fixed points of ρAa(p),
whereas the other two are 2-periodic.

There is a counterpart family Bc(p) =

(
1 −1 p −p
−p 1 −1 p
p −p 1 −1
−1 p −p 1

)
, p ∈ R, to Ac(p) which,

for p = 0, contains Ducci’s original matrix. The matrices Bc(p) as well as their an-

ticirculant companions Ba(p) =

(
1 −1 p −p
−1 p −p 1
p −p 1 −1
−p 1 −1 p

)
are Ducci matrices for all p ∈ R.

The exception set each consists of eight points. The exception set of Bc(p) consists,
for |p| > 1, of two 2-periodic pairs and one 4-cycle, for |p| < 1, of four fixed points
and one 4-cycle. The exception set of Ba(p) consists, for |p| 6= 1, of one 8-cycle.
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Figure 8. The exception sets of Aa(6) (left) and Aa(−6) (right).

The proof that these matrices are Ducci and have the indicated exception sets is
lengthy but elementary. We omit it but note that all matrices have their kernel and
cokernel spanned by (1, 1, 1, 1)T, so that they all have the same regions (see Figure 5).
In all cases, regions 3, 5 and 6 are traps and the exception points are situated in the
non-trap regions 1, 2, 4 and 7. For the calculation of PA we can use the same basis as
in the proof of Theorem 1.

As a partial substitute for the missing proofs, let us look at a few details for the

matrixA = Ba(0) =

(
0 0 1 −1
0 1 −1 0
1 −1 0 0
−1 0 0 1

)
. SinceA4 = 2

(
3 −2 1 −2
−2 3 −2 1
1 −2 3 −2
−2 1 2 −3

)
, Lemma 2 tells

us that A is a Z-Ducci matrix. The exception set of A is shown in Figure 9.

Figure 9. The exception set of Ba(0).

The upper left exception point is v0 = (−3.382...1.839... ) = − 1
14

(
2x2+22x+46

x2+4x+26

)
, where

x = 0.061. . . is the only real root of f(x) = x3 + 16x2 + 64x− 4. An explicit form
of x is x = (3a−8)2

9a
with a = 1

3
(42
√
33 + 566)

1
3 . The point v0 is a fixed point of ρ 8

A.
The ρA-iterates of any point v 6= v0 close enough to v0 approximately follow the same
cycle as those of v0, with increasing distance to the fixed points until eventually one of
the trap regions is reached. After that, zero is reached in at most five additional steps.

January 2014] DUCCI MATRICES 15



Mathematical Assoc. of America American Mathematical Monthly 121:1 April 4, 2020 7:12 p.m. Ducci.tex page 16

From Figure 9 one can see that the exception points cycle through the non-trap
regions in the order 7-4-4-7-2-1-1-2. Let us, for example, start with the approximation
v = 1

1000
(−33821839 ) of v0. Since a point v = ( ab ) ∈ PA corresponds with the vector

ṽ = (a, b, 1,−(1 + a + b))T ∈ R4, we have to calculate the σA-Ducci sequence of
ṽ = (−3383, 1839, 1000, 544)T:(
−3383
1839
1000
544

)
→
(

1544
−2839
456
839

)
→
(−1295
−705
−383
2383

)
→ 2

(
295
544
−1000
161

)
→ 2

(−249
−134
839
−456

)
→ 2

(
115
207
383
−705

)
→

4

( −46
295
−161
−88

)
→ 4

(
−249
42
73
134

)
→ 4

(
207
−115
−61
−31

)
→ · · · → 32

(
1
0
−1
0

)
→ 32

(
1
−1
1
−1

)
→
(

0
0
0
0

)
.

The whole σA-Ducci sequence is 18 steps long, and the numbers of the regions visited
are 1, 2, 7, 4, 4, 7, 2, 1, 1, 2, 7, 4, 4, 6, 2, 3, 4, 5. The first trap this sequence reaches
is R6 after 13 steps. We notice that the vector (207,−115,−61,−31)T, reached after

the first 8 steps, corresponds to
(
−207/61
115/61

)
= (−3.393..1.885.. ), which is still rather close

to v = (−3.3821.839 ).

7. LARGE EXCEPTION SETS. The families of Ducci matrices in the preceding
section all have exception sets of a fixed size. Our next topic is a family of 3× 3 Ducci
matrices whose exception sets can become arbitrarily large. It will be seen that, as a
consequence, these matrices produce Ducci sequences whose average length tends
to be large. This is in stark contrast to the behavior exhibited by most other Ducci
matrices.

For p > 0 let Al(p) =
( p 1 −p−1

0 1 −1
p −1 −p+1

)
. Obviously, this family is equivalent to the

family of matrices
(
a b −a−b
0 b −b
a −b −a+b

)
where a, b > 0. In A3 = Al(8) of Example 3, we

have already encountered a typical representative of this family.

