PD Dr. C. Böhm SS 2007

Übungen zu Differentialgeometrie II

Serie 1

1. Sei M eine n-dimensionale, differenzierbare Mannigfaltigkeit und G eine Gruppe von Diffeomorphismen von M. Zeigen Sie: Operiert G frei und eigentlich diskontinuierlich auf M, so ist der Bahnenraum M/G ein differenzierbare n-dimensionale Mannigfaltigkeit.

- 2. Seien M, N differenzierbare Mannigfaltigkeiten. Auf M operiere eine Gruppe G von Diffeomorphismen frei und eigentlich diskontinuierlich. Es bezeichne M/G den Bahnenraum und $\pi: M \to M/G$ die kanonische Projektion. Zeigen Sie:
 - (a) Ist $f:M\to N$ differenzierbar und G-invariant (d. h. für alle $\gamma\in G$ und $p\in M$ gilt $f(\gamma.p)=f(p)$, dann gibt es genau eine differenzierbare Abbildung $\bar f:M/G\to N$ mit $f=\bar f\circ\pi$.
 - (b) Ist f Immersion [bzw. lokaler Diffeomorphismus], so auch \bar{f} .
- 3. (Oberes Halbebenenmodel der Hyperbolischen Ebene) Es bezeichne $\mathbb{H} := \{(x,y) \in \mathbb{C} : y > 0\}$ die obere Halbebene der komplexen Zahlenebene \mathbb{C} . Die Identität

$$g_{(x,y)}(v,w) := \frac{1}{v^2} \cdot \langle v, w \rangle_0$$

definiert die sogenannte hyperbolische Metrik g auf \mathbb{H} ; die Riemannsche Mannigfaltigkeit (\mathbb{H} , g) nennt man die hyperbolische Ebene. Zeigen Sie:

- (a) Für α , $\beta > 0$ ist die Kurve $c : [0,1] \to \mathbb{H}$; $t \mapsto t\beta i + (1-t)\alpha i$ kürzeste Kurve zwischen den Punkten αi und βi . Können Sie auch Kürzeste zwischen zwei beliebigen Punkten in der hyperbolischen Ebene angeben?
- (b) Die Schnittkrümmung der hyperbolischen Ebene ist konstant.
- (c) Für $A = \binom{\alpha \ \beta}{\gamma \ \delta} \in \mathrm{Sl}(2,\mathbb{R})$ ist die Abbildung

$$h_A: \mathbb{H} \to \mathbb{C} \; ; \; z \mapsto \frac{\alpha z + \beta}{\gamma z + \delta}$$

eine biholomorphe Abbildung von H in sich (ein "Automorphismus").

- (d) Die Diffeomorphismen $h_A : \mathbb{H} \to \mathbb{H}, A \in \mathrm{Sl}(2, \mathbb{R})$ sind Isometrien der hyperbolischen Ebene.
- (e) Die Abbildung $\rho: (\mathrm{Sl}(2,\mathbb{R}),\cdot) \to (\mathrm{Aut}(\mathbb{H}),\circ); \ A \mapsto h_A$ ist ein Gruppenhomomorphismus.
- (f) Die Gruppe $Sl(2,\mathbb{Z})$ operiert eigentlich diskontinuierlich auf \mathbb{H} .
- (g) Die Abbildung h_A , $A \in Sl(2, \mathbb{R}) \setminus \{\pm I\}$, hat genau dann einen Fixpunkt in \mathbb{H} , wenn |Spur(A)| < 2 gilt.
- (h) Für $m \geq 3$ ist

$$\Gamma_m := \left\{ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \operatorname{Sl}(2, \mathbb{Z}) \mid \alpha \equiv \delta \equiv 1, \ \beta \equiv \gamma \equiv 0 \ \operatorname{mod} m \right\}$$

eine Untergruppe von $Sl(2, \mathbb{Z})$, welche frei und eigentlich diskontinuierlich auf \mathbb{H} operiert.

Abgabe: Bis Mittwoch, den 11.4.2004, 12:15.