Übungen zur Analysis II Serie 13

Aufgabe 1. Es seien $a, b : \mathbb{R} \to \mathbb{R}$ stetige Funktionen. Finden Sie eine partikuläre Lösung der linearen Differentialgleichung

$$y'(t) = a(t)y(t) + b(t)$$

Hinweis: Variation der Konstanten

Aufgabe 2. Bestimmen Sie die Lösungen des Anfangswertproblems

$$ty'(t) - 2y(t) + t = 0$$
, $y(t_0) = y_0$

für $t \in \mathbb{R} \setminus \{0\}$, $y_0 \in \mathbb{R}$. Bestimmen Sie nun (in Abhängigkeit von y_0) diejenigen Lösungen, welche auf ganz \mathbb{R} stetig fortsetzbar sind.

Aufgabe 3. Es bezeichne C[a,b] den Raum der stetigen Funktionen $c:[a,b] \to \mathbb{R}^n$ versehen mit der Supremumsnorm $\|\cdot\|_{\infty}:C[a,b] \to \mathbb{R}$; $c\mapsto \sup_{x\in[a,b]}\|c(x)\|$, $a,b\in\mathbb{R}$ mit a< b. Ein Folge $(c_n)_{n\in\mathbb{N}}$ von Kurven von [a,b] nach \mathbb{R}^n konvergiert $gleichmä\beta ig$ gegen $c:[a,b]\to\mathbb{R}^n$, wenn gilt:

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall x \in [a, b] \ \forall n \ge N : \ \|c_n(x) - c(x)\| < \epsilon$$

Zeigen Sie: Eine Folge $(c_n)_{n\in\mathbb{N}}$ in C[a,b] konvergiert genau dann gleichmäßig gegen eine Kurve $c:[a,b]\to\mathbb{R}^n$, wenn $c\in C[a,b]$ gilt und $\lim_{n\to\infty}\|c_n-c\|_{\infty}=0$ ist.

Aufgabe 4. Es sei $A \subseteq \mathbb{R}^n$ abgeschlossene Teilmenge und $M := \{c : [a,b] \to A \mid c \text{ stetig}\}$. Es bezeichne $d_{\infty}^M : M \times M \to \mathbb{R}$ die Einschränkung auf M der durch die Supremumsnorm aus Aufgabe 3 induzierten Metrik. Zeigen Sie: Der Raum (M, d_{∞}^M) ist vollständig.

Abgabe der Lösungen zu diesem Blatt bis Montag, den 14.6.2008, um 16.00 Uhr, in dem zur jeweiligen Übungsgruppe gehörigen Briefkasten im Hörsaalgebäude.