Prof. Dr. C. Böhm Dipl. Math. M. Amann

Übungen zur Analysis I Serie 12

Aufgabe 1. Sei $\epsilon > 0$ und $f : \mathbb{R} \to \mathbb{R}$ eine reelle Funktion. Zeigen Sie: Existiert eine offene Menge $U \subseteq \mathbb{R}$ mit $0 \in U$, so dass für alle $x \in U$ die Ungleichung

$$|f(x)| \le |x|^{1+\epsilon}$$

gilt, so ist f in 0 differenzierbar.

Aufgabe 2. Bestimmen Sie

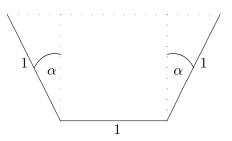
$$\lim_{x \searrow 0} \left(\frac{1 - \sqrt{1 - x^2}}{\ln(1 + x)\sin(x)} \right),$$

so existent.

Aufgabe 3. Aus drei Brettern der Breite 1 soll eine Rinne, deren Querschnitt die Form eines gleichschenkligen Trapezes besitzt, mit maximalem Volumen gebaut werden. Leiten Sie die Gleichung

$$A(\alpha) = \cos(\alpha) + \cos(\alpha)\sin(\alpha)$$

für die Fläche des Querschnittes her. Bestimmen Sie nun α so, dass $A(\alpha)$ maximal wird.



Aufgabe 4. Ermitteln Sie in Abhängigkeit des Parameters $\lambda \in \mathbb{R}$ Nullstellen, Lage und Art der Extrema, Monotonieverhalten, Wertebereich und Grenzverhalten der Funktion

$$f_{\lambda}(x):[0,\infty)\to\mathbb{R}\;\;;\;\;x\mapsto xe^{-\lambda x}$$

Zusatzaufgabe 5. Zu $n \in \mathbb{N}$ sei $f : [0,1] \to \mathbb{R}$ eine stetige Funktion, die mindestens n+1 Nullstellen besitzt und n-mal differenzierbar in (0,1) ist. Zeigen Sie, dass ein $x \in (0,1)$ existiert mit $f^{(n)}(x) = 0$.

Abgabe der Lösungen zu diesem Blatt bis Montag, den 21.1.2008, um 16.00 Uhr, in dem zur jeweiligen Übungsgruppe gehörigen Briefkasten im Hörsaalgebäude.