Theorem 2. For every p ∈ N there exists a 3× 3 Ducci matrix such that the Ducci
sequence of a random vector needs at least p steps until it terminates.

If p ∈ N, then A = Al(p) is such a Ducci matrix. Its exception set XA ⊂ PA
consists of 2p+ 1 points forming a cycle with respect to the reduced Ducci map.

Keep in mind that, although Al(p) is defined for real parameters p > 0, this the-
orem is only concerned with integer values of p. To prove it, let us calculate the re-
duced Ducci functions of the matrices A = Al(p). We do this for all p > 0. First, it is
easy to check that ImA is spanned by the vectors (1, 0, 1)T and (0, 1,−2)T and that
the cokernel of A is spanned by (−1, 2, 1)T. If we choose H = {ht : t ∈ R} with

ht = t
(

1
0
1

)
+
(

0
1
−2

)
=
(

t
1
t−2

)
as normalizing hyperplane, then t ∈ PA corresponds

to ht ∈ ImA.
The columns of B =

(
1 0 −1
0 1 2
1 −2 1

)
form a basis of R3. From B−1ASB =(

ps1−p−1 2p+s2+2 −ps1+p+2s2−1
−1 s2+2 2s2−1
0 0 0

)
, with S =

(
s1 0 0
0 s2 0
0 0 1

)
(where s1, s2 ∈ {−1, 1}),

we find that the maps (u→ ASu)| ImA have the matrix representations A[s] =(
ps1−p−1 2p+s2+2
−1 s2+2

)
with respect to B. Using these matrices, we calculate the reduced

Ducci map of A in exactly the same way as in Section 5. We obtain

16 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121



Mathematical Assoc. of America American Mathematical Monthly 121:1 April 4, 2020 7:12 p.m. Ducci.tex page 17

ρA(t) =



1 + 2p
1−t if t ≤ 0, (R2)

2p+ 1 if 0 ≤ t ≤ 2, t 6= 1, (R3)

1 + 2p
3−t if 2 ≤ t and t 6= 3, (R0)

∞ if t = 3,

1 if t =∞,
0 if t = 1 or t = 0.

RegionR3 = [0, 2] is the only trap ofA. It does not contain a fixed point of ρA. The
exception points of A stem from fixed points of ρ2p+1

A as shown in the next lemma.

Lemma 7. For p ∈ N, the ρA-iterates ti = ρ iA(t0) of t0 =
√
1 + p2 + p+ 2 form a

cycle of length 2p+ 1. The values in this cycle are t2i = t0 − 2i (i = 1, . . . , p) and
t2i+1 = 1− 2p

t2i−3
(i = 0, . . . , p− 1).

Proof. Clearly, the explicit values of the points ti satisfy t0 > t2 > · · · > t2p
= 2 +

√
1 + p2 − p > 2. Hence t2i ∈ R0 and from the explicit form of ρA we imme-

diately see that ρA(t2i) = t2i+1 for i < p. Likewise, it is clear that t2p−1 < t2p−3 <
· · · < t1 < 0 for i < p, that is, t2i+1 ∈ R2. Using ρA(t) = 1 + 2p

1−t for t ∈ R2 we ob-
tain ρA(t2i+1) = t2i+2 for i < p. Finally, as t2p > 2, ρA(t2p) = 1 + 2p

3−t2p
= t0.

Let us call t0, . . . , t2p the exception cycle of A. A better insight into this cycle
is gained if one looks at the square of ρA. For any (not necessarily integer-valued)
p > 0 we find ρ2A(t) = t− 2 if t ∈ [3, 2p+ 3]. If p ∈ N, the points t0, . . . , t2p also
constitute a cycle with respect to the map ρ2A, but now in the strictly decreasing order
t0 → t2 → · · · → t2p → t1 → t3 → · · · → t2p−1. Figure 10 shows the trajectory
of t0 under ρ2A. Notice how closely the transition from t2p =

√
1 + p2 − p+ 2 with

t2p > 2 to t1 = ρ2A(t2p) = p −
√
1 + p2 with t1 < 0 avoids the trap R3 = [0, 2]

which if reached would break the cycle.

Figure 10. The graph of ρ 2
Al(4)

with its cycle of exception points.

For all points t ∈ R not in the exception cycle, the sequence of iterates
(ρ iA(t))i=0,1,... eventually reaches 1 (and then 0). To see this, we take a closer look
at ρ 2p+1

A . It is defined on PA, but as with ρA we shall work on the circle R ∪ {∞}.
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Define the 2p + 1 intervals I0, . . . , I2p by Ii = (ti+2, ti) for i = 0, . . . , 2p − 2,
I2p−1 = (t0, t2p−1), and I2p = (t1, t2p). Interval I2p−1 is to be understood in the cir-
cular sense as (t0, t2p−1) = (R ∪ {∞}) \ [t2p−1, t0].

