PD Dr. C. Böhm SS 2007

Übungen zu Differentialgeometrie II

Serie 9

31. (Killingfelder) Sei (M^n, g) Riemannsche Mannigfaltigkeit und X ein differenzierbares Vektorfeld mit Fluss $(\phi_t)_{t \in \mathbb{R}}$. Zeigen Sie, dass die Diffeomorphismen ϕ_t Isometrien sind (für alle $t \in \mathbb{R}$) genau dann, wenn für alle Vektorfelder V, W gilt:

$$g(\nabla_V X, W) = -g(V, \nabla_W X).$$

Ist eine der beiden Bedingungen erfüllt, so nennt man das Vektorfeld X Killingfeld.

32. Sei (M^n, g) Riemannsche Mannigfaltigkeit, X Killingfeld und $T(A) := \nabla_A X$. Zeigen Sie, dass die kovariante Ableitung $\nabla_B T$ des (1, 1)-Tensors T ebenso wie T schiefsymmetrisch ist, d.h. für alle Vektorfelder V, W gilt:

$$g((\nabla_B T)(V), W) = -g(V, (\nabla_B T)(W)).$$

33. Sei (M^n, g) Riemannsche Mannigfaltigkeit und X Killingfeld. Zeigen Sie

$$(\nabla_V(\nabla X))(W) + R_{XV}W = 0.$$

34. Sei (M^n, g) Riemannsche Mannigfaltigkeit, X Killingfeld und

$$f := \frac{1}{2} \cdot g(X, X) .$$

Zeigen Sie:

- (a) $\nabla f = -T(X) = -\nabla_X X$.
- (b) $(\text{Hess} f)(V, W) = -g((T^2 + \nabla_X T + R_X)(V), W)$, wobei $R_X(V) = R_{V,X}X$.
- (c) $\Delta f = \sum_{i=1}^{n} (\operatorname{Hess} f)(e_i, e_i) = -\operatorname{Ric}(X, X) \operatorname{tr}(T^2), (e_1, ..., e_n)$ lokale Orthonormalbasis von (M^n, g) .
- 35. (Satz von Bochner) Sei (M^n, g) kompakte orientierbare Riemannsche Mannigfaltigkeit mit $Ric(g) \leq 0$. Dann ist jedes Killingfeld parallel.

Hinweis: Es gilt $0 = \int_{M^n} \Delta f \, \mu_g$.

Abgabe: Bis Mittwoch, den 13.6.2004, 12:15.