Also, let u0 = 2p + 1
p+1

, r0 = 2p + 1, v0 = 2p + 2, and ui = ρ iA(u0),
ri = ρ iA(r0), vi = ρ iA(v0) for i = 1, . . . , 2p.

Lemma 8. Let p ∈ N and i ∈ {1, . . ., 2p}. Then ri ∈ (ui, vi) ⊂ Ii and ρ 2p+1
A | [ui, vi]

≡ ri holds. For i = 2p − 1, where ri = ∞, the statement is meant in the circular
sense.2

Proof. The first statement, for the particular case i = 0, amounts to t2 =
√
1 + p2 + p

< u0 = 2p+ 1
p+1

< r0 = 2p+ 1 < v0 = 2p+ 2 < t0 =
√
1 + p2 + p+ 2, which

is true for all p > 0. For i > 0 the statement then follows from the (circular)
monotonicity of ρA. To obtain the second statement, one first verifies ρ2pA (u0) = 0,
ρ2p+1
A (u0) = 2p+ 1, and hence ρ2p+1

A (ui) = ri. The same conclusion for ρ2p+1
A (vi)

follows from ρ2pA (v0) = 2, and likewise we get ρ2p+1
A (t) = ri for t ∈ [ui, vi].

The sequence r0, . . . , r2p is a kind of counterpart to the exception cycle of A.
Explicitly it looks as follows: r2i = r0 − 2i for i = 1, . . . , p, r2i+1 = 1 − p

p−i−1
for i = 0, . . . , p − 2, and r2p−1 = ∞. If we alter ρA by replacing ρA(1) = 0 with
ρA(1) = 2p+ 1 (thereby making ρA continuous on the circle), then r0, . . . , r2p is a
period of ρA into which all Ducci sequences not starting in the exception cycle would
eventually run:

Lemma 9. For every t ∈ R not in {r0, . . . , r2p, t0, . . . , t2p}, the reduced Ducci se-
quence (ρ iA(t))i=1,2,... ends with r0, . . . , r2p,0.

Proof. In the closure of Ii, ρ
2p+1
A has the fixed points ti+2, ri, and ti by Lemmas 7

and 8. Also, ρ 2p+1
A is strictly increasing in [ti+2, ui], constant in [ui, vi], and strictly in-

creasing in [vi, ti]. To prove this, we note that as long as the sequence (ρ kA(t))k=1,2,...

for some t ∈ [vi, ti] does not reach region 3, that is, the trap [0, 2], it runs through
the intervals Ii, I(i+1) mod 2p+1, . . .. Thus, after 2p + 1 steps it returns to Ii. The re-
gion numbers in which t, ρA(t), . . . , ρ

2p
A (t) lie therefore are given by some circular

permutation of 0, 2, 0, 2, . . . , 0, 2︸ ︷︷ ︸
p times

, 0.

For example, if t ∈ (v0, t0), then this is the sequence 0, 2, . . . , 2, 0. Let f0(t) =
1 + 2p

3−p and f2(t) = 1 + 2p
1−p be the explicit form of ρA in regions 0 and 2, re-

spectively. Then, for t ∈ (v0, t0), we know that ρ 2p+1
A = f0 ◦ (f2 ◦ f0)p, and as

f2(f0(t)) = t − 2, we obtain ρ 2p+1
A (t) = f0(t − 2p) = 4p+3−t

2p+3−t . If we start with
t ∈ (t2, u0), then the sequence of region numbers in which t, ρA(t), . . . , ρ

2p
A (t) lie is

0, 2, 0, 2, . . . , 0, 2︸ ︷︷ ︸
p−1 times

, 0, 0, 2, and we arrive at ρ 2p+1
A (t) = f2(f0(f0(t− 2(p− 1)))) =

t−1
2p−t+1

. Figure 11 shows the situation in the interval I0 for p = 4.
The same calculation as for I0 can be done for the intervals Ii (i = 1, . . . , 2p). It

follows that the orbit of every t ∈ Ii arrives in [ui, vi] after finitely many iterations
of ρ2p+1

A , and from there in {r0, . . . , r2p,0}. Since I0 ∪ · · · ∪ I2p ∪ {t0, . . . , t2p} =
R ∪ {∞}, this proves the lemma.

2That is, v2p−1 < t2p−1, t2p+1 = t0 < u2p−1, and ρ 2p+1
A |R ∪ {∞} \ (v2p−1, u2p−1) ≡ ∞.
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Figure 11. The graph of ρ 2p+1
Al(p)

for p = 4, with a sample trajectory in I0.

Lemma 9 concludes the proof of Theorem 2. Although the dynamics of the Ducci
matrices Al(p) with p ∈ N are more intricate than those of most other examples of
size n = 3, the basic mechanism is similar: Repelling fixed points and a trap are co-
operating in sending all but finitely many starting points to zero.

What can be said about the Ducci sequences for A = Al(p) if p is not an integer?
Numerical evidence indicates that for the continuous version3 ρA of ρA the iterates
ri = ρiA(r0) of r0 = 2p + 1 still form a finite cycle r0, . . . , rL into which the ρA-
orbits of all but finitely many t ∈ R eventually run. The finitely many exceptions ap-
parently also form a ρA-cycle, t0, . . . , tL, of the same length. The length L, however,
can vary wildly, in particular for values p = n+ 1

2
+ ε (n ∈ N, ε > 0 small) it seems

to get huge.
Two particular values of p deserve special mention:

Proposition 1. For p = 2
3
, A = Al(p) =

1
3

(
2 3 −5
0 3 −3
2 −3 1

)
is a Ducci matrix. The Ducci

sequence of t ∈ {2
√
3

3
+ 3,− 2

√
3

3
+ 1, 2

√
3

3
+ 1,

√
3
3

+ 2} circulates through these
four points. The ρA-orbit of r0 = 7

3
is 7

3
, 3,∞, 1,0. The orbit of all other t ∈ R con-

tains 7
3
, and hence 0.

Proof. The continuous version ρA of the reduced function is

ρA(t) =


3 t−7
3 t−3 if t ≤ 0,
7
3

if t ∈ [0, 2],
3 t−13
3 t−9 if 2 ≤ t ∧ t 6= 3,

∞ if t = 3, and 1 if t =∞,

from which the proof follows. We omit the details.4

Proposition 2. For p = 1
2
,A = Al(p) =

1
2

(
1 2 −3
0 2 −2
1 −2 1

)
is not a Ducci matrix. The ρA-

orbits of t ∈ {1, 3,∞} ∪ {2 + 1
n
: n ∈ N} contain 0. The orbits of all other points

contain the fixed point t0 = 2 of ρA.

Proof. Again, the statement follows easily once ρA is calculated. It is given by
3defined by ρA(x) = ρA(x) for x 6= 1 and ρA(1) = 2p+ 1
4Recall that t ∈ R corresponds to (t, 1, t− 2)T ∈ ImA and t =∞ to (1, 0, 1)T ∈ ImA.
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ρA(t) =


t−2
t−1 if t ≤ 0,

2 if t ∈ [0, 2],
t−4
t−3 if 2 ≤ t ∧ t 6= 3,

∞ if t = 3, and 1 if t =∞.

At t = 2, this function is tangential to the diagonal. We leave the detailed proof as
an exercise.

The value t = 2 corresponds to the eigenvector (2, 1, 0)T ofA. A typical (unsigned)
Ducci sequence for A looks like this one:(

343
141
81

)
→ 2

(
181
50
81

)
→ 22

(
19
31
81

)
→ 23

(
81
50
19

)
→ 24 31

(
2
1
0

)
→ 25 31

(
2
1
0

)
→ · · · ,

which can be viewed as a kind of termination at (2, 1, 0)T instead of (0, 0, 0)T.

8. OPEN QUESTIONS. We have only scratched the surface of the subject of Ducci
matrices. This is a safe claim because it is by far easier to find matrices that with high
plausibility are suspected to be Ducci than to verify them as such. There are lots of
candidates awaiting confirmation, and it is easy to produce further ones by diverse
heuristics (Lemma 4 helps to curtail the search space).

In fact, not even the matrices A0,2k (k > 2), proved to be Z-Ducci matrices in [10]
(see also Lemma 2), have been verified to be Ducci matrices.

Or, consider Aq(p) =

(
p −p−1 −p−2 p+3

−p−1 −p−2 p+3 p
−p−2 p+3 p −p−1
p+3 p −p−1 −p−2

)
where p ∈ R. These matrices,

among them A4 = Aq(6) of Example 4, are remarkable for generating Ducci
sequences of astronomical length when |p| is not too small. Are they Ducci matrices?

Worse still, for n ≥ 5 there are no n× nmatrices confirmed to be Ducci apart from
those composed of smaller Ducci matrices.

For sizes n = 3 and n = 4 a number of problems are open; concerning the
exception sets, which can become infinite; concerning their classification, not by some
parametrizations but by deeper properties; and many more.

We would like to conclude with a question which may have a simple answer. All
integer Ducci matrices A of size n considered in this paper (and all others we have
found and mostly not verified yet) have the property that An is even in the sense that
An = 2B for some integer matrix B. Are there Ducci matrices without this property?